1 //===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the ARM specific subclass of TargetSubtargetInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef ARMSUBTARGET_H 15 #define ARMSUBTARGET_H 16 17 #include "MCTargetDesc/ARMMCTargetDesc.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/MC/MCInstrItineraries.h" 20 #include "llvm/Target/TargetSubtargetInfo.h" 21 #include <string> 22 23 #define GET_SUBTARGETINFO_HEADER 24 #include "ARMGenSubtargetInfo.inc" 25 26 namespace llvm { 27 class GlobalValue; 28 class StringRef; 29 30 class ARMSubtarget : public ARMGenSubtargetInfo { 31 protected: 32 enum ARMProcFamilyEnum { 33 Others, CortexA5, CortexA8, CortexA9, CortexA15, CortexR5, Swift 34 }; 35 36 /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others. 37 ARMProcFamilyEnum ARMProcFamily; 38 39 /// HasV4TOps, HasV5TOps, HasV5TEOps, HasV6Ops, HasV6T2Ops, HasV7Ops - 40 /// Specify whether target support specific ARM ISA variants. 41 bool HasV4TOps; 42 bool HasV5TOps; 43 bool HasV5TEOps; 44 bool HasV6Ops; 45 bool HasV6T2Ops; 46 bool HasV7Ops; 47 48 /// HasVFPv2, HasVFPv3, HasVFPv4, HasNEON - Specify what 49 /// floating point ISAs are supported. 50 bool HasVFPv2; 51 bool HasVFPv3; 52 bool HasVFPv4; 53 bool HasNEON; 54 55 /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been 56 /// specified. Use the method useNEONForSinglePrecisionFP() to 57 /// determine if NEON should actually be used. 58 bool UseNEONForSinglePrecisionFP; 59 60 /// UseMulOps - True if non-microcoded fused integer multiply-add and 61 /// multiply-subtract instructions should be used. 62 bool UseMulOps; 63 64 /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates 65 /// whether the FP VML[AS] instructions are slow (if so, don't use them). 66 bool SlowFPVMLx; 67 68 /// HasVMLxForwarding - If true, NEON has special multiplier accumulator 69 /// forwarding to allow mul + mla being issued back to back. 70 bool HasVMLxForwarding; 71 72 /// SlowFPBrcc - True if floating point compare + branch is slow. 73 bool SlowFPBrcc; 74 75 /// InThumbMode - True if compiling for Thumb, false for ARM. 76 bool InThumbMode; 77 78 /// HasThumb2 - True if Thumb2 instructions are supported. 79 bool HasThumb2; 80 81 /// IsMClass - True if the subtarget belongs to the 'M' profile of CPUs - 82 /// v6m, v7m for example. 83 bool IsMClass; 84 85 /// NoARM - True if subtarget does not support ARM mode execution. 86 bool NoARM; 87 88 /// PostRAScheduler - True if using post-register-allocation scheduler. 89 bool PostRAScheduler; 90 91 /// IsR9Reserved - True if R9 is a not available as general purpose register. 92 bool IsR9Reserved; 93 94 /// UseMovt - True if MOVT / MOVW pairs are used for materialization of 32-bit 95 /// imms (including global addresses). 96 bool UseMovt; 97 98 /// SupportsTailCall - True if the OS supports tail call. The dynamic linker 99 /// must be able to synthesize call stubs for interworking between ARM and 100 /// Thumb. 101 bool SupportsTailCall; 102 103 /// HasFP16 - True if subtarget supports half-precision FP (We support VFP+HF 104 /// only so far) 105 bool HasFP16; 106 107 /// HasD16 - True if subtarget is limited to 16 double precision 108 /// FP registers for VFPv3. 109 bool HasD16; 110 111 /// HasHardwareDivide - True if subtarget supports [su]div 112 bool HasHardwareDivide; 113 114 /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode 115 bool HasHardwareDivideInARM; 116 117 /// HasT2ExtractPack - True if subtarget supports thumb2 extract/pack 118 /// instructions. 119 bool HasT2ExtractPack; 120 121 /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier 122 /// instructions. 123 bool HasDataBarrier; 124 125 /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions 126 /// over 16-bit ones. 127 bool Pref32BitThumb; 128 129 /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions 130 /// that partially update CPSR and add false dependency on the previous 131 /// CPSR setting instruction. 132 bool AvoidCPSRPartialUpdate; 133 134 /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting 135 /// movs with shifter operand (i.e. asr, lsl, lsr). 136 bool AvoidMOVsShifterOperand; 137 138 /// HasRAS - Some processors perform return stack prediction. CodeGen should 139 /// avoid issue "normal" call instructions to callees which do not return. 140 bool HasRAS; 141 142 /// HasMPExtension - True if the subtarget supports Multiprocessing 143 /// extension (ARMv7 only). 144 bool HasMPExtension; 145 146 /// FPOnlySP - If true, the floating point unit only supports single 147 /// precision. 148 bool FPOnlySP; 149 150 /// AllowsUnalignedMem - If true, the subtarget allows unaligned memory 151 /// accesses for some types. For details, see 152 /// ARMTargetLowering::allowsUnalignedMemoryAccesses(). 153 bool AllowsUnalignedMem; 154 155 /// Thumb2DSP - If true, the subtarget supports the v7 DSP (saturating arith 156 /// and such) instructions in Thumb2 code. 157 bool Thumb2DSP; 158 159 /// NaCl TRAP instruction is generated instead of the regular TRAP. 160 bool UseNaClTrap; 161 162 /// stackAlignment - The minimum alignment known to hold of the stack frame on 163 /// entry to the function and which must be maintained by every function. 164 unsigned stackAlignment; 165 166 /// CPUString - String name of used CPU. 167 std::string CPUString; 168 169 /// TargetTriple - What processor and OS we're targeting. 170 Triple TargetTriple; 171 172 /// SchedModel - Processor specific instruction costs. 173 const MCSchedModel *SchedModel; 174 175 /// Selected instruction itineraries (one entry per itinerary class.) 176 InstrItineraryData InstrItins; 177 178 public: 179 enum { 180 isELF, isDarwin 181 } TargetType; 182 183 enum { 184 ARM_ABI_APCS, 185 ARM_ABI_AAPCS // ARM EABI 186 } TargetABI; 187 188 /// This constructor initializes the data members to match that 189 /// of the specified triple. 190 /// 191 ARMSubtarget(const std::string &TT, const std::string &CPU, 192 const std::string &FS); 193 194 /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size 195 /// that still makes it profitable to inline the call. 196 unsigned getMaxInlineSizeThreshold() const { 197 // FIXME: For now, we don't lower memcpy's to loads / stores for Thumb1. 198 // Change this once Thumb1 ldmia / stmia support is added. 199 return isThumb1Only() ? 0 : 64; 200 } 201 /// ParseSubtargetFeatures - Parses features string setting specified 202 /// subtarget options. Definition of function is auto generated by tblgen. 203 void ParseSubtargetFeatures(StringRef CPU, StringRef FS); 204 205 /// \brief Reset the features for the ARM target. 206 virtual void resetSubtargetFeatures(const MachineFunction *MF); 207 private: 208 void initializeEnvironment(); 209 void resetSubtargetFeatures(StringRef CPU, StringRef FS); 210 public: 211 void computeIssueWidth(); 212 213 bool hasV4TOps() const { return HasV4TOps; } 214 bool hasV5TOps() const { return HasV5TOps; } 215 bool hasV5TEOps() const { return HasV5TEOps; } 216 bool hasV6Ops() const { return HasV6Ops; } 217 bool hasV6T2Ops() const { return HasV6T2Ops; } 218 bool hasV7Ops() const { return HasV7Ops; } 219 220 bool isCortexA5() const { return ARMProcFamily == CortexA5; } 221 bool isCortexA8() const { return ARMProcFamily == CortexA8; } 222 bool isCortexA9() const { return ARMProcFamily == CortexA9; } 223 bool isCortexA15() const { return ARMProcFamily == CortexA15; } 224 bool isSwift() const { return ARMProcFamily == Swift; } 225 bool isCortexM3() const { return CPUString == "cortex-m3"; } 226 bool isLikeA9() const { return isCortexA9() || isCortexA15(); } 227 bool isCortexR5() const { return ARMProcFamily == CortexR5; } 228 229 bool hasARMOps() const { return !NoARM; } 230 231 bool hasVFP2() const { return HasVFPv2; } 232 bool hasVFP3() const { return HasVFPv3; } 233 bool hasVFP4() const { return HasVFPv4; } 234 bool hasNEON() const { return HasNEON; } 235 bool useNEONForSinglePrecisionFP() const { 236 return hasNEON() && UseNEONForSinglePrecisionFP; } 237 238 bool hasDivide() const { return HasHardwareDivide; } 239 bool hasDivideInARMMode() const { return HasHardwareDivideInARM; } 240 bool hasT2ExtractPack() const { return HasT2ExtractPack; } 241 bool hasDataBarrier() const { return HasDataBarrier; } 242 bool useMulOps() const { return UseMulOps; } 243 bool useFPVMLx() const { return !SlowFPVMLx; } 244 bool hasVMLxForwarding() const { return HasVMLxForwarding; } 245 bool isFPBrccSlow() const { return SlowFPBrcc; } 246 bool isFPOnlySP() const { return FPOnlySP; } 247 bool prefers32BitThumb() const { return Pref32BitThumb; } 248 bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; } 249 bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; } 250 bool hasRAS() const { return HasRAS; } 251 bool hasMPExtension() const { return HasMPExtension; } 252 bool hasThumb2DSP() const { return Thumb2DSP; } 253 bool useNaClTrap() const { return UseNaClTrap; } 254 255 bool hasFP16() const { return HasFP16; } 256 bool hasD16() const { return HasD16; } 257 258 const Triple &getTargetTriple() const { return TargetTriple; } 259 260 bool isTargetIOS() const { return TargetTriple.getOS() == Triple::IOS; } 261 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } 262 bool isTargetNaCl() const { 263 return TargetTriple.getOS() == Triple::NaCl; 264 } 265 bool isTargetELF() const { return !isTargetDarwin(); } 266 267 bool isAPCS_ABI() const { return TargetABI == ARM_ABI_APCS; } 268 bool isAAPCS_ABI() const { return TargetABI == ARM_ABI_AAPCS; } 269 270 bool isThumb() const { return InThumbMode; } 271 bool isThumb1Only() const { return InThumbMode && !HasThumb2; } 272 bool isThumb2() const { return InThumbMode && HasThumb2; } 273 bool hasThumb2() const { return HasThumb2; } 274 bool isMClass() const { return IsMClass; } 275 bool isARClass() const { return !IsMClass; } 276 277 bool isR9Reserved() const { return IsR9Reserved; } 278 279 bool useMovt() const { return UseMovt && hasV6T2Ops(); } 280 bool supportsTailCall() const { return SupportsTailCall; } 281 282 bool allowsUnalignedMem() const { return AllowsUnalignedMem; } 283 284 const std::string & getCPUString() const { return CPUString; } 285 286 unsigned getMispredictionPenalty() const; 287 288 /// enablePostRAScheduler - True at 'More' optimization. 289 bool enablePostRAScheduler(CodeGenOpt::Level OptLevel, 290 TargetSubtargetInfo::AntiDepBreakMode& Mode, 291 RegClassVector& CriticalPathRCs) const; 292 293 /// getInstrItins - Return the instruction itineraies based on subtarget 294 /// selection. 295 const InstrItineraryData &getInstrItineraryData() const { return InstrItins; } 296 297 /// getStackAlignment - Returns the minimum alignment known to hold of the 298 /// stack frame on entry to the function and which must be maintained by every 299 /// function for this subtarget. 300 unsigned getStackAlignment() const { return stackAlignment; } 301 302 /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect 303 /// symbol. 304 bool GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const; 305 }; 306 } // End llvm namespace 307 308 #endif // ARMSUBTARGET_H 309