1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/LiveRangeEdit.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/VirtRegMap.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 STATISTIC(NumFinished, "Number of splits finished"); 33 STATISTIC(NumSimple, "Number of splits that were simple"); 34 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 35 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 36 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 37 38 //===----------------------------------------------------------------------===// 39 // Split Analysis 40 //===----------------------------------------------------------------------===// 41 42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 43 const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), 46 VRM(vrm), 47 LIS(lis), 48 Loops(mli), 49 TII(*MF.getTarget().getInstrInfo()), 50 CurLI(0), 51 LastSplitPoint(MF.getNumBlockIDs()) {} 52 53 void SplitAnalysis::clear() { 54 UseSlots.clear(); 55 UseBlocks.clear(); 56 ThroughBlocks.clear(); 57 CurLI = 0; 58 DidRepairRange = false; 59 } 60 61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 65 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 66 67 // Compute split points on the first call. The pair is independent of the 68 // current live interval. 69 if (!LSP.first.isValid()) { 70 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 71 if (FirstTerm == MBB->end()) 72 LSP.first = MBBEnd; 73 else 74 LSP.first = LIS.getInstructionIndex(FirstTerm); 75 76 // If there is a landing pad successor, also find the call instruction. 77 if (!LPad) 78 return LSP.first; 79 // There may not be a call instruction (?) in which case we ignore LPad. 80 LSP.second = LSP.first; 81 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 82 I != E;) { 83 --I; 84 if (I->isCall()) { 85 LSP.second = LIS.getInstructionIndex(I); 86 break; 87 } 88 } 89 } 90 91 // If CurLI is live into a landing pad successor, move the last split point 92 // back to the call that may throw. 93 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad)) 94 return LSP.first; 95 96 // Find the value leaving MBB. 97 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 98 if (!VNI) 99 return LSP.first; 100 101 // If the value leaving MBB was defined after the call in MBB, it can't 102 // really be live-in to the landing pad. This can happen if the landing pad 103 // has a PHI, and this register is undef on the exceptional edge. 104 // <rdar://problem/10664933> 105 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 106 return LSP.first; 107 108 // Value is properly live-in to the landing pad. 109 // Only allow splits before the call. 110 return LSP.second; 111 } 112 113 MachineBasicBlock::iterator 114 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 115 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 116 if (LSP == LIS.getMBBEndIdx(MBB)) 117 return MBB->end(); 118 return LIS.getInstructionFromIndex(LSP); 119 } 120 121 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 122 void SplitAnalysis::analyzeUses() { 123 assert(UseSlots.empty() && "Call clear first"); 124 125 // First get all the defs from the interval values. This provides the correct 126 // slots for early clobbers. 127 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 128 E = CurLI->vni_end(); I != E; ++I) 129 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 130 UseSlots.push_back((*I)->def); 131 132 // Get use slots form the use-def chain. 133 const MachineRegisterInfo &MRI = MF.getRegInfo(); 134 for (MachineRegisterInfo::use_nodbg_iterator 135 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 136 ++I) 137 if (!I.getOperand().isUndef()) 138 UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot()); 139 140 array_pod_sort(UseSlots.begin(), UseSlots.end()); 141 142 // Remove duplicates, keeping the smaller slot for each instruction. 143 // That is what we want for early clobbers. 144 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 145 SlotIndex::isSameInstr), 146 UseSlots.end()); 147 148 // Compute per-live block info. 149 if (!calcLiveBlockInfo()) { 150 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 151 // I am looking at you, RegisterCoalescer! 152 DidRepairRange = true; 153 ++NumRepairs; 154 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 155 const_cast<LiveIntervals&>(LIS) 156 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 157 UseBlocks.clear(); 158 ThroughBlocks.clear(); 159 bool fixed = calcLiveBlockInfo(); 160 (void)fixed; 161 assert(fixed && "Couldn't fix broken live interval"); 162 } 163 164 DEBUG(dbgs() << "Analyze counted " 165 << UseSlots.size() << " instrs in " 166 << UseBlocks.size() << " blocks, through " 167 << NumThroughBlocks << " blocks.\n"); 168 } 169 170 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 171 /// where CurLI is live. 172 bool SplitAnalysis::calcLiveBlockInfo() { 173 ThroughBlocks.resize(MF.getNumBlockIDs()); 174 NumThroughBlocks = NumGapBlocks = 0; 175 if (CurLI->empty()) 176 return true; 177 178 LiveInterval::const_iterator LVI = CurLI->begin(); 179 LiveInterval::const_iterator LVE = CurLI->end(); 180 181 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 182 UseI = UseSlots.begin(); 183 UseE = UseSlots.end(); 184 185 // Loop over basic blocks where CurLI is live. 186 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 187 for (;;) { 188 BlockInfo BI; 189 BI.MBB = MFI; 190 SlotIndex Start, Stop; 191 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 192 193 // If the block contains no uses, the range must be live through. At one 194 // point, RegisterCoalescer could create dangling ranges that ended 195 // mid-block. 196 if (UseI == UseE || *UseI >= Stop) { 197 ++NumThroughBlocks; 198 ThroughBlocks.set(BI.MBB->getNumber()); 199 // The range shouldn't end mid-block if there are no uses. This shouldn't 200 // happen. 201 if (LVI->end < Stop) 202 return false; 203 } else { 204 // This block has uses. Find the first and last uses in the block. 205 BI.FirstInstr = *UseI; 206 assert(BI.FirstInstr >= Start); 207 do ++UseI; 208 while (UseI != UseE && *UseI < Stop); 209 BI.LastInstr = UseI[-1]; 210 assert(BI.LastInstr < Stop); 211 212 // LVI is the first live segment overlapping MBB. 213 BI.LiveIn = LVI->start <= Start; 214 215 // When not live in, the first use should be a def. 216 if (!BI.LiveIn) { 217 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 218 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 219 BI.FirstDef = BI.FirstInstr; 220 } 221 222 // Look for gaps in the live range. 223 BI.LiveOut = true; 224 while (LVI->end < Stop) { 225 SlotIndex LastStop = LVI->end; 226 if (++LVI == LVE || LVI->start >= Stop) { 227 BI.LiveOut = false; 228 BI.LastInstr = LastStop; 229 break; 230 } 231 232 if (LastStop < LVI->start) { 233 // There is a gap in the live range. Create duplicate entries for the 234 // live-in snippet and the live-out snippet. 235 ++NumGapBlocks; 236 237 // Push the Live-in part. 238 BI.LiveOut = false; 239 UseBlocks.push_back(BI); 240 UseBlocks.back().LastInstr = LastStop; 241 242 // Set up BI for the live-out part. 243 BI.LiveIn = false; 244 BI.LiveOut = true; 245 BI.FirstInstr = BI.FirstDef = LVI->start; 246 } 247 248 // A LiveRange that starts in the middle of the block must be a def. 249 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 250 if (!BI.FirstDef) 251 BI.FirstDef = LVI->start; 252 } 253 254 UseBlocks.push_back(BI); 255 256 // LVI is now at LVE or LVI->end >= Stop. 257 if (LVI == LVE) 258 break; 259 } 260 261 // Live segment ends exactly at Stop. Move to the next segment. 262 if (LVI->end == Stop && ++LVI == LVE) 263 break; 264 265 // Pick the next basic block. 266 if (LVI->start < Stop) 267 ++MFI; 268 else 269 MFI = LIS.getMBBFromIndex(LVI->start); 270 } 271 272 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 273 return true; 274 } 275 276 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 277 if (cli->empty()) 278 return 0; 279 LiveInterval *li = const_cast<LiveInterval*>(cli); 280 LiveInterval::iterator LVI = li->begin(); 281 LiveInterval::iterator LVE = li->end(); 282 unsigned Count = 0; 283 284 // Loop over basic blocks where li is live. 285 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 286 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 287 for (;;) { 288 ++Count; 289 LVI = li->advanceTo(LVI, Stop); 290 if (LVI == LVE) 291 return Count; 292 do { 293 ++MFI; 294 Stop = LIS.getMBBEndIdx(MFI); 295 } while (Stop <= LVI->start); 296 } 297 } 298 299 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 300 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 301 const LiveInterval &Orig = LIS.getInterval(OrigReg); 302 assert(!Orig.empty() && "Splitting empty interval?"); 303 LiveInterval::const_iterator I = Orig.find(Idx); 304 305 // Range containing Idx should begin at Idx. 306 if (I != Orig.end() && I->start <= Idx) 307 return I->start == Idx; 308 309 // Range does not contain Idx, previous must end at Idx. 310 return I != Orig.begin() && (--I)->end == Idx; 311 } 312 313 void SplitAnalysis::analyze(const LiveInterval *li) { 314 clear(); 315 CurLI = li; 316 analyzeUses(); 317 } 318 319 320 //===----------------------------------------------------------------------===// 321 // Split Editor 322 //===----------------------------------------------------------------------===// 323 324 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 325 SplitEditor::SplitEditor(SplitAnalysis &sa, 326 LiveIntervals &lis, 327 VirtRegMap &vrm, 328 MachineDominatorTree &mdt) 329 : SA(sa), LIS(lis), VRM(vrm), 330 MRI(vrm.getMachineFunction().getRegInfo()), 331 MDT(mdt), 332 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 333 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 334 Edit(0), 335 OpenIdx(0), 336 SpillMode(SM_Partition), 337 RegAssign(Allocator) 338 {} 339 340 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 341 Edit = &LRE; 342 SpillMode = SM; 343 OpenIdx = 0; 344 RegAssign.clear(); 345 Values.clear(); 346 347 // Reset the LiveRangeCalc instances needed for this spill mode. 348 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 349 &LIS.getVNInfoAllocator()); 350 if (SpillMode) 351 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 352 &LIS.getVNInfoAllocator()); 353 354 // We don't need an AliasAnalysis since we will only be performing 355 // cheap-as-a-copy remats anyway. 356 Edit->anyRematerializable(0); 357 } 358 359 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 360 void SplitEditor::dump() const { 361 if (RegAssign.empty()) { 362 dbgs() << " empty\n"; 363 return; 364 } 365 366 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 367 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 368 dbgs() << '\n'; 369 } 370 #endif 371 372 VNInfo *SplitEditor::defValue(unsigned RegIdx, 373 const VNInfo *ParentVNI, 374 SlotIndex Idx) { 375 assert(ParentVNI && "Mapping NULL value"); 376 assert(Idx.isValid() && "Invalid SlotIndex"); 377 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 378 LiveInterval *LI = Edit->get(RegIdx); 379 380 // Create a new value. 381 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 382 383 // Use insert for lookup, so we can add missing values with a second lookup. 384 std::pair<ValueMap::iterator, bool> InsP = 385 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 386 ValueForcePair(VNI, false))); 387 388 // This was the first time (RegIdx, ParentVNI) was mapped. 389 // Keep it as a simple def without any liveness. 390 if (InsP.second) 391 return VNI; 392 393 // If the previous value was a simple mapping, add liveness for it now. 394 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 395 SlotIndex Def = OldVNI->def; 396 LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI)); 397 // No longer a simple mapping. Switch to a complex, non-forced mapping. 398 InsP.first->second = ValueForcePair(); 399 } 400 401 // This is a complex mapping, add liveness for VNI 402 SlotIndex Def = VNI->def; 403 LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI)); 404 405 return VNI; 406 } 407 408 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 409 assert(ParentVNI && "Mapping NULL value"); 410 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 411 VNInfo *VNI = VFP.getPointer(); 412 413 // ParentVNI was either unmapped or already complex mapped. Either way, just 414 // set the force bit. 415 if (!VNI) { 416 VFP.setInt(true); 417 return; 418 } 419 420 // This was previously a single mapping. Make sure the old def is represented 421 // by a trivial live range. 422 SlotIndex Def = VNI->def; 423 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI)); 424 // Mark as complex mapped, forced. 425 VFP = ValueForcePair(0, true); 426 } 427 428 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 429 VNInfo *ParentVNI, 430 SlotIndex UseIdx, 431 MachineBasicBlock &MBB, 432 MachineBasicBlock::iterator I) { 433 MachineInstr *CopyMI = 0; 434 SlotIndex Def; 435 LiveInterval *LI = Edit->get(RegIdx); 436 437 // We may be trying to avoid interference that ends at a deleted instruction, 438 // so always begin RegIdx 0 early and all others late. 439 bool Late = RegIdx != 0; 440 441 // Attempt cheap-as-a-copy rematerialization. 442 LiveRangeEdit::Remat RM(ParentVNI); 443 if (Edit->canRematerializeAt(RM, UseIdx, true)) { 444 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 445 ++NumRemats; 446 } else { 447 // Can't remat, just insert a copy from parent. 448 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 449 .addReg(Edit->getReg()); 450 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 451 .getRegSlot(); 452 ++NumCopies; 453 } 454 455 // Define the value in Reg. 456 return defValue(RegIdx, ParentVNI, Def); 457 } 458 459 /// Create a new virtual register and live interval. 460 unsigned SplitEditor::openIntv() { 461 // Create the complement as index 0. 462 if (Edit->empty()) 463 Edit->create(); 464 465 // Create the open interval. 466 OpenIdx = Edit->size(); 467 Edit->create(); 468 return OpenIdx; 469 } 470 471 void SplitEditor::selectIntv(unsigned Idx) { 472 assert(Idx != 0 && "Cannot select the complement interval"); 473 assert(Idx < Edit->size() && "Can only select previously opened interval"); 474 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 475 OpenIdx = Idx; 476 } 477 478 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 479 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 480 DEBUG(dbgs() << " enterIntvBefore " << Idx); 481 Idx = Idx.getBaseIndex(); 482 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 483 if (!ParentVNI) { 484 DEBUG(dbgs() << ": not live\n"); 485 return Idx; 486 } 487 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 488 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 489 assert(MI && "enterIntvBefore called with invalid index"); 490 491 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 492 return VNI->def; 493 } 494 495 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 496 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 497 DEBUG(dbgs() << " enterIntvAfter " << Idx); 498 Idx = Idx.getBoundaryIndex(); 499 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 500 if (!ParentVNI) { 501 DEBUG(dbgs() << ": not live\n"); 502 return Idx; 503 } 504 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 505 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 506 assert(MI && "enterIntvAfter called with invalid index"); 507 508 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 509 llvm::next(MachineBasicBlock::iterator(MI))); 510 return VNI->def; 511 } 512 513 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 514 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 515 SlotIndex End = LIS.getMBBEndIdx(&MBB); 516 SlotIndex Last = End.getPrevSlot(); 517 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 518 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 519 if (!ParentVNI) { 520 DEBUG(dbgs() << ": not live\n"); 521 return End; 522 } 523 DEBUG(dbgs() << ": valno " << ParentVNI->id); 524 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 525 SA.getLastSplitPointIter(&MBB)); 526 RegAssign.insert(VNI->def, End, OpenIdx); 527 DEBUG(dump()); 528 return VNI->def; 529 } 530 531 /// useIntv - indicate that all instructions in MBB should use OpenLI. 532 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 533 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 534 } 535 536 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 537 assert(OpenIdx && "openIntv not called before useIntv"); 538 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 539 RegAssign.insert(Start, End, OpenIdx); 540 DEBUG(dump()); 541 } 542 543 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 544 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 545 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 546 547 // The interval must be live beyond the instruction at Idx. 548 SlotIndex Boundary = Idx.getBoundaryIndex(); 549 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 550 if (!ParentVNI) { 551 DEBUG(dbgs() << ": not live\n"); 552 return Boundary.getNextSlot(); 553 } 554 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 555 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 556 assert(MI && "No instruction at index"); 557 558 // In spill mode, make live ranges as short as possible by inserting the copy 559 // before MI. This is only possible if that instruction doesn't redefine the 560 // value. The inserted COPY is not a kill, and we don't need to recompute 561 // the source live range. The spiller also won't try to hoist this copy. 562 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 563 MI->readsVirtualRegister(Edit->getReg())) { 564 forceRecompute(0, ParentVNI); 565 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 566 return Idx; 567 } 568 569 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 570 llvm::next(MachineBasicBlock::iterator(MI))); 571 return VNI->def; 572 } 573 574 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 575 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 576 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 577 578 // The interval must be live into the instruction at Idx. 579 Idx = Idx.getBaseIndex(); 580 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 581 if (!ParentVNI) { 582 DEBUG(dbgs() << ": not live\n"); 583 return Idx.getNextSlot(); 584 } 585 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 586 587 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 588 assert(MI && "No instruction at index"); 589 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 590 return VNI->def; 591 } 592 593 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 594 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 595 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 596 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 597 598 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 599 if (!ParentVNI) { 600 DEBUG(dbgs() << ": not live\n"); 601 return Start; 602 } 603 604 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 605 MBB.SkipPHIsAndLabels(MBB.begin())); 606 RegAssign.insert(Start, VNI->def, OpenIdx); 607 DEBUG(dump()); 608 return VNI->def; 609 } 610 611 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 612 assert(OpenIdx && "openIntv not called before overlapIntv"); 613 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 614 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 615 "Parent changes value in extended range"); 616 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 617 "Range cannot span basic blocks"); 618 619 // The complement interval will be extended as needed by LRCalc.extend(). 620 if (ParentVNI) 621 forceRecompute(0, ParentVNI); 622 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 623 RegAssign.insert(Start, End, OpenIdx); 624 DEBUG(dump()); 625 } 626 627 //===----------------------------------------------------------------------===// 628 // Spill modes 629 //===----------------------------------------------------------------------===// 630 631 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 632 LiveInterval *LI = Edit->get(0); 633 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 634 RegAssignMap::iterator AssignI; 635 AssignI.setMap(RegAssign); 636 637 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 638 VNInfo *VNI = Copies[i]; 639 SlotIndex Def = VNI->def; 640 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 641 assert(MI && "No instruction for back-copy"); 642 643 MachineBasicBlock *MBB = MI->getParent(); 644 MachineBasicBlock::iterator MBBI(MI); 645 bool AtBegin; 646 do AtBegin = MBBI == MBB->begin(); 647 while (!AtBegin && (--MBBI)->isDebugValue()); 648 649 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 650 LI->removeValNo(VNI); 651 LIS.RemoveMachineInstrFromMaps(MI); 652 MI->eraseFromParent(); 653 654 // Adjust RegAssign if a register assignment is killed at VNI->def. We 655 // want to avoid calculating the live range of the source register if 656 // possible. 657 AssignI.find(Def.getPrevSlot()); 658 if (!AssignI.valid() || AssignI.start() >= Def) 659 continue; 660 // If MI doesn't kill the assigned register, just leave it. 661 if (AssignI.stop() != Def) 662 continue; 663 unsigned RegIdx = AssignI.value(); 664 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 665 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 666 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 667 } else { 668 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 669 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 670 AssignI.setStop(Kill); 671 } 672 } 673 } 674 675 MachineBasicBlock* 676 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 677 MachineBasicBlock *DefMBB) { 678 if (MBB == DefMBB) 679 return MBB; 680 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 681 682 const MachineLoopInfo &Loops = SA.Loops; 683 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 684 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 685 686 // Best candidate so far. 687 MachineBasicBlock *BestMBB = MBB; 688 unsigned BestDepth = UINT_MAX; 689 690 for (;;) { 691 const MachineLoop *Loop = Loops.getLoopFor(MBB); 692 693 // MBB isn't in a loop, it doesn't get any better. All dominators have a 694 // higher frequency by definition. 695 if (!Loop) { 696 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 697 << MBB->getNumber() << " at depth 0\n"); 698 return MBB; 699 } 700 701 // We'll never be able to exit the DefLoop. 702 if (Loop == DefLoop) { 703 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 704 << MBB->getNumber() << " in the same loop\n"); 705 return MBB; 706 } 707 708 // Least busy dominator seen so far. 709 unsigned Depth = Loop->getLoopDepth(); 710 if (Depth < BestDepth) { 711 BestMBB = MBB; 712 BestDepth = Depth; 713 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 714 << MBB->getNumber() << " at depth " << Depth << '\n'); 715 } 716 717 // Leave loop by going to the immediate dominator of the loop header. 718 // This is a bigger stride than simply walking up the dominator tree. 719 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 720 721 // Too far up the dominator tree? 722 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 723 return BestMBB; 724 725 MBB = IDom->getBlock(); 726 } 727 } 728 729 void SplitEditor::hoistCopiesForSize() { 730 // Get the complement interval, always RegIdx 0. 731 LiveInterval *LI = Edit->get(0); 732 LiveInterval *Parent = &Edit->getParent(); 733 734 // Track the nearest common dominator for all back-copies for each ParentVNI, 735 // indexed by ParentVNI->id. 736 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 737 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 738 739 // Find the nearest common dominator for parent values with multiple 740 // back-copies. If a single back-copy dominates, put it in DomPair.second. 741 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 742 VI != VE; ++VI) { 743 VNInfo *VNI = *VI; 744 if (VNI->isUnused()) 745 continue; 746 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 747 assert(ParentVNI && "Parent not live at complement def"); 748 749 // Don't hoist remats. The complement is probably going to disappear 750 // completely anyway. 751 if (Edit->didRematerialize(ParentVNI)) 752 continue; 753 754 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 755 DomPair &Dom = NearestDom[ParentVNI->id]; 756 757 // Keep directly defined parent values. This is either a PHI or an 758 // instruction in the complement range. All other copies of ParentVNI 759 // should be eliminated. 760 if (VNI->def == ParentVNI->def) { 761 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 762 Dom = DomPair(ValMBB, VNI->def); 763 continue; 764 } 765 // Skip the singly mapped values. There is nothing to gain from hoisting a 766 // single back-copy. 767 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 768 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 769 continue; 770 } 771 772 if (!Dom.first) { 773 // First time we see ParentVNI. VNI dominates itself. 774 Dom = DomPair(ValMBB, VNI->def); 775 } else if (Dom.first == ValMBB) { 776 // Two defs in the same block. Pick the earlier def. 777 if (!Dom.second.isValid() || VNI->def < Dom.second) 778 Dom.second = VNI->def; 779 } else { 780 // Different basic blocks. Check if one dominates. 781 MachineBasicBlock *Near = 782 MDT.findNearestCommonDominator(Dom.first, ValMBB); 783 if (Near == ValMBB) 784 // Def ValMBB dominates. 785 Dom = DomPair(ValMBB, VNI->def); 786 else if (Near != Dom.first) 787 // None dominate. Hoist to common dominator, need new def. 788 Dom = DomPair(Near, SlotIndex()); 789 } 790 791 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 792 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 793 << " hoist to BB#" << Dom.first->getNumber() << ' ' 794 << Dom.second << '\n'); 795 } 796 797 // Insert the hoisted copies. 798 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 799 DomPair &Dom = NearestDom[i]; 800 if (!Dom.first || Dom.second.isValid()) 801 continue; 802 // This value needs a hoisted copy inserted at the end of Dom.first. 803 VNInfo *ParentVNI = Parent->getValNumInfo(i); 804 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 805 // Get a less loopy dominator than Dom.first. 806 Dom.first = findShallowDominator(Dom.first, DefMBB); 807 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 808 Dom.second = 809 defFromParent(0, ParentVNI, Last, *Dom.first, 810 SA.getLastSplitPointIter(Dom.first))->def; 811 } 812 813 // Remove redundant back-copies that are now known to be dominated by another 814 // def with the same value. 815 SmallVector<VNInfo*, 8> BackCopies; 816 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 817 VI != VE; ++VI) { 818 VNInfo *VNI = *VI; 819 if (VNI->isUnused()) 820 continue; 821 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 822 const DomPair &Dom = NearestDom[ParentVNI->id]; 823 if (!Dom.first || Dom.second == VNI->def) 824 continue; 825 BackCopies.push_back(VNI); 826 forceRecompute(0, ParentVNI); 827 } 828 removeBackCopies(BackCopies); 829 } 830 831 832 /// transferValues - Transfer all possible values to the new live ranges. 833 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 834 bool SplitEditor::transferValues() { 835 bool Skipped = false; 836 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 837 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 838 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 839 DEBUG(dbgs() << " blit " << *ParentI << ':'); 840 VNInfo *ParentVNI = ParentI->valno; 841 // RegAssign has holes where RegIdx 0 should be used. 842 SlotIndex Start = ParentI->start; 843 AssignI.advanceTo(Start); 844 do { 845 unsigned RegIdx; 846 SlotIndex End = ParentI->end; 847 if (!AssignI.valid()) { 848 RegIdx = 0; 849 } else if (AssignI.start() <= Start) { 850 RegIdx = AssignI.value(); 851 if (AssignI.stop() < End) { 852 End = AssignI.stop(); 853 ++AssignI; 854 } 855 } else { 856 RegIdx = 0; 857 End = std::min(End, AssignI.start()); 858 } 859 860 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 861 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 862 LiveInterval *LI = Edit->get(RegIdx); 863 864 // Check for a simply defined value that can be blitted directly. 865 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 866 if (VNInfo *VNI = VFP.getPointer()) { 867 DEBUG(dbgs() << ':' << VNI->id); 868 LI->addRange(LiveRange(Start, End, VNI)); 869 Start = End; 870 continue; 871 } 872 873 // Skip values with forced recomputation. 874 if (VFP.getInt()) { 875 DEBUG(dbgs() << "(recalc)"); 876 Skipped = true; 877 Start = End; 878 continue; 879 } 880 881 LiveRangeCalc &LRC = getLRCalc(RegIdx); 882 883 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 884 // so the live range is accurate. Add live-in blocks in [Start;End) to the 885 // LiveInBlocks. 886 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 887 SlotIndex BlockStart, BlockEnd; 888 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 889 890 // The first block may be live-in, or it may have its own def. 891 if (Start != BlockStart) { 892 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 893 assert(VNI && "Missing def for complex mapped value"); 894 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 895 // MBB has its own def. Is it also live-out? 896 if (BlockEnd <= End) 897 LRC.setLiveOutValue(MBB, VNI); 898 899 // Skip to the next block for live-in. 900 ++MBB; 901 BlockStart = BlockEnd; 902 } 903 904 // Handle the live-in blocks covered by [Start;End). 905 assert(Start <= BlockStart && "Expected live-in block"); 906 while (BlockStart < End) { 907 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 908 BlockEnd = LIS.getMBBEndIdx(MBB); 909 if (BlockStart == ParentVNI->def) { 910 // This block has the def of a parent PHI, so it isn't live-in. 911 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 912 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 913 assert(VNI && "Missing def for complex mapped parent PHI"); 914 if (End >= BlockEnd) 915 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 916 } else { 917 // This block needs a live-in value. The last block covered may not 918 // be live-out. 919 if (End < BlockEnd) 920 LRC.addLiveInBlock(LI, MDT[MBB], End); 921 else { 922 // Live-through, and we don't know the value. 923 LRC.addLiveInBlock(LI, MDT[MBB]); 924 LRC.setLiveOutValue(MBB, 0); 925 } 926 } 927 BlockStart = BlockEnd; 928 ++MBB; 929 } 930 Start = End; 931 } while (Start != ParentI->end); 932 DEBUG(dbgs() << '\n'); 933 } 934 935 LRCalc[0].calculateValues(); 936 if (SpillMode) 937 LRCalc[1].calculateValues(); 938 939 return Skipped; 940 } 941 942 void SplitEditor::extendPHIKillRanges() { 943 // Extend live ranges to be live-out for successor PHI values. 944 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 945 E = Edit->getParent().vni_end(); I != E; ++I) { 946 const VNInfo *PHIVNI = *I; 947 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 948 continue; 949 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 950 LiveInterval *LI = Edit->get(RegIdx); 951 LiveRangeCalc &LRC = getLRCalc(RegIdx); 952 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 953 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 954 PE = MBB->pred_end(); PI != PE; ++PI) { 955 SlotIndex End = LIS.getMBBEndIdx(*PI); 956 SlotIndex LastUse = End.getPrevSlot(); 957 // The predecessor may not have a live-out value. That is OK, like an 958 // undef PHI operand. 959 if (Edit->getParent().liveAt(LastUse)) { 960 assert(RegAssign.lookup(LastUse) == RegIdx && 961 "Different register assignment in phi predecessor"); 962 LRC.extend(LI, End); 963 } 964 } 965 } 966 } 967 968 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 969 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 970 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 971 RE = MRI.reg_end(); RI != RE;) { 972 MachineOperand &MO = RI.getOperand(); 973 MachineInstr *MI = MO.getParent(); 974 ++RI; 975 // LiveDebugVariables should have handled all DBG_VALUE instructions. 976 if (MI->isDebugValue()) { 977 DEBUG(dbgs() << "Zapping " << *MI); 978 MO.setReg(0); 979 continue; 980 } 981 982 // <undef> operands don't really read the register, so it doesn't matter 983 // which register we choose. When the use operand is tied to a def, we must 984 // use the same register as the def, so just do that always. 985 SlotIndex Idx = LIS.getInstructionIndex(MI); 986 if (MO.isDef() || MO.isUndef()) 987 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 988 989 // Rewrite to the mapped register at Idx. 990 unsigned RegIdx = RegAssign.lookup(Idx); 991 LiveInterval *LI = Edit->get(RegIdx); 992 MO.setReg(LI->reg); 993 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 994 << Idx << ':' << RegIdx << '\t' << *MI); 995 996 // Extend liveness to Idx if the instruction reads reg. 997 if (!ExtendRanges || MO.isUndef()) 998 continue; 999 1000 // Skip instructions that don't read Reg. 1001 if (MO.isDef()) { 1002 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1003 continue; 1004 // We may wan't to extend a live range for a partial redef, or for a use 1005 // tied to an early clobber. 1006 Idx = Idx.getPrevSlot(); 1007 if (!Edit->getParent().liveAt(Idx)) 1008 continue; 1009 } else 1010 Idx = Idx.getRegSlot(true); 1011 1012 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot()); 1013 } 1014 } 1015 1016 void SplitEditor::deleteRematVictims() { 1017 SmallVector<MachineInstr*, 8> Dead; 1018 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1019 LiveInterval *LI = *I; 1020 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 1021 LII != LIE; ++LII) { 1022 // Dead defs end at the dead slot. 1023 if (LII->end != LII->valno->def.getDeadSlot()) 1024 continue; 1025 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 1026 assert(MI && "Missing instruction for dead def"); 1027 MI->addRegisterDead(LI->reg, &TRI); 1028 1029 if (!MI->allDefsAreDead()) 1030 continue; 1031 1032 DEBUG(dbgs() << "All defs dead: " << *MI); 1033 Dead.push_back(MI); 1034 } 1035 } 1036 1037 if (Dead.empty()) 1038 return; 1039 1040 Edit->eliminateDeadDefs(Dead); 1041 } 1042 1043 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1044 ++NumFinished; 1045 1046 // At this point, the live intervals in Edit contain VNInfos corresponding to 1047 // the inserted copies. 1048 1049 // Add the original defs from the parent interval. 1050 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1051 E = Edit->getParent().vni_end(); I != E; ++I) { 1052 const VNInfo *ParentVNI = *I; 1053 if (ParentVNI->isUnused()) 1054 continue; 1055 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1056 defValue(RegIdx, ParentVNI, ParentVNI->def); 1057 1058 // Force rematted values to be recomputed everywhere. 1059 // The new live ranges may be truncated. 1060 if (Edit->didRematerialize(ParentVNI)) 1061 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1062 forceRecompute(i, ParentVNI); 1063 } 1064 1065 // Hoist back-copies to the complement interval when in spill mode. 1066 switch (SpillMode) { 1067 case SM_Partition: 1068 // Leave all back-copies as is. 1069 break; 1070 case SM_Size: 1071 hoistCopiesForSize(); 1072 break; 1073 case SM_Speed: 1074 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1075 } 1076 1077 // Transfer the simply mapped values, check if any are skipped. 1078 bool Skipped = transferValues(); 1079 if (Skipped) 1080 extendPHIKillRanges(); 1081 else 1082 ++NumSimple; 1083 1084 // Rewrite virtual registers, possibly extending ranges. 1085 rewriteAssigned(Skipped); 1086 1087 // Delete defs that were rematted everywhere. 1088 if (Skipped) 1089 deleteRematVictims(); 1090 1091 // Get rid of unused values and set phi-kill flags. 1092 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1093 (*I)->RenumberValues(LIS); 1094 1095 // Provide a reverse mapping from original indices to Edit ranges. 1096 if (LRMap) { 1097 LRMap->clear(); 1098 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1099 LRMap->push_back(i); 1100 } 1101 1102 // Now check if any registers were separated into multiple components. 1103 ConnectedVNInfoEqClasses ConEQ(LIS); 1104 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1105 // Don't use iterators, they are invalidated by create() below. 1106 LiveInterval *li = Edit->get(i); 1107 unsigned NumComp = ConEQ.Classify(li); 1108 if (NumComp <= 1) 1109 continue; 1110 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1111 SmallVector<LiveInterval*, 8> dups; 1112 dups.push_back(li); 1113 for (unsigned j = 1; j != NumComp; ++j) 1114 dups.push_back(&Edit->create()); 1115 ConEQ.Distribute(&dups[0], MRI); 1116 // The new intervals all map back to i. 1117 if (LRMap) 1118 LRMap->resize(Edit->size(), i); 1119 } 1120 1121 // Calculate spill weight and allocation hints for new intervals. 1122 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops); 1123 1124 assert(!LRMap || LRMap->size() == Edit->size()); 1125 } 1126 1127 1128 //===----------------------------------------------------------------------===// 1129 // Single Block Splitting 1130 //===----------------------------------------------------------------------===// 1131 1132 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1133 bool SingleInstrs) const { 1134 // Always split for multiple instructions. 1135 if (!BI.isOneInstr()) 1136 return true; 1137 // Don't split for single instructions unless explicitly requested. 1138 if (!SingleInstrs) 1139 return false; 1140 // Splitting a live-through range always makes progress. 1141 if (BI.LiveIn && BI.LiveOut) 1142 return true; 1143 // No point in isolating a copy. It has no register class constraints. 1144 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1145 return false; 1146 // Finally, don't isolate an end point that was created by earlier splits. 1147 return isOriginalEndpoint(BI.FirstInstr); 1148 } 1149 1150 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1151 openIntv(); 1152 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1153 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1154 LastSplitPoint)); 1155 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1156 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1157 } else { 1158 // The last use is after the last valid split point. 1159 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1160 useIntv(SegStart, SegStop); 1161 overlapIntv(SegStop, BI.LastInstr); 1162 } 1163 } 1164 1165 1166 //===----------------------------------------------------------------------===// 1167 // Global Live Range Splitting Support 1168 //===----------------------------------------------------------------------===// 1169 1170 // These methods support a method of global live range splitting that uses a 1171 // global algorithm to decide intervals for CFG edges. They will insert split 1172 // points and color intervals in basic blocks while avoiding interference. 1173 // 1174 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1175 // are on the stack. 1176 1177 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1178 unsigned IntvIn, SlotIndex LeaveBefore, 1179 unsigned IntvOut, SlotIndex EnterAfter){ 1180 SlotIndex Start, Stop; 1181 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1182 1183 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1184 << ") intf " << LeaveBefore << '-' << EnterAfter 1185 << ", live-through " << IntvIn << " -> " << IntvOut); 1186 1187 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1188 1189 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1190 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1191 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1192 1193 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1194 1195 if (!IntvOut) { 1196 DEBUG(dbgs() << ", spill on entry.\n"); 1197 // 1198 // <<<<<<<<< Possible LeaveBefore interference. 1199 // |-----------| Live through. 1200 // -____________ Spill on entry. 1201 // 1202 selectIntv(IntvIn); 1203 SlotIndex Idx = leaveIntvAtTop(*MBB); 1204 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1205 (void)Idx; 1206 return; 1207 } 1208 1209 if (!IntvIn) { 1210 DEBUG(dbgs() << ", reload on exit.\n"); 1211 // 1212 // >>>>>>> Possible EnterAfter interference. 1213 // |-----------| Live through. 1214 // ___________-- Reload on exit. 1215 // 1216 selectIntv(IntvOut); 1217 SlotIndex Idx = enterIntvAtEnd(*MBB); 1218 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1219 (void)Idx; 1220 return; 1221 } 1222 1223 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1224 DEBUG(dbgs() << ", straight through.\n"); 1225 // 1226 // |-----------| Live through. 1227 // ------------- Straight through, same intv, no interference. 1228 // 1229 selectIntv(IntvOut); 1230 useIntv(Start, Stop); 1231 return; 1232 } 1233 1234 // We cannot legally insert splits after LSP. 1235 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1236 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1237 1238 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1239 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1240 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1241 // 1242 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1243 // |-----------| Live through. 1244 // ------======= Switch intervals between interference. 1245 // 1246 selectIntv(IntvOut); 1247 SlotIndex Idx; 1248 if (LeaveBefore && LeaveBefore < LSP) { 1249 Idx = enterIntvBefore(LeaveBefore); 1250 useIntv(Idx, Stop); 1251 } else { 1252 Idx = enterIntvAtEnd(*MBB); 1253 } 1254 selectIntv(IntvIn); 1255 useIntv(Start, Idx); 1256 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1257 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1258 return; 1259 } 1260 1261 DEBUG(dbgs() << ", create local intv for interference.\n"); 1262 // 1263 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1264 // |-----------| Live through. 1265 // ==---------== Switch intervals before/after interference. 1266 // 1267 assert(LeaveBefore <= EnterAfter && "Missed case"); 1268 1269 selectIntv(IntvOut); 1270 SlotIndex Idx = enterIntvAfter(EnterAfter); 1271 useIntv(Idx, Stop); 1272 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1273 1274 selectIntv(IntvIn); 1275 Idx = leaveIntvBefore(LeaveBefore); 1276 useIntv(Start, Idx); 1277 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1278 } 1279 1280 1281 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1282 unsigned IntvIn, SlotIndex LeaveBefore) { 1283 SlotIndex Start, Stop; 1284 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1285 1286 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1287 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1288 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1289 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1290 1291 assert(IntvIn && "Must have register in"); 1292 assert(BI.LiveIn && "Must be live-in"); 1293 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1294 1295 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1296 DEBUG(dbgs() << " before interference.\n"); 1297 // 1298 // <<< Interference after kill. 1299 // |---o---x | Killed in block. 1300 // ========= Use IntvIn everywhere. 1301 // 1302 selectIntv(IntvIn); 1303 useIntv(Start, BI.LastInstr); 1304 return; 1305 } 1306 1307 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1308 1309 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1310 // 1311 // <<< Possible interference after last use. 1312 // |---o---o---| Live-out on stack. 1313 // =========____ Leave IntvIn after last use. 1314 // 1315 // < Interference after last use. 1316 // |---o---o--o| Live-out on stack, late last use. 1317 // ============ Copy to stack after LSP, overlap IntvIn. 1318 // \_____ Stack interval is live-out. 1319 // 1320 if (BI.LastInstr < LSP) { 1321 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1322 selectIntv(IntvIn); 1323 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1324 useIntv(Start, Idx); 1325 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1326 } else { 1327 DEBUG(dbgs() << ", spill before last split point.\n"); 1328 selectIntv(IntvIn); 1329 SlotIndex Idx = leaveIntvBefore(LSP); 1330 overlapIntv(Idx, BI.LastInstr); 1331 useIntv(Start, Idx); 1332 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1333 } 1334 return; 1335 } 1336 1337 // The interference is overlapping somewhere we wanted to use IntvIn. That 1338 // means we need to create a local interval that can be allocated a 1339 // different register. 1340 unsigned LocalIntv = openIntv(); 1341 (void)LocalIntv; 1342 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1343 1344 if (!BI.LiveOut || BI.LastInstr < LSP) { 1345 // 1346 // <<<<<<< Interference overlapping uses. 1347 // |---o---o---| Live-out on stack. 1348 // =====----____ Leave IntvIn before interference, then spill. 1349 // 1350 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1351 SlotIndex From = enterIntvBefore(LeaveBefore); 1352 useIntv(From, To); 1353 selectIntv(IntvIn); 1354 useIntv(Start, From); 1355 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1356 return; 1357 } 1358 1359 // <<<<<<< Interference overlapping uses. 1360 // |---o---o--o| Live-out on stack, late last use. 1361 // =====------- Copy to stack before LSP, overlap LocalIntv. 1362 // \_____ Stack interval is live-out. 1363 // 1364 SlotIndex To = leaveIntvBefore(LSP); 1365 overlapIntv(To, BI.LastInstr); 1366 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1367 useIntv(From, To); 1368 selectIntv(IntvIn); 1369 useIntv(Start, From); 1370 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1371 } 1372 1373 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1374 unsigned IntvOut, SlotIndex EnterAfter) { 1375 SlotIndex Start, Stop; 1376 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1377 1378 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1379 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1380 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1381 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1382 1383 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1384 1385 assert(IntvOut && "Must have register out"); 1386 assert(BI.LiveOut && "Must be live-out"); 1387 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1388 1389 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1390 DEBUG(dbgs() << " after interference.\n"); 1391 // 1392 // >>>> Interference before def. 1393 // | o---o---| Defined in block. 1394 // ========= Use IntvOut everywhere. 1395 // 1396 selectIntv(IntvOut); 1397 useIntv(BI.FirstInstr, Stop); 1398 return; 1399 } 1400 1401 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1402 DEBUG(dbgs() << ", reload after interference.\n"); 1403 // 1404 // >>>> Interference before def. 1405 // |---o---o---| Live-through, stack-in. 1406 // ____========= Enter IntvOut before first use. 1407 // 1408 selectIntv(IntvOut); 1409 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1410 useIntv(Idx, Stop); 1411 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1412 return; 1413 } 1414 1415 // The interference is overlapping somewhere we wanted to use IntvOut. That 1416 // means we need to create a local interval that can be allocated a 1417 // different register. 1418 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1419 // 1420 // >>>>>>> Interference overlapping uses. 1421 // |---o---o---| Live-through, stack-in. 1422 // ____---====== Create local interval for interference range. 1423 // 1424 selectIntv(IntvOut); 1425 SlotIndex Idx = enterIntvAfter(EnterAfter); 1426 useIntv(Idx, Stop); 1427 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1428 1429 openIntv(); 1430 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1431 useIntv(From, Idx); 1432 } 1433