Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86InstrInfo.h"
     15 #include "X86.h"
     16 #include "X86InstrBuilder.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/CodeGen/LiveVariables.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/MC/MCAsmInfo.h"
     30 #include "llvm/MC/MCInst.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetOptions.h"
     36 #include <limits>
     37 
     38 #define GET_INSTRINFO_CTOR
     39 #include "X86GenInstrInfo.inc"
     40 
     41 using namespace llvm;
     42 
     43 static cl::opt<bool>
     44 NoFusing("disable-spill-fusing",
     45          cl::desc("Disable fusing of spill code into instructions"));
     46 static cl::opt<bool>
     47 PrintFailedFusing("print-failed-fuse-candidates",
     48                   cl::desc("Print instructions that the allocator wants to"
     49                            " fuse, but the X86 backend currently can't"),
     50                   cl::Hidden);
     51 static cl::opt<bool>
     52 ReMatPICStubLoad("remat-pic-stub-load",
     53                  cl::desc("Re-materialize load from stub in PIC mode"),
     54                  cl::init(false), cl::Hidden);
     55 
     56 enum {
     57   // Select which memory operand is being unfolded.
     58   // (stored in bits 0 - 3)
     59   TB_INDEX_0    = 0,
     60   TB_INDEX_1    = 1,
     61   TB_INDEX_2    = 2,
     62   TB_INDEX_3    = 3,
     63   TB_INDEX_MASK = 0xf,
     64 
     65   // Do not insert the reverse map (MemOp -> RegOp) into the table.
     66   // This may be needed because there is a many -> one mapping.
     67   TB_NO_REVERSE   = 1 << 4,
     68 
     69   // Do not insert the forward map (RegOp -> MemOp) into the table.
     70   // This is needed for Native Client, which prohibits branch
     71   // instructions from using a memory operand.
     72   TB_NO_FORWARD   = 1 << 5,
     73 
     74   TB_FOLDED_LOAD  = 1 << 6,
     75   TB_FOLDED_STORE = 1 << 7,
     76 
     77   // Minimum alignment required for load/store.
     78   // Used for RegOp->MemOp conversion.
     79   // (stored in bits 8 - 15)
     80   TB_ALIGN_SHIFT = 8,
     81   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
     82   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
     83   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
     84   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
     85 };
     86 
     87 struct X86OpTblEntry {
     88   uint16_t RegOp;
     89   uint16_t MemOp;
     90   uint16_t Flags;
     91 };
     92 
     93 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     94   : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
     95                      ? X86::ADJCALLSTACKDOWN64
     96                      : X86::ADJCALLSTACKDOWN32),
     97                     (tm.getSubtarget<X86Subtarget>().is64Bit()
     98                      ? X86::ADJCALLSTACKUP64
     99                      : X86::ADJCALLSTACKUP32)),
    100     TM(tm), RI(tm, *this) {
    101 
    102   static const X86OpTblEntry OpTbl2Addr[] = {
    103     { X86::ADC32ri,     X86::ADC32mi,    0 },
    104     { X86::ADC32ri8,    X86::ADC32mi8,   0 },
    105     { X86::ADC32rr,     X86::ADC32mr,    0 },
    106     { X86::ADC64ri32,   X86::ADC64mi32,  0 },
    107     { X86::ADC64ri8,    X86::ADC64mi8,   0 },
    108     { X86::ADC64rr,     X86::ADC64mr,    0 },
    109     { X86::ADD16ri,     X86::ADD16mi,    0 },
    110     { X86::ADD16ri8,    X86::ADD16mi8,   0 },
    111     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
    112     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
    113     { X86::ADD16rr,     X86::ADD16mr,    0 },
    114     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
    115     { X86::ADD32ri,     X86::ADD32mi,    0 },
    116     { X86::ADD32ri8,    X86::ADD32mi8,   0 },
    117     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
    118     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
    119     { X86::ADD32rr,     X86::ADD32mr,    0 },
    120     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
    121     { X86::ADD64ri32,   X86::ADD64mi32,  0 },
    122     { X86::ADD64ri8,    X86::ADD64mi8,   0 },
    123     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
    124     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
    125     { X86::ADD64rr,     X86::ADD64mr,    0 },
    126     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
    127     { X86::ADD8ri,      X86::ADD8mi,     0 },
    128     { X86::ADD8rr,      X86::ADD8mr,     0 },
    129     { X86::AND16ri,     X86::AND16mi,    0 },
    130     { X86::AND16ri8,    X86::AND16mi8,   0 },
    131     { X86::AND16rr,     X86::AND16mr,    0 },
    132     { X86::AND32ri,     X86::AND32mi,    0 },
    133     { X86::AND32ri8,    X86::AND32mi8,   0 },
    134     { X86::AND32rr,     X86::AND32mr,    0 },
    135     { X86::AND64ri32,   X86::AND64mi32,  0 },
    136     { X86::AND64ri8,    X86::AND64mi8,   0 },
    137     { X86::AND64rr,     X86::AND64mr,    0 },
    138     { X86::AND8ri,      X86::AND8mi,     0 },
    139     { X86::AND8rr,      X86::AND8mr,     0 },
    140     { X86::DEC16r,      X86::DEC16m,     0 },
    141     { X86::DEC32r,      X86::DEC32m,     0 },
    142     { X86::DEC64_16r,   X86::DEC64_16m,  0 },
    143     { X86::DEC64_32r,   X86::DEC64_32m,  0 },
    144     { X86::DEC64r,      X86::DEC64m,     0 },
    145     { X86::DEC8r,       X86::DEC8m,      0 },
    146     { X86::INC16r,      X86::INC16m,     0 },
    147     { X86::INC32r,      X86::INC32m,     0 },
    148     { X86::INC64_16r,   X86::INC64_16m,  0 },
    149     { X86::INC64_32r,   X86::INC64_32m,  0 },
    150     { X86::INC64r,      X86::INC64m,     0 },
    151     { X86::INC8r,       X86::INC8m,      0 },
    152     { X86::NEG16r,      X86::NEG16m,     0 },
    153     { X86::NEG32r,      X86::NEG32m,     0 },
    154     { X86::NEG64r,      X86::NEG64m,     0 },
    155     { X86::NEG8r,       X86::NEG8m,      0 },
    156     { X86::NOT16r,      X86::NOT16m,     0 },
    157     { X86::NOT32r,      X86::NOT32m,     0 },
    158     { X86::NOT64r,      X86::NOT64m,     0 },
    159     { X86::NOT8r,       X86::NOT8m,      0 },
    160     { X86::OR16ri,      X86::OR16mi,     0 },
    161     { X86::OR16ri8,     X86::OR16mi8,    0 },
    162     { X86::OR16rr,      X86::OR16mr,     0 },
    163     { X86::OR32ri,      X86::OR32mi,     0 },
    164     { X86::OR32ri8,     X86::OR32mi8,    0 },
    165     { X86::OR32rr,      X86::OR32mr,     0 },
    166     { X86::OR64ri32,    X86::OR64mi32,   0 },
    167     { X86::OR64ri8,     X86::OR64mi8,    0 },
    168     { X86::OR64rr,      X86::OR64mr,     0 },
    169     { X86::OR8ri,       X86::OR8mi,      0 },
    170     { X86::OR8rr,       X86::OR8mr,      0 },
    171     { X86::ROL16r1,     X86::ROL16m1,    0 },
    172     { X86::ROL16rCL,    X86::ROL16mCL,   0 },
    173     { X86::ROL16ri,     X86::ROL16mi,    0 },
    174     { X86::ROL32r1,     X86::ROL32m1,    0 },
    175     { X86::ROL32rCL,    X86::ROL32mCL,   0 },
    176     { X86::ROL32ri,     X86::ROL32mi,    0 },
    177     { X86::ROL64r1,     X86::ROL64m1,    0 },
    178     { X86::ROL64rCL,    X86::ROL64mCL,   0 },
    179     { X86::ROL64ri,     X86::ROL64mi,    0 },
    180     { X86::ROL8r1,      X86::ROL8m1,     0 },
    181     { X86::ROL8rCL,     X86::ROL8mCL,    0 },
    182     { X86::ROL8ri,      X86::ROL8mi,     0 },
    183     { X86::ROR16r1,     X86::ROR16m1,    0 },
    184     { X86::ROR16rCL,    X86::ROR16mCL,   0 },
    185     { X86::ROR16ri,     X86::ROR16mi,    0 },
    186     { X86::ROR32r1,     X86::ROR32m1,    0 },
    187     { X86::ROR32rCL,    X86::ROR32mCL,   0 },
    188     { X86::ROR32ri,     X86::ROR32mi,    0 },
    189     { X86::ROR64r1,     X86::ROR64m1,    0 },
    190     { X86::ROR64rCL,    X86::ROR64mCL,   0 },
    191     { X86::ROR64ri,     X86::ROR64mi,    0 },
    192     { X86::ROR8r1,      X86::ROR8m1,     0 },
    193     { X86::ROR8rCL,     X86::ROR8mCL,    0 },
    194     { X86::ROR8ri,      X86::ROR8mi,     0 },
    195     { X86::SAR16r1,     X86::SAR16m1,    0 },
    196     { X86::SAR16rCL,    X86::SAR16mCL,   0 },
    197     { X86::SAR16ri,     X86::SAR16mi,    0 },
    198     { X86::SAR32r1,     X86::SAR32m1,    0 },
    199     { X86::SAR32rCL,    X86::SAR32mCL,   0 },
    200     { X86::SAR32ri,     X86::SAR32mi,    0 },
    201     { X86::SAR64r1,     X86::SAR64m1,    0 },
    202     { X86::SAR64rCL,    X86::SAR64mCL,   0 },
    203     { X86::SAR64ri,     X86::SAR64mi,    0 },
    204     { X86::SAR8r1,      X86::SAR8m1,     0 },
    205     { X86::SAR8rCL,     X86::SAR8mCL,    0 },
    206     { X86::SAR8ri,      X86::SAR8mi,     0 },
    207     { X86::SBB32ri,     X86::SBB32mi,    0 },
    208     { X86::SBB32ri8,    X86::SBB32mi8,   0 },
    209     { X86::SBB32rr,     X86::SBB32mr,    0 },
    210     { X86::SBB64ri32,   X86::SBB64mi32,  0 },
    211     { X86::SBB64ri8,    X86::SBB64mi8,   0 },
    212     { X86::SBB64rr,     X86::SBB64mr,    0 },
    213     { X86::SHL16rCL,    X86::SHL16mCL,   0 },
    214     { X86::SHL16ri,     X86::SHL16mi,    0 },
    215     { X86::SHL32rCL,    X86::SHL32mCL,   0 },
    216     { X86::SHL32ri,     X86::SHL32mi,    0 },
    217     { X86::SHL64rCL,    X86::SHL64mCL,   0 },
    218     { X86::SHL64ri,     X86::SHL64mi,    0 },
    219     { X86::SHL8rCL,     X86::SHL8mCL,    0 },
    220     { X86::SHL8ri,      X86::SHL8mi,     0 },
    221     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
    222     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
    223     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
    224     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
    225     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
    226     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
    227     { X86::SHR16r1,     X86::SHR16m1,    0 },
    228     { X86::SHR16rCL,    X86::SHR16mCL,   0 },
    229     { X86::SHR16ri,     X86::SHR16mi,    0 },
    230     { X86::SHR32r1,     X86::SHR32m1,    0 },
    231     { X86::SHR32rCL,    X86::SHR32mCL,   0 },
    232     { X86::SHR32ri,     X86::SHR32mi,    0 },
    233     { X86::SHR64r1,     X86::SHR64m1,    0 },
    234     { X86::SHR64rCL,    X86::SHR64mCL,   0 },
    235     { X86::SHR64ri,     X86::SHR64mi,    0 },
    236     { X86::SHR8r1,      X86::SHR8m1,     0 },
    237     { X86::SHR8rCL,     X86::SHR8mCL,    0 },
    238     { X86::SHR8ri,      X86::SHR8mi,     0 },
    239     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
    240     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
    241     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
    242     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
    243     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
    244     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
    245     { X86::SUB16ri,     X86::SUB16mi,    0 },
    246     { X86::SUB16ri8,    X86::SUB16mi8,   0 },
    247     { X86::SUB16rr,     X86::SUB16mr,    0 },
    248     { X86::SUB32ri,     X86::SUB32mi,    0 },
    249     { X86::SUB32ri8,    X86::SUB32mi8,   0 },
    250     { X86::SUB32rr,     X86::SUB32mr,    0 },
    251     { X86::SUB64ri32,   X86::SUB64mi32,  0 },
    252     { X86::SUB64ri8,    X86::SUB64mi8,   0 },
    253     { X86::SUB64rr,     X86::SUB64mr,    0 },
    254     { X86::SUB8ri,      X86::SUB8mi,     0 },
    255     { X86::SUB8rr,      X86::SUB8mr,     0 },
    256     { X86::XOR16ri,     X86::XOR16mi,    0 },
    257     { X86::XOR16ri8,    X86::XOR16mi8,   0 },
    258     { X86::XOR16rr,     X86::XOR16mr,    0 },
    259     { X86::XOR32ri,     X86::XOR32mi,    0 },
    260     { X86::XOR32ri8,    X86::XOR32mi8,   0 },
    261     { X86::XOR32rr,     X86::XOR32mr,    0 },
    262     { X86::XOR64ri32,   X86::XOR64mi32,  0 },
    263     { X86::XOR64ri8,    X86::XOR64mi8,   0 },
    264     { X86::XOR64rr,     X86::XOR64mr,    0 },
    265     { X86::XOR8ri,      X86::XOR8mi,     0 },
    266     { X86::XOR8rr,      X86::XOR8mr,     0 }
    267   };
    268 
    269   for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
    270     unsigned RegOp = OpTbl2Addr[i].RegOp;
    271     unsigned MemOp = OpTbl2Addr[i].MemOp;
    272     unsigned Flags = OpTbl2Addr[i].Flags;
    273     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
    274                   RegOp, MemOp,
    275                   // Index 0, folded load and store, no alignment requirement.
    276                   Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
    277   }
    278 
    279   static const X86OpTblEntry OpTbl0[] = {
    280     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
    281     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
    282     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
    283     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
    284     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
    285     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
    286     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
    287     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
    288     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
    289     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
    290     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
    291     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
    292     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
    293     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
    294     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
    295     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
    296     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
    297     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
    298     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
    299     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
    300     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
    301     { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
    302     { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
    303     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
    304     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
    305     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
    306     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
    307     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
    308     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
    309     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
    310     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
    311     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
    312     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
    313     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
    314     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
    315     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
    316     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
    317     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
    318     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
    319     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
    320     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
    321     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
    322     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    323     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    324     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    325     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
    326     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
    327     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
    328     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
    329     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
    330     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
    331     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
    332     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
    333     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
    334     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
    335     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
    336     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
    337     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
    338     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
    339     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
    340     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
    341     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
    342     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
    343     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
    344     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
    345     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
    346     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
    347     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
    348     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
    349     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
    350     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
    351     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
    352     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
    353     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
    354     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
    355     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
    356     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
    357     // AVX 128-bit versions of foldable instructions
    358     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
    359     { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
    360     { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
    361     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    362     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    363     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    364     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    365     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
    366     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
    367     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
    368     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
    369     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
    370     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
    371     // AVX 256-bit foldable instructions
    372     { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    373     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    374     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    375     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    376     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
    377     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
    378   };
    379 
    380   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
    381     unsigned RegOp      = OpTbl0[i].RegOp;
    382     unsigned MemOp      = OpTbl0[i].MemOp;
    383     unsigned Flags      = OpTbl0[i].Flags;
    384     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
    385                   RegOp, MemOp, TB_INDEX_0 | Flags);
    386   }
    387 
    388   static const X86OpTblEntry OpTbl1[] = {
    389     { X86::CMP16rr,         X86::CMP16rm,             0 },
    390     { X86::CMP32rr,         X86::CMP32rm,             0 },
    391     { X86::CMP64rr,         X86::CMP64rm,             0 },
    392     { X86::CMP8rr,          X86::CMP8rm,              0 },
    393     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
    394     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
    395     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
    396     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
    397     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
    398     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
    399     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
    400     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
    401     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
    402     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
    403     { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
    404     { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
    405     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
    406     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
    407     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
    408     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
    409     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
    410     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
    411     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
    412     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
    413     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
    414     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
    415     { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
    416     { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
    417     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
    418     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
    419     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
    420     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
    421     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
    422     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
    423     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
    424     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
    425     { X86::MOV16rr,         X86::MOV16rm,             0 },
    426     { X86::MOV32rr,         X86::MOV32rm,             0 },
    427     { X86::MOV64rr,         X86::MOV64rm,             0 },
    428     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
    429     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
    430     { X86::MOV8rr,          X86::MOV8rm,              0 },
    431     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
    432     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
    433     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
    434     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
    435     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
    436     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
    437     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
    438     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
    439     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
    440     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
    441     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
    442     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
    443     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
    444     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
    445     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
    446     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
    447     { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
    448     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
    449     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
    450     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
    451     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
    452     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
    453     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
    454     { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 },
    455     { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 },
    456     { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 },
    457     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
    458     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
    459     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
    460     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
    461     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
    462     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
    463     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
    464     { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
    465     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
    466     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
    467     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
    468     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
    469     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
    470     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
    471     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
    472     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
    473     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
    474     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
    475     { X86::TEST16rr,        X86::TEST16rm,            0 },
    476     { X86::TEST32rr,        X86::TEST32rm,            0 },
    477     { X86::TEST64rr,        X86::TEST64rm,            0 },
    478     { X86::TEST8rr,         X86::TEST8rm,             0 },
    479     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
    480     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
    481     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
    482     // AVX 128-bit versions of foldable instructions
    483     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
    484     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
    485     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
    486     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
    487     { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
    488     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
    489     { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
    490     { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
    491     { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
    492     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
    493     { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
    494     { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
    495     { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
    496     { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
    497     { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
    498     { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
    499     { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
    500     { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
    501     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
    502     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
    503     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
    504     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
    505     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
    506     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
    507     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
    508     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
    509     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
    510     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
    511     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
    512     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
    513     { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
    514     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
    515     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
    516     { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
    517     { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
    518     { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
    519     { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
    520     { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
    521     { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
    522     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
    523     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
    524     { X86::VRCPPSr,         X86::VRCPPSm,             0 },
    525     { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
    526     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
    527     { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
    528     { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
    529     { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
    530     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
    531     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
    532     { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
    533 
    534     // AVX 256-bit foldable instructions
    535     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
    536     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
    537     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
    538     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
    539     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
    540     { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
    541     { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
    542 
    543     // AVX2 foldable instructions
    544     { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
    545     { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
    546     { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
    547     { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
    548     { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
    549     { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
    550     { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
    551     { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
    552     { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
    553     { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
    554     { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
    555     { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
    556     { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
    557 
    558     // BMI/BMI2/LZCNT/POPCNT foldable instructions
    559     { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
    560     { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
    561     { X86::BLSI32rr,        X86::BLSI32rm,            0 },
    562     { X86::BLSI64rr,        X86::BLSI64rm,            0 },
    563     { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
    564     { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
    565     { X86::BLSR32rr,        X86::BLSR32rm,            0 },
    566     { X86::BLSR64rr,        X86::BLSR64rm,            0 },
    567     { X86::BZHI32rr,        X86::BZHI32rm,            0 },
    568     { X86::BZHI64rr,        X86::BZHI64rm,            0 },
    569     { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
    570     { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
    571     { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
    572     { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
    573     { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
    574     { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
    575     { X86::RORX32ri,        X86::RORX32mi,            0 },
    576     { X86::RORX64ri,        X86::RORX64mi,            0 },
    577     { X86::SARX32rr,        X86::SARX32rm,            0 },
    578     { X86::SARX64rr,        X86::SARX64rm,            0 },
    579     { X86::SHRX32rr,        X86::SHRX32rm,            0 },
    580     { X86::SHRX64rr,        X86::SHRX64rm,            0 },
    581     { X86::SHLX32rr,        X86::SHLX32rm,            0 },
    582     { X86::SHLX64rr,        X86::SHLX64rm,            0 },
    583     { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
    584     { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
    585     { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
    586   };
    587 
    588   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
    589     unsigned RegOp = OpTbl1[i].RegOp;
    590     unsigned MemOp = OpTbl1[i].MemOp;
    591     unsigned Flags = OpTbl1[i].Flags;
    592     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
    593                   RegOp, MemOp,
    594                   // Index 1, folded load
    595                   Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
    596   }
    597 
    598   static const X86OpTblEntry OpTbl2[] = {
    599     { X86::ADC32rr,         X86::ADC32rm,       0 },
    600     { X86::ADC64rr,         X86::ADC64rm,       0 },
    601     { X86::ADD16rr,         X86::ADD16rm,       0 },
    602     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
    603     { X86::ADD32rr,         X86::ADD32rm,       0 },
    604     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
    605     { X86::ADD64rr,         X86::ADD64rm,       0 },
    606     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
    607     { X86::ADD8rr,          X86::ADD8rm,        0 },
    608     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
    609     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
    610     { X86::ADDSDrr,         X86::ADDSDrm,       0 },
    611     { X86::ADDSSrr,         X86::ADDSSrm,       0 },
    612     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
    613     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
    614     { X86::AND16rr,         X86::AND16rm,       0 },
    615     { X86::AND32rr,         X86::AND32rm,       0 },
    616     { X86::AND64rr,         X86::AND64rm,       0 },
    617     { X86::AND8rr,          X86::AND8rm,        0 },
    618     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
    619     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
    620     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
    621     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
    622     { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
    623     { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
    624     { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
    625     { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
    626     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
    627     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
    628     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
    629     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
    630     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
    631     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
    632     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
    633     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
    634     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
    635     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
    636     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
    637     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
    638     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
    639     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
    640     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
    641     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
    642     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
    643     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
    644     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
    645     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
    646     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
    647     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
    648     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
    649     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
    650     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
    651     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
    652     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
    653     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
    654     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
    655     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
    656     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
    657     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
    658     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
    659     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
    660     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
    661     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
    662     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
    663     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
    664     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
    665     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
    666     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
    667     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
    668     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
    669     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
    670     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
    671     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
    672     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
    673     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
    674     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
    675     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
    676     { X86::CMPSDrr,         X86::CMPSDrm,       0 },
    677     { X86::CMPSSrr,         X86::CMPSSrm,       0 },
    678     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
    679     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
    680     { X86::DIVSDrr,         X86::DIVSDrm,       0 },
    681     { X86::DIVSSrr,         X86::DIVSSrm,       0 },
    682     { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
    683     { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
    684     { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
    685     { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
    686     { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
    687     { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
    688     { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
    689     { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
    690     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
    691     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
    692     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
    693     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
    694     { X86::IMUL16rr,        X86::IMUL16rm,      0 },
    695     { X86::IMUL32rr,        X86::IMUL32rm,      0 },
    696     { X86::IMUL64rr,        X86::IMUL64rm,      0 },
    697     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
    698     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
    699     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
    700     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
    701     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
    702     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
    703     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
    704     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
    705     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
    706     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
    707     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
    708     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
    709     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
    710     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
    711     { X86::MINSDrr,         X86::MINSDrm,       0 },
    712     { X86::MINSSrr,         X86::MINSSrm,       0 },
    713     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
    714     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
    715     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
    716     { X86::MULSDrr,         X86::MULSDrm,       0 },
    717     { X86::MULSSrr,         X86::MULSSrm,       0 },
    718     { X86::OR16rr,          X86::OR16rm,        0 },
    719     { X86::OR32rr,          X86::OR32rm,        0 },
    720     { X86::OR64rr,          X86::OR64rm,        0 },
    721     { X86::OR8rr,           X86::OR8rm,         0 },
    722     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
    723     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
    724     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
    725     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
    726     { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
    727     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
    728     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
    729     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
    730     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
    731     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
    732     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
    733     { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
    734     { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
    735     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
    736     { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
    737     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
    738     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
    739     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
    740     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
    741     { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
    742     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
    743     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
    744     { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
    745     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
    746     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
    747     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
    748     { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
    749     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
    750     { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
    751     { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
    752     { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
    753     { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
    754     { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
    755     { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
    756     { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
    757     { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
    758     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
    759     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
    760     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
    761     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
    762     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
    763     { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
    764     { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
    765     { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
    766     { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
    767     { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
    768     { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
    769     { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
    770     { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
    771     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
    772     { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
    773     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
    774     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
    775     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
    776     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
    777     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
    778     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
    779     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
    780     { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
    781     { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
    782     { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
    783     { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
    784     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
    785     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
    786     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
    787     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
    788     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
    789     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
    790     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
    791     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
    792     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
    793     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
    794     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
    795     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
    796     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
    797     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
    798     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
    799     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
    800     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
    801     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
    802     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
    803     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
    804     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
    805     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
    806     { X86::SBB32rr,         X86::SBB32rm,       0 },
    807     { X86::SBB64rr,         X86::SBB64rm,       0 },
    808     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
    809     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
    810     { X86::SUB16rr,         X86::SUB16rm,       0 },
    811     { X86::SUB32rr,         X86::SUB32rm,       0 },
    812     { X86::SUB64rr,         X86::SUB64rm,       0 },
    813     { X86::SUB8rr,          X86::SUB8rm,        0 },
    814     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
    815     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
    816     { X86::SUBSDrr,         X86::SUBSDrm,       0 },
    817     { X86::SUBSSrr,         X86::SUBSSrm,       0 },
    818     // FIXME: TEST*rr -> swapped operand of TEST*mr.
    819     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
    820     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
    821     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
    822     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
    823     { X86::XOR16rr,         X86::XOR16rm,       0 },
    824     { X86::XOR32rr,         X86::XOR32rm,       0 },
    825     { X86::XOR64rr,         X86::XOR64rm,       0 },
    826     { X86::XOR8rr,          X86::XOR8rm,        0 },
    827     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
    828     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
    829     // AVX 128-bit versions of foldable instructions
    830     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
    831     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
    832     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
    833     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
    834     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
    835     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
    836     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
    837     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
    838     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
    839     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
    840     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
    841     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
    842     { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQXrm,      0 },
    843     { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       0 },
    844     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
    845     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
    846     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
    847     { X86::VADDPDrr,          X86::VADDPDrm,           0 },
    848     { X86::VADDPSrr,          X86::VADDPSrm,           0 },
    849     { X86::VADDSDrr,          X86::VADDSDrm,           0 },
    850     { X86::VADDSSrr,          X86::VADDSSrm,           0 },
    851     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
    852     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
    853     { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
    854     { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
    855     { X86::VANDPDrr,          X86::VANDPDrm,           0 },
    856     { X86::VANDPSrr,          X86::VANDPSrm,           0 },
    857     { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
    858     { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
    859     { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
    860     { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
    861     { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
    862     { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
    863     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
    864     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
    865     { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
    866     { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
    867     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
    868     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
    869     { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
    870     { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
    871     { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
    872     { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
    873     { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
    874     { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
    875     { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
    876     { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
    877     { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
    878     { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
    879     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
    880     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
    881     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
    882     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
    883     { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
    884     { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
    885     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
    886     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
    887     { X86::VMINPDrr,          X86::VMINPDrm,           0 },
    888     { X86::VMINPSrr,          X86::VMINPSrm,           0 },
    889     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
    890     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
    891     { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
    892     { X86::VMULPDrr,          X86::VMULPDrm,           0 },
    893     { X86::VMULPSrr,          X86::VMULPSrm,           0 },
    894     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
    895     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
    896     { X86::VORPDrr,           X86::VORPDrm,            0 },
    897     { X86::VORPSrr,           X86::VORPSrm,            0 },
    898     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
    899     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
    900     { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
    901     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
    902     { X86::VPADDBrr,          X86::VPADDBrm,           0 },
    903     { X86::VPADDDrr,          X86::VPADDDrm,           0 },
    904     { X86::VPADDQrr,          X86::VPADDQrm,           0 },
    905     { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
    906     { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
    907     { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
    908     { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
    909     { X86::VPADDWrr,          X86::VPADDWrm,           0 },
    910     { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
    911     { X86::VPANDNrr,          X86::VPANDNrm,           0 },
    912     { X86::VPANDrr,           X86::VPANDrm,            0 },
    913     { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
    914     { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
    915     { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
    916     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
    917     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
    918     { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
    919     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
    920     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
    921     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
    922     { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
    923     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
    924     { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
    925     { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
    926     { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
    927     { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
    928     { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
    929     { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
    930     { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
    931     { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
    932     { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
    933     { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
    934     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
    935     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
    936     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
    937     { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
    938     { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
    939     { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
    940     { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
    941     { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
    942     { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
    943     { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
    944     { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
    945     { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
    946     { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
    947     { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
    948     { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
    949     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
    950     { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
    951     { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
    952     { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
    953     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
    954     { X86::VPORrr,            X86::VPORrm,             0 },
    955     { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
    956     { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
    957     { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
    958     { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
    959     { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
    960     { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
    961     { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
    962     { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
    963     { X86::VPSRADrr,          X86::VPSRADrm,           0 },
    964     { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
    965     { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
    966     { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
    967     { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
    968     { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
    969     { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
    970     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
    971     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
    972     { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
    973     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
    974     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
    975     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
    976     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
    977     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
    978     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
    979     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
    980     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
    981     { X86::VPXORrr,           X86::VPXORrm,            0 },
    982     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
    983     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
    984     { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
    985     { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
    986     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
    987     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
    988     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
    989     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
    990     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
    991     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
    992     { X86::VXORPDrr,          X86::VXORPDrm,           0 },
    993     { X86::VXORPSrr,          X86::VXORPSrm,           0 },
    994     // AVX 256-bit foldable instructions
    995     { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
    996     { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
    997     { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
    998     { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
    999     { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
   1000     { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
   1001     { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
   1002     { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
   1003     { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
   1004     { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
   1005     { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
   1006     { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
   1007     { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
   1008     { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
   1009     { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
   1010     { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
   1011     { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
   1012     { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
   1013     { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
   1014     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
   1015     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
   1016     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
   1017     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
   1018     { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
   1019     { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
   1020     { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
   1021     { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
   1022     { X86::VORPDYrr,          X86::VORPDYrm,           0 },
   1023     { X86::VORPSYrr,          X86::VORPSYrm,           0 },
   1024     { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
   1025     { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
   1026     { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
   1027     { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
   1028     { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
   1029     { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
   1030     { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
   1031     { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
   1032     { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
   1033     { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
   1034     { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
   1035     { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
   1036     { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
   1037     // AVX2 foldable instructions
   1038     { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
   1039     { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
   1040     { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
   1041     { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
   1042     { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
   1043     { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
   1044     { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
   1045     { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
   1046     { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
   1047     { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
   1048     { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
   1049     { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
   1050     { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
   1051     { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
   1052     { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
   1053     { X86::VPANDYrr,          X86::VPANDYrm,           0 },
   1054     { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
   1055     { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
   1056     { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
   1057     { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
   1058     { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
   1059     { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
   1060     { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
   1061     { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
   1062     { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
   1063     { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
   1064     { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
   1065     { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
   1066     { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
   1067     { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
   1068     { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
   1069     { X86::VPERMPDYri,        X86::VPERMPDYmi,         0 },
   1070     { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
   1071     { X86::VPERMQYri,         X86::VPERMQYmi,          0 },
   1072     { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
   1073     { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
   1074     { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
   1075     { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
   1076     { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
   1077     { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
   1078     { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
   1079     { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
   1080     { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
   1081     { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
   1082     { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
   1083     { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
   1084     { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
   1085     { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
   1086     { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
   1087     { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
   1088     { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
   1089     { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
   1090     { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
   1091     { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
   1092     { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
   1093     { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
   1094     { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
   1095     { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
   1096     { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
   1097     { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
   1098     { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
   1099     { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
   1100     { X86::VPORYrr,           X86::VPORYrm,            0 },
   1101     { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
   1102     { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
   1103     { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
   1104     { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
   1105     { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
   1106     { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
   1107     { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
   1108     { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
   1109     { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
   1110     { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
   1111     { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
   1112     { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
   1113     { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
   1114     { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
   1115     { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
   1116     { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
   1117     { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
   1118     { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
   1119     { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
   1120     { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
   1121     { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
   1122     { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
   1123     { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
   1124     { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
   1125     { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
   1126     { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
   1127     { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
   1128     { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
   1129     { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
   1130     { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
   1131     { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
   1132     { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
   1133     { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
   1134     { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
   1135     { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
   1136     { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
   1137     { X86::VPXORYrr,          X86::VPXORYrm,           0 },
   1138     // FIXME: add AVX 256-bit foldable instructions
   1139 
   1140     // FMA4 foldable patterns
   1141     { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0           },
   1142     { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0           },
   1143     { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_16 },
   1144     { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_16 },
   1145     { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_32 },
   1146     { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_32 },
   1147     { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0           },
   1148     { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0           },
   1149     { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_16 },
   1150     { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_16 },
   1151     { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_32 },
   1152     { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_32 },
   1153     { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0           },
   1154     { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0           },
   1155     { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_16 },
   1156     { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_16 },
   1157     { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_32 },
   1158     { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_32 },
   1159     { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0           },
   1160     { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0           },
   1161     { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_16 },
   1162     { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_16 },
   1163     { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_32 },
   1164     { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_32 },
   1165     { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_16 },
   1166     { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_16 },
   1167     { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_32 },
   1168     { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_32 },
   1169     { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_16 },
   1170     { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_16 },
   1171     { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_32 },
   1172     { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_32 },
   1173 
   1174     // BMI/BMI2 foldable instructions
   1175     { X86::ANDN32rr,          X86::ANDN32rm,            0 },
   1176     { X86::ANDN64rr,          X86::ANDN64rm,            0 },
   1177     { X86::MULX32rr,          X86::MULX32rm,            0 },
   1178     { X86::MULX64rr,          X86::MULX64rm,            0 },
   1179     { X86::PDEP32rr,          X86::PDEP32rm,            0 },
   1180     { X86::PDEP64rr,          X86::PDEP64rm,            0 },
   1181     { X86::PEXT32rr,          X86::PEXT32rm,            0 },
   1182     { X86::PEXT64rr,          X86::PEXT64rm,            0 },
   1183   };
   1184 
   1185   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
   1186     unsigned RegOp = OpTbl2[i].RegOp;
   1187     unsigned MemOp = OpTbl2[i].MemOp;
   1188     unsigned Flags = OpTbl2[i].Flags;
   1189     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
   1190                   RegOp, MemOp,
   1191                   // Index 2, folded load
   1192                   Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
   1193   }
   1194 
   1195   static const X86OpTblEntry OpTbl3[] = {
   1196     // FMA foldable instructions
   1197     { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         0 },
   1198     { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         0 },
   1199     { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         0 },
   1200     { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         0 },
   1201     { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         0 },
   1202     { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         0 },
   1203     { X86::VFMADDSSr213r_Int,     X86::VFMADDSSr213m_Int,     0 },
   1204     { X86::VFMADDSDr213r_Int,     X86::VFMADDSDr213m_Int,     0 },
   1205 
   1206     { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_16 },
   1207     { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_16 },
   1208     { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_16 },
   1209     { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_16 },
   1210     { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_16 },
   1211     { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_16 },
   1212     { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_32 },
   1213     { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_32 },
   1214     { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_32 },
   1215     { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_32 },
   1216     { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_32 },
   1217     { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_32 },
   1218 
   1219     { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        0 },
   1220     { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        0 },
   1221     { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        0 },
   1222     { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        0 },
   1223     { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        0 },
   1224     { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        0 },
   1225     { X86::VFNMADDSSr213r_Int,    X86::VFNMADDSSr213m_Int,    0 },
   1226     { X86::VFNMADDSDr213r_Int,    X86::VFNMADDSDr213m_Int,    0 },
   1227 
   1228     { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_16 },
   1229     { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_16 },
   1230     { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_16 },
   1231     { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_16 },
   1232     { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_16 },
   1233     { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_16 },
   1234     { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_32 },
   1235     { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_32 },
   1236     { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_32 },
   1237     { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_32 },
   1238     { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_32 },
   1239     { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_32 },
   1240 
   1241     { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         0 },
   1242     { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         0 },
   1243     { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         0 },
   1244     { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         0 },
   1245     { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         0 },
   1246     { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         0 },
   1247     { X86::VFMSUBSSr213r_Int,     X86::VFMSUBSSr213m_Int,     0 },
   1248     { X86::VFMSUBSDr213r_Int,     X86::VFMSUBSDr213m_Int,     0 },
   1249 
   1250     { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_16 },
   1251     { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_16 },
   1252     { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_16 },
   1253     { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_16 },
   1254     { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_16 },
   1255     { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_16 },
   1256     { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_32 },
   1257     { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_32 },
   1258     { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_32 },
   1259     { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_32 },
   1260     { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_32 },
   1261     { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_32 },
   1262 
   1263     { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        0 },
   1264     { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        0 },
   1265     { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        0 },
   1266     { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        0 },
   1267     { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        0 },
   1268     { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        0 },
   1269     { X86::VFNMSUBSSr213r_Int,    X86::VFNMSUBSSr213m_Int,    0 },
   1270     { X86::VFNMSUBSDr213r_Int,    X86::VFNMSUBSDr213m_Int,    0 },
   1271 
   1272     { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_16 },
   1273     { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_16 },
   1274     { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_16 },
   1275     { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_16 },
   1276     { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_16 },
   1277     { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_16 },
   1278     { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_32 },
   1279     { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_32 },
   1280     { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_32 },
   1281     { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_32 },
   1282     { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_32 },
   1283     { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_32 },
   1284 
   1285     { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_16 },
   1286     { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_16 },
   1287     { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_16 },
   1288     { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_16 },
   1289     { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_16 },
   1290     { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_16 },
   1291     { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_32 },
   1292     { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_32 },
   1293     { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_32 },
   1294     { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_32 },
   1295     { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_32 },
   1296     { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_32 },
   1297 
   1298     { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_16 },
   1299     { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_16 },
   1300     { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_16 },
   1301     { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_16 },
   1302     { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_16 },
   1303     { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_16 },
   1304     { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_32 },
   1305     { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_32 },
   1306     { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_32 },
   1307     { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_32 },
   1308     { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_32 },
   1309     { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_32 },
   1310 
   1311     // FMA4 foldable patterns
   1312     { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
   1313     { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
   1314     { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
   1315     { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
   1316     { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
   1317     { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
   1318     { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
   1319     { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
   1320     { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
   1321     { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
   1322     { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
   1323     { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
   1324     { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
   1325     { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
   1326     { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
   1327     { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
   1328     { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
   1329     { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
   1330     { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
   1331     { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
   1332     { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
   1333     { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
   1334     { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
   1335     { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
   1336     { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
   1337     { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
   1338     { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
   1339     { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
   1340     { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
   1341     { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
   1342     { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
   1343     { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
   1344   };
   1345 
   1346   for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
   1347     unsigned RegOp = OpTbl3[i].RegOp;
   1348     unsigned MemOp = OpTbl3[i].MemOp;
   1349     unsigned Flags = OpTbl3[i].Flags;
   1350     AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
   1351                   RegOp, MemOp,
   1352                   // Index 3, folded load
   1353                   Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
   1354   }
   1355 
   1356 }
   1357 
   1358 void
   1359 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
   1360                             MemOp2RegOpTableType &M2RTable,
   1361                             unsigned RegOp, unsigned MemOp, unsigned Flags) {
   1362     if ((Flags & TB_NO_FORWARD) == 0) {
   1363       assert(!R2MTable.count(RegOp) && "Duplicate entry!");
   1364       R2MTable[RegOp] = std::make_pair(MemOp, Flags);
   1365     }
   1366     if ((Flags & TB_NO_REVERSE) == 0) {
   1367       assert(!M2RTable.count(MemOp) &&
   1368            "Duplicated entries in unfolding maps?");
   1369       M2RTable[MemOp] = std::make_pair(RegOp, Flags);
   1370     }
   1371 }
   1372 
   1373 bool
   1374 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
   1375                                     unsigned &SrcReg, unsigned &DstReg,
   1376                                     unsigned &SubIdx) const {
   1377   switch (MI.getOpcode()) {
   1378   default: break;
   1379   case X86::MOVSX16rr8:
   1380   case X86::MOVZX16rr8:
   1381   case X86::MOVSX32rr8:
   1382   case X86::MOVZX32rr8:
   1383   case X86::MOVSX64rr8:
   1384   case X86::MOVZX64rr8:
   1385     if (!TM.getSubtarget<X86Subtarget>().is64Bit())
   1386       // It's not always legal to reference the low 8-bit of the larger
   1387       // register in 32-bit mode.
   1388       return false;
   1389   case X86::MOVSX32rr16:
   1390   case X86::MOVZX32rr16:
   1391   case X86::MOVSX64rr16:
   1392   case X86::MOVZX64rr16:
   1393   case X86::MOVSX64rr32:
   1394   case X86::MOVZX64rr32: {
   1395     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
   1396       // Be conservative.
   1397       return false;
   1398     SrcReg = MI.getOperand(1).getReg();
   1399     DstReg = MI.getOperand(0).getReg();
   1400     switch (MI.getOpcode()) {
   1401     default: llvm_unreachable("Unreachable!");
   1402     case X86::MOVSX16rr8:
   1403     case X86::MOVZX16rr8:
   1404     case X86::MOVSX32rr8:
   1405     case X86::MOVZX32rr8:
   1406     case X86::MOVSX64rr8:
   1407     case X86::MOVZX64rr8:
   1408       SubIdx = X86::sub_8bit;
   1409       break;
   1410     case X86::MOVSX32rr16:
   1411     case X86::MOVZX32rr16:
   1412     case X86::MOVSX64rr16:
   1413     case X86::MOVZX64rr16:
   1414       SubIdx = X86::sub_16bit;
   1415       break;
   1416     case X86::MOVSX64rr32:
   1417     case X86::MOVZX64rr32:
   1418       SubIdx = X86::sub_32bit;
   1419       break;
   1420     }
   1421     return true;
   1422   }
   1423   }
   1424   return false;
   1425 }
   1426 
   1427 /// isFrameOperand - Return true and the FrameIndex if the specified
   1428 /// operand and follow operands form a reference to the stack frame.
   1429 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
   1430                                   int &FrameIndex) const {
   1431   if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
   1432       MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
   1433       MI->getOperand(Op+1).getImm() == 1 &&
   1434       MI->getOperand(Op+2).getReg() == 0 &&
   1435       MI->getOperand(Op+3).getImm() == 0) {
   1436     FrameIndex = MI->getOperand(Op).getIndex();
   1437     return true;
   1438   }
   1439   return false;
   1440 }
   1441 
   1442 static bool isFrameLoadOpcode(int Opcode) {
   1443   switch (Opcode) {
   1444   default:
   1445     return false;
   1446   case X86::MOV8rm:
   1447   case X86::MOV16rm:
   1448   case X86::MOV32rm:
   1449   case X86::MOV64rm:
   1450   case X86::LD_Fp64m:
   1451   case X86::MOVSSrm:
   1452   case X86::MOVSDrm:
   1453   case X86::MOVAPSrm:
   1454   case X86::MOVAPDrm:
   1455   case X86::MOVDQArm:
   1456   case X86::VMOVSSrm:
   1457   case X86::VMOVSDrm:
   1458   case X86::VMOVAPSrm:
   1459   case X86::VMOVAPDrm:
   1460   case X86::VMOVDQArm:
   1461   case X86::VMOVAPSYrm:
   1462   case X86::VMOVAPDYrm:
   1463   case X86::VMOVDQAYrm:
   1464   case X86::MMX_MOVD64rm:
   1465   case X86::MMX_MOVQ64rm:
   1466     return true;
   1467   }
   1468 }
   1469 
   1470 static bool isFrameStoreOpcode(int Opcode) {
   1471   switch (Opcode) {
   1472   default: break;
   1473   case X86::MOV8mr:
   1474   case X86::MOV16mr:
   1475   case X86::MOV32mr:
   1476   case X86::MOV64mr:
   1477   case X86::ST_FpP64m:
   1478   case X86::MOVSSmr:
   1479   case X86::MOVSDmr:
   1480   case X86::MOVAPSmr:
   1481   case X86::MOVAPDmr:
   1482   case X86::MOVDQAmr:
   1483   case X86::VMOVSSmr:
   1484   case X86::VMOVSDmr:
   1485   case X86::VMOVAPSmr:
   1486   case X86::VMOVAPDmr:
   1487   case X86::VMOVDQAmr:
   1488   case X86::VMOVAPSYmr:
   1489   case X86::VMOVAPDYmr:
   1490   case X86::VMOVDQAYmr:
   1491   case X86::MMX_MOVD64mr:
   1492   case X86::MMX_MOVQ64mr:
   1493   case X86::MMX_MOVNTQmr:
   1494     return true;
   1495   }
   1496   return false;
   1497 }
   1498 
   1499 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
   1500                                            int &FrameIndex) const {
   1501   if (isFrameLoadOpcode(MI->getOpcode()))
   1502     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
   1503       return MI->getOperand(0).getReg();
   1504   return 0;
   1505 }
   1506 
   1507 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
   1508                                                  int &FrameIndex) const {
   1509   if (isFrameLoadOpcode(MI->getOpcode())) {
   1510     unsigned Reg;
   1511     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
   1512       return Reg;
   1513     // Check for post-frame index elimination operations
   1514     const MachineMemOperand *Dummy;
   1515     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1516   }
   1517   return 0;
   1518 }
   1519 
   1520 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
   1521                                           int &FrameIndex) const {
   1522   if (isFrameStoreOpcode(MI->getOpcode()))
   1523     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
   1524         isFrameOperand(MI, 0, FrameIndex))
   1525       return MI->getOperand(X86::AddrNumOperands).getReg();
   1526   return 0;
   1527 }
   1528 
   1529 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
   1530                                                 int &FrameIndex) const {
   1531   if (isFrameStoreOpcode(MI->getOpcode())) {
   1532     unsigned Reg;
   1533     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
   1534       return Reg;
   1535     // Check for post-frame index elimination operations
   1536     const MachineMemOperand *Dummy;
   1537     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
   1538   }
   1539   return 0;
   1540 }
   1541 
   1542 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
   1543 /// X86::MOVPC32r.
   1544 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
   1545   // Don't waste compile time scanning use-def chains of physregs.
   1546   if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
   1547     return false;
   1548   bool isPICBase = false;
   1549   for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
   1550          E = MRI.def_end(); I != E; ++I) {
   1551     MachineInstr *DefMI = I.getOperand().getParent();
   1552     if (DefMI->getOpcode() != X86::MOVPC32r)
   1553       return false;
   1554     assert(!isPICBase && "More than one PIC base?");
   1555     isPICBase = true;
   1556   }
   1557   return isPICBase;
   1558 }
   1559 
   1560 bool
   1561 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
   1562                                                 AliasAnalysis *AA) const {
   1563   switch (MI->getOpcode()) {
   1564   default: break;
   1565   case X86::MOV8rm:
   1566   case X86::MOV16rm:
   1567   case X86::MOV32rm:
   1568   case X86::MOV64rm:
   1569   case X86::LD_Fp64m:
   1570   case X86::MOVSSrm:
   1571   case X86::MOVSDrm:
   1572   case X86::MOVAPSrm:
   1573   case X86::MOVUPSrm:
   1574   case X86::MOVAPDrm:
   1575   case X86::MOVDQArm:
   1576   case X86::MOVDQUrm:
   1577   case X86::VMOVSSrm:
   1578   case X86::VMOVSDrm:
   1579   case X86::VMOVAPSrm:
   1580   case X86::VMOVUPSrm:
   1581   case X86::VMOVAPDrm:
   1582   case X86::VMOVDQArm:
   1583   case X86::VMOVDQUrm:
   1584   case X86::VMOVAPSYrm:
   1585   case X86::VMOVUPSYrm:
   1586   case X86::VMOVAPDYrm:
   1587   case X86::VMOVDQAYrm:
   1588   case X86::VMOVDQUYrm:
   1589   case X86::MMX_MOVD64rm:
   1590   case X86::MMX_MOVQ64rm:
   1591   case X86::FsVMOVAPSrm:
   1592   case X86::FsVMOVAPDrm:
   1593   case X86::FsMOVAPSrm:
   1594   case X86::FsMOVAPDrm: {
   1595     // Loads from constant pools are trivially rematerializable.
   1596     if (MI->getOperand(1).isReg() &&
   1597         MI->getOperand(2).isImm() &&
   1598         MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
   1599         MI->isInvariantLoad(AA)) {
   1600       unsigned BaseReg = MI->getOperand(1).getReg();
   1601       if (BaseReg == 0 || BaseReg == X86::RIP)
   1602         return true;
   1603       // Allow re-materialization of PIC load.
   1604       if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
   1605         return false;
   1606       const MachineFunction &MF = *MI->getParent()->getParent();
   1607       const MachineRegisterInfo &MRI = MF.getRegInfo();
   1608       return regIsPICBase(BaseReg, MRI);
   1609     }
   1610     return false;
   1611   }
   1612 
   1613   case X86::LEA32r:
   1614   case X86::LEA64r: {
   1615     if (MI->getOperand(2).isImm() &&
   1616         MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
   1617         !MI->getOperand(4).isReg()) {
   1618       // lea fi#, lea GV, etc. are all rematerializable.
   1619       if (!MI->getOperand(1).isReg())
   1620         return true;
   1621       unsigned BaseReg = MI->getOperand(1).getReg();
   1622       if (BaseReg == 0)
   1623         return true;
   1624       // Allow re-materialization of lea PICBase + x.
   1625       const MachineFunction &MF = *MI->getParent()->getParent();
   1626       const MachineRegisterInfo &MRI = MF.getRegInfo();
   1627       return regIsPICBase(BaseReg, MRI);
   1628     }
   1629     return false;
   1630   }
   1631   }
   1632 
   1633   // All other instructions marked M_REMATERIALIZABLE are always trivially
   1634   // rematerializable.
   1635   return true;
   1636 }
   1637 
   1638 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
   1639 /// would clobber the EFLAGS condition register. Note the result may be
   1640 /// conservative. If it cannot definitely determine the safety after visiting
   1641 /// a few instructions in each direction it assumes it's not safe.
   1642 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
   1643                                   MachineBasicBlock::iterator I) {
   1644   MachineBasicBlock::iterator E = MBB.end();
   1645 
   1646   // For compile time consideration, if we are not able to determine the
   1647   // safety after visiting 4 instructions in each direction, we will assume
   1648   // it's not safe.
   1649   MachineBasicBlock::iterator Iter = I;
   1650   for (unsigned i = 0; Iter != E && i < 4; ++i) {
   1651     bool SeenDef = false;
   1652     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   1653       MachineOperand &MO = Iter->getOperand(j);
   1654       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   1655         SeenDef = true;
   1656       if (!MO.isReg())
   1657         continue;
   1658       if (MO.getReg() == X86::EFLAGS) {
   1659         if (MO.isUse())
   1660           return false;
   1661         SeenDef = true;
   1662       }
   1663     }
   1664 
   1665     if (SeenDef)
   1666       // This instruction defines EFLAGS, no need to look any further.
   1667       return true;
   1668     ++Iter;
   1669     // Skip over DBG_VALUE.
   1670     while (Iter != E && Iter->isDebugValue())
   1671       ++Iter;
   1672   }
   1673 
   1674   // It is safe to clobber EFLAGS at the end of a block of no successor has it
   1675   // live in.
   1676   if (Iter == E) {
   1677     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
   1678            SE = MBB.succ_end(); SI != SE; ++SI)
   1679       if ((*SI)->isLiveIn(X86::EFLAGS))
   1680         return false;
   1681     return true;
   1682   }
   1683 
   1684   MachineBasicBlock::iterator B = MBB.begin();
   1685   Iter = I;
   1686   for (unsigned i = 0; i < 4; ++i) {
   1687     // If we make it to the beginning of the block, it's safe to clobber
   1688     // EFLAGS iff EFLAGS is not live-in.
   1689     if (Iter == B)
   1690       return !MBB.isLiveIn(X86::EFLAGS);
   1691 
   1692     --Iter;
   1693     // Skip over DBG_VALUE.
   1694     while (Iter != B && Iter->isDebugValue())
   1695       --Iter;
   1696 
   1697     bool SawKill = false;
   1698     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   1699       MachineOperand &MO = Iter->getOperand(j);
   1700       // A register mask may clobber EFLAGS, but we should still look for a
   1701       // live EFLAGS def.
   1702       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   1703         SawKill = true;
   1704       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
   1705         if (MO.isDef()) return MO.isDead();
   1706         if (MO.isKill()) SawKill = true;
   1707       }
   1708     }
   1709 
   1710     if (SawKill)
   1711       // This instruction kills EFLAGS and doesn't redefine it, so
   1712       // there's no need to look further.
   1713       return true;
   1714   }
   1715 
   1716   // Conservative answer.
   1717   return false;
   1718 }
   1719 
   1720 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
   1721                                  MachineBasicBlock::iterator I,
   1722                                  unsigned DestReg, unsigned SubIdx,
   1723                                  const MachineInstr *Orig,
   1724                                  const TargetRegisterInfo &TRI) const {
   1725   DebugLoc DL = Orig->getDebugLoc();
   1726 
   1727   // MOV32r0 etc. are implemented with xor which clobbers condition code.
   1728   // Re-materialize them as movri instructions to avoid side effects.
   1729   bool Clone = true;
   1730   unsigned Opc = Orig->getOpcode();
   1731   switch (Opc) {
   1732   default: break;
   1733   case X86::MOV8r0:
   1734   case X86::MOV16r0:
   1735   case X86::MOV32r0:
   1736   case X86::MOV64r0: {
   1737     if (!isSafeToClobberEFLAGS(MBB, I)) {
   1738       switch (Opc) {
   1739       default: llvm_unreachable("Unreachable!");
   1740       case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
   1741       case X86::MOV16r0: Opc = X86::MOV16ri; break;
   1742       case X86::MOV32r0: Opc = X86::MOV32ri; break;
   1743       case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
   1744       }
   1745       Clone = false;
   1746     }
   1747     break;
   1748   }
   1749   }
   1750 
   1751   if (Clone) {
   1752     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   1753     MBB.insert(I, MI);
   1754   } else {
   1755     BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
   1756   }
   1757 
   1758   MachineInstr *NewMI = prior(I);
   1759   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1760 }
   1761 
   1762 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
   1763 /// is not marked dead.
   1764 static bool hasLiveCondCodeDef(MachineInstr *MI) {
   1765   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1766     MachineOperand &MO = MI->getOperand(i);
   1767     if (MO.isReg() && MO.isDef() &&
   1768         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
   1769       return true;
   1770     }
   1771   }
   1772   return false;
   1773 }
   1774 
   1775 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
   1776 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
   1777 /// to a 32-bit superregister and then truncating back down to a 16-bit
   1778 /// subregister.
   1779 MachineInstr *
   1780 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
   1781                                            MachineFunction::iterator &MFI,
   1782                                            MachineBasicBlock::iterator &MBBI,
   1783                                            LiveVariables *LV) const {
   1784   MachineInstr *MI = MBBI;
   1785   unsigned Dest = MI->getOperand(0).getReg();
   1786   unsigned Src = MI->getOperand(1).getReg();
   1787   bool isDead = MI->getOperand(0).isDead();
   1788   bool isKill = MI->getOperand(1).isKill();
   1789 
   1790   unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
   1791     ? X86::LEA64_32r : X86::LEA32r;
   1792   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
   1793   unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   1794   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   1795 
   1796   // Build and insert into an implicit UNDEF value. This is OK because
   1797   // well be shifting and then extracting the lower 16-bits.
   1798   // This has the potential to cause partial register stall. e.g.
   1799   //   movw    (%rbp,%rcx,2), %dx
   1800   //   leal    -65(%rdx), %esi
   1801   // But testing has shown this *does* help performance in 64-bit mode (at
   1802   // least on modern x86 machines).
   1803   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
   1804   MachineInstr *InsMI =
   1805     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1806     .addReg(leaInReg, RegState::Define, X86::sub_16bit)
   1807     .addReg(Src, getKillRegState(isKill));
   1808 
   1809   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
   1810                                     get(Opc), leaOutReg);
   1811   switch (MIOpc) {
   1812   default: llvm_unreachable("Unreachable!");
   1813   case X86::SHL16ri: {
   1814     unsigned ShAmt = MI->getOperand(2).getImm();
   1815     MIB.addReg(0).addImm(1 << ShAmt)
   1816        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
   1817     break;
   1818   }
   1819   case X86::INC16r:
   1820   case X86::INC64_16r:
   1821     addRegOffset(MIB, leaInReg, true, 1);
   1822     break;
   1823   case X86::DEC16r:
   1824   case X86::DEC64_16r:
   1825     addRegOffset(MIB, leaInReg, true, -1);
   1826     break;
   1827   case X86::ADD16ri:
   1828   case X86::ADD16ri8:
   1829   case X86::ADD16ri_DB:
   1830   case X86::ADD16ri8_DB:
   1831     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
   1832     break;
   1833   case X86::ADD16rr:
   1834   case X86::ADD16rr_DB: {
   1835     unsigned Src2 = MI->getOperand(2).getReg();
   1836     bool isKill2 = MI->getOperand(2).isKill();
   1837     unsigned leaInReg2 = 0;
   1838     MachineInstr *InsMI2 = 0;
   1839     if (Src == Src2) {
   1840       // ADD16rr %reg1028<kill>, %reg1028
   1841       // just a single insert_subreg.
   1842       addRegReg(MIB, leaInReg, true, leaInReg, false);
   1843     } else {
   1844       leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   1845       // Build and insert into an implicit UNDEF value. This is OK because
   1846       // well be shifting and then extracting the lower 16-bits.
   1847       BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
   1848       InsMI2 =
   1849         BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1850         .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
   1851         .addReg(Src2, getKillRegState(isKill2));
   1852       addRegReg(MIB, leaInReg, true, leaInReg2, true);
   1853     }
   1854     if (LV && isKill2 && InsMI2)
   1855       LV->replaceKillInstruction(Src2, MI, InsMI2);
   1856     break;
   1857   }
   1858   }
   1859 
   1860   MachineInstr *NewMI = MIB;
   1861   MachineInstr *ExtMI =
   1862     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1863     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   1864     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
   1865 
   1866   if (LV) {
   1867     // Update live variables
   1868     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
   1869     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
   1870     if (isKill)
   1871       LV->replaceKillInstruction(Src, MI, InsMI);
   1872     if (isDead)
   1873       LV->replaceKillInstruction(Dest, MI, ExtMI);
   1874   }
   1875 
   1876   return ExtMI;
   1877 }
   1878 
   1879 /// convertToThreeAddress - This method must be implemented by targets that
   1880 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
   1881 /// may be able to convert a two-address instruction into a true
   1882 /// three-address instruction on demand.  This allows the X86 target (for
   1883 /// example) to convert ADD and SHL instructions into LEA instructions if they
   1884 /// would require register copies due to two-addressness.
   1885 ///
   1886 /// This method returns a null pointer if the transformation cannot be
   1887 /// performed, otherwise it returns the new instruction.
   1888 ///
   1889 MachineInstr *
   1890 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
   1891                                     MachineBasicBlock::iterator &MBBI,
   1892                                     LiveVariables *LV) const {
   1893   MachineInstr *MI = MBBI;
   1894   MachineFunction &MF = *MI->getParent()->getParent();
   1895   // All instructions input are two-addr instructions.  Get the known operands.
   1896   const MachineOperand &Dest = MI->getOperand(0);
   1897   const MachineOperand &Src = MI->getOperand(1);
   1898 
   1899   MachineInstr *NewMI = NULL;
   1900   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
   1901   // we have better subtarget support, enable the 16-bit LEA generation here.
   1902   // 16-bit LEA is also slow on Core2.
   1903   bool DisableLEA16 = true;
   1904   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
   1905 
   1906   unsigned MIOpc = MI->getOpcode();
   1907   switch (MIOpc) {
   1908   case X86::SHUFPSrri: {
   1909     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
   1910     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
   1911 
   1912     unsigned B = MI->getOperand(1).getReg();
   1913     unsigned C = MI->getOperand(2).getReg();
   1914     if (B != C) return 0;
   1915     unsigned M = MI->getOperand(3).getImm();
   1916     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
   1917       .addOperand(Dest).addOperand(Src).addImm(M);
   1918     break;
   1919   }
   1920   case X86::SHUFPDrri: {
   1921     assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
   1922     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
   1923 
   1924     unsigned B = MI->getOperand(1).getReg();
   1925     unsigned C = MI->getOperand(2).getReg();
   1926     if (B != C) return 0;
   1927     unsigned M = MI->getOperand(3).getImm();
   1928 
   1929     // Convert to PSHUFD mask.
   1930     M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
   1931 
   1932     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
   1933       .addOperand(Dest).addOperand(Src).addImm(M);
   1934     break;
   1935   }
   1936   case X86::SHL64ri: {
   1937     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   1938     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
   1939     // the flags produced by a shift yet, so this is safe.
   1940     unsigned ShAmt = MI->getOperand(2).getImm();
   1941     if (ShAmt == 0 || ShAmt >= 4) return 0;
   1942 
   1943     // LEA can't handle RSP.
   1944     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
   1945         !MF.getRegInfo().constrainRegClass(Src.getReg(),
   1946                                            &X86::GR64_NOSPRegClass))
   1947       return 0;
   1948 
   1949     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   1950       .addOperand(Dest)
   1951       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   1952     break;
   1953   }
   1954   case X86::SHL32ri: {
   1955     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   1956     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
   1957     // the flags produced by a shift yet, so this is safe.
   1958     unsigned ShAmt = MI->getOperand(2).getImm();
   1959     if (ShAmt == 0 || ShAmt >= 4) return 0;
   1960 
   1961     // LEA can't handle ESP.
   1962     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
   1963         !MF.getRegInfo().constrainRegClass(Src.getReg(),
   1964                                            &X86::GR32_NOSPRegClass))
   1965       return 0;
   1966 
   1967     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   1968     NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   1969       .addOperand(Dest)
   1970       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   1971     break;
   1972   }
   1973   case X86::SHL16ri: {
   1974     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   1975     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
   1976     // the flags produced by a shift yet, so this is safe.
   1977     unsigned ShAmt = MI->getOperand(2).getImm();
   1978     if (ShAmt == 0 || ShAmt >= 4) return 0;
   1979 
   1980     if (DisableLEA16)
   1981       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   1982     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   1983       .addOperand(Dest)
   1984       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   1985     break;
   1986   }
   1987   default: {
   1988     // The following opcodes also sets the condition code register(s). Only
   1989     // convert them to equivalent lea if the condition code register def's
   1990     // are dead!
   1991     if (hasLiveCondCodeDef(MI))
   1992       return 0;
   1993 
   1994     switch (MIOpc) {
   1995     default: return 0;
   1996     case X86::INC64r:
   1997     case X86::INC32r:
   1998     case X86::INC64_32r: {
   1999       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   2000       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
   2001         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2002       const TargetRegisterClass *RC = MIOpc == X86::INC64r ?
   2003         (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
   2004         (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
   2005 
   2006       // LEA can't handle RSP.
   2007       if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
   2008           !MF.getRegInfo().constrainRegClass(Src.getReg(), RC))
   2009         return 0;
   2010 
   2011       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2012                         .addOperand(Dest).addOperand(Src), 1);
   2013       break;
   2014     }
   2015     case X86::INC16r:
   2016     case X86::INC64_16r:
   2017       if (DisableLEA16)
   2018         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2019       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   2020       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2021                         .addOperand(Dest).addOperand(Src), 1);
   2022       break;
   2023     case X86::DEC64r:
   2024     case X86::DEC32r:
   2025     case X86::DEC64_32r: {
   2026       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   2027       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
   2028         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2029       const TargetRegisterClass *RC = MIOpc == X86::DEC64r ?
   2030         (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
   2031         (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
   2032       // LEA can't handle RSP.
   2033       if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
   2034           !MF.getRegInfo().constrainRegClass(Src.getReg(), RC))
   2035         return 0;
   2036 
   2037       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2038                         .addOperand(Dest).addOperand(Src), -1);
   2039       break;
   2040     }
   2041     case X86::DEC16r:
   2042     case X86::DEC64_16r:
   2043       if (DisableLEA16)
   2044         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2045       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   2046       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2047                         .addOperand(Dest).addOperand(Src), -1);
   2048       break;
   2049     case X86::ADD64rr:
   2050     case X86::ADD64rr_DB:
   2051     case X86::ADD32rr:
   2052     case X86::ADD32rr_DB: {
   2053       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2054       unsigned Opc;
   2055       const TargetRegisterClass *RC;
   2056       if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
   2057         Opc = X86::LEA64r;
   2058         RC = &X86::GR64_NOSPRegClass;
   2059       } else {
   2060         Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2061         RC = &X86::GR32_NOSPRegClass;
   2062       }
   2063 
   2064 
   2065       unsigned Src2 = MI->getOperand(2).getReg();
   2066       bool isKill2 = MI->getOperand(2).isKill();
   2067 
   2068       // LEA can't handle RSP.
   2069       if (TargetRegisterInfo::isVirtualRegister(Src2) &&
   2070           !MF.getRegInfo().constrainRegClass(Src2, RC))
   2071         return 0;
   2072 
   2073       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2074                         .addOperand(Dest),
   2075                         Src.getReg(), Src.isKill(), Src2, isKill2);
   2076 
   2077       // Preserve undefness of the operands.
   2078       bool isUndef = MI->getOperand(1).isUndef();
   2079       bool isUndef2 = MI->getOperand(2).isUndef();
   2080       NewMI->getOperand(1).setIsUndef(isUndef);
   2081       NewMI->getOperand(3).setIsUndef(isUndef2);
   2082 
   2083       if (LV && isKill2)
   2084         LV->replaceKillInstruction(Src2, MI, NewMI);
   2085       break;
   2086     }
   2087     case X86::ADD16rr:
   2088     case X86::ADD16rr_DB: {
   2089       if (DisableLEA16)
   2090         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2091       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2092       unsigned Src2 = MI->getOperand(2).getReg();
   2093       bool isKill2 = MI->getOperand(2).isKill();
   2094       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2095                         .addOperand(Dest),
   2096                         Src.getReg(), Src.isKill(), Src2, isKill2);
   2097 
   2098       // Preserve undefness of the operands.
   2099       bool isUndef = MI->getOperand(1).isUndef();
   2100       bool isUndef2 = MI->getOperand(2).isUndef();
   2101       NewMI->getOperand(1).setIsUndef(isUndef);
   2102       NewMI->getOperand(3).setIsUndef(isUndef2);
   2103 
   2104       if (LV && isKill2)
   2105         LV->replaceKillInstruction(Src2, MI, NewMI);
   2106       break;
   2107     }
   2108     case X86::ADD64ri32:
   2109     case X86::ADD64ri8:
   2110     case X86::ADD64ri32_DB:
   2111     case X86::ADD64ri8_DB:
   2112       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2113       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   2114                         .addOperand(Dest).addOperand(Src),
   2115                         MI->getOperand(2).getImm());
   2116       break;
   2117     case X86::ADD32ri:
   2118     case X86::ADD32ri8:
   2119     case X86::ADD32ri_DB:
   2120     case X86::ADD32ri8_DB: {
   2121       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2122       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2123       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2124                         .addOperand(Dest).addOperand(Src),
   2125                         MI->getOperand(2).getImm());
   2126       break;
   2127     }
   2128     case X86::ADD16ri:
   2129     case X86::ADD16ri8:
   2130     case X86::ADD16ri_DB:
   2131     case X86::ADD16ri8_DB:
   2132       if (DisableLEA16)
   2133         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2134       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2135       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2136                         .addOperand(Dest).addOperand(Src),
   2137                         MI->getOperand(2).getImm());
   2138       break;
   2139     }
   2140   }
   2141   }
   2142 
   2143   if (!NewMI) return 0;
   2144 
   2145   if (LV) {  // Update live variables
   2146     if (Src.isKill())
   2147       LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
   2148     if (Dest.isDead())
   2149       LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
   2150   }
   2151 
   2152   MFI->insert(MBBI, NewMI);          // Insert the new inst
   2153   return NewMI;
   2154 }
   2155 
   2156 /// commuteInstruction - We have a few instructions that must be hacked on to
   2157 /// commute them.
   2158 ///
   2159 MachineInstr *
   2160 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   2161   switch (MI->getOpcode()) {
   2162   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
   2163   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
   2164   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
   2165   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
   2166   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
   2167   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
   2168     unsigned Opc;
   2169     unsigned Size;
   2170     switch (MI->getOpcode()) {
   2171     default: llvm_unreachable("Unreachable!");
   2172     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
   2173     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
   2174     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
   2175     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
   2176     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
   2177     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
   2178     }
   2179     unsigned Amt = MI->getOperand(3).getImm();
   2180     if (NewMI) {
   2181       MachineFunction &MF = *MI->getParent()->getParent();
   2182       MI = MF.CloneMachineInstr(MI);
   2183       NewMI = false;
   2184     }
   2185     MI->setDesc(get(Opc));
   2186     MI->getOperand(3).setImm(Size-Amt);
   2187     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   2188   }
   2189   case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
   2190   case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
   2191   case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
   2192   case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
   2193   case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
   2194   case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
   2195   case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
   2196   case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
   2197   case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
   2198   case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
   2199   case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
   2200   case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
   2201   case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
   2202   case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
   2203   case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
   2204   case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
   2205     unsigned Opc;
   2206     switch (MI->getOpcode()) {
   2207     default: llvm_unreachable("Unreachable!");
   2208     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
   2209     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
   2210     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
   2211     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
   2212     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
   2213     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
   2214     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
   2215     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
   2216     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
   2217     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
   2218     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
   2219     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
   2220     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
   2221     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
   2222     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
   2223     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
   2224     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
   2225     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
   2226     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
   2227     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
   2228     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
   2229     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
   2230     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
   2231     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
   2232     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
   2233     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
   2234     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
   2235     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
   2236     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
   2237     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
   2238     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
   2239     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
   2240     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
   2241     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
   2242     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
   2243     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
   2244     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
   2245     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
   2246     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
   2247     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
   2248     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
   2249     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
   2250     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
   2251     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
   2252     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
   2253     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
   2254     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
   2255     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
   2256     }
   2257     if (NewMI) {
   2258       MachineFunction &MF = *MI->getParent()->getParent();
   2259       MI = MF.CloneMachineInstr(MI);
   2260       NewMI = false;
   2261     }
   2262     MI->setDesc(get(Opc));
   2263     // Fallthrough intended.
   2264   }
   2265   default:
   2266     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   2267   }
   2268 }
   2269 
   2270 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
   2271   switch (BrOpc) {
   2272   default: return X86::COND_INVALID;
   2273   case X86::JE_4:  return X86::COND_E;
   2274   case X86::JNE_4: return X86::COND_NE;
   2275   case X86::JL_4:  return X86::COND_L;
   2276   case X86::JLE_4: return X86::COND_LE;
   2277   case X86::JG_4:  return X86::COND_G;
   2278   case X86::JGE_4: return X86::COND_GE;
   2279   case X86::JB_4:  return X86::COND_B;
   2280   case X86::JBE_4: return X86::COND_BE;
   2281   case X86::JA_4:  return X86::COND_A;
   2282   case X86::JAE_4: return X86::COND_AE;
   2283   case X86::JS_4:  return X86::COND_S;
   2284   case X86::JNS_4: return X86::COND_NS;
   2285   case X86::JP_4:  return X86::COND_P;
   2286   case X86::JNP_4: return X86::COND_NP;
   2287   case X86::JO_4:  return X86::COND_O;
   2288   case X86::JNO_4: return X86::COND_NO;
   2289   }
   2290 }
   2291 
   2292 /// getCondFromSETOpc - return condition code of a SET opcode.
   2293 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
   2294   switch (Opc) {
   2295   default: return X86::COND_INVALID;
   2296   case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
   2297   case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
   2298   case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
   2299   case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
   2300   case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
   2301   case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
   2302   case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
   2303   case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
   2304   case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
   2305   case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
   2306   case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
   2307   case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
   2308   case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
   2309   case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
   2310   case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
   2311   case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
   2312   }
   2313 }
   2314 
   2315 /// getCondFromCmovOpc - return condition code of a CMov opcode.
   2316 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
   2317   switch (Opc) {
   2318   default: return X86::COND_INVALID;
   2319   case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
   2320   case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
   2321     return X86::COND_A;
   2322   case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
   2323   case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
   2324     return X86::COND_AE;
   2325   case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
   2326   case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
   2327     return X86::COND_B;
   2328   case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
   2329   case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
   2330     return X86::COND_BE;
   2331   case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
   2332   case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
   2333     return X86::COND_E;
   2334   case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
   2335   case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
   2336     return X86::COND_G;
   2337   case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
   2338   case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
   2339     return X86::COND_GE;
   2340   case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
   2341   case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
   2342     return X86::COND_L;
   2343   case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
   2344   case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
   2345     return X86::COND_LE;
   2346   case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
   2347   case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
   2348     return X86::COND_NE;
   2349   case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
   2350   case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
   2351     return X86::COND_NO;
   2352   case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
   2353   case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
   2354     return X86::COND_NP;
   2355   case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
   2356   case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
   2357     return X86::COND_NS;
   2358   case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
   2359   case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
   2360     return X86::COND_O;
   2361   case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
   2362   case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
   2363     return X86::COND_P;
   2364   case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
   2365   case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
   2366     return X86::COND_S;
   2367   }
   2368 }
   2369 
   2370 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
   2371   switch (CC) {
   2372   default: llvm_unreachable("Illegal condition code!");
   2373   case X86::COND_E:  return X86::JE_4;
   2374   case X86::COND_NE: return X86::JNE_4;
   2375   case X86::COND_L:  return X86::JL_4;
   2376   case X86::COND_LE: return X86::JLE_4;
   2377   case X86::COND_G:  return X86::JG_4;
   2378   case X86::COND_GE: return X86::JGE_4;
   2379   case X86::COND_B:  return X86::JB_4;
   2380   case X86::COND_BE: return X86::JBE_4;
   2381   case X86::COND_A:  return X86::JA_4;
   2382   case X86::COND_AE: return X86::JAE_4;
   2383   case X86::COND_S:  return X86::JS_4;
   2384   case X86::COND_NS: return X86::JNS_4;
   2385   case X86::COND_P:  return X86::JP_4;
   2386   case X86::COND_NP: return X86::JNP_4;
   2387   case X86::COND_O:  return X86::JO_4;
   2388   case X86::COND_NO: return X86::JNO_4;
   2389   }
   2390 }
   2391 
   2392 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
   2393 /// e.g. turning COND_E to COND_NE.
   2394 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
   2395   switch (CC) {
   2396   default: llvm_unreachable("Illegal condition code!");
   2397   case X86::COND_E:  return X86::COND_NE;
   2398   case X86::COND_NE: return X86::COND_E;
   2399   case X86::COND_L:  return X86::COND_GE;
   2400   case X86::COND_LE: return X86::COND_G;
   2401   case X86::COND_G:  return X86::COND_LE;
   2402   case X86::COND_GE: return X86::COND_L;
   2403   case X86::COND_B:  return X86::COND_AE;
   2404   case X86::COND_BE: return X86::COND_A;
   2405   case X86::COND_A:  return X86::COND_BE;
   2406   case X86::COND_AE: return X86::COND_B;
   2407   case X86::COND_S:  return X86::COND_NS;
   2408   case X86::COND_NS: return X86::COND_S;
   2409   case X86::COND_P:  return X86::COND_NP;
   2410   case X86::COND_NP: return X86::COND_P;
   2411   case X86::COND_O:  return X86::COND_NO;
   2412   case X86::COND_NO: return X86::COND_O;
   2413   }
   2414 }
   2415 
   2416 /// getSwappedCondition - assume the flags are set by MI(a,b), return
   2417 /// the condition code if we modify the instructions such that flags are
   2418 /// set by MI(b,a).
   2419 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
   2420   switch (CC) {
   2421   default: return X86::COND_INVALID;
   2422   case X86::COND_E:  return X86::COND_E;
   2423   case X86::COND_NE: return X86::COND_NE;
   2424   case X86::COND_L:  return X86::COND_G;
   2425   case X86::COND_LE: return X86::COND_GE;
   2426   case X86::COND_G:  return X86::COND_L;
   2427   case X86::COND_GE: return X86::COND_LE;
   2428   case X86::COND_B:  return X86::COND_A;
   2429   case X86::COND_BE: return X86::COND_AE;
   2430   case X86::COND_A:  return X86::COND_B;
   2431   case X86::COND_AE: return X86::COND_BE;
   2432   }
   2433 }
   2434 
   2435 /// getSETFromCond - Return a set opcode for the given condition and
   2436 /// whether it has memory operand.
   2437 static unsigned getSETFromCond(X86::CondCode CC,
   2438                                bool HasMemoryOperand) {
   2439   static const uint16_t Opc[16][2] = {
   2440     { X86::SETAr,  X86::SETAm  },
   2441     { X86::SETAEr, X86::SETAEm },
   2442     { X86::SETBr,  X86::SETBm  },
   2443     { X86::SETBEr, X86::SETBEm },
   2444     { X86::SETEr,  X86::SETEm  },
   2445     { X86::SETGr,  X86::SETGm  },
   2446     { X86::SETGEr, X86::SETGEm },
   2447     { X86::SETLr,  X86::SETLm  },
   2448     { X86::SETLEr, X86::SETLEm },
   2449     { X86::SETNEr, X86::SETNEm },
   2450     { X86::SETNOr, X86::SETNOm },
   2451     { X86::SETNPr, X86::SETNPm },
   2452     { X86::SETNSr, X86::SETNSm },
   2453     { X86::SETOr,  X86::SETOm  },
   2454     { X86::SETPr,  X86::SETPm  },
   2455     { X86::SETSr,  X86::SETSm  }
   2456   };
   2457 
   2458   assert(CC < 16 && "Can only handle standard cond codes");
   2459   return Opc[CC][HasMemoryOperand ? 1 : 0];
   2460 }
   2461 
   2462 /// getCMovFromCond - Return a cmov opcode for the given condition,
   2463 /// register size in bytes, and operand type.
   2464 static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
   2465                                 bool HasMemoryOperand) {
   2466   static const uint16_t Opc[32][3] = {
   2467     { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
   2468     { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
   2469     { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
   2470     { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
   2471     { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
   2472     { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
   2473     { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
   2474     { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
   2475     { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
   2476     { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
   2477     { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
   2478     { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
   2479     { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
   2480     { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
   2481     { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
   2482     { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
   2483     { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
   2484     { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
   2485     { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
   2486     { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
   2487     { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
   2488     { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
   2489     { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
   2490     { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
   2491     { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
   2492     { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
   2493     { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
   2494     { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
   2495     { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
   2496     { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
   2497     { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
   2498     { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
   2499   };
   2500 
   2501   assert(CC < 16 && "Can only handle standard cond codes");
   2502   unsigned Idx = HasMemoryOperand ? 16+CC : CC;
   2503   switch(RegBytes) {
   2504   default: llvm_unreachable("Illegal register size!");
   2505   case 2: return Opc[Idx][0];
   2506   case 4: return Opc[Idx][1];
   2507   case 8: return Opc[Idx][2];
   2508   }
   2509 }
   2510 
   2511 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
   2512   if (!MI->isTerminator()) return false;
   2513 
   2514   // Conditional branch is a special case.
   2515   if (MI->isBranch() && !MI->isBarrier())
   2516     return true;
   2517   if (!MI->isPredicable())
   2518     return true;
   2519   return !isPredicated(MI);
   2520 }
   2521 
   2522 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
   2523                                  MachineBasicBlock *&TBB,
   2524                                  MachineBasicBlock *&FBB,
   2525                                  SmallVectorImpl<MachineOperand> &Cond,
   2526                                  bool AllowModify) const {
   2527   // Start from the bottom of the block and work up, examining the
   2528   // terminator instructions.
   2529   MachineBasicBlock::iterator I = MBB.end();
   2530   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
   2531   while (I != MBB.begin()) {
   2532     --I;
   2533     if (I->isDebugValue())
   2534       continue;
   2535 
   2536     // Working from the bottom, when we see a non-terminator instruction, we're
   2537     // done.
   2538     if (!isUnpredicatedTerminator(I))
   2539       break;
   2540 
   2541     // A terminator that isn't a branch can't easily be handled by this
   2542     // analysis.
   2543     if (!I->isBranch())
   2544       return true;
   2545 
   2546     // Handle unconditional branches.
   2547     if (I->getOpcode() == X86::JMP_4) {
   2548       UnCondBrIter = I;
   2549 
   2550       if (!AllowModify) {
   2551         TBB = I->getOperand(0).getMBB();
   2552         continue;
   2553       }
   2554 
   2555       // If the block has any instructions after a JMP, delete them.
   2556       while (llvm::next(I) != MBB.end())
   2557         llvm::next(I)->eraseFromParent();
   2558 
   2559       Cond.clear();
   2560       FBB = 0;
   2561 
   2562       // Delete the JMP if it's equivalent to a fall-through.
   2563       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
   2564         TBB = 0;
   2565         I->eraseFromParent();
   2566         I = MBB.end();
   2567         UnCondBrIter = MBB.end();
   2568         continue;
   2569       }
   2570 
   2571       // TBB is used to indicate the unconditional destination.
   2572       TBB = I->getOperand(0).getMBB();
   2573       continue;
   2574     }
   2575 
   2576     // Handle conditional branches.
   2577     X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
   2578     if (BranchCode == X86::COND_INVALID)
   2579       return true;  // Can't handle indirect branch.
   2580 
   2581     // Working from the bottom, handle the first conditional branch.
   2582     if (Cond.empty()) {
   2583       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
   2584       if (AllowModify && UnCondBrIter != MBB.end() &&
   2585           MBB.isLayoutSuccessor(TargetBB)) {
   2586         // If we can modify the code and it ends in something like:
   2587         //
   2588         //     jCC L1
   2589         //     jmp L2
   2590         //   L1:
   2591         //     ...
   2592         //   L2:
   2593         //
   2594         // Then we can change this to:
   2595         //
   2596         //     jnCC L2
   2597         //   L1:
   2598         //     ...
   2599         //   L2:
   2600         //
   2601         // Which is a bit more efficient.
   2602         // We conditionally jump to the fall-through block.
   2603         BranchCode = GetOppositeBranchCondition(BranchCode);
   2604         unsigned JNCC = GetCondBranchFromCond(BranchCode);
   2605         MachineBasicBlock::iterator OldInst = I;
   2606 
   2607         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
   2608           .addMBB(UnCondBrIter->getOperand(0).getMBB());
   2609         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
   2610           .addMBB(TargetBB);
   2611 
   2612         OldInst->eraseFromParent();
   2613         UnCondBrIter->eraseFromParent();
   2614 
   2615         // Restart the analysis.
   2616         UnCondBrIter = MBB.end();
   2617         I = MBB.end();
   2618         continue;
   2619       }
   2620 
   2621       FBB = TBB;
   2622       TBB = I->getOperand(0).getMBB();
   2623       Cond.push_back(MachineOperand::CreateImm(BranchCode));
   2624       continue;
   2625     }
   2626 
   2627     // Handle subsequent conditional branches. Only handle the case where all
   2628     // conditional branches branch to the same destination and their condition
   2629     // opcodes fit one of the special multi-branch idioms.
   2630     assert(Cond.size() == 1);
   2631     assert(TBB);
   2632 
   2633     // Only handle the case where all conditional branches branch to the same
   2634     // destination.
   2635     if (TBB != I->getOperand(0).getMBB())
   2636       return true;
   2637 
   2638     // If the conditions are the same, we can leave them alone.
   2639     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
   2640     if (OldBranchCode == BranchCode)
   2641       continue;
   2642 
   2643     // If they differ, see if they fit one of the known patterns. Theoretically,
   2644     // we could handle more patterns here, but we shouldn't expect to see them
   2645     // if instruction selection has done a reasonable job.
   2646     if ((OldBranchCode == X86::COND_NP &&
   2647          BranchCode == X86::COND_E) ||
   2648         (OldBranchCode == X86::COND_E &&
   2649          BranchCode == X86::COND_NP))
   2650       BranchCode = X86::COND_NP_OR_E;
   2651     else if ((OldBranchCode == X86::COND_P &&
   2652               BranchCode == X86::COND_NE) ||
   2653              (OldBranchCode == X86::COND_NE &&
   2654               BranchCode == X86::COND_P))
   2655       BranchCode = X86::COND_NE_OR_P;
   2656     else
   2657       return true;
   2658 
   2659     // Update the MachineOperand.
   2660     Cond[0].setImm(BranchCode);
   2661   }
   2662 
   2663   return false;
   2664 }
   2665 
   2666 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
   2667   MachineBasicBlock::iterator I = MBB.end();
   2668   unsigned Count = 0;
   2669 
   2670   while (I != MBB.begin()) {
   2671     --I;
   2672     if (I->isDebugValue())
   2673       continue;
   2674     if (I->getOpcode() != X86::JMP_4 &&
   2675         getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
   2676       break;
   2677     // Remove the branch.
   2678     I->eraseFromParent();
   2679     I = MBB.end();
   2680     ++Count;
   2681   }
   2682 
   2683   return Count;
   2684 }
   2685 
   2686 unsigned
   2687 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
   2688                            MachineBasicBlock *FBB,
   2689                            const SmallVectorImpl<MachineOperand> &Cond,
   2690                            DebugLoc DL) const {
   2691   // Shouldn't be a fall through.
   2692   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
   2693   assert((Cond.size() == 1 || Cond.size() == 0) &&
   2694          "X86 branch conditions have one component!");
   2695 
   2696   if (Cond.empty()) {
   2697     // Unconditional branch?
   2698     assert(!FBB && "Unconditional branch with multiple successors!");
   2699     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
   2700     return 1;
   2701   }
   2702 
   2703   // Conditional branch.
   2704   unsigned Count = 0;
   2705   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
   2706   switch (CC) {
   2707   case X86::COND_NP_OR_E:
   2708     // Synthesize NP_OR_E with two branches.
   2709     BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
   2710     ++Count;
   2711     BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
   2712     ++Count;
   2713     break;
   2714   case X86::COND_NE_OR_P:
   2715     // Synthesize NE_OR_P with two branches.
   2716     BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
   2717     ++Count;
   2718     BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
   2719     ++Count;
   2720     break;
   2721   default: {
   2722     unsigned Opc = GetCondBranchFromCond(CC);
   2723     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
   2724     ++Count;
   2725   }
   2726   }
   2727   if (FBB) {
   2728     // Two-way Conditional branch. Insert the second branch.
   2729     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
   2730     ++Count;
   2731   }
   2732   return Count;
   2733 }
   2734 
   2735 bool X86InstrInfo::
   2736 canInsertSelect(const MachineBasicBlock &MBB,
   2737                 const SmallVectorImpl<MachineOperand> &Cond,
   2738                 unsigned TrueReg, unsigned FalseReg,
   2739                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
   2740   // Not all subtargets have cmov instructions.
   2741   if (!TM.getSubtarget<X86Subtarget>().hasCMov())
   2742     return false;
   2743   if (Cond.size() != 1)
   2744     return false;
   2745   // We cannot do the composite conditions, at least not in SSA form.
   2746   if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
   2747     return false;
   2748 
   2749   // Check register classes.
   2750   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   2751   const TargetRegisterClass *RC =
   2752     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
   2753   if (!RC)
   2754     return false;
   2755 
   2756   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
   2757   if (X86::GR16RegClass.hasSubClassEq(RC) ||
   2758       X86::GR32RegClass.hasSubClassEq(RC) ||
   2759       X86::GR64RegClass.hasSubClassEq(RC)) {
   2760     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
   2761     // Bridge. Probably Ivy Bridge as well.
   2762     CondCycles = 2;
   2763     TrueCycles = 2;
   2764     FalseCycles = 2;
   2765     return true;
   2766   }
   2767 
   2768   // Can't do vectors.
   2769   return false;
   2770 }
   2771 
   2772 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
   2773                                 MachineBasicBlock::iterator I, DebugLoc DL,
   2774                                 unsigned DstReg,
   2775                                 const SmallVectorImpl<MachineOperand> &Cond,
   2776                                 unsigned TrueReg, unsigned FalseReg) const {
   2777    MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   2778    assert(Cond.size() == 1 && "Invalid Cond array");
   2779    unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
   2780                                   MRI.getRegClass(DstReg)->getSize(),
   2781                                   false/*HasMemoryOperand*/);
   2782    BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
   2783 }
   2784 
   2785 /// isHReg - Test if the given register is a physical h register.
   2786 static bool isHReg(unsigned Reg) {
   2787   return X86::GR8_ABCD_HRegClass.contains(Reg);
   2788 }
   2789 
   2790 // Try and copy between VR128/VR64 and GR64 registers.
   2791 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
   2792                                         bool HasAVX) {
   2793   // SrcReg(VR128) -> DestReg(GR64)
   2794   // SrcReg(VR64)  -> DestReg(GR64)
   2795   // SrcReg(GR64)  -> DestReg(VR128)
   2796   // SrcReg(GR64)  -> DestReg(VR64)
   2797 
   2798   if (X86::GR64RegClass.contains(DestReg)) {
   2799     if (X86::VR128RegClass.contains(SrcReg))
   2800       // Copy from a VR128 register to a GR64 register.
   2801       return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
   2802     if (X86::VR64RegClass.contains(SrcReg))
   2803       // Copy from a VR64 register to a GR64 register.
   2804       return X86::MOVSDto64rr;
   2805   } else if (X86::GR64RegClass.contains(SrcReg)) {
   2806     // Copy from a GR64 register to a VR128 register.
   2807     if (X86::VR128RegClass.contains(DestReg))
   2808       return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
   2809     // Copy from a GR64 register to a VR64 register.
   2810     if (X86::VR64RegClass.contains(DestReg))
   2811       return X86::MOV64toSDrr;
   2812   }
   2813 
   2814   // SrcReg(FR32) -> DestReg(GR32)
   2815   // SrcReg(GR32) -> DestReg(FR32)
   2816 
   2817   if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
   2818     // Copy from a FR32 register to a GR32 register.
   2819     return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
   2820 
   2821   if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
   2822     // Copy from a GR32 register to a FR32 register.
   2823     return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
   2824 
   2825   return 0;
   2826 }
   2827 
   2828 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
   2829                                MachineBasicBlock::iterator MI, DebugLoc DL,
   2830                                unsigned DestReg, unsigned SrcReg,
   2831                                bool KillSrc) const {
   2832   // First deal with the normal symmetric copies.
   2833   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   2834   unsigned Opc;
   2835   if (X86::GR64RegClass.contains(DestReg, SrcReg))
   2836     Opc = X86::MOV64rr;
   2837   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
   2838     Opc = X86::MOV32rr;
   2839   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
   2840     Opc = X86::MOV16rr;
   2841   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
   2842     // Copying to or from a physical H register on x86-64 requires a NOREX
   2843     // move.  Otherwise use a normal move.
   2844     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
   2845         TM.getSubtarget<X86Subtarget>().is64Bit()) {
   2846       Opc = X86::MOV8rr_NOREX;
   2847       // Both operands must be encodable without an REX prefix.
   2848       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
   2849              "8-bit H register can not be copied outside GR8_NOREX");
   2850     } else
   2851       Opc = X86::MOV8rr;
   2852   } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
   2853     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
   2854   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
   2855     Opc = X86::VMOVAPSYrr;
   2856   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
   2857     Opc = X86::MMX_MOVQ64rr;
   2858   else
   2859     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
   2860 
   2861   if (Opc) {
   2862     BuildMI(MBB, MI, DL, get(Opc), DestReg)
   2863       .addReg(SrcReg, getKillRegState(KillSrc));
   2864     return;
   2865   }
   2866 
   2867   // Moving EFLAGS to / from another register requires a push and a pop.
   2868   // Notice that we have to adjust the stack if we don't want to clobber the
   2869   // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
   2870   if (SrcReg == X86::EFLAGS) {
   2871     if (X86::GR64RegClass.contains(DestReg)) {
   2872       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
   2873       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
   2874       return;
   2875     }
   2876     if (X86::GR32RegClass.contains(DestReg)) {
   2877       BuildMI(MBB, MI, DL, get(X86::PUSHF32));
   2878       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
   2879       return;
   2880     }
   2881   }
   2882   if (DestReg == X86::EFLAGS) {
   2883     if (X86::GR64RegClass.contains(SrcReg)) {
   2884       BuildMI(MBB, MI, DL, get(X86::PUSH64r))
   2885         .addReg(SrcReg, getKillRegState(KillSrc));
   2886       BuildMI(MBB, MI, DL, get(X86::POPF64));
   2887       return;
   2888     }
   2889     if (X86::GR32RegClass.contains(SrcReg)) {
   2890       BuildMI(MBB, MI, DL, get(X86::PUSH32r))
   2891         .addReg(SrcReg, getKillRegState(KillSrc));
   2892       BuildMI(MBB, MI, DL, get(X86::POPF32));
   2893       return;
   2894     }
   2895   }
   2896 
   2897   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
   2898                << " to " << RI.getName(DestReg) << '\n');
   2899   llvm_unreachable("Cannot emit physreg copy instruction");
   2900 }
   2901 
   2902 static unsigned getLoadStoreRegOpcode(unsigned Reg,
   2903                                       const TargetRegisterClass *RC,
   2904                                       bool isStackAligned,
   2905                                       const TargetMachine &TM,
   2906                                       bool load) {
   2907   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   2908   switch (RC->getSize()) {
   2909   default:
   2910     llvm_unreachable("Unknown spill size");
   2911   case 1:
   2912     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
   2913     if (TM.getSubtarget<X86Subtarget>().is64Bit())
   2914       // Copying to or from a physical H register on x86-64 requires a NOREX
   2915       // move.  Otherwise use a normal move.
   2916       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
   2917         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
   2918     return load ? X86::MOV8rm : X86::MOV8mr;
   2919   case 2:
   2920     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
   2921     return load ? X86::MOV16rm : X86::MOV16mr;
   2922   case 4:
   2923     if (X86::GR32RegClass.hasSubClassEq(RC))
   2924       return load ? X86::MOV32rm : X86::MOV32mr;
   2925     if (X86::FR32RegClass.hasSubClassEq(RC))
   2926       return load ?
   2927         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
   2928         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
   2929     if (X86::RFP32RegClass.hasSubClassEq(RC))
   2930       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
   2931     llvm_unreachable("Unknown 4-byte regclass");
   2932   case 8:
   2933     if (X86::GR64RegClass.hasSubClassEq(RC))
   2934       return load ? X86::MOV64rm : X86::MOV64mr;
   2935     if (X86::FR64RegClass.hasSubClassEq(RC))
   2936       return load ?
   2937         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
   2938         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
   2939     if (X86::VR64RegClass.hasSubClassEq(RC))
   2940       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
   2941     if (X86::RFP64RegClass.hasSubClassEq(RC))
   2942       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
   2943     llvm_unreachable("Unknown 8-byte regclass");
   2944   case 10:
   2945     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
   2946     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
   2947   case 16: {
   2948     assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
   2949     // If stack is realigned we can use aligned stores.
   2950     if (isStackAligned)
   2951       return load ?
   2952         (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
   2953         (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
   2954     else
   2955       return load ?
   2956         (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
   2957         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
   2958   }
   2959   case 32:
   2960     assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
   2961     // If stack is realigned we can use aligned stores.
   2962     if (isStackAligned)
   2963       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
   2964     else
   2965       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
   2966   }
   2967 }
   2968 
   2969 static unsigned getStoreRegOpcode(unsigned SrcReg,
   2970                                   const TargetRegisterClass *RC,
   2971                                   bool isStackAligned,
   2972                                   TargetMachine &TM) {
   2973   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
   2974 }
   2975 
   2976 
   2977 static unsigned getLoadRegOpcode(unsigned DestReg,
   2978                                  const TargetRegisterClass *RC,
   2979                                  bool isStackAligned,
   2980                                  const TargetMachine &TM) {
   2981   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
   2982 }
   2983 
   2984 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   2985                                        MachineBasicBlock::iterator MI,
   2986                                        unsigned SrcReg, bool isKill, int FrameIdx,
   2987                                        const TargetRegisterClass *RC,
   2988                                        const TargetRegisterInfo *TRI) const {
   2989   const MachineFunction &MF = *MBB.getParent();
   2990   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
   2991          "Stack slot too small for store");
   2992   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   2993   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
   2994     RI.canRealignStack(MF);
   2995   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
   2996   DebugLoc DL = MBB.findDebugLoc(MI);
   2997   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
   2998     .addReg(SrcReg, getKillRegState(isKill));
   2999 }
   3000 
   3001 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
   3002                                   bool isKill,
   3003                                   SmallVectorImpl<MachineOperand> &Addr,
   3004                                   const TargetRegisterClass *RC,
   3005                                   MachineInstr::mmo_iterator MMOBegin,
   3006                                   MachineInstr::mmo_iterator MMOEnd,
   3007                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
   3008   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3009   bool isAligned = MMOBegin != MMOEnd &&
   3010                    (*MMOBegin)->getAlignment() >= Alignment;
   3011   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
   3012   DebugLoc DL;
   3013   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
   3014   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   3015     MIB.addOperand(Addr[i]);
   3016   MIB.addReg(SrcReg, getKillRegState(isKill));
   3017   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   3018   NewMIs.push_back(MIB);
   3019 }
   3020 
   3021 
   3022 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
   3023                                         MachineBasicBlock::iterator MI,
   3024                                         unsigned DestReg, int FrameIdx,
   3025                                         const TargetRegisterClass *RC,
   3026                                         const TargetRegisterInfo *TRI) const {
   3027   const MachineFunction &MF = *MBB.getParent();
   3028   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3029   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
   3030     RI.canRealignStack(MF);
   3031   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
   3032   DebugLoc DL = MBB.findDebugLoc(MI);
   3033   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
   3034 }
   3035 
   3036 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
   3037                                  SmallVectorImpl<MachineOperand> &Addr,
   3038                                  const TargetRegisterClass *RC,
   3039                                  MachineInstr::mmo_iterator MMOBegin,
   3040                                  MachineInstr::mmo_iterator MMOEnd,
   3041                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
   3042   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3043   bool isAligned = MMOBegin != MMOEnd &&
   3044                    (*MMOBegin)->getAlignment() >= Alignment;
   3045   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
   3046   DebugLoc DL;
   3047   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
   3048   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   3049     MIB.addOperand(Addr[i]);
   3050   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   3051   NewMIs.push_back(MIB);
   3052 }
   3053 
   3054 bool X86InstrInfo::
   3055 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
   3056                int &CmpMask, int &CmpValue) const {
   3057   switch (MI->getOpcode()) {
   3058   default: break;
   3059   case X86::CMP64ri32:
   3060   case X86::CMP64ri8:
   3061   case X86::CMP32ri:
   3062   case X86::CMP32ri8:
   3063   case X86::CMP16ri:
   3064   case X86::CMP16ri8:
   3065   case X86::CMP8ri:
   3066     SrcReg = MI->getOperand(0).getReg();
   3067     SrcReg2 = 0;
   3068     CmpMask = ~0;
   3069     CmpValue = MI->getOperand(1).getImm();
   3070     return true;
   3071   // A SUB can be used to perform comparison.
   3072   case X86::SUB64rm:
   3073   case X86::SUB32rm:
   3074   case X86::SUB16rm:
   3075   case X86::SUB8rm:
   3076     SrcReg = MI->getOperand(1).getReg();
   3077     SrcReg2 = 0;
   3078     CmpMask = ~0;
   3079     CmpValue = 0;
   3080     return true;
   3081   case X86::SUB64rr:
   3082   case X86::SUB32rr:
   3083   case X86::SUB16rr:
   3084   case X86::SUB8rr:
   3085     SrcReg = MI->getOperand(1).getReg();
   3086     SrcReg2 = MI->getOperand(2).getReg();
   3087     CmpMask = ~0;
   3088     CmpValue = 0;
   3089     return true;
   3090   case X86::SUB64ri32:
   3091   case X86::SUB64ri8:
   3092   case X86::SUB32ri:
   3093   case X86::SUB32ri8:
   3094   case X86::SUB16ri:
   3095   case X86::SUB16ri8:
   3096   case X86::SUB8ri:
   3097     SrcReg = MI->getOperand(1).getReg();
   3098     SrcReg2 = 0;
   3099     CmpMask = ~0;
   3100     CmpValue = MI->getOperand(2).getImm();
   3101     return true;
   3102   case X86::CMP64rr:
   3103   case X86::CMP32rr:
   3104   case X86::CMP16rr:
   3105   case X86::CMP8rr:
   3106     SrcReg = MI->getOperand(0).getReg();
   3107     SrcReg2 = MI->getOperand(1).getReg();
   3108     CmpMask = ~0;
   3109     CmpValue = 0;
   3110     return true;
   3111   case X86::TEST8rr:
   3112   case X86::TEST16rr:
   3113   case X86::TEST32rr:
   3114   case X86::TEST64rr:
   3115     SrcReg = MI->getOperand(0).getReg();
   3116     if (MI->getOperand(1).getReg() != SrcReg) return false;
   3117     // Compare against zero.
   3118     SrcReg2 = 0;
   3119     CmpMask = ~0;
   3120     CmpValue = 0;
   3121     return true;
   3122   }
   3123   return false;
   3124 }
   3125 
   3126 /// isRedundantFlagInstr - check whether the first instruction, whose only
   3127 /// purpose is to update flags, can be made redundant.
   3128 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   3129 /// This function can be extended later on.
   3130 /// SrcReg, SrcRegs: register operands for FlagI.
   3131 /// ImmValue: immediate for FlagI if it takes an immediate.
   3132 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
   3133                                         unsigned SrcReg2, int ImmValue,
   3134                                         MachineInstr *OI) {
   3135   if (((FlagI->getOpcode() == X86::CMP64rr &&
   3136         OI->getOpcode() == X86::SUB64rr) ||
   3137        (FlagI->getOpcode() == X86::CMP32rr &&
   3138         OI->getOpcode() == X86::SUB32rr)||
   3139        (FlagI->getOpcode() == X86::CMP16rr &&
   3140         OI->getOpcode() == X86::SUB16rr)||
   3141        (FlagI->getOpcode() == X86::CMP8rr &&
   3142         OI->getOpcode() == X86::SUB8rr)) &&
   3143       ((OI->getOperand(1).getReg() == SrcReg &&
   3144         OI->getOperand(2).getReg() == SrcReg2) ||
   3145        (OI->getOperand(1).getReg() == SrcReg2 &&
   3146         OI->getOperand(2).getReg() == SrcReg)))
   3147     return true;
   3148 
   3149   if (((FlagI->getOpcode() == X86::CMP64ri32 &&
   3150         OI->getOpcode() == X86::SUB64ri32) ||
   3151        (FlagI->getOpcode() == X86::CMP64ri8 &&
   3152         OI->getOpcode() == X86::SUB64ri8) ||
   3153        (FlagI->getOpcode() == X86::CMP32ri &&
   3154         OI->getOpcode() == X86::SUB32ri) ||
   3155        (FlagI->getOpcode() == X86::CMP32ri8 &&
   3156         OI->getOpcode() == X86::SUB32ri8) ||
   3157        (FlagI->getOpcode() == X86::CMP16ri &&
   3158         OI->getOpcode() == X86::SUB16ri) ||
   3159        (FlagI->getOpcode() == X86::CMP16ri8 &&
   3160         OI->getOpcode() == X86::SUB16ri8) ||
   3161        (FlagI->getOpcode() == X86::CMP8ri &&
   3162         OI->getOpcode() == X86::SUB8ri)) &&
   3163       OI->getOperand(1).getReg() == SrcReg &&
   3164       OI->getOperand(2).getImm() == ImmValue)
   3165     return true;
   3166   return false;
   3167 }
   3168 
   3169 /// isDefConvertible - check whether the definition can be converted
   3170 /// to remove a comparison against zero.
   3171 inline static bool isDefConvertible(MachineInstr *MI) {
   3172   switch (MI->getOpcode()) {
   3173   default: return false;
   3174   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
   3175   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
   3176   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
   3177   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
   3178   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
   3179   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
   3180   case X86::DEC64_32r: case X86::DEC64_16r:
   3181   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
   3182   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
   3183   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
   3184   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
   3185   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
   3186   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
   3187   case X86::INC64_32r: case X86::INC64_16r:
   3188   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
   3189   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
   3190   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
   3191   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
   3192   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
   3193   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
   3194   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
   3195   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
   3196   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
   3197   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
   3198   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
   3199   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
   3200   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
   3201   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
   3202   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
   3203   case X86::ANDN32rr:  case X86::ANDN32rm:
   3204   case X86::ANDN64rr:  case X86::ANDN64rm:
   3205     return true;
   3206   }
   3207 }
   3208 
   3209 /// optimizeCompareInstr - Check if there exists an earlier instruction that
   3210 /// operates on the same source operands and sets flags in the same way as
   3211 /// Compare; remove Compare if possible.
   3212 bool X86InstrInfo::
   3213 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
   3214                      int CmpMask, int CmpValue,
   3215                      const MachineRegisterInfo *MRI) const {
   3216   // Check whether we can replace SUB with CMP.
   3217   unsigned NewOpcode = 0;
   3218   switch (CmpInstr->getOpcode()) {
   3219   default: break;
   3220   case X86::SUB64ri32:
   3221   case X86::SUB64ri8:
   3222   case X86::SUB32ri:
   3223   case X86::SUB32ri8:
   3224   case X86::SUB16ri:
   3225   case X86::SUB16ri8:
   3226   case X86::SUB8ri:
   3227   case X86::SUB64rm:
   3228   case X86::SUB32rm:
   3229   case X86::SUB16rm:
   3230   case X86::SUB8rm:
   3231   case X86::SUB64rr:
   3232   case X86::SUB32rr:
   3233   case X86::SUB16rr:
   3234   case X86::SUB8rr: {
   3235     if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
   3236       return false;
   3237     // There is no use of the destination register, we can replace SUB with CMP.
   3238     switch (CmpInstr->getOpcode()) {
   3239     default: llvm_unreachable("Unreachable!");
   3240     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
   3241     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
   3242     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
   3243     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
   3244     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
   3245     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
   3246     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
   3247     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
   3248     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
   3249     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
   3250     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
   3251     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
   3252     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
   3253     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
   3254     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
   3255     }
   3256     CmpInstr->setDesc(get(NewOpcode));
   3257     CmpInstr->RemoveOperand(0);
   3258     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
   3259     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
   3260         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
   3261       return false;
   3262   }
   3263   }
   3264 
   3265   // Get the unique definition of SrcReg.
   3266   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   3267   if (!MI) return false;
   3268 
   3269   // CmpInstr is the first instruction of the BB.
   3270   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
   3271 
   3272   // If we are comparing against zero, check whether we can use MI to update
   3273   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
   3274   bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
   3275   if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
   3276       !isDefConvertible(MI)))
   3277     return false;
   3278 
   3279   // We are searching for an earlier instruction that can make CmpInstr
   3280   // redundant and that instruction will be saved in Sub.
   3281   MachineInstr *Sub = NULL;
   3282   const TargetRegisterInfo *TRI = &getRegisterInfo();
   3283 
   3284   // We iterate backward, starting from the instruction before CmpInstr and
   3285   // stop when reaching the definition of a source register or done with the BB.
   3286   // RI points to the instruction before CmpInstr.
   3287   // If the definition is in this basic block, RE points to the definition;
   3288   // otherwise, RE is the rend of the basic block.
   3289   MachineBasicBlock::reverse_iterator
   3290       RI = MachineBasicBlock::reverse_iterator(I),
   3291       RE = CmpInstr->getParent() == MI->getParent() ?
   3292            MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
   3293            CmpInstr->getParent()->rend();
   3294   MachineInstr *Movr0Inst = 0;
   3295   for (; RI != RE; ++RI) {
   3296     MachineInstr *Instr = &*RI;
   3297     // Check whether CmpInstr can be made redundant by the current instruction.
   3298     if (!IsCmpZero &&
   3299         isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
   3300       Sub = Instr;
   3301       break;
   3302     }
   3303 
   3304     if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
   3305         Instr->readsRegister(X86::EFLAGS, TRI)) {
   3306       // This instruction modifies or uses EFLAGS.
   3307 
   3308       // MOV32r0 etc. are implemented with xor which clobbers condition code.
   3309       // They are safe to move up, if the definition to EFLAGS is dead and
   3310       // earlier instructions do not read or write EFLAGS.
   3311       if (!Movr0Inst && (Instr->getOpcode() == X86::MOV8r0 ||
   3312            Instr->getOpcode() == X86::MOV16r0 ||
   3313            Instr->getOpcode() == X86::MOV32r0 ||
   3314            Instr->getOpcode() == X86::MOV64r0) &&
   3315           Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
   3316         Movr0Inst = Instr;
   3317         continue;
   3318       }
   3319 
   3320       // We can't remove CmpInstr.
   3321       return false;
   3322     }
   3323   }
   3324 
   3325   // Return false if no candidates exist.
   3326   if (!IsCmpZero && !Sub)
   3327     return false;
   3328 
   3329   bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   3330                     Sub->getOperand(2).getReg() == SrcReg);
   3331 
   3332   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
   3333   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
   3334   // If we are done with the basic block, we need to check whether EFLAGS is
   3335   // live-out.
   3336   bool IsSafe = false;
   3337   SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
   3338   MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
   3339   for (++I; I != E; ++I) {
   3340     const MachineInstr &Instr = *I;
   3341     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
   3342     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
   3343     // We should check the usage if this instruction uses and updates EFLAGS.
   3344     if (!UseEFLAGS && ModifyEFLAGS) {
   3345       // It is safe to remove CmpInstr if EFLAGS is updated again.
   3346       IsSafe = true;
   3347       break;
   3348     }
   3349     if (!UseEFLAGS && !ModifyEFLAGS)
   3350       continue;
   3351 
   3352     // EFLAGS is used by this instruction.
   3353     X86::CondCode OldCC;
   3354     bool OpcIsSET = false;
   3355     if (IsCmpZero || IsSwapped) {
   3356       // We decode the condition code from opcode.
   3357       if (Instr.isBranch())
   3358         OldCC = getCondFromBranchOpc(Instr.getOpcode());
   3359       else {
   3360         OldCC = getCondFromSETOpc(Instr.getOpcode());
   3361         if (OldCC != X86::COND_INVALID)
   3362           OpcIsSET = true;
   3363         else
   3364           OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
   3365       }
   3366       if (OldCC == X86::COND_INVALID) return false;
   3367     }
   3368     if (IsCmpZero) {
   3369       switch (OldCC) {
   3370       default: break;
   3371       case X86::COND_A: case X86::COND_AE:
   3372       case X86::COND_B: case X86::COND_BE:
   3373       case X86::COND_G: case X86::COND_GE:
   3374       case X86::COND_L: case X86::COND_LE:
   3375       case X86::COND_O: case X86::COND_NO:
   3376         // CF and OF are used, we can't perform this optimization.
   3377         return false;
   3378       }
   3379     } else if (IsSwapped) {
   3380       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
   3381       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   3382       // We swap the condition code and synthesize the new opcode.
   3383       X86::CondCode NewCC = getSwappedCondition(OldCC);
   3384       if (NewCC == X86::COND_INVALID) return false;
   3385 
   3386       // Synthesize the new opcode.
   3387       bool HasMemoryOperand = Instr.hasOneMemOperand();
   3388       unsigned NewOpc;
   3389       if (Instr.isBranch())
   3390         NewOpc = GetCondBranchFromCond(NewCC);
   3391       else if(OpcIsSET)
   3392         NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
   3393       else {
   3394         unsigned DstReg = Instr.getOperand(0).getReg();
   3395         NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
   3396                                  HasMemoryOperand);
   3397       }
   3398 
   3399       // Push the MachineInstr to OpsToUpdate.
   3400       // If it is safe to remove CmpInstr, the condition code of these
   3401       // instructions will be modified.
   3402       OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
   3403     }
   3404     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
   3405       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
   3406       IsSafe = true;
   3407       break;
   3408     }
   3409   }
   3410 
   3411   // If EFLAGS is not killed nor re-defined, we should check whether it is
   3412   // live-out. If it is live-out, do not optimize.
   3413   if ((IsCmpZero || IsSwapped) && !IsSafe) {
   3414     MachineBasicBlock *MBB = CmpInstr->getParent();
   3415     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
   3416              SE = MBB->succ_end(); SI != SE; ++SI)
   3417       if ((*SI)->isLiveIn(X86::EFLAGS))
   3418         return false;
   3419   }
   3420 
   3421   // The instruction to be updated is either Sub or MI.
   3422   Sub = IsCmpZero ? MI : Sub;
   3423   // Move Movr0Inst to the place right before Sub.
   3424   if (Movr0Inst) {
   3425     Sub->getParent()->remove(Movr0Inst);
   3426     Sub->getParent()->insert(MachineBasicBlock::iterator(Sub), Movr0Inst);
   3427   }
   3428 
   3429   // Make sure Sub instruction defines EFLAGS and mark the def live.
   3430   unsigned LastOperand = Sub->getNumOperands() - 1;
   3431   assert(Sub->getNumOperands() >= 2 &&
   3432          Sub->getOperand(LastOperand).isReg() &&
   3433          Sub->getOperand(LastOperand).getReg() == X86::EFLAGS &&
   3434          "EFLAGS should be the last operand of SUB, ADD, OR, XOR, AND");
   3435   Sub->getOperand(LastOperand).setIsDef(true);
   3436   Sub->getOperand(LastOperand).setIsDead(false);
   3437   CmpInstr->eraseFromParent();
   3438 
   3439   // Modify the condition code of instructions in OpsToUpdate.
   3440   for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
   3441     OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
   3442   return true;
   3443 }
   3444 
   3445 /// optimizeLoadInstr - Try to remove the load by folding it to a register
   3446 /// operand at the use. We fold the load instructions if load defines a virtual
   3447 /// register, the virtual register is used once in the same BB, and the
   3448 /// instructions in-between do not load or store, and have no side effects.
   3449 MachineInstr* X86InstrInfo::
   3450 optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
   3451                   unsigned &FoldAsLoadDefReg,
   3452                   MachineInstr *&DefMI) const {
   3453   if (FoldAsLoadDefReg == 0)
   3454     return 0;
   3455   // To be conservative, if there exists another load, clear the load candidate.
   3456   if (MI->mayLoad()) {
   3457     FoldAsLoadDefReg = 0;
   3458     return 0;
   3459   }
   3460 
   3461   // Check whether we can move DefMI here.
   3462   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
   3463   assert(DefMI);
   3464   bool SawStore = false;
   3465   if (!DefMI->isSafeToMove(this, 0, SawStore))
   3466     return 0;
   3467 
   3468   // We try to commute MI if possible.
   3469   unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
   3470   for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
   3471     // Collect information about virtual register operands of MI.
   3472     unsigned SrcOperandId = 0;
   3473     bool FoundSrcOperand = false;
   3474     for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
   3475       MachineOperand &MO = MI->getOperand(i);
   3476       if (!MO.isReg())
   3477         continue;
   3478       unsigned Reg = MO.getReg();
   3479       if (Reg != FoldAsLoadDefReg)
   3480         continue;
   3481       // Do not fold if we have a subreg use or a def or multiple uses.
   3482       if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
   3483         return 0;
   3484 
   3485       SrcOperandId = i;
   3486       FoundSrcOperand = true;
   3487     }
   3488     if (!FoundSrcOperand) return 0;
   3489 
   3490     // Check whether we can fold the def into SrcOperandId.
   3491     SmallVector<unsigned, 8> Ops;
   3492     Ops.push_back(SrcOperandId);
   3493     MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
   3494     if (FoldMI) {
   3495       FoldAsLoadDefReg = 0;
   3496       return FoldMI;
   3497     }
   3498 
   3499     if (Idx == 1) {
   3500       // MI was changed but it didn't help, commute it back!
   3501       commuteInstruction(MI, false);
   3502       return 0;
   3503     }
   3504 
   3505     // Check whether we can commute MI and enable folding.
   3506     if (MI->isCommutable()) {
   3507       MachineInstr *NewMI = commuteInstruction(MI, false);
   3508       // Unable to commute.
   3509       if (!NewMI) return 0;
   3510       if (NewMI != MI) {
   3511         // New instruction. It doesn't need to be kept.
   3512         NewMI->eraseFromParent();
   3513         return 0;
   3514       }
   3515     }
   3516   }
   3517   return 0;
   3518 }
   3519 
   3520 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
   3521 /// instruction with two undef reads of the register being defined.  This is
   3522 /// used for mapping:
   3523 ///   %xmm4 = V_SET0
   3524 /// to:
   3525 ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
   3526 ///
   3527 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
   3528                              const MCInstrDesc &Desc) {
   3529   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
   3530   unsigned Reg = MIB->getOperand(0).getReg();
   3531   MIB->setDesc(Desc);
   3532 
   3533   // MachineInstr::addOperand() will insert explicit operands before any
   3534   // implicit operands.
   3535   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   3536   // But we don't trust that.
   3537   assert(MIB->getOperand(1).getReg() == Reg &&
   3538          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
   3539   return true;
   3540 }
   3541 
   3542 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
   3543   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   3544   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
   3545   switch (MI->getOpcode()) {
   3546   case X86::SETB_C8r:
   3547     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
   3548   case X86::SETB_C16r:
   3549     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
   3550   case X86::SETB_C32r:
   3551     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
   3552   case X86::SETB_C64r:
   3553     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
   3554   case X86::V_SET0:
   3555   case X86::FsFLD0SS:
   3556   case X86::FsFLD0SD:
   3557     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
   3558   case X86::AVX_SET0:
   3559     assert(HasAVX && "AVX not supported");
   3560     return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
   3561   case X86::V_SETALLONES:
   3562     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
   3563   case X86::AVX2_SETALLONES:
   3564     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
   3565   case X86::TEST8ri_NOREX:
   3566     MI->setDesc(get(X86::TEST8ri));
   3567     return true;
   3568   }
   3569   return false;
   3570 }
   3571 
   3572 MachineInstr*
   3573 X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
   3574                                        int FrameIx, uint64_t Offset,
   3575                                        const MDNode *MDPtr,
   3576                                        DebugLoc DL) const {
   3577   X86AddressMode AM;
   3578   AM.BaseType = X86AddressMode::FrameIndexBase;
   3579   AM.Base.FrameIndex = FrameIx;
   3580   MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
   3581   addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
   3582   return &*MIB;
   3583 }
   3584 
   3585 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
   3586                                      const SmallVectorImpl<MachineOperand> &MOs,
   3587                                      MachineInstr *MI,
   3588                                      const TargetInstrInfo &TII) {
   3589   // Create the base instruction with the memory operand as the first part.
   3590   // Omit the implicit operands, something BuildMI can't do.
   3591   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   3592                                               MI->getDebugLoc(), true);
   3593   MachineInstrBuilder MIB(MF, NewMI);
   3594   unsigned NumAddrOps = MOs.size();
   3595   for (unsigned i = 0; i != NumAddrOps; ++i)
   3596     MIB.addOperand(MOs[i]);
   3597   if (NumAddrOps < 4)  // FrameIndex only
   3598     addOffset(MIB, 0);
   3599 
   3600   // Loop over the rest of the ri operands, converting them over.
   3601   unsigned NumOps = MI->getDesc().getNumOperands()-2;
   3602   for (unsigned i = 0; i != NumOps; ++i) {
   3603     MachineOperand &MO = MI->getOperand(i+2);
   3604     MIB.addOperand(MO);
   3605   }
   3606   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
   3607     MachineOperand &MO = MI->getOperand(i);
   3608     MIB.addOperand(MO);
   3609   }
   3610   return MIB;
   3611 }
   3612 
   3613 static MachineInstr *FuseInst(MachineFunction &MF,
   3614                               unsigned Opcode, unsigned OpNo,
   3615                               const SmallVectorImpl<MachineOperand> &MOs,
   3616                               MachineInstr *MI, const TargetInstrInfo &TII) {
   3617   // Omit the implicit operands, something BuildMI can't do.
   3618   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   3619                                               MI->getDebugLoc(), true);
   3620   MachineInstrBuilder MIB(MF, NewMI);
   3621 
   3622   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   3623     MachineOperand &MO = MI->getOperand(i);
   3624     if (i == OpNo) {
   3625       assert(MO.isReg() && "Expected to fold into reg operand!");
   3626       unsigned NumAddrOps = MOs.size();
   3627       for (unsigned i = 0; i != NumAddrOps; ++i)
   3628         MIB.addOperand(MOs[i]);
   3629       if (NumAddrOps < 4)  // FrameIndex only
   3630         addOffset(MIB, 0);
   3631     } else {
   3632       MIB.addOperand(MO);
   3633     }
   3634   }
   3635   return MIB;
   3636 }
   3637 
   3638 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
   3639                                 const SmallVectorImpl<MachineOperand> &MOs,
   3640                                 MachineInstr *MI) {
   3641   MachineFunction &MF = *MI->getParent()->getParent();
   3642   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
   3643 
   3644   unsigned NumAddrOps = MOs.size();
   3645   for (unsigned i = 0; i != NumAddrOps; ++i)
   3646     MIB.addOperand(MOs[i]);
   3647   if (NumAddrOps < 4)  // FrameIndex only
   3648     addOffset(MIB, 0);
   3649   return MIB.addImm(0);
   3650 }
   3651 
   3652 MachineInstr*
   3653 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   3654                                     MachineInstr *MI, unsigned i,
   3655                                     const SmallVectorImpl<MachineOperand> &MOs,
   3656                                     unsigned Size, unsigned Align) const {
   3657   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
   3658   bool isTwoAddrFold = false;
   3659   unsigned NumOps = MI->getDesc().getNumOperands();
   3660   bool isTwoAddr = NumOps > 1 &&
   3661     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   3662 
   3663   // FIXME: AsmPrinter doesn't know how to handle
   3664   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   3665   if (MI->getOpcode() == X86::ADD32ri &&
   3666       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   3667     return NULL;
   3668 
   3669   MachineInstr *NewMI = NULL;
   3670   // Folding a memory location into the two-address part of a two-address
   3671   // instruction is different than folding it other places.  It requires
   3672   // replacing the *two* registers with the memory location.
   3673   if (isTwoAddr && NumOps >= 2 && i < 2 &&
   3674       MI->getOperand(0).isReg() &&
   3675       MI->getOperand(1).isReg() &&
   3676       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
   3677     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   3678     isTwoAddrFold = true;
   3679   } else if (i == 0) { // If operand 0
   3680     unsigned Opc = 0;
   3681     switch (MI->getOpcode()) {
   3682     default: break;
   3683     case X86::MOV64r0: Opc = X86::MOV64mi32; break;
   3684     case X86::MOV32r0: Opc = X86::MOV32mi;   break;
   3685     case X86::MOV16r0: Opc = X86::MOV16mi;   break;
   3686     case X86::MOV8r0:  Opc = X86::MOV8mi;    break;
   3687     }
   3688     if (Opc)
   3689        NewMI = MakeM0Inst(*this, Opc, MOs, MI);
   3690     if (NewMI)
   3691       return NewMI;
   3692 
   3693     OpcodeTablePtr = &RegOp2MemOpTable0;
   3694   } else if (i == 1) {
   3695     OpcodeTablePtr = &RegOp2MemOpTable1;
   3696   } else if (i == 2) {
   3697     OpcodeTablePtr = &RegOp2MemOpTable2;
   3698   } else if (i == 3) {
   3699     OpcodeTablePtr = &RegOp2MemOpTable3;
   3700   }
   3701 
   3702   // If table selected...
   3703   if (OpcodeTablePtr) {
   3704     // Find the Opcode to fuse
   3705     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   3706       OpcodeTablePtr->find(MI->getOpcode());
   3707     if (I != OpcodeTablePtr->end()) {
   3708       unsigned Opcode = I->second.first;
   3709       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
   3710       if (Align < MinAlign)
   3711         return NULL;
   3712       bool NarrowToMOV32rm = false;
   3713       if (Size) {
   3714         unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
   3715         if (Size < RCSize) {
   3716           // Check if it's safe to fold the load. If the size of the object is
   3717           // narrower than the load width, then it's not.
   3718           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
   3719             return NULL;
   3720           // If this is a 64-bit load, but the spill slot is 32, then we can do
   3721           // a 32-bit load which is implicitly zero-extended. This likely is due
   3722           // to liveintervalanalysis remat'ing a load from stack slot.
   3723           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
   3724             return NULL;
   3725           Opcode = X86::MOV32rm;
   3726           NarrowToMOV32rm = true;
   3727         }
   3728       }
   3729 
   3730       if (isTwoAddrFold)
   3731         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
   3732       else
   3733         NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
   3734 
   3735       if (NarrowToMOV32rm) {
   3736         // If this is the special case where we use a MOV32rm to load a 32-bit
   3737         // value and zero-extend the top bits. Change the destination register
   3738         // to a 32-bit one.
   3739         unsigned DstReg = NewMI->getOperand(0).getReg();
   3740         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
   3741           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
   3742                                                    X86::sub_32bit));
   3743         else
   3744           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
   3745       }
   3746       return NewMI;
   3747     }
   3748   }
   3749 
   3750   // No fusion
   3751   if (PrintFailedFusing && !MI->isCopy())
   3752     dbgs() << "We failed to fuse operand " << i << " in " << *MI;
   3753   return NULL;
   3754 }
   3755 
   3756 /// hasPartialRegUpdate - Return true for all instructions that only update
   3757 /// the first 32 or 64-bits of the destination register and leave the rest
   3758 /// unmodified. This can be used to avoid folding loads if the instructions
   3759 /// only update part of the destination register, and the non-updated part is
   3760 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
   3761 /// instructions breaks the partial register dependency and it can improve
   3762 /// performance. e.g.:
   3763 ///
   3764 ///   movss (%rdi), %xmm0
   3765 ///   cvtss2sd %xmm0, %xmm0
   3766 ///
   3767 /// Instead of
   3768 ///   cvtss2sd (%rdi), %xmm0
   3769 ///
   3770 /// FIXME: This should be turned into a TSFlags.
   3771 ///
   3772 static bool hasPartialRegUpdate(unsigned Opcode) {
   3773   switch (Opcode) {
   3774   case X86::CVTSI2SSrr:
   3775   case X86::CVTSI2SS64rr:
   3776   case X86::CVTSI2SDrr:
   3777   case X86::CVTSI2SD64rr:
   3778   case X86::CVTSD2SSrr:
   3779   case X86::Int_CVTSD2SSrr:
   3780   case X86::CVTSS2SDrr:
   3781   case X86::Int_CVTSS2SDrr:
   3782   case X86::RCPSSr:
   3783   case X86::RCPSSr_Int:
   3784   case X86::ROUNDSDr:
   3785   case X86::ROUNDSDr_Int:
   3786   case X86::ROUNDSSr:
   3787   case X86::ROUNDSSr_Int:
   3788   case X86::RSQRTSSr:
   3789   case X86::RSQRTSSr_Int:
   3790   case X86::SQRTSSr:
   3791   case X86::SQRTSSr_Int:
   3792   // AVX encoded versions
   3793   case X86::VCVTSD2SSrr:
   3794   case X86::Int_VCVTSD2SSrr:
   3795   case X86::VCVTSS2SDrr:
   3796   case X86::Int_VCVTSS2SDrr:
   3797   case X86::VRCPSSr:
   3798   case X86::VROUNDSDr:
   3799   case X86::VROUNDSDr_Int:
   3800   case X86::VROUNDSSr:
   3801   case X86::VROUNDSSr_Int:
   3802   case X86::VRSQRTSSr:
   3803   case X86::VSQRTSSr:
   3804     return true;
   3805   }
   3806 
   3807   return false;
   3808 }
   3809 
   3810 /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
   3811 /// instructions we would like before a partial register update.
   3812 unsigned X86InstrInfo::
   3813 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
   3814                              const TargetRegisterInfo *TRI) const {
   3815   if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
   3816     return 0;
   3817 
   3818   // If MI is marked as reading Reg, the partial register update is wanted.
   3819   const MachineOperand &MO = MI->getOperand(0);
   3820   unsigned Reg = MO.getReg();
   3821   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   3822     if (MO.readsReg() || MI->readsVirtualRegister(Reg))
   3823       return 0;
   3824   } else {
   3825     if (MI->readsRegister(Reg, TRI))
   3826       return 0;
   3827   }
   3828 
   3829   // If any of the preceding 16 instructions are reading Reg, insert a
   3830   // dependency breaking instruction.  The magic number is based on a few
   3831   // Nehalem experiments.
   3832   return 16;
   3833 }
   3834 
   3835 void X86InstrInfo::
   3836 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   3837                           const TargetRegisterInfo *TRI) const {
   3838   unsigned Reg = MI->getOperand(OpNum).getReg();
   3839   if (X86::VR128RegClass.contains(Reg)) {
   3840     // These instructions are all floating point domain, so xorps is the best
   3841     // choice.
   3842     bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   3843     unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
   3844     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
   3845       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   3846   } else if (X86::VR256RegClass.contains(Reg)) {
   3847     // Use vxorps to clear the full ymm register.
   3848     // It wants to read and write the xmm sub-register.
   3849     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
   3850     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
   3851       .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
   3852       .addReg(Reg, RegState::ImplicitDefine);
   3853   } else
   3854     return;
   3855   MI->addRegisterKilled(Reg, TRI, true);
   3856 }
   3857 
   3858 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   3859                                                   MachineInstr *MI,
   3860                                            const SmallVectorImpl<unsigned> &Ops,
   3861                                                   int FrameIndex) const {
   3862   // Check switch flag
   3863   if (NoFusing) return NULL;
   3864 
   3865   // Unless optimizing for size, don't fold to avoid partial
   3866   // register update stalls
   3867   if (!MF.getFunction()->getAttributes().
   3868         hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
   3869       hasPartialRegUpdate(MI->getOpcode()))
   3870     return 0;
   3871 
   3872   const MachineFrameInfo *MFI = MF.getFrameInfo();
   3873   unsigned Size = MFI->getObjectSize(FrameIndex);
   3874   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
   3875   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   3876     unsigned NewOpc = 0;
   3877     unsigned RCSize = 0;
   3878     switch (MI->getOpcode()) {
   3879     default: return NULL;
   3880     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
   3881     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
   3882     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
   3883     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
   3884     }
   3885     // Check if it's safe to fold the load. If the size of the object is
   3886     // narrower than the load width, then it's not.
   3887     if (Size < RCSize)
   3888       return NULL;
   3889     // Change to CMPXXri r, 0 first.
   3890     MI->setDesc(get(NewOpc));
   3891     MI->getOperand(1).ChangeToImmediate(0);
   3892   } else if (Ops.size() != 1)
   3893     return NULL;
   3894 
   3895   SmallVector<MachineOperand,4> MOs;
   3896   MOs.push_back(MachineOperand::CreateFI(FrameIndex));
   3897   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
   3898 }
   3899 
   3900 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   3901                                                   MachineInstr *MI,
   3902                                            const SmallVectorImpl<unsigned> &Ops,
   3903                                                   MachineInstr *LoadMI) const {
   3904   // Check switch flag
   3905   if (NoFusing) return NULL;
   3906 
   3907   // Unless optimizing for size, don't fold to avoid partial
   3908   // register update stalls
   3909   if (!MF.getFunction()->getAttributes().
   3910         hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
   3911       hasPartialRegUpdate(MI->getOpcode()))
   3912     return 0;
   3913 
   3914   // Determine the alignment of the load.
   3915   unsigned Alignment = 0;
   3916   if (LoadMI->hasOneMemOperand())
   3917     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
   3918   else
   3919     switch (LoadMI->getOpcode()) {
   3920     case X86::AVX2_SETALLONES:
   3921     case X86::AVX_SET0:
   3922       Alignment = 32;
   3923       break;
   3924     case X86::V_SET0:
   3925     case X86::V_SETALLONES:
   3926       Alignment = 16;
   3927       break;
   3928     case X86::FsFLD0SD:
   3929       Alignment = 8;
   3930       break;
   3931     case X86::FsFLD0SS:
   3932       Alignment = 4;
   3933       break;
   3934     default:
   3935       return 0;
   3936     }
   3937   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   3938     unsigned NewOpc = 0;
   3939     switch (MI->getOpcode()) {
   3940     default: return NULL;
   3941     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
   3942     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
   3943     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
   3944     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
   3945     }
   3946     // Change to CMPXXri r, 0 first.
   3947     MI->setDesc(get(NewOpc));
   3948     MI->getOperand(1).ChangeToImmediate(0);
   3949   } else if (Ops.size() != 1)
   3950     return NULL;
   3951 
   3952   // Make sure the subregisters match.
   3953   // Otherwise we risk changing the size of the load.
   3954   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
   3955     return NULL;
   3956 
   3957   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
   3958   switch (LoadMI->getOpcode()) {
   3959   case X86::V_SET0:
   3960   case X86::V_SETALLONES:
   3961   case X86::AVX2_SETALLONES:
   3962   case X86::AVX_SET0:
   3963   case X86::FsFLD0SD:
   3964   case X86::FsFLD0SS: {
   3965     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
   3966     // Create a constant-pool entry and operands to load from it.
   3967 
   3968     // Medium and large mode can't fold loads this way.
   3969     if (TM.getCodeModel() != CodeModel::Small &&
   3970         TM.getCodeModel() != CodeModel::Kernel)
   3971       return NULL;
   3972 
   3973     // x86-32 PIC requires a PIC base register for constant pools.
   3974     unsigned PICBase = 0;
   3975     if (TM.getRelocationModel() == Reloc::PIC_) {
   3976       if (TM.getSubtarget<X86Subtarget>().is64Bit())
   3977         PICBase = X86::RIP;
   3978       else
   3979         // FIXME: PICBase = getGlobalBaseReg(&MF);
   3980         // This doesn't work for several reasons.
   3981         // 1. GlobalBaseReg may have been spilled.
   3982         // 2. It may not be live at MI.
   3983         return NULL;
   3984     }
   3985 
   3986     // Create a constant-pool entry.
   3987     MachineConstantPool &MCP = *MF.getConstantPool();
   3988     Type *Ty;
   3989     unsigned Opc = LoadMI->getOpcode();
   3990     if (Opc == X86::FsFLD0SS)
   3991       Ty = Type::getFloatTy(MF.getFunction()->getContext());
   3992     else if (Opc == X86::FsFLD0SD)
   3993       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
   3994     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
   3995       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
   3996     else
   3997       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
   3998 
   3999     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
   4000     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
   4001                                     Constant::getNullValue(Ty);
   4002     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
   4003 
   4004     // Create operands to load from the constant pool entry.
   4005     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
   4006     MOs.push_back(MachineOperand::CreateImm(1));
   4007     MOs.push_back(MachineOperand::CreateReg(0, false));
   4008     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
   4009     MOs.push_back(MachineOperand::CreateReg(0, false));
   4010     break;
   4011   }
   4012   default: {
   4013     if ((LoadMI->getOpcode() == X86::MOVSSrm ||
   4014          LoadMI->getOpcode() == X86::VMOVSSrm) &&
   4015         MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
   4016           > 4)
   4017       // These instructions only load 32 bits, we can't fold them if the
   4018       // destination register is wider than 32 bits (4 bytes).
   4019       return NULL;
   4020     if ((LoadMI->getOpcode() == X86::MOVSDrm ||
   4021          LoadMI->getOpcode() == X86::VMOVSDrm) &&
   4022         MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
   4023           > 8)
   4024       // These instructions only load 64 bits, we can't fold them if the
   4025       // destination register is wider than 64 bits (8 bytes).
   4026       return NULL;
   4027 
   4028     // Folding a normal load. Just copy the load's address operands.
   4029     unsigned NumOps = LoadMI->getDesc().getNumOperands();
   4030     for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
   4031       MOs.push_back(LoadMI->getOperand(i));
   4032     break;
   4033   }
   4034   }
   4035   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
   4036 }
   4037 
   4038 
   4039 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
   4040                                   const SmallVectorImpl<unsigned> &Ops) const {
   4041   // Check switch flag
   4042   if (NoFusing) return 0;
   4043 
   4044   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   4045     switch (MI->getOpcode()) {
   4046     default: return false;
   4047     case X86::TEST8rr:
   4048     case X86::TEST16rr:
   4049     case X86::TEST32rr:
   4050     case X86::TEST64rr:
   4051       return true;
   4052     case X86::ADD32ri:
   4053       // FIXME: AsmPrinter doesn't know how to handle
   4054       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   4055       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   4056         return false;
   4057       break;
   4058     }
   4059   }
   4060 
   4061   if (Ops.size() != 1)
   4062     return false;
   4063 
   4064   unsigned OpNum = Ops[0];
   4065   unsigned Opc = MI->getOpcode();
   4066   unsigned NumOps = MI->getDesc().getNumOperands();
   4067   bool isTwoAddr = NumOps > 1 &&
   4068     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   4069 
   4070   // Folding a memory location into the two-address part of a two-address
   4071   // instruction is different than folding it other places.  It requires
   4072   // replacing the *two* registers with the memory location.
   4073   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
   4074   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
   4075     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   4076   } else if (OpNum == 0) { // If operand 0
   4077     switch (Opc) {
   4078     case X86::MOV8r0:
   4079     case X86::MOV16r0:
   4080     case X86::MOV32r0:
   4081     case X86::MOV64r0: return true;
   4082     default: break;
   4083     }
   4084     OpcodeTablePtr = &RegOp2MemOpTable0;
   4085   } else if (OpNum == 1) {
   4086     OpcodeTablePtr = &RegOp2MemOpTable1;
   4087   } else if (OpNum == 2) {
   4088     OpcodeTablePtr = &RegOp2MemOpTable2;
   4089   } else if (OpNum == 3) {
   4090     OpcodeTablePtr = &RegOp2MemOpTable3;
   4091   }
   4092 
   4093   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
   4094     return true;
   4095   return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
   4096 }
   4097 
   4098 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
   4099                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
   4100                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
   4101   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4102     MemOp2RegOpTable.find(MI->getOpcode());
   4103   if (I == MemOp2RegOpTable.end())
   4104     return false;
   4105   unsigned Opc = I->second.first;
   4106   unsigned Index = I->second.second & TB_INDEX_MASK;
   4107   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4108   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4109   if (UnfoldLoad && !FoldedLoad)
   4110     return false;
   4111   UnfoldLoad &= FoldedLoad;
   4112   if (UnfoldStore && !FoldedStore)
   4113     return false;
   4114   UnfoldStore &= FoldedStore;
   4115 
   4116   const MCInstrDesc &MCID = get(Opc);
   4117   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   4118   if (!MI->hasOneMemOperand() &&
   4119       RC == &X86::VR128RegClass &&
   4120       !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   4121     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
   4122     // conservatively assume the address is unaligned. That's bad for
   4123     // performance.
   4124     return false;
   4125   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
   4126   SmallVector<MachineOperand,2> BeforeOps;
   4127   SmallVector<MachineOperand,2> AfterOps;
   4128   SmallVector<MachineOperand,4> ImpOps;
   4129   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   4130     MachineOperand &Op = MI->getOperand(i);
   4131     if (i >= Index && i < Index + X86::AddrNumOperands)
   4132       AddrOps.push_back(Op);
   4133     else if (Op.isReg() && Op.isImplicit())
   4134       ImpOps.push_back(Op);
   4135     else if (i < Index)
   4136       BeforeOps.push_back(Op);
   4137     else if (i > Index)
   4138       AfterOps.push_back(Op);
   4139   }
   4140 
   4141   // Emit the load instruction.
   4142   if (UnfoldLoad) {
   4143     std::pair<MachineInstr::mmo_iterator,
   4144               MachineInstr::mmo_iterator> MMOs =
   4145       MF.extractLoadMemRefs(MI->memoperands_begin(),
   4146                             MI->memoperands_end());
   4147     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
   4148     if (UnfoldStore) {
   4149       // Address operands cannot be marked isKill.
   4150       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
   4151         MachineOperand &MO = NewMIs[0]->getOperand(i);
   4152         if (MO.isReg())
   4153           MO.setIsKill(false);
   4154       }
   4155     }
   4156   }
   4157 
   4158   // Emit the data processing instruction.
   4159   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
   4160   MachineInstrBuilder MIB(MF, DataMI);
   4161 
   4162   if (FoldedStore)
   4163     MIB.addReg(Reg, RegState::Define);
   4164   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
   4165     MIB.addOperand(BeforeOps[i]);
   4166   if (FoldedLoad)
   4167     MIB.addReg(Reg);
   4168   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
   4169     MIB.addOperand(AfterOps[i]);
   4170   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
   4171     MachineOperand &MO = ImpOps[i];
   4172     MIB.addReg(MO.getReg(),
   4173                getDefRegState(MO.isDef()) |
   4174                RegState::Implicit |
   4175                getKillRegState(MO.isKill()) |
   4176                getDeadRegState(MO.isDead()) |
   4177                getUndefRegState(MO.isUndef()));
   4178   }
   4179   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
   4180   switch (DataMI->getOpcode()) {
   4181   default: break;
   4182   case X86::CMP64ri32:
   4183   case X86::CMP64ri8:
   4184   case X86::CMP32ri:
   4185   case X86::CMP32ri8:
   4186   case X86::CMP16ri:
   4187   case X86::CMP16ri8:
   4188   case X86::CMP8ri: {
   4189     MachineOperand &MO0 = DataMI->getOperand(0);
   4190     MachineOperand &MO1 = DataMI->getOperand(1);
   4191     if (MO1.getImm() == 0) {
   4192       unsigned NewOpc;
   4193       switch (DataMI->getOpcode()) {
   4194       default: llvm_unreachable("Unreachable!");
   4195       case X86::CMP64ri8:
   4196       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
   4197       case X86::CMP32ri8:
   4198       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
   4199       case X86::CMP16ri8:
   4200       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
   4201       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
   4202       }
   4203       DataMI->setDesc(get(NewOpc));
   4204       MO1.ChangeToRegister(MO0.getReg(), false);
   4205     }
   4206   }
   4207   }
   4208   NewMIs.push_back(DataMI);
   4209 
   4210   // Emit the store instruction.
   4211   if (UnfoldStore) {
   4212     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
   4213     std::pair<MachineInstr::mmo_iterator,
   4214               MachineInstr::mmo_iterator> MMOs =
   4215       MF.extractStoreMemRefs(MI->memoperands_begin(),
   4216                              MI->memoperands_end());
   4217     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
   4218   }
   4219 
   4220   return true;
   4221 }
   4222 
   4223 bool
   4224 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   4225                                   SmallVectorImpl<SDNode*> &NewNodes) const {
   4226   if (!N->isMachineOpcode())
   4227     return false;
   4228 
   4229   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4230     MemOp2RegOpTable.find(N->getMachineOpcode());
   4231   if (I == MemOp2RegOpTable.end())
   4232     return false;
   4233   unsigned Opc = I->second.first;
   4234   unsigned Index = I->second.second & TB_INDEX_MASK;
   4235   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4236   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4237   const MCInstrDesc &MCID = get(Opc);
   4238   MachineFunction &MF = DAG.getMachineFunction();
   4239   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   4240   unsigned NumDefs = MCID.NumDefs;
   4241   std::vector<SDValue> AddrOps;
   4242   std::vector<SDValue> BeforeOps;
   4243   std::vector<SDValue> AfterOps;
   4244   DebugLoc dl = N->getDebugLoc();
   4245   unsigned NumOps = N->getNumOperands();
   4246   for (unsigned i = 0; i != NumOps-1; ++i) {
   4247     SDValue Op = N->getOperand(i);
   4248     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
   4249       AddrOps.push_back(Op);
   4250     else if (i < Index-NumDefs)
   4251       BeforeOps.push_back(Op);
   4252     else if (i > Index-NumDefs)
   4253       AfterOps.push_back(Op);
   4254   }
   4255   SDValue Chain = N->getOperand(NumOps-1);
   4256   AddrOps.push_back(Chain);
   4257 
   4258   // Emit the load instruction.
   4259   SDNode *Load = 0;
   4260   if (FoldedLoad) {
   4261     EVT VT = *RC->vt_begin();
   4262     std::pair<MachineInstr::mmo_iterator,
   4263               MachineInstr::mmo_iterator> MMOs =
   4264       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   4265                             cast<MachineSDNode>(N)->memoperands_end());
   4266     if (!(*MMOs.first) &&
   4267         RC == &X86::VR128RegClass &&
   4268         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   4269       // Do not introduce a slow unaligned load.
   4270       return false;
   4271     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   4272     bool isAligned = (*MMOs.first) &&
   4273                      (*MMOs.first)->getAlignment() >= Alignment;
   4274     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
   4275                               VT, MVT::Other, &AddrOps[0], AddrOps.size());
   4276     NewNodes.push_back(Load);
   4277 
   4278     // Preserve memory reference information.
   4279     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   4280   }
   4281 
   4282   // Emit the data processing instruction.
   4283   std::vector<EVT> VTs;
   4284   const TargetRegisterClass *DstRC = 0;
   4285   if (MCID.getNumDefs() > 0) {
   4286     DstRC = getRegClass(MCID, 0, &RI, MF);
   4287     VTs.push_back(*DstRC->vt_begin());
   4288   }
   4289   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
   4290     EVT VT = N->getValueType(i);
   4291     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
   4292       VTs.push_back(VT);
   4293   }
   4294   if (Load)
   4295     BeforeOps.push_back(SDValue(Load, 0));
   4296   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
   4297   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
   4298                                       BeforeOps.size());
   4299   NewNodes.push_back(NewNode);
   4300 
   4301   // Emit the store instruction.
   4302   if (FoldedStore) {
   4303     AddrOps.pop_back();
   4304     AddrOps.push_back(SDValue(NewNode, 0));
   4305     AddrOps.push_back(Chain);
   4306     std::pair<MachineInstr::mmo_iterator,
   4307               MachineInstr::mmo_iterator> MMOs =
   4308       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   4309                              cast<MachineSDNode>(N)->memoperands_end());
   4310     if (!(*MMOs.first) &&
   4311         RC == &X86::VR128RegClass &&
   4312         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   4313       // Do not introduce a slow unaligned store.
   4314       return false;
   4315     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   4316     bool isAligned = (*MMOs.first) &&
   4317                      (*MMOs.first)->getAlignment() >= Alignment;
   4318     SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
   4319                                                          isAligned, TM),
   4320                                        dl, MVT::Other,
   4321                                        &AddrOps[0], AddrOps.size());
   4322     NewNodes.push_back(Store);
   4323 
   4324     // Preserve memory reference information.
   4325     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   4326   }
   4327 
   4328   return true;
   4329 }
   4330 
   4331 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
   4332                                       bool UnfoldLoad, bool UnfoldStore,
   4333                                       unsigned *LoadRegIndex) const {
   4334   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4335     MemOp2RegOpTable.find(Opc);
   4336   if (I == MemOp2RegOpTable.end())
   4337     return 0;
   4338   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4339   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4340   if (UnfoldLoad && !FoldedLoad)
   4341     return 0;
   4342   if (UnfoldStore && !FoldedStore)
   4343     return 0;
   4344   if (LoadRegIndex)
   4345     *LoadRegIndex = I->second.second & TB_INDEX_MASK;
   4346   return I->second.first;
   4347 }
   4348 
   4349 bool
   4350 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   4351                                      int64_t &Offset1, int64_t &Offset2) const {
   4352   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   4353     return false;
   4354   unsigned Opc1 = Load1->getMachineOpcode();
   4355   unsigned Opc2 = Load2->getMachineOpcode();
   4356   switch (Opc1) {
   4357   default: return false;
   4358   case X86::MOV8rm:
   4359   case X86::MOV16rm:
   4360   case X86::MOV32rm:
   4361   case X86::MOV64rm:
   4362   case X86::LD_Fp32m:
   4363   case X86::LD_Fp64m:
   4364   case X86::LD_Fp80m:
   4365   case X86::MOVSSrm:
   4366   case X86::MOVSDrm:
   4367   case X86::MMX_MOVD64rm:
   4368   case X86::MMX_MOVQ64rm:
   4369   case X86::FsMOVAPSrm:
   4370   case X86::FsMOVAPDrm:
   4371   case X86::MOVAPSrm:
   4372   case X86::MOVUPSrm:
   4373   case X86::MOVAPDrm:
   4374   case X86::MOVDQArm:
   4375   case X86::MOVDQUrm:
   4376   // AVX load instructions
   4377   case X86::VMOVSSrm:
   4378   case X86::VMOVSDrm:
   4379   case X86::FsVMOVAPSrm:
   4380   case X86::FsVMOVAPDrm:
   4381   case X86::VMOVAPSrm:
   4382   case X86::VMOVUPSrm:
   4383   case X86::VMOVAPDrm:
   4384   case X86::VMOVDQArm:
   4385   case X86::VMOVDQUrm:
   4386   case X86::VMOVAPSYrm:
   4387   case X86::VMOVUPSYrm:
   4388   case X86::VMOVAPDYrm:
   4389   case X86::VMOVDQAYrm:
   4390   case X86::VMOVDQUYrm:
   4391     break;
   4392   }
   4393   switch (Opc2) {
   4394   default: return false;
   4395   case X86::MOV8rm:
   4396   case X86::MOV16rm:
   4397   case X86::MOV32rm:
   4398   case X86::MOV64rm:
   4399   case X86::LD_Fp32m:
   4400   case X86::LD_Fp64m:
   4401   case X86::LD_Fp80m:
   4402   case X86::MOVSSrm:
   4403   case X86::MOVSDrm:
   4404   case X86::MMX_MOVD64rm:
   4405   case X86::MMX_MOVQ64rm:
   4406   case X86::FsMOVAPSrm:
   4407   case X86::FsMOVAPDrm:
   4408   case X86::MOVAPSrm:
   4409   case X86::MOVUPSrm:
   4410   case X86::MOVAPDrm:
   4411   case X86::MOVDQArm:
   4412   case X86::MOVDQUrm:
   4413   // AVX load instructions
   4414   case X86::VMOVSSrm:
   4415   case X86::VMOVSDrm:
   4416   case X86::FsVMOVAPSrm:
   4417   case X86::FsVMOVAPDrm:
   4418   case X86::VMOVAPSrm:
   4419   case X86::VMOVUPSrm:
   4420   case X86::VMOVAPDrm:
   4421   case X86::VMOVDQArm:
   4422   case X86::VMOVDQUrm:
   4423   case X86::VMOVAPSYrm:
   4424   case X86::VMOVUPSYrm:
   4425   case X86::VMOVAPDYrm:
   4426   case X86::VMOVDQAYrm:
   4427   case X86::VMOVDQUYrm:
   4428     break;
   4429   }
   4430 
   4431   // Check if chain operands and base addresses match.
   4432   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   4433       Load1->getOperand(5) != Load2->getOperand(5))
   4434     return false;
   4435   // Segment operands should match as well.
   4436   if (Load1->getOperand(4) != Load2->getOperand(4))
   4437     return false;
   4438   // Scale should be 1, Index should be Reg0.
   4439   if (Load1->getOperand(1) == Load2->getOperand(1) &&
   4440       Load1->getOperand(2) == Load2->getOperand(2)) {
   4441     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
   4442       return false;
   4443 
   4444     // Now let's examine the displacements.
   4445     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
   4446         isa<ConstantSDNode>(Load2->getOperand(3))) {
   4447       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
   4448       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
   4449       return true;
   4450     }
   4451   }
   4452   return false;
   4453 }
   4454 
   4455 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   4456                                            int64_t Offset1, int64_t Offset2,
   4457                                            unsigned NumLoads) const {
   4458   assert(Offset2 > Offset1);
   4459   if ((Offset2 - Offset1) / 8 > 64)
   4460     return false;
   4461 
   4462   unsigned Opc1 = Load1->getMachineOpcode();
   4463   unsigned Opc2 = Load2->getMachineOpcode();
   4464   if (Opc1 != Opc2)
   4465     return false;  // FIXME: overly conservative?
   4466 
   4467   switch (Opc1) {
   4468   default: break;
   4469   case X86::LD_Fp32m:
   4470   case X86::LD_Fp64m:
   4471   case X86::LD_Fp80m:
   4472   case X86::MMX_MOVD64rm:
   4473   case X86::MMX_MOVQ64rm:
   4474     return false;
   4475   }
   4476 
   4477   EVT VT = Load1->getValueType(0);
   4478   switch (VT.getSimpleVT().SimpleTy) {
   4479   default:
   4480     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
   4481     // have 16 of them to play with.
   4482     if (TM.getSubtargetImpl()->is64Bit()) {
   4483       if (NumLoads >= 3)
   4484         return false;
   4485     } else if (NumLoads) {
   4486       return false;
   4487     }
   4488     break;
   4489   case MVT::i8:
   4490   case MVT::i16:
   4491   case MVT::i32:
   4492   case MVT::i64:
   4493   case MVT::f32:
   4494   case MVT::f64:
   4495     if (NumLoads)
   4496       return false;
   4497     break;
   4498   }
   4499 
   4500   return true;
   4501 }
   4502 
   4503 
   4504 bool X86InstrInfo::
   4505 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   4506   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
   4507   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
   4508   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
   4509     return true;
   4510   Cond[0].setImm(GetOppositeBranchCondition(CC));
   4511   return false;
   4512 }
   4513 
   4514 bool X86InstrInfo::
   4515 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
   4516   // FIXME: Return false for x87 stack register classes for now. We can't
   4517   // allow any loads of these registers before FpGet_ST0_80.
   4518   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
   4519            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
   4520 }
   4521 
   4522 /// getGlobalBaseReg - Return a virtual register initialized with the
   4523 /// the global base register value. Output instructions required to
   4524 /// initialize the register in the function entry block, if necessary.
   4525 ///
   4526 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
   4527 ///
   4528 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
   4529   assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
   4530          "X86-64 PIC uses RIP relative addressing");
   4531 
   4532   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
   4533   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   4534   if (GlobalBaseReg != 0)
   4535     return GlobalBaseReg;
   4536 
   4537   // Create the register. The code to initialize it is inserted
   4538   // later, by the CGBR pass (below).
   4539   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   4540   GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   4541   X86FI->setGlobalBaseReg(GlobalBaseReg);
   4542   return GlobalBaseReg;
   4543 }
   4544 
   4545 // These are the replaceable SSE instructions. Some of these have Int variants
   4546 // that we don't include here. We don't want to replace instructions selected
   4547 // by intrinsics.
   4548 static const uint16_t ReplaceableInstrs[][3] = {
   4549   //PackedSingle     PackedDouble    PackedInt
   4550   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
   4551   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
   4552   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
   4553   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
   4554   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
   4555   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
   4556   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
   4557   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
   4558   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
   4559   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
   4560   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
   4561   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
   4562   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
   4563   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
   4564   // AVX 128-bit support
   4565   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
   4566   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
   4567   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
   4568   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
   4569   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
   4570   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
   4571   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
   4572   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
   4573   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
   4574   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
   4575   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
   4576   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
   4577   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
   4578   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
   4579   // AVX 256-bit support
   4580   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
   4581   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
   4582   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
   4583   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
   4584   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
   4585   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
   4586 };
   4587 
   4588 static const uint16_t ReplaceableInstrsAVX2[][3] = {
   4589   //PackedSingle       PackedDouble       PackedInt
   4590   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
   4591   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
   4592   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
   4593   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
   4594   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
   4595   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
   4596   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
   4597   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
   4598   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
   4599   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
   4600   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
   4601   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
   4602   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
   4603   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
   4604 };
   4605 
   4606 // FIXME: Some shuffle and unpack instructions have equivalents in different
   4607 // domains, but they require a bit more work than just switching opcodes.
   4608 
   4609 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
   4610   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
   4611     if (ReplaceableInstrs[i][domain-1] == opcode)
   4612       return ReplaceableInstrs[i];
   4613   return 0;
   4614 }
   4615 
   4616 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
   4617   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
   4618     if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
   4619       return ReplaceableInstrsAVX2[i];
   4620   return 0;
   4621 }
   4622 
   4623 std::pair<uint16_t, uint16_t>
   4624 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   4625   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   4626   bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
   4627   uint16_t validDomains = 0;
   4628   if (domain && lookup(MI->getOpcode(), domain))
   4629     validDomains = 0xe;
   4630   else if (domain && lookupAVX2(MI->getOpcode(), domain))
   4631     validDomains = hasAVX2 ? 0xe : 0x6;
   4632   return std::make_pair(domain, validDomains);
   4633 }
   4634 
   4635 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   4636   assert(Domain>0 && Domain<4 && "Invalid execution domain");
   4637   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   4638   assert(dom && "Not an SSE instruction");
   4639   const uint16_t *table = lookup(MI->getOpcode(), dom);
   4640   if (!table) { // try the other table
   4641     assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
   4642            "256-bit vector operations only available in AVX2");
   4643     table = lookupAVX2(MI->getOpcode(), dom);
   4644   }
   4645   assert(table && "Cannot change domain");
   4646   MI->setDesc(get(table[Domain-1]));
   4647 }
   4648 
   4649 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
   4650 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
   4651   NopInst.setOpcode(X86::NOOP);
   4652 }
   4653 
   4654 bool X86InstrInfo::isHighLatencyDef(int opc) const {
   4655   switch (opc) {
   4656   default: return false;
   4657   case X86::DIVSDrm:
   4658   case X86::DIVSDrm_Int:
   4659   case X86::DIVSDrr:
   4660   case X86::DIVSDrr_Int:
   4661   case X86::DIVSSrm:
   4662   case X86::DIVSSrm_Int:
   4663   case X86::DIVSSrr:
   4664   case X86::DIVSSrr_Int:
   4665   case X86::SQRTPDm:
   4666   case X86::SQRTPDr:
   4667   case X86::SQRTPSm:
   4668   case X86::SQRTPSr:
   4669   case X86::SQRTSDm:
   4670   case X86::SQRTSDm_Int:
   4671   case X86::SQRTSDr:
   4672   case X86::SQRTSDr_Int:
   4673   case X86::SQRTSSm:
   4674   case X86::SQRTSSm_Int:
   4675   case X86::SQRTSSr:
   4676   case X86::SQRTSSr_Int:
   4677   // AVX instructions with high latency
   4678   case X86::VDIVSDrm:
   4679   case X86::VDIVSDrm_Int:
   4680   case X86::VDIVSDrr:
   4681   case X86::VDIVSDrr_Int:
   4682   case X86::VDIVSSrm:
   4683   case X86::VDIVSSrm_Int:
   4684   case X86::VDIVSSrr:
   4685   case X86::VDIVSSrr_Int:
   4686   case X86::VSQRTPDm:
   4687   case X86::VSQRTPDr:
   4688   case X86::VSQRTPSm:
   4689   case X86::VSQRTPSr:
   4690   case X86::VSQRTSDm:
   4691   case X86::VSQRTSDm_Int:
   4692   case X86::VSQRTSDr:
   4693   case X86::VSQRTSSm:
   4694   case X86::VSQRTSSm_Int:
   4695   case X86::VSQRTSSr:
   4696     return true;
   4697   }
   4698 }
   4699 
   4700 bool X86InstrInfo::
   4701 hasHighOperandLatency(const InstrItineraryData *ItinData,
   4702                       const MachineRegisterInfo *MRI,
   4703                       const MachineInstr *DefMI, unsigned DefIdx,
   4704                       const MachineInstr *UseMI, unsigned UseIdx) const {
   4705   return isHighLatencyDef(DefMI->getOpcode());
   4706 }
   4707 
   4708 namespace {
   4709   /// CGBR - Create Global Base Reg pass. This initializes the PIC
   4710   /// global base register for x86-32.
   4711   struct CGBR : public MachineFunctionPass {
   4712     static char ID;
   4713     CGBR() : MachineFunctionPass(ID) {}
   4714 
   4715     virtual bool runOnMachineFunction(MachineFunction &MF) {
   4716       const X86TargetMachine *TM =
   4717         static_cast<const X86TargetMachine *>(&MF.getTarget());
   4718 
   4719       assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
   4720              "X86-64 PIC uses RIP relative addressing");
   4721 
   4722       // Only emit a global base reg in PIC mode.
   4723       if (TM->getRelocationModel() != Reloc::PIC_)
   4724         return false;
   4725 
   4726       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   4727       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   4728 
   4729       // If we didn't need a GlobalBaseReg, don't insert code.
   4730       if (GlobalBaseReg == 0)
   4731         return false;
   4732 
   4733       // Insert the set of GlobalBaseReg into the first MBB of the function
   4734       MachineBasicBlock &FirstMBB = MF.front();
   4735       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
   4736       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
   4737       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   4738       const X86InstrInfo *TII = TM->getInstrInfo();
   4739 
   4740       unsigned PC;
   4741       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
   4742         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   4743       else
   4744         PC = GlobalBaseReg;
   4745 
   4746       // Operand of MovePCtoStack is completely ignored by asm printer. It's
   4747       // only used in JIT code emission as displacement to pc.
   4748       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
   4749 
   4750       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
   4751       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
   4752       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
   4753         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
   4754         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
   4755           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
   4756                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
   4757       }
   4758 
   4759       return true;
   4760     }
   4761 
   4762     virtual const char *getPassName() const {
   4763       return "X86 PIC Global Base Reg Initialization";
   4764     }
   4765 
   4766     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   4767       AU.setPreservesCFG();
   4768       MachineFunctionPass::getAnalysisUsage(AU);
   4769     }
   4770   };
   4771 }
   4772 
   4773 char CGBR::ID = 0;
   4774 FunctionPass*
   4775 llvm::createGlobalBaseRegPass() { return new CGBR(); }
   4776 
   4777 namespace {
   4778   struct LDTLSCleanup : public MachineFunctionPass {
   4779     static char ID;
   4780     LDTLSCleanup() : MachineFunctionPass(ID) {}
   4781 
   4782     virtual bool runOnMachineFunction(MachineFunction &MF) {
   4783       X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
   4784       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
   4785         // No point folding accesses if there isn't at least two.
   4786         return false;
   4787       }
   4788 
   4789       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
   4790       return VisitNode(DT->getRootNode(), 0);
   4791     }
   4792 
   4793     // Visit the dominator subtree rooted at Node in pre-order.
   4794     // If TLSBaseAddrReg is non-null, then use that to replace any
   4795     // TLS_base_addr instructions. Otherwise, create the register
   4796     // when the first such instruction is seen, and then use it
   4797     // as we encounter more instructions.
   4798     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
   4799       MachineBasicBlock *BB = Node->getBlock();
   4800       bool Changed = false;
   4801 
   4802       // Traverse the current block.
   4803       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
   4804            ++I) {
   4805         switch (I->getOpcode()) {
   4806           case X86::TLS_base_addr32:
   4807           case X86::TLS_base_addr64:
   4808             if (TLSBaseAddrReg)
   4809               I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
   4810             else
   4811               I = SetRegister(I, &TLSBaseAddrReg);
   4812             Changed = true;
   4813             break;
   4814           default:
   4815             break;
   4816         }
   4817       }
   4818 
   4819       // Visit the children of this block in the dominator tree.
   4820       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
   4821            I != E; ++I) {
   4822         Changed |= VisitNode(*I, TLSBaseAddrReg);
   4823       }
   4824 
   4825       return Changed;
   4826     }
   4827 
   4828     // Replace the TLS_base_addr instruction I with a copy from
   4829     // TLSBaseAddrReg, returning the new instruction.
   4830     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
   4831                                          unsigned TLSBaseAddrReg) {
   4832       MachineFunction *MF = I->getParent()->getParent();
   4833       const X86TargetMachine *TM =
   4834           static_cast<const X86TargetMachine *>(&MF->getTarget());
   4835       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
   4836       const X86InstrInfo *TII = TM->getInstrInfo();
   4837 
   4838       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
   4839       MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
   4840                                    TII->get(TargetOpcode::COPY),
   4841                                    is64Bit ? X86::RAX : X86::EAX)
   4842                                    .addReg(TLSBaseAddrReg);
   4843 
   4844       // Erase the TLS_base_addr instruction.
   4845       I->eraseFromParent();
   4846 
   4847       return Copy;
   4848     }
   4849 
   4850     // Create a virtal register in *TLSBaseAddrReg, and populate it by
   4851     // inserting a copy instruction after I. Returns the new instruction.
   4852     MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
   4853       MachineFunction *MF = I->getParent()->getParent();
   4854       const X86TargetMachine *TM =
   4855           static_cast<const X86TargetMachine *>(&MF->getTarget());
   4856       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
   4857       const X86InstrInfo *TII = TM->getInstrInfo();
   4858 
   4859       // Create a virtual register for the TLS base address.
   4860       MachineRegisterInfo &RegInfo = MF->getRegInfo();
   4861       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
   4862                                                       ? &X86::GR64RegClass
   4863                                                       : &X86::GR32RegClass);
   4864 
   4865       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
   4866       MachineInstr *Next = I->getNextNode();
   4867       MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
   4868                                    TII->get(TargetOpcode::COPY),
   4869                                    *TLSBaseAddrReg)
   4870                                    .addReg(is64Bit ? X86::RAX : X86::EAX);
   4871 
   4872       return Copy;
   4873     }
   4874 
   4875     virtual const char *getPassName() const {
   4876       return "Local Dynamic TLS Access Clean-up";
   4877     }
   4878 
   4879     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   4880       AU.setPreservesCFG();
   4881       AU.addRequired<MachineDominatorTree>();
   4882       MachineFunctionPass::getAnalysisUsage(AU);
   4883     }
   4884   };
   4885 }
   4886 
   4887 char LDTLSCleanup::ID = 0;
   4888 FunctionPass*
   4889 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
   4890