Home | History | Annotate | Download | only in dec
      1 // Copyright 2010 Google Inc. All Rights Reserved.
      2 //
      3 // This code is licensed under the same terms as WebM:
      4 //  Software License Agreement:  http://www.webmproject.org/license/software/
      5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
      6 // -----------------------------------------------------------------------------
      7 //
      8 // Frame-reconstruction function. Memory allocation.
      9 //
     10 // Author: Skal (pascal.massimino (at) gmail.com)
     11 
     12 #include <stdlib.h>
     13 #include "./vp8i.h"
     14 #include "../utils/utils.h"
     15 
     16 #if defined(__cplusplus) || defined(c_plusplus)
     17 extern "C" {
     18 #endif
     19 
     20 #define ALIGN_MASK (32 - 1)
     21 
     22 //------------------------------------------------------------------------------
     23 // Filtering
     24 
     25 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary
     26 // for caching, given a filtering level.
     27 // Simple filter:  up to 2 luma samples are read and 1 is written.
     28 // Complex filter: up to 4 luma samples are read and 3 are written. Same for
     29 //                 U/V, so it's 8 samples total (because of the 2x upsampling).
     30 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
     31 
     32 static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) {
     33   if (keyframe) {
     34     return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
     35   } else {
     36     return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
     37   }
     38 }
     39 
     40 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
     41   const VP8ThreadContext* const ctx = &dec->thread_ctx_;
     42   const int y_bps = dec->cache_y_stride_;
     43   VP8FInfo* const f_info = ctx->f_info_ + mb_x;
     44   uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16;
     45   const int level = f_info->f_level_;
     46   const int ilevel = f_info->f_ilevel_;
     47   const int limit = 2 * level + ilevel;
     48   if (level == 0) {
     49     return;
     50   }
     51   if (dec->filter_type_ == 1) {   // simple
     52     if (mb_x > 0) {
     53       VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
     54     }
     55     if (f_info->f_inner_) {
     56       VP8SimpleHFilter16i(y_dst, y_bps, limit);
     57     }
     58     if (mb_y > 0) {
     59       VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
     60     }
     61     if (f_info->f_inner_) {
     62       VP8SimpleVFilter16i(y_dst, y_bps, limit);
     63     }
     64   } else {    // complex
     65     const int uv_bps = dec->cache_uv_stride_;
     66     uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
     67     uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
     68     const int hev_thresh =
     69         hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
     70     if (mb_x > 0) {
     71       VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
     72       VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
     73     }
     74     if (f_info->f_inner_) {
     75       VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
     76       VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
     77     }
     78     if (mb_y > 0) {
     79       VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
     80       VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
     81     }
     82     if (f_info->f_inner_) {
     83       VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
     84       VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
     85     }
     86   }
     87 }
     88 
     89 // Filter the decoded macroblock row (if needed)
     90 static void FilterRow(const VP8Decoder* const dec) {
     91   int mb_x;
     92   const int mb_y = dec->thread_ctx_.mb_y_;
     93   assert(dec->thread_ctx_.filter_row_);
     94   for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
     95     DoFilter(dec, mb_x, mb_y);
     96   }
     97 }
     98 
     99 //------------------------------------------------------------------------------
    100 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
    101 
    102 static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
    103   if (dec->filter_type_ > 0) {
    104     int s;
    105     const VP8FilterHeader* const hdr = &dec->filter_hdr_;
    106     for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
    107       int i4x4;
    108       // First, compute the initial level
    109       int base_level;
    110       if (dec->segment_hdr_.use_segment_) {
    111         base_level = dec->segment_hdr_.filter_strength_[s];
    112         if (!dec->segment_hdr_.absolute_delta_) {
    113           base_level += hdr->level_;
    114         }
    115       } else {
    116         base_level = hdr->level_;
    117       }
    118       for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
    119         VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
    120         int level = base_level;
    121         if (hdr->use_lf_delta_) {
    122           // TODO(skal): only CURRENT is handled for now.
    123           level += hdr->ref_lf_delta_[0];
    124           if (i4x4) {
    125             level += hdr->mode_lf_delta_[0];
    126           }
    127         }
    128         level = (level < 0) ? 0 : (level > 63) ? 63 : level;
    129         info->f_level_ = level;
    130 
    131         if (hdr->sharpness_ > 0) {
    132           if (hdr->sharpness_ > 4) {
    133             level >>= 2;
    134           } else {
    135             level >>= 1;
    136           }
    137           if (level > 9 - hdr->sharpness_) {
    138             level = 9 - hdr->sharpness_;
    139           }
    140         }
    141         info->f_ilevel_ = (level < 1) ? 1 : level;
    142         info->f_inner_ = 0;
    143       }
    144     }
    145   }
    146 }
    147 
    148 //------------------------------------------------------------------------------
    149 // This function is called after a row of macroblocks is finished decoding.
    150 // It also takes into account the following restrictions:
    151 //  * In case of in-loop filtering, we must hold off sending some of the bottom
    152 //    pixels as they are yet unfiltered. They will be when the next macroblock
    153 //    row is decoded. Meanwhile, we must preserve them by rotating them in the
    154 //    cache area. This doesn't hold for the very bottom row of the uncropped
    155 //    picture of course.
    156 //  * we must clip the remaining pixels against the cropping area. The VP8Io
    157 //    struct must have the following fields set correctly before calling put():
    158 
    159 #define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB
    160 
    161 // Finalize and transmit a complete row. Return false in case of user-abort.
    162 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
    163   int ok = 1;
    164   const VP8ThreadContext* const ctx = &dec->thread_ctx_;
    165   const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
    166   const int ysize = extra_y_rows * dec->cache_y_stride_;
    167   const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
    168   const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_;
    169   const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_;
    170   uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
    171   uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
    172   uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
    173   const int first_row = (ctx->mb_y_ == 0);
    174   const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1);
    175   int y_start = MACROBLOCK_VPOS(ctx->mb_y_);
    176   int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1);
    177 
    178   if (ctx->filter_row_) {
    179     FilterRow(dec);
    180   }
    181 
    182   if (io->put) {
    183     if (!first_row) {
    184       y_start -= extra_y_rows;
    185       io->y = ydst;
    186       io->u = udst;
    187       io->v = vdst;
    188     } else {
    189       io->y = dec->cache_y_ + y_offset;
    190       io->u = dec->cache_u_ + uv_offset;
    191       io->v = dec->cache_v_ + uv_offset;
    192     }
    193 
    194     if (!last_row) {
    195       y_end -= extra_y_rows;
    196     }
    197     if (y_end > io->crop_bottom) {
    198       y_end = io->crop_bottom;    // make sure we don't overflow on last row.
    199     }
    200     io->a = NULL;
    201     if (dec->alpha_data_ != NULL && y_start < y_end) {
    202       // TODO(skal): several things to correct here:
    203       // * testing presence of alpha with dec->alpha_data_ is not a good idea
    204       // * we're actually decompressing the full plane only once. It should be
    205       //   more obvious from signature.
    206       // * we could free alpha_data_ right after this call, but we don't own.
    207       io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
    208       if (io->a == NULL) {
    209         return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
    210                            "Could not decode alpha data.");
    211       }
    212     }
    213     if (y_start < io->crop_top) {
    214       const int delta_y = io->crop_top - y_start;
    215       y_start = io->crop_top;
    216       assert(!(delta_y & 1));
    217       io->y += dec->cache_y_stride_ * delta_y;
    218       io->u += dec->cache_uv_stride_ * (delta_y >> 1);
    219       io->v += dec->cache_uv_stride_ * (delta_y >> 1);
    220       if (io->a != NULL) {
    221         io->a += io->width * delta_y;
    222       }
    223     }
    224     if (y_start < y_end) {
    225       io->y += io->crop_left;
    226       io->u += io->crop_left >> 1;
    227       io->v += io->crop_left >> 1;
    228       if (io->a != NULL) {
    229         io->a += io->crop_left;
    230       }
    231       io->mb_y = y_start - io->crop_top;
    232       io->mb_w = io->crop_right - io->crop_left;
    233       io->mb_h = y_end - y_start;
    234       ok = io->put(io);
    235     }
    236   }
    237   // rotate top samples if needed
    238   if (ctx->id_ + 1 == dec->num_caches_) {
    239     if (!last_row) {
    240       memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
    241       memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
    242       memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
    243     }
    244   }
    245 
    246   return ok;
    247 }
    248 
    249 #undef MACROBLOCK_VPOS
    250 
    251 //------------------------------------------------------------------------------
    252 
    253 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
    254   int ok = 1;
    255   VP8ThreadContext* const ctx = &dec->thread_ctx_;
    256   if (!dec->use_threads_) {
    257     // ctx->id_ and ctx->f_info_ are already set
    258     ctx->mb_y_ = dec->mb_y_;
    259     ctx->filter_row_ = dec->filter_row_;
    260     ok = FinishRow(dec, io);
    261   } else {
    262     WebPWorker* const worker = &dec->worker_;
    263     // Finish previous job *before* updating context
    264     ok &= WebPWorkerSync(worker);
    265     assert(worker->status_ == OK);
    266     if (ok) {   // spawn a new deblocking/output job
    267       ctx->io_ = *io;
    268       ctx->id_ = dec->cache_id_;
    269       ctx->mb_y_ = dec->mb_y_;
    270       ctx->filter_row_ = dec->filter_row_;
    271       if (ctx->filter_row_) {    // just swap filter info
    272         VP8FInfo* const tmp = ctx->f_info_;
    273         ctx->f_info_ = dec->f_info_;
    274         dec->f_info_ = tmp;
    275       }
    276       WebPWorkerLaunch(worker);
    277       if (++dec->cache_id_ == dec->num_caches_) {
    278         dec->cache_id_ = 0;
    279       }
    280     }
    281   }
    282   return ok;
    283 }
    284 
    285 //------------------------------------------------------------------------------
    286 // Finish setting up the decoding parameter once user's setup() is called.
    287 
    288 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
    289   // Call setup() first. This may trigger additional decoding features on 'io'.
    290   // Note: Afterward, we must call teardown() not matter what.
    291   if (io->setup && !io->setup(io)) {
    292     VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
    293     return dec->status_;
    294   }
    295 
    296   // Disable filtering per user request
    297   if (io->bypass_filtering) {
    298     dec->filter_type_ = 0;
    299   }
    300   // TODO(skal): filter type / strength / sharpness forcing
    301 
    302   // Define the area where we can skip in-loop filtering, in case of cropping.
    303   //
    304   // 'Simple' filter reads two luma samples outside of the macroblock and
    305   // and filters one. It doesn't filter the chroma samples. Hence, we can
    306   // avoid doing the in-loop filtering before crop_top/crop_left position.
    307   // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
    308   // Means: there's a dependency chain that goes all the way up to the
    309   // top-left corner of the picture (MB #0). We must filter all the previous
    310   // macroblocks.
    311   // TODO(skal): add an 'approximate_decoding' option, that won't produce
    312   // a 1:1 bit-exactness for complex filtering?
    313   {
    314     const int extra_pixels = kFilterExtraRows[dec->filter_type_];
    315     if (dec->filter_type_ == 2) {
    316       // For complex filter, we need to preserve the dependency chain.
    317       dec->tl_mb_x_ = 0;
    318       dec->tl_mb_y_ = 0;
    319     } else {
    320       // For simple filter, we can filter only the cropped region.
    321       // We include 'extra_pixels' on the other side of the boundary, since
    322       // vertical or horizontal filtering of the previous macroblock can
    323       // modify some abutting pixels.
    324       dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
    325       dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
    326       if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
    327       if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
    328     }
    329     // We need some 'extra' pixels on the right/bottom.
    330     dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
    331     dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
    332     if (dec->br_mb_x_ > dec->mb_w_) {
    333       dec->br_mb_x_ = dec->mb_w_;
    334     }
    335     if (dec->br_mb_y_ > dec->mb_h_) {
    336       dec->br_mb_y_ = dec->mb_h_;
    337     }
    338   }
    339   PrecomputeFilterStrengths(dec);
    340   return VP8_STATUS_OK;
    341 }
    342 
    343 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
    344   int ok = 1;
    345   if (dec->use_threads_) {
    346     ok = WebPWorkerSync(&dec->worker_);
    347   }
    348 
    349   if (io->teardown) {
    350     io->teardown(io);
    351   }
    352   return ok;
    353 }
    354 
    355 //------------------------------------------------------------------------------
    356 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
    357 //
    358 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges
    359 // immediately, and needs to wait for first few rows of the next macroblock to
    360 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
    361 // on strength).
    362 // With two threads, the vertical positions of the rows being decoded are:
    363 // Decode:  [ 0..15][16..31][32..47][48..63][64..79][...
    364 // Deblock:         [ 0..11][12..27][28..43][44..59][...
    365 // If we use two threads and two caches of 16 pixels, the sequence would be:
    366 // Decode:  [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
    367 // Deblock:         [ 0..11][12..27!!][-4..11][12..27][...
    368 // The problem occurs during row [12..15!!] that both the decoding and
    369 // deblocking threads are writing simultaneously.
    370 // With 3 cache lines, one get a safe write pattern:
    371 // Decode:  [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
    372 // Deblock:         [ 0..11][12..27][28..43][-4..11][12..27][28...
    373 // Note that multi-threaded output _without_ deblocking can make use of two
    374 // cache lines of 16 pixels only, since there's no lagging behind. The decoding
    375 // and output process have non-concurrent writing:
    376 // Decode:  [ 0..15][16..31][ 0..15][16..31][...
    377 // io->put:         [ 0..15][16..31][ 0..15][...
    378 
    379 #define MT_CACHE_LINES 3
    380 #define ST_CACHE_LINES 1   // 1 cache row only for single-threaded case
    381 
    382 // Initialize multi/single-thread worker
    383 static int InitThreadContext(VP8Decoder* const dec) {
    384   dec->cache_id_ = 0;
    385   if (dec->use_threads_) {
    386     WebPWorker* const worker = &dec->worker_;
    387     if (!WebPWorkerReset(worker)) {
    388       return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
    389                          "thread initialization failed.");
    390     }
    391     worker->data1 = dec;
    392     worker->data2 = (void*)&dec->thread_ctx_.io_;
    393     worker->hook = (WebPWorkerHook)FinishRow;
    394     dec->num_caches_ =
    395       (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
    396   } else {
    397     dec->num_caches_ = ST_CACHE_LINES;
    398   }
    399   return 1;
    400 }
    401 
    402 #undef MT_CACHE_LINES
    403 #undef ST_CACHE_LINES
    404 
    405 //------------------------------------------------------------------------------
    406 // Memory setup
    407 
    408 static int AllocateMemory(VP8Decoder* const dec) {
    409   const int num_caches = dec->num_caches_;
    410   const int mb_w = dec->mb_w_;
    411   // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
    412   const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
    413   const size_t top_size = (16 + 8 + 8) * mb_w;
    414   const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
    415   const size_t f_info_size =
    416       (dec->filter_type_ > 0) ?
    417           mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo)
    418         : 0;
    419   const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
    420   const size_t coeffs_size = 384 * sizeof(*dec->coeffs_);
    421   const size_t cache_height = (16 * num_caches
    422                             + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
    423   const size_t cache_size = top_size * cache_height;
    424   // alpha_size is the only one that scales as width x height.
    425   const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
    426       (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
    427   const uint64_t needed = (uint64_t)intra_pred_mode_size
    428                         + top_size + mb_info_size + f_info_size
    429                         + yuv_size + coeffs_size
    430                         + cache_size + alpha_size + ALIGN_MASK;
    431   uint8_t* mem;
    432 
    433   if (needed != (size_t)needed) return 0;  // check for overflow
    434   if (needed > dec->mem_size_) {
    435     free(dec->mem_);
    436     dec->mem_size_ = 0;
    437     dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
    438     if (dec->mem_ == NULL) {
    439       return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
    440                          "no memory during frame initialization.");
    441     }
    442     // down-cast is ok, thanks to WebPSafeAlloc() above.
    443     dec->mem_size_ = (size_t)needed;
    444   }
    445 
    446   mem = (uint8_t*)dec->mem_;
    447   dec->intra_t_ = (uint8_t*)mem;
    448   mem += intra_pred_mode_size;
    449 
    450   dec->y_t_ = (uint8_t*)mem;
    451   mem += 16 * mb_w;
    452   dec->u_t_ = (uint8_t*)mem;
    453   mem += 8 * mb_w;
    454   dec->v_t_ = (uint8_t*)mem;
    455   mem += 8 * mb_w;
    456 
    457   dec->mb_info_ = ((VP8MB*)mem) + 1;
    458   mem += mb_info_size;
    459 
    460   dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
    461   mem += f_info_size;
    462   dec->thread_ctx_.id_ = 0;
    463   dec->thread_ctx_.f_info_ = dec->f_info_;
    464   if (dec->use_threads_) {
    465     // secondary cache line. The deblocking process need to make use of the
    466     // filtering strength from previous macroblock row, while the new ones
    467     // are being decoded in parallel. We'll just swap the pointers.
    468     dec->thread_ctx_.f_info_ += mb_w;
    469   }
    470 
    471   mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
    472   assert((yuv_size & ALIGN_MASK) == 0);
    473   dec->yuv_b_ = (uint8_t*)mem;
    474   mem += yuv_size;
    475 
    476   dec->coeffs_ = (int16_t*)mem;
    477   mem += coeffs_size;
    478 
    479   dec->cache_y_stride_ = 16 * mb_w;
    480   dec->cache_uv_stride_ = 8 * mb_w;
    481   {
    482     const int extra_rows = kFilterExtraRows[dec->filter_type_];
    483     const int extra_y = extra_rows * dec->cache_y_stride_;
    484     const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
    485     dec->cache_y_ = ((uint8_t*)mem) + extra_y;
    486     dec->cache_u_ = dec->cache_y_
    487                   + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
    488     dec->cache_v_ = dec->cache_u_
    489                   + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
    490     dec->cache_id_ = 0;
    491   }
    492   mem += cache_size;
    493 
    494   // alpha plane
    495   dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
    496   mem += alpha_size;
    497   assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
    498 
    499   // note: left-info is initialized once for all.
    500   memset(dec->mb_info_ - 1, 0, mb_info_size);
    501 
    502   // initialize top
    503   memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
    504 
    505   return 1;
    506 }
    507 
    508 static void InitIo(VP8Decoder* const dec, VP8Io* io) {
    509   // prepare 'io'
    510   io->mb_y = 0;
    511   io->y = dec->cache_y_;
    512   io->u = dec->cache_u_;
    513   io->v = dec->cache_v_;
    514   io->y_stride = dec->cache_y_stride_;
    515   io->uv_stride = dec->cache_uv_stride_;
    516   io->a = NULL;
    517 }
    518 
    519 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
    520   if (!InitThreadContext(dec)) return 0;  // call first. Sets dec->num_caches_.
    521   if (!AllocateMemory(dec)) return 0;
    522   InitIo(dec, io);
    523   VP8DspInit();  // Init critical function pointers and look-up tables.
    524   return 1;
    525 }
    526 
    527 //------------------------------------------------------------------------------
    528 // Main reconstruction function.
    529 
    530 static const int kScan[16] = {
    531   0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
    532   0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
    533   0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
    534   0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
    535 };
    536 
    537 static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) {
    538   if (mode == B_DC_PRED) {
    539     if (dec->mb_x_ == 0) {
    540       return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
    541     } else {
    542       return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
    543     }
    544   }
    545   return mode;
    546 }
    547 
    548 static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) {
    549   *(uint32_t*)dst = *(uint32_t*)src;
    550 }
    551 
    552 void VP8ReconstructBlock(VP8Decoder* const dec) {
    553   int j;
    554   uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
    555   uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
    556   uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
    557 
    558   // Rotate in the left samples from previously decoded block. We move four
    559   // pixels at a time for alignment reason, and because of in-loop filter.
    560   if (dec->mb_x_ > 0) {
    561     for (j = -1; j < 16; ++j) {
    562       Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
    563     }
    564     for (j = -1; j < 8; ++j) {
    565       Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
    566       Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
    567     }
    568   } else {
    569     for (j = 0; j < 16; ++j) {
    570       y_dst[j * BPS - 1] = 129;
    571     }
    572     for (j = 0; j < 8; ++j) {
    573       u_dst[j * BPS - 1] = 129;
    574       v_dst[j * BPS - 1] = 129;
    575     }
    576     // Init top-left sample on left column too
    577     if (dec->mb_y_ > 0) {
    578       y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
    579     }
    580   }
    581   {
    582     // bring top samples into the cache
    583     uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
    584     uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
    585     uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
    586     const int16_t* coeffs = dec->coeffs_;
    587     int n;
    588 
    589     if (dec->mb_y_ > 0) {
    590       memcpy(y_dst - BPS, top_y, 16);
    591       memcpy(u_dst - BPS, top_u, 8);
    592       memcpy(v_dst - BPS, top_v, 8);
    593     } else if (dec->mb_x_ == 0) {
    594       // we only need to do this init once at block (0,0).
    595       // Afterward, it remains valid for the whole topmost row.
    596       memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
    597       memset(u_dst - BPS - 1, 127, 8 + 1);
    598       memset(v_dst - BPS - 1, 127, 8 + 1);
    599     }
    600 
    601     // predict and add residuals
    602 
    603     if (dec->is_i4x4_) {   // 4x4
    604       uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
    605 
    606       if (dec->mb_y_ > 0) {
    607         if (dec->mb_x_ >= dec->mb_w_ - 1) {    // on rightmost border
    608           top_right[0] = top_y[15] * 0x01010101u;
    609         } else {
    610           memcpy(top_right, top_y + 16, sizeof(*top_right));
    611         }
    612       }
    613       // replicate the top-right pixels below
    614       top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
    615 
    616       // predict and add residues for all 4x4 blocks in turn.
    617       for (n = 0; n < 16; n++) {
    618         uint8_t* const dst = y_dst + kScan[n];
    619         VP8PredLuma4[dec->imodes_[n]](dst);
    620         if (dec->non_zero_ac_ & (1 << n)) {
    621           VP8Transform(coeffs + n * 16, dst, 0);
    622         } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
    623           VP8TransformDC(coeffs + n * 16, dst);
    624         }
    625       }
    626     } else {    // 16x16
    627       const int pred_func = CheckMode(dec, dec->imodes_[0]);
    628       VP8PredLuma16[pred_func](y_dst);
    629       if (dec->non_zero_) {
    630         for (n = 0; n < 16; n++) {
    631           uint8_t* const dst = y_dst + kScan[n];
    632           if (dec->non_zero_ac_ & (1 << n)) {
    633             VP8Transform(coeffs + n * 16, dst, 0);
    634           } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
    635             VP8TransformDC(coeffs + n * 16, dst);
    636           }
    637         }
    638       }
    639     }
    640     {
    641       // Chroma
    642       const int pred_func = CheckMode(dec, dec->uvmode_);
    643       VP8PredChroma8[pred_func](u_dst);
    644       VP8PredChroma8[pred_func](v_dst);
    645 
    646       if (dec->non_zero_ & 0x0f0000) {   // chroma-U
    647         const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
    648         if (dec->non_zero_ac_ & 0x0f0000) {
    649           VP8TransformUV(u_coeffs, u_dst);
    650         } else {
    651           VP8TransformDCUV(u_coeffs, u_dst);
    652         }
    653       }
    654       if (dec->non_zero_ & 0xf00000) {   // chroma-V
    655         const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
    656         if (dec->non_zero_ac_ & 0xf00000) {
    657           VP8TransformUV(v_coeffs, v_dst);
    658         } else {
    659           VP8TransformDCUV(v_coeffs, v_dst);
    660         }
    661       }
    662 
    663       // stash away top samples for next block
    664       if (dec->mb_y_ < dec->mb_h_ - 1) {
    665         memcpy(top_y, y_dst + 15 * BPS, 16);
    666         memcpy(top_u, u_dst +  7 * BPS,  8);
    667         memcpy(top_v, v_dst +  7 * BPS,  8);
    668       }
    669     }
    670   }
    671   // Transfer reconstructed samples from yuv_b_ cache to final destination.
    672   {
    673     const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_;
    674     const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_;
    675     uint8_t* const y_out = dec->cache_y_ + dec->mb_x_ * 16 + y_offset;
    676     uint8_t* const u_out = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset;
    677     uint8_t* const v_out = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset;
    678     for (j = 0; j < 16; ++j) {
    679       memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
    680     }
    681     for (j = 0; j < 8; ++j) {
    682       memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
    683       memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
    684     }
    685   }
    686 }
    687 
    688 //------------------------------------------------------------------------------
    689 
    690 #if defined(__cplusplus) || defined(c_plusplus)
    691 }    // extern "C"
    692 #endif
    693