Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #define DEBUG_TYPE "loop-simplify"
     41 #include "llvm/Transforms/Scalar.h"
     42 #include "llvm/ADT/DepthFirstIterator.h"
     43 #include "llvm/ADT/SetOperations.h"
     44 #include "llvm/ADT/SetVector.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/Analysis/AliasAnalysis.h"
     47 #include "llvm/Analysis/DependenceAnalysis.h"
     48 #include "llvm/Analysis/Dominators.h"
     49 #include "llvm/Analysis/InstructionSimplify.h"
     50 #include "llvm/Analysis/LoopPass.h"
     51 #include "llvm/Analysis/ScalarEvolution.h"
     52 #include "llvm/IR/Constants.h"
     53 #include "llvm/IR/Function.h"
     54 #include "llvm/IR/Instructions.h"
     55 #include "llvm/IR/IntrinsicInst.h"
     56 #include "llvm/IR/LLVMContext.h"
     57 #include "llvm/IR/Type.h"
     58 #include "llvm/Support/CFG.h"
     59 #include "llvm/Support/Debug.h"
     60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     61 #include "llvm/Transforms/Utils/Local.h"
     62 using namespace llvm;
     63 
     64 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
     65 STATISTIC(NumNested  , "Number of nested loops split out");
     66 
     67 namespace {
     68   struct LoopSimplify : public LoopPass {
     69     static char ID; // Pass identification, replacement for typeid
     70     LoopSimplify() : LoopPass(ID) {
     71       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
     72     }
     73 
     74     // AA - If we have an alias analysis object to update, this is it, otherwise
     75     // this is null.
     76     AliasAnalysis *AA;
     77     LoopInfo *LI;
     78     DominatorTree *DT;
     79     ScalarEvolution *SE;
     80     Loop *L;
     81     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     82 
     83     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     84       // We need loop information to identify the loops...
     85       AU.addRequired<DominatorTree>();
     86       AU.addPreserved<DominatorTree>();
     87 
     88       AU.addRequired<LoopInfo>();
     89       AU.addPreserved<LoopInfo>();
     90 
     91       AU.addPreserved<AliasAnalysis>();
     92       AU.addPreserved<ScalarEvolution>();
     93       AU.addPreserved<DependenceAnalysis>();
     94       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
     95     }
     96 
     97     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
     98     void verifyAnalysis() const;
     99 
    100   private:
    101     bool ProcessLoop(Loop *L, LPPassManager &LPM);
    102     BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
    103     BasicBlock *InsertPreheaderForLoop(Loop *L);
    104     Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
    105                              BasicBlock *Preheader);
    106     BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
    107     void PlaceSplitBlockCarefully(BasicBlock *NewBB,
    108                                   SmallVectorImpl<BasicBlock*> &SplitPreds,
    109                                   Loop *L);
    110   };
    111 }
    112 
    113 char LoopSimplify::ID = 0;
    114 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    115                 "Canonicalize natural loops", true, false)
    116 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    117 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    118 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    119                 "Canonicalize natural loops", true, false)
    120 
    121 // Publicly exposed interface to pass...
    122 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    123 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    124 
    125 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
    126 /// it in any convenient order) inserting preheaders...
    127 ///
    128 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
    129   L = l;
    130   bool Changed = false;
    131   LI = &getAnalysis<LoopInfo>();
    132   AA = getAnalysisIfAvailable<AliasAnalysis>();
    133   DT = &getAnalysis<DominatorTree>();
    134   SE = getAnalysisIfAvailable<ScalarEvolution>();
    135 
    136   Changed |= ProcessLoop(L, LPM);
    137 
    138   return Changed;
    139 }
    140 
    141 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
    142 /// all loops have preheaders.
    143 ///
    144 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
    145   bool Changed = false;
    146 ReprocessLoop:
    147 
    148   // Check to see that no blocks (other than the header) in this loop have
    149   // predecessors that are not in the loop.  This is not valid for natural
    150   // loops, but can occur if the blocks are unreachable.  Since they are
    151   // unreachable we can just shamelessly delete those CFG edges!
    152   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    153        BB != E; ++BB) {
    154     if (*BB == L->getHeader()) continue;
    155 
    156     SmallPtrSet<BasicBlock*, 4> BadPreds;
    157     for (pred_iterator PI = pred_begin(*BB),
    158          PE = pred_end(*BB); PI != PE; ++PI) {
    159       BasicBlock *P = *PI;
    160       if (!L->contains(P))
    161         BadPreds.insert(P);
    162     }
    163 
    164     // Delete each unique out-of-loop (and thus dead) predecessor.
    165     for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
    166          E = BadPreds.end(); I != E; ++I) {
    167 
    168       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    169                    << (*I)->getName() << "\n");
    170 
    171       // Inform each successor of each dead pred.
    172       for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
    173         (*SI)->removePredecessor(*I);
    174       // Zap the dead pred's terminator and replace it with unreachable.
    175       TerminatorInst *TI = (*I)->getTerminator();
    176        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
    177       (*I)->getTerminator()->eraseFromParent();
    178       new UnreachableInst((*I)->getContext(), *I);
    179       Changed = true;
    180     }
    181   }
    182 
    183   // If there are exiting blocks with branches on undef, resolve the undef in
    184   // the direction which will exit the loop. This will help simplify loop
    185   // trip count computations.
    186   SmallVector<BasicBlock*, 8> ExitingBlocks;
    187   L->getExitingBlocks(ExitingBlocks);
    188   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
    189        E = ExitingBlocks.end(); I != E; ++I)
    190     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
    191       if (BI->isConditional()) {
    192         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    193 
    194           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    195                        << (*I)->getName() << "\n");
    196 
    197           BI->setCondition(ConstantInt::get(Cond->getType(),
    198                                             !L->contains(BI->getSuccessor(0))));
    199 
    200           // This may make the loop analyzable, force SCEV recomputation.
    201           if (SE)
    202             SE->forgetLoop(L);
    203 
    204           Changed = true;
    205         }
    206       }
    207 
    208   // Does the loop already have a preheader?  If so, don't insert one.
    209   BasicBlock *Preheader = L->getLoopPreheader();
    210   if (!Preheader) {
    211     Preheader = InsertPreheaderForLoop(L);
    212     if (Preheader) {
    213       ++NumInserted;
    214       Changed = true;
    215     }
    216   }
    217 
    218   // Next, check to make sure that all exit nodes of the loop only have
    219   // predecessors that are inside of the loop.  This check guarantees that the
    220   // loop preheader/header will dominate the exit blocks.  If the exit block has
    221   // predecessors from outside of the loop, split the edge now.
    222   SmallVector<BasicBlock*, 8> ExitBlocks;
    223   L->getExitBlocks(ExitBlocks);
    224 
    225   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
    226                                                ExitBlocks.end());
    227   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
    228          E = ExitBlockSet.end(); I != E; ++I) {
    229     BasicBlock *ExitBlock = *I;
    230     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
    231          PI != PE; ++PI)
    232       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
    233       // allowed.
    234       if (!L->contains(*PI)) {
    235         if (RewriteLoopExitBlock(L, ExitBlock)) {
    236           ++NumInserted;
    237           Changed = true;
    238         }
    239         break;
    240       }
    241   }
    242 
    243   // If the header has more than two predecessors at this point (from the
    244   // preheader and from multiple backedges), we must adjust the loop.
    245   BasicBlock *LoopLatch = L->getLoopLatch();
    246   if (!LoopLatch) {
    247     // If this is really a nested loop, rip it out into a child loop.  Don't do
    248     // this for loops with a giant number of backedges, just factor them into a
    249     // common backedge instead.
    250     if (L->getNumBackEdges() < 8) {
    251       if (SeparateNestedLoop(L, LPM, Preheader)) {
    252         ++NumNested;
    253         // This is a big restructuring change, reprocess the whole loop.
    254         Changed = true;
    255         // GCC doesn't tail recursion eliminate this.
    256         goto ReprocessLoop;
    257       }
    258     }
    259 
    260     // If we either couldn't, or didn't want to, identify nesting of the loops,
    261     // insert a new block that all backedges target, then make it jump to the
    262     // loop header.
    263     LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
    264     if (LoopLatch) {
    265       ++NumInserted;
    266       Changed = true;
    267     }
    268   }
    269 
    270   // Scan over the PHI nodes in the loop header.  Since they now have only two
    271   // incoming values (the loop is canonicalized), we may have simplified the PHI
    272   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    273   PHINode *PN;
    274   for (BasicBlock::iterator I = L->getHeader()->begin();
    275        (PN = dyn_cast<PHINode>(I++)); )
    276     if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
    277       if (AA) AA->deleteValue(PN);
    278       if (SE) SE->forgetValue(PN);
    279       PN->replaceAllUsesWith(V);
    280       PN->eraseFromParent();
    281     }
    282 
    283   // If this loop has multiple exits and the exits all go to the same
    284   // block, attempt to merge the exits. This helps several passes, such
    285   // as LoopRotation, which do not support loops with multiple exits.
    286   // SimplifyCFG also does this (and this code uses the same utility
    287   // function), however this code is loop-aware, where SimplifyCFG is
    288   // not. That gives it the advantage of being able to hoist
    289   // loop-invariant instructions out of the way to open up more
    290   // opportunities, and the disadvantage of having the responsibility
    291   // to preserve dominator information.
    292   bool UniqueExit = true;
    293   if (!ExitBlocks.empty())
    294     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
    295       if (ExitBlocks[i] != ExitBlocks[0]) {
    296         UniqueExit = false;
    297         break;
    298       }
    299   if (UniqueExit) {
    300     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    301       BasicBlock *ExitingBlock = ExitingBlocks[i];
    302       if (!ExitingBlock->getSinglePredecessor()) continue;
    303       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    304       if (!BI || !BI->isConditional()) continue;
    305       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    306       if (!CI || CI->getParent() != ExitingBlock) continue;
    307 
    308       // Attempt to hoist out all instructions except for the
    309       // comparison and the branch.
    310       bool AllInvariant = true;
    311       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
    312         Instruction *Inst = I++;
    313         // Skip debug info intrinsics.
    314         if (isa<DbgInfoIntrinsic>(Inst))
    315           continue;
    316         if (Inst == CI)
    317           continue;
    318         if (!L->makeLoopInvariant(Inst, Changed,
    319                                   Preheader ? Preheader->getTerminator() : 0)) {
    320           AllInvariant = false;
    321           break;
    322         }
    323       }
    324       if (!AllInvariant) continue;
    325 
    326       // The block has now been cleared of all instructions except for
    327       // a comparison and a conditional branch. SimplifyCFG may be able
    328       // to fold it now.
    329       if (!FoldBranchToCommonDest(BI)) continue;
    330 
    331       // Success. The block is now dead, so remove it from the loop,
    332       // update the dominator tree and delete it.
    333       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    334                    << ExitingBlock->getName() << "\n");
    335 
    336       // If any reachable control flow within this loop has changed, notify
    337       // ScalarEvolution. Currently assume the parent loop doesn't change
    338       // (spliting edges doesn't count). If blocks, CFG edges, or other values
    339       // in the parent loop change, then we need call to forgetLoop() for the
    340       // parent instead.
    341       if (SE)
    342         SE->forgetLoop(L);
    343 
    344       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    345       Changed = true;
    346       LI->removeBlock(ExitingBlock);
    347 
    348       DomTreeNode *Node = DT->getNode(ExitingBlock);
    349       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    350         Node->getChildren();
    351       while (!Children.empty()) {
    352         DomTreeNode *Child = Children.front();
    353         DT->changeImmediateDominator(Child, Node->getIDom());
    354       }
    355       DT->eraseNode(ExitingBlock);
    356 
    357       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
    358       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
    359       ExitingBlock->eraseFromParent();
    360     }
    361   }
    362 
    363   return Changed;
    364 }
    365 
    366 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    367 /// preheader, this method is called to insert one.  This method has two phases:
    368 /// preheader insertion and analysis updating.
    369 ///
    370 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
    371   BasicBlock *Header = L->getHeader();
    372 
    373   // Compute the set of predecessors of the loop that are not in the loop.
    374   SmallVector<BasicBlock*, 8> OutsideBlocks;
    375   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    376        PI != PE; ++PI) {
    377     BasicBlock *P = *PI;
    378     if (!L->contains(P)) {         // Coming in from outside the loop?
    379       // If the loop is branched to from an indirect branch, we won't
    380       // be able to fully transform the loop, because it prohibits
    381       // edge splitting.
    382       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
    383 
    384       // Keep track of it.
    385       OutsideBlocks.push_back(P);
    386     }
    387   }
    388 
    389   // Split out the loop pre-header.
    390   BasicBlock *PreheaderBB;
    391   if (!Header->isLandingPad()) {
    392     PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
    393                                          this);
    394   } else {
    395     SmallVector<BasicBlock*, 2> NewBBs;
    396     SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
    397                                 ".split-lp", this, NewBBs);
    398     PreheaderBB = NewBBs[0];
    399   }
    400 
    401   PreheaderBB->getTerminator()->setDebugLoc(
    402                                       Header->getFirstNonPHI()->getDebugLoc());
    403   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
    404                << PreheaderBB->getName() << "\n");
    405 
    406   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    407   // code layout too horribly.
    408   PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
    409 
    410   return PreheaderBB;
    411 }
    412 
    413 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
    414 /// blocks.  This method is used to split exit blocks that have predecessors
    415 /// outside of the loop.
    416 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
    417   SmallVector<BasicBlock*, 8> LoopBlocks;
    418   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
    419     BasicBlock *P = *I;
    420     if (L->contains(P)) {
    421       // Don't do this if the loop is exited via an indirect branch.
    422       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
    423 
    424       LoopBlocks.push_back(P);
    425     }
    426   }
    427 
    428   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
    429   BasicBlock *NewExitBB = 0;
    430 
    431   if (Exit->isLandingPad()) {
    432     SmallVector<BasicBlock*, 2> NewBBs;
    433     SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
    434                                                             LoopBlocks.size()),
    435                                 ".loopexit", ".nonloopexit",
    436                                 this, NewBBs);
    437     NewExitBB = NewBBs[0];
    438   } else {
    439     NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
    440   }
    441 
    442   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
    443                << NewExitBB->getName() << "\n");
    444   return NewExitBB;
    445 }
    446 
    447 /// AddBlockAndPredsToSet - Add the specified block, and all of its
    448 /// predecessors, to the specified set, if it's not already in there.  Stop
    449 /// predecessor traversal when we reach StopBlock.
    450 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    451                                   std::set<BasicBlock*> &Blocks) {
    452   std::vector<BasicBlock *> WorkList;
    453   WorkList.push_back(InputBB);
    454   do {
    455     BasicBlock *BB = WorkList.back(); WorkList.pop_back();
    456     if (Blocks.insert(BB).second && BB != StopBlock)
    457       // If BB is not already processed and it is not a stop block then
    458       // insert its predecessor in the work list
    459       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    460         BasicBlock *WBB = *I;
    461         WorkList.push_back(WBB);
    462       }
    463   } while(!WorkList.empty());
    464 }
    465 
    466 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
    467 /// PHI node that tells us how to partition the loops.
    468 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
    469                                         AliasAnalysis *AA, LoopInfo *LI) {
    470   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    471     PHINode *PN = cast<PHINode>(I);
    472     ++I;
    473     if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
    474       // This is a degenerate PHI already, don't modify it!
    475       PN->replaceAllUsesWith(V);
    476       if (AA) AA->deleteValue(PN);
    477       PN->eraseFromParent();
    478       continue;
    479     }
    480 
    481     // Scan this PHI node looking for a use of the PHI node by itself.
    482     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    483       if (PN->getIncomingValue(i) == PN &&
    484           L->contains(PN->getIncomingBlock(i)))
    485         // We found something tasty to remove.
    486         return PN;
    487   }
    488   return 0;
    489 }
    490 
    491 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
    492 // right after some 'outside block' block.  This prevents the preheader from
    493 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
    494 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
    495                                        SmallVectorImpl<BasicBlock*> &SplitPreds,
    496                                             Loop *L) {
    497   // Check to see if NewBB is already well placed.
    498   Function::iterator BBI = NewBB; --BBI;
    499   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    500     if (&*BBI == SplitPreds[i])
    501       return;
    502   }
    503 
    504   // If it isn't already after an outside block, move it after one.  This is
    505   // always good as it makes the uncond branch from the outside block into a
    506   // fall-through.
    507 
    508   // Figure out *which* outside block to put this after.  Prefer an outside
    509   // block that neighbors a BB actually in the loop.
    510   BasicBlock *FoundBB = 0;
    511   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    512     Function::iterator BBI = SplitPreds[i];
    513     if (++BBI != NewBB->getParent()->end() &&
    514         L->contains(BBI)) {
    515       FoundBB = SplitPreds[i];
    516       break;
    517     }
    518   }
    519 
    520   // If our heuristic for a *good* bb to place this after doesn't find
    521   // anything, just pick something.  It's likely better than leaving it within
    522   // the loop.
    523   if (!FoundBB)
    524     FoundBB = SplitPreds[0];
    525   NewBB->moveAfter(FoundBB);
    526 }
    527 
    528 
    529 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
    530 /// them out into a nested loop.  This is important for code that looks like
    531 /// this:
    532 ///
    533 ///  Loop:
    534 ///     ...
    535 ///     br cond, Loop, Next
    536 ///     ...
    537 ///     br cond2, Loop, Out
    538 ///
    539 /// To identify this common case, we look at the PHI nodes in the header of the
    540 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    541 /// that change in the "outer" loop, but not in the "inner" loop.
    542 ///
    543 /// If we are able to separate out a loop, return the new outer loop that was
    544 /// created.
    545 ///
    546 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
    547                                        BasicBlock *Preheader) {
    548   // Don't try to separate loops without a preheader.
    549   if (!Preheader)
    550     return 0;
    551 
    552   // The header is not a landing pad; preheader insertion should ensure this.
    553   assert(!L->getHeader()->isLandingPad() &&
    554          "Can't insert backedge to landing pad");
    555 
    556   PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
    557   if (PN == 0) return 0;  // No known way to partition.
    558 
    559   // Pull out all predecessors that have varying values in the loop.  This
    560   // handles the case when a PHI node has multiple instances of itself as
    561   // arguments.
    562   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    563   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    564     if (PN->getIncomingValue(i) != PN ||
    565         !L->contains(PN->getIncomingBlock(i))) {
    566       // We can't split indirectbr edges.
    567       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    568         return 0;
    569       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    570     }
    571   }
    572   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    573 
    574   // If ScalarEvolution is around and knows anything about values in
    575   // this loop, tell it to forget them, because we're about to
    576   // substantially change it.
    577   if (SE)
    578     SE->forgetLoop(L);
    579 
    580   BasicBlock *Header = L->getHeader();
    581   BasicBlock *NewBB =
    582     SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", this);
    583 
    584   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    585   // code layout too horribly.
    586   PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    587 
    588   // Create the new outer loop.
    589   Loop *NewOuter = new Loop();
    590 
    591   // Change the parent loop to use the outer loop as its child now.
    592   if (Loop *Parent = L->getParentLoop())
    593     Parent->replaceChildLoopWith(L, NewOuter);
    594   else
    595     LI->changeTopLevelLoop(L, NewOuter);
    596 
    597   // L is now a subloop of our outer loop.
    598   NewOuter->addChildLoop(L);
    599 
    600   // Add the new loop to the pass manager queue.
    601   LPM.insertLoopIntoQueue(NewOuter);
    602 
    603   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    604        I != E; ++I)
    605     NewOuter->addBlockEntry(*I);
    606 
    607   // Now reset the header in L, which had been moved by
    608   // SplitBlockPredecessors for the outer loop.
    609   L->moveToHeader(Header);
    610 
    611   // Determine which blocks should stay in L and which should be moved out to
    612   // the Outer loop now.
    613   std::set<BasicBlock*> BlocksInL;
    614   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    615     BasicBlock *P = *PI;
    616     if (DT->dominates(Header, P))
    617       AddBlockAndPredsToSet(P, Header, BlocksInL);
    618   }
    619 
    620   // Scan all of the loop children of L, moving them to OuterLoop if they are
    621   // not part of the inner loop.
    622   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    623   for (size_t I = 0; I != SubLoops.size(); )
    624     if (BlocksInL.count(SubLoops[I]->getHeader()))
    625       ++I;   // Loop remains in L
    626     else
    627       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    628 
    629   // Now that we know which blocks are in L and which need to be moved to
    630   // OuterLoop, move any blocks that need it.
    631   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    632     BasicBlock *BB = L->getBlocks()[i];
    633     if (!BlocksInL.count(BB)) {
    634       // Move this block to the parent, updating the exit blocks sets
    635       L->removeBlockFromLoop(BB);
    636       if ((*LI)[BB] == L)
    637         LI->changeLoopFor(BB, NewOuter);
    638       --i;
    639     }
    640   }
    641 
    642   return NewOuter;
    643 }
    644 
    645 
    646 
    647 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
    648 /// has more than one backedge in it.  If this occurs, revector all of these
    649 /// backedges to target a new basic block and have that block branch to the loop
    650 /// header.  This ensures that loops have exactly one backedge.
    651 ///
    652 BasicBlock *
    653 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
    654   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    655 
    656   // Get information about the loop
    657   BasicBlock *Header = L->getHeader();
    658   Function *F = Header->getParent();
    659 
    660   // Unique backedge insertion currently depends on having a preheader.
    661   if (!Preheader)
    662     return 0;
    663 
    664   // The header is not a landing pad; preheader insertion should ensure this.
    665   assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
    666 
    667   // Figure out which basic blocks contain back-edges to the loop header.
    668   std::vector<BasicBlock*> BackedgeBlocks;
    669   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    670     BasicBlock *P = *I;
    671 
    672     // Indirectbr edges cannot be split, so we must fail if we find one.
    673     if (isa<IndirectBrInst>(P->getTerminator()))
    674       return 0;
    675 
    676     if (P != Preheader) BackedgeBlocks.push_back(P);
    677   }
    678 
    679   // Create and insert the new backedge block...
    680   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    681                                            Header->getName()+".backedge", F);
    682   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    683 
    684   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    685                << BEBlock->getName() << "\n");
    686 
    687   // Move the new backedge block to right after the last backedge block.
    688   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
    689   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    690 
    691   // Now that the block has been inserted into the function, create PHI nodes in
    692   // the backedge block which correspond to any PHI nodes in the header block.
    693   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    694     PHINode *PN = cast<PHINode>(I);
    695     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    696                                      PN->getName()+".be", BETerminator);
    697     if (AA) AA->copyValue(PN, NewPN);
    698 
    699     // Loop over the PHI node, moving all entries except the one for the
    700     // preheader over to the new PHI node.
    701     unsigned PreheaderIdx = ~0U;
    702     bool HasUniqueIncomingValue = true;
    703     Value *UniqueValue = 0;
    704     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    705       BasicBlock *IBB = PN->getIncomingBlock(i);
    706       Value *IV = PN->getIncomingValue(i);
    707       if (IBB == Preheader) {
    708         PreheaderIdx = i;
    709       } else {
    710         NewPN->addIncoming(IV, IBB);
    711         if (HasUniqueIncomingValue) {
    712           if (UniqueValue == 0)
    713             UniqueValue = IV;
    714           else if (UniqueValue != IV)
    715             HasUniqueIncomingValue = false;
    716         }
    717       }
    718     }
    719 
    720     // Delete all of the incoming values from the old PN except the preheader's
    721     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    722     if (PreheaderIdx != 0) {
    723       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    724       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    725     }
    726     // Nuke all entries except the zero'th.
    727     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    728       PN->removeIncomingValue(e-i, false);
    729 
    730     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    731     PN->addIncoming(NewPN, BEBlock);
    732 
    733     // As an optimization, if all incoming values in the new PhiNode (which is a
    734     // subset of the incoming values of the old PHI node) have the same value,
    735     // eliminate the PHI Node.
    736     if (HasUniqueIncomingValue) {
    737       NewPN->replaceAllUsesWith(UniqueValue);
    738       if (AA) AA->deleteValue(NewPN);
    739       BEBlock->getInstList().erase(NewPN);
    740     }
    741   }
    742 
    743   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    744   // backedge blocks to just to the BEBlock instead of the header.
    745   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    746     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    747     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    748       if (TI->getSuccessor(Op) == Header)
    749         TI->setSuccessor(Op, BEBlock);
    750   }
    751 
    752   //===--- Update all analyses which we must preserve now -----------------===//
    753 
    754   // Update Loop Information - we know that this block is now in the current
    755   // loop and all parent loops.
    756   L->addBasicBlockToLoop(BEBlock, LI->getBase());
    757 
    758   // Update dominator information
    759   DT->splitBlock(BEBlock);
    760 
    761   return BEBlock;
    762 }
    763 
    764 void LoopSimplify::verifyAnalysis() const {
    765   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    766   // with the introduction of indirectbr, there are now cases where it's
    767   // not possible to transform a loop as necessary. We can at least check
    768   // that there is an indirectbr near any time there's trouble.
    769 
    770   // Indirectbr can interfere with preheader and unique backedge insertion.
    771   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    772     bool HasIndBrPred = false;
    773     for (pred_iterator PI = pred_begin(L->getHeader()),
    774          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    775       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    776         HasIndBrPred = true;
    777         break;
    778       }
    779     assert(HasIndBrPred &&
    780            "LoopSimplify has no excuse for missing loop header info!");
    781     (void)HasIndBrPred;
    782   }
    783 
    784   // Indirectbr can interfere with exit block canonicalization.
    785   if (!L->hasDedicatedExits()) {
    786     bool HasIndBrExiting = false;
    787     SmallVector<BasicBlock*, 8> ExitingBlocks;
    788     L->getExitingBlocks(ExitingBlocks);
    789     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    790       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    791         HasIndBrExiting = true;
    792         break;
    793       }
    794     }
    795 
    796     assert(HasIndBrExiting &&
    797            "LoopSimplify has no excuse for missing exit block info!");
    798     (void)HasIndBrExiting;
    799   }
    800 }
    801