Home | History | Annotate | Download | only in R600
      1 //===-- AMDGPUIndirectAddressing.cpp - Indirect Adressing Support ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file
     11 ///
     12 /// Instructions can use indirect addressing to index the register file as if it
     13 /// were memory.  This pass lowers RegisterLoad and RegisterStore instructions
     14 /// to either a COPY or a MOV that uses indirect addressing.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "AMDGPU.h"
     19 #include "R600InstrInfo.h"
     20 #include "R600MachineFunctionInfo.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/MachineFunctionPass.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/Support/Debug.h"
     26 
     27 using namespace llvm;
     28 
     29 namespace {
     30 
     31 class AMDGPUIndirectAddressingPass : public MachineFunctionPass {
     32 
     33 private:
     34   static char ID;
     35   const AMDGPUInstrInfo *TII;
     36 
     37   bool regHasExplicitDef(MachineRegisterInfo &MRI, unsigned Reg) const;
     38 
     39 public:
     40   AMDGPUIndirectAddressingPass(TargetMachine &tm) :
     41     MachineFunctionPass(ID),
     42     TII(static_cast<const AMDGPUInstrInfo*>(tm.getInstrInfo()))
     43     { }
     44 
     45   virtual bool runOnMachineFunction(MachineFunction &MF);
     46 
     47   const char *getPassName() const { return "R600 Handle indirect addressing"; }
     48 
     49 };
     50 
     51 } // End anonymous namespace
     52 
     53 char AMDGPUIndirectAddressingPass::ID = 0;
     54 
     55 FunctionPass *llvm::createAMDGPUIndirectAddressingPass(TargetMachine &tm) {
     56   return new AMDGPUIndirectAddressingPass(tm);
     57 }
     58 
     59 bool AMDGPUIndirectAddressingPass::runOnMachineFunction(MachineFunction &MF) {
     60   MachineRegisterInfo &MRI = MF.getRegInfo();
     61 
     62   int IndirectBegin = TII->getIndirectIndexBegin(MF);
     63   int IndirectEnd = TII->getIndirectIndexEnd(MF);
     64 
     65   if (IndirectBegin == -1) {
     66     // No indirect addressing, we can skip this pass
     67     assert(IndirectEnd == -1);
     68     return false;
     69   }
     70 
     71   // The map keeps track of the indirect address that is represented by
     72   // each virtual register. The key is the register and the value is the
     73   // indirect address it uses.
     74   std::map<unsigned, unsigned> RegisterAddressMap;
     75 
     76   // First pass - Lower all of the RegisterStore instructions and track which
     77   // registers are live.
     78   for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
     79                                                       BB != BB_E; ++BB) {
     80     // This map keeps track of the current live indirect registers.
     81     // The key is the address and the value is the register
     82     std::map<unsigned, unsigned> LiveAddressRegisterMap;
     83     MachineBasicBlock &MBB = *BB;
     84 
     85     for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I);
     86                                I != MBB.end(); I = Next) {
     87       Next = llvm::next(I);
     88       MachineInstr &MI = *I;
     89 
     90       if (!TII->isRegisterStore(MI)) {
     91         continue;
     92       }
     93 
     94       // Lower RegisterStore
     95 
     96       unsigned RegIndex = MI.getOperand(2).getImm();
     97       unsigned Channel = MI.getOperand(3).getImm();
     98       unsigned Address = TII->calculateIndirectAddress(RegIndex, Channel);
     99       const TargetRegisterClass *IndirectStoreRegClass =
    100                    TII->getIndirectAddrStoreRegClass(MI.getOperand(0).getReg());
    101 
    102       if (MI.getOperand(1).getReg() == AMDGPU::INDIRECT_BASE_ADDR) {
    103         // Direct register access.
    104         unsigned DstReg = MRI.createVirtualRegister(IndirectStoreRegClass);
    105 
    106         BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::COPY), DstReg)
    107                 .addOperand(MI.getOperand(0));
    108 
    109         RegisterAddressMap[DstReg] = Address;
    110         LiveAddressRegisterMap[Address] = DstReg;
    111       } else {
    112         // Indirect register access.
    113         MachineInstrBuilder MOV = TII->buildIndirectWrite(BB, I,
    114                                            MI.getOperand(0).getReg(), // Value
    115                                            Address,
    116                                            MI.getOperand(1).getReg()); // Offset
    117         for (int i = IndirectBegin; i <= IndirectEnd; ++i) {
    118           unsigned Addr = TII->calculateIndirectAddress(i, Channel);
    119           unsigned DstReg = MRI.createVirtualRegister(IndirectStoreRegClass);
    120           MOV.addReg(DstReg, RegState::Define | RegState::Implicit);
    121           RegisterAddressMap[DstReg] = Addr;
    122           LiveAddressRegisterMap[Addr] = DstReg;
    123         }
    124       }
    125       MI.eraseFromParent();
    126     }
    127 
    128     // Update the live-ins of the succesor blocks
    129     for (MachineBasicBlock::succ_iterator Succ = MBB.succ_begin(),
    130                                           SuccEnd = MBB.succ_end();
    131                                           SuccEnd != Succ; ++Succ) {
    132       std::map<unsigned, unsigned>::const_iterator Key, KeyEnd;
    133       for (Key = LiveAddressRegisterMap.begin(),
    134            KeyEnd = LiveAddressRegisterMap.end(); KeyEnd != Key; ++Key) {
    135         (*Succ)->addLiveIn(Key->second);
    136       }
    137     }
    138   }
    139 
    140   // Second pass - Lower the RegisterLoad instructions
    141   for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
    142                                                       BB != BB_E; ++BB) {
    143     // Key is the address and the value is the register
    144     std::map<unsigned, unsigned> LiveAddressRegisterMap;
    145     MachineBasicBlock &MBB = *BB;
    146 
    147     MachineBasicBlock::livein_iterator LI = MBB.livein_begin();
    148     while (LI != MBB.livein_end()) {
    149       std::vector<unsigned> PhiRegisters;
    150 
    151       // Make sure this live in is used for indirect addressing
    152       if (RegisterAddressMap.find(*LI) == RegisterAddressMap.end()) {
    153         ++LI;
    154         continue;
    155       }
    156 
    157       unsigned Address = RegisterAddressMap[*LI];
    158       LiveAddressRegisterMap[Address] = *LI;
    159       PhiRegisters.push_back(*LI);
    160 
    161       // Check if there are other live in registers which map to the same
    162       // indirect address.
    163       for (MachineBasicBlock::livein_iterator LJ = llvm::next(LI),
    164                                               LE = MBB.livein_end();
    165                                               LJ != LE; ++LJ) {
    166         unsigned Reg = *LJ;
    167         if (RegisterAddressMap.find(Reg) == RegisterAddressMap.end()) {
    168           continue;
    169         }
    170 
    171         if (RegisterAddressMap[Reg] == Address) {
    172           PhiRegisters.push_back(Reg);
    173         }
    174       }
    175 
    176       if (PhiRegisters.size() == 1) {
    177         // We don't need to insert a Phi instruction, so we can just add the
    178         // registers to the live list for the block.
    179         LiveAddressRegisterMap[Address] = *LI;
    180         MBB.removeLiveIn(*LI);
    181       } else {
    182         // We need to insert a PHI, because we have the same address being
    183         // written in multiple predecessor blocks.
    184         const TargetRegisterClass *PhiDstClass =
    185                    TII->getIndirectAddrStoreRegClass(*(PhiRegisters.begin()));
    186         unsigned PhiDstReg = MRI.createVirtualRegister(PhiDstClass);
    187         MachineInstrBuilder Phi = BuildMI(MBB, MBB.begin(),
    188                                           MBB.findDebugLoc(MBB.begin()),
    189                                           TII->get(AMDGPU::PHI), PhiDstReg);
    190 
    191         for (std::vector<unsigned>::const_iterator RI = PhiRegisters.begin(),
    192                                                    RE = PhiRegisters.end();
    193                                                    RI != RE; ++RI) {
    194           unsigned Reg = *RI;
    195           MachineInstr *DefInst = MRI.getVRegDef(Reg);
    196           assert(DefInst);
    197           MachineBasicBlock *RegBlock = DefInst->getParent();
    198           Phi.addReg(Reg);
    199           Phi.addMBB(RegBlock);
    200           MBB.removeLiveIn(Reg);
    201         }
    202         RegisterAddressMap[PhiDstReg] = Address;
    203         LiveAddressRegisterMap[Address] = PhiDstReg;
    204       }
    205       LI = MBB.livein_begin();
    206     }
    207 
    208     for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I);
    209                                I != MBB.end(); I = Next) {
    210       Next = llvm::next(I);
    211       MachineInstr &MI = *I;
    212 
    213       if (!TII->isRegisterLoad(MI)) {
    214         if (MI.getOpcode() == AMDGPU::PHI) {
    215           continue;
    216         }
    217         // Check for indirect register defs
    218         for (unsigned OpIdx = 0, NumOperands = MI.getNumOperands();
    219                                  OpIdx < NumOperands; ++OpIdx) {
    220           MachineOperand &MO = MI.getOperand(OpIdx);
    221           if (MO.isReg() && MO.isDef() &&
    222               RegisterAddressMap.find(MO.getReg()) != RegisterAddressMap.end()) {
    223             unsigned Reg = MO.getReg();
    224             unsigned LiveAddress = RegisterAddressMap[Reg];
    225             // Chain the live-ins
    226             if (LiveAddressRegisterMap.find(LiveAddress) !=
    227                                                      RegisterAddressMap.end()) {
    228               MI.addOperand(MachineOperand::CreateReg(
    229                                   LiveAddressRegisterMap[LiveAddress],
    230                                   false, // isDef
    231                                   true,  // isImp
    232                                   true));  // isKill
    233             }
    234             LiveAddressRegisterMap[LiveAddress] = Reg;
    235           }
    236         }
    237         continue;
    238       }
    239 
    240       const TargetRegisterClass *SuperIndirectRegClass =
    241                                                 TII->getSuperIndirectRegClass();
    242       const TargetRegisterClass *IndirectLoadRegClass =
    243                                              TII->getIndirectAddrLoadRegClass();
    244       unsigned IndirectReg = MRI.createVirtualRegister(SuperIndirectRegClass);
    245 
    246       unsigned RegIndex = MI.getOperand(2).getImm();
    247       unsigned Channel = MI.getOperand(3).getImm();
    248       unsigned Address = TII->calculateIndirectAddress(RegIndex, Channel);
    249 
    250       if (MI.getOperand(1).getReg() == AMDGPU::INDIRECT_BASE_ADDR) {
    251         // Direct register access
    252         unsigned Reg = LiveAddressRegisterMap[Address];
    253         unsigned AddrReg = IndirectLoadRegClass->getRegister(Address);
    254 
    255         if (regHasExplicitDef(MRI, Reg)) {
    256           // If the register we are reading from has an explicit def, then that
    257           // means it was written via a direct register access (i.e. COPY
    258           // or other instruction that doesn't use indirect addressing).  In
    259           // this case we know where the value has been stored, so we can just
    260           // issue a copy.
    261           BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::COPY),
    262                   MI.getOperand(0).getReg())
    263                   .addReg(Reg);
    264         } else {
    265           // If the register we are reading has an implicit def, then that
    266           // means it was written by an indirect register access (i.e. An
    267           // instruction that uses indirect addressing.
    268           BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::COPY),
    269                    MI.getOperand(0).getReg())
    270                    .addReg(AddrReg)
    271                    .addReg(Reg, RegState::Implicit);
    272         }
    273       } else {
    274         // Indirect register access
    275 
    276         // Note on REQ_SEQUENCE instructons: You can't actually use the register
    277         // it defines unless  you have an instruction that takes the defined
    278         // register class as an operand.
    279 
    280         MachineInstrBuilder Sequence = BuildMI(MBB, I, MBB.findDebugLoc(I),
    281                                                TII->get(AMDGPU::REG_SEQUENCE),
    282                                                IndirectReg);
    283         for (int i = IndirectBegin; i <= IndirectEnd; ++i) {
    284           unsigned Addr = TII->calculateIndirectAddress(i, Channel);
    285           if (LiveAddressRegisterMap.find(Addr) == LiveAddressRegisterMap.end()) {
    286             continue;
    287           }
    288           unsigned Reg = LiveAddressRegisterMap[Addr];
    289 
    290           // We only need to use REG_SEQUENCE for explicit defs, since the
    291           // register coalescer won't do anything with the implicit defs.
    292           if (!regHasExplicitDef(MRI, Reg)) {
    293             continue;
    294           }
    295 
    296           // Insert a REQ_SEQUENCE instruction to force the register allocator
    297           // to allocate the virtual register to the correct physical register.
    298           Sequence.addReg(LiveAddressRegisterMap[Addr]);
    299           Sequence.addImm(TII->getRegisterInfo().getIndirectSubReg(Addr));
    300         }
    301         MachineInstrBuilder Mov = TII->buildIndirectRead(BB, I,
    302                                            MI.getOperand(0).getReg(), // Value
    303                                            Address,
    304                                            MI.getOperand(1).getReg()); // Offset
    305 
    306 
    307 
    308         Mov.addReg(IndirectReg, RegState::Implicit | RegState::Kill);
    309         Mov.addReg(LiveAddressRegisterMap[Address], RegState::Implicit);
    310 
    311       }
    312       MI.eraseFromParent();
    313     }
    314   }
    315   return false;
    316 }
    317 
    318 bool AMDGPUIndirectAddressingPass::regHasExplicitDef(MachineRegisterInfo &MRI,
    319                                                   unsigned Reg) const {
    320   MachineInstr *DefInstr = MRI.getVRegDef(Reg);
    321 
    322   if (!DefInstr) {
    323     return false;
    324   }
    325 
    326   if (DefInstr->getOpcode() == AMDGPU::PHI) {
    327     bool Explicit = false;
    328     for (MachineInstr::const_mop_iterator I = DefInstr->operands_begin(),
    329                                           E = DefInstr->operands_end();
    330                                           I != E; ++I) {
    331       const MachineOperand &MO = *I;
    332       if (!MO.isReg() || MO.isDef()) {
    333         continue;
    334       }
    335 
    336       Explicit = Explicit || regHasExplicitDef(MRI, MO.getReg());
    337     }
    338     return Explicit;
    339   }
    340 
    341   return DefInstr->getOperand(0).isReg() &&
    342          DefInstr->getOperand(0).getReg() == Reg;
    343 }
    344