1 // Copyright 2010 Google Inc. All Rights Reserved. 2 // 3 // This code is licensed under the same terms as WebM: 4 // Software License Agreement: http://www.webmproject.org/license/software/ 5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ 6 // ----------------------------------------------------------------------------- 7 // 8 // Frame-reconstruction function. Memory allocation. 9 // 10 // Author: Skal (pascal.massimino (at) gmail.com) 11 12 #include <stdlib.h> 13 #include "./vp8i.h" 14 #include "../utils/utils.h" 15 16 #if defined(__cplusplus) || defined(c_plusplus) 17 extern "C" { 18 #endif 19 20 #define ALIGN_MASK (32 - 1) 21 22 //------------------------------------------------------------------------------ 23 // Filtering 24 25 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary 26 // for caching, given a filtering level. 27 // Simple filter: up to 2 luma samples are read and 1 is written. 28 // Complex filter: up to 4 luma samples are read and 3 are written. Same for 29 // U/V, so it's 8 samples total (because of the 2x upsampling). 30 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; 31 32 static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) { 33 if (keyframe) { 34 return (level >= 40) ? 2 : (level >= 15) ? 1 : 0; 35 } else { 36 return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0; 37 } 38 } 39 40 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { 41 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 42 const int y_bps = dec->cache_y_stride_; 43 VP8FInfo* const f_info = ctx->f_info_ + mb_x; 44 uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16; 45 const int level = f_info->f_level_; 46 const int ilevel = f_info->f_ilevel_; 47 const int limit = 2 * level + ilevel; 48 if (level == 0) { 49 return; 50 } 51 if (dec->filter_type_ == 1) { // simple 52 if (mb_x > 0) { 53 VP8SimpleHFilter16(y_dst, y_bps, limit + 4); 54 } 55 if (f_info->f_inner_) { 56 VP8SimpleHFilter16i(y_dst, y_bps, limit); 57 } 58 if (mb_y > 0) { 59 VP8SimpleVFilter16(y_dst, y_bps, limit + 4); 60 } 61 if (f_info->f_inner_) { 62 VP8SimpleVFilter16i(y_dst, y_bps, limit); 63 } 64 } else { // complex 65 const int uv_bps = dec->cache_uv_stride_; 66 uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8; 67 uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8; 68 const int hev_thresh = 69 hev_thresh_from_level(level, dec->frm_hdr_.key_frame_); 70 if (mb_x > 0) { 71 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 72 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 73 } 74 if (f_info->f_inner_) { 75 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 76 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 77 } 78 if (mb_y > 0) { 79 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 80 VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 81 } 82 if (f_info->f_inner_) { 83 VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 84 VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 85 } 86 } 87 } 88 89 // Filter the decoded macroblock row (if needed) 90 static void FilterRow(const VP8Decoder* const dec) { 91 int mb_x; 92 const int mb_y = dec->thread_ctx_.mb_y_; 93 assert(dec->thread_ctx_.filter_row_); 94 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { 95 DoFilter(dec, mb_x, mb_y); 96 } 97 } 98 99 //------------------------------------------------------------------------------ 100 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. 101 102 static void PrecomputeFilterStrengths(VP8Decoder* const dec) { 103 if (dec->filter_type_ > 0) { 104 int s; 105 const VP8FilterHeader* const hdr = &dec->filter_hdr_; 106 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { 107 int i4x4; 108 // First, compute the initial level 109 int base_level; 110 if (dec->segment_hdr_.use_segment_) { 111 base_level = dec->segment_hdr_.filter_strength_[s]; 112 if (!dec->segment_hdr_.absolute_delta_) { 113 base_level += hdr->level_; 114 } 115 } else { 116 base_level = hdr->level_; 117 } 118 for (i4x4 = 0; i4x4 <= 1; ++i4x4) { 119 VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; 120 int level = base_level; 121 if (hdr->use_lf_delta_) { 122 // TODO(skal): only CURRENT is handled for now. 123 level += hdr->ref_lf_delta_[0]; 124 if (i4x4) { 125 level += hdr->mode_lf_delta_[0]; 126 } 127 } 128 level = (level < 0) ? 0 : (level > 63) ? 63 : level; 129 info->f_level_ = level; 130 131 if (hdr->sharpness_ > 0) { 132 if (hdr->sharpness_ > 4) { 133 level >>= 2; 134 } else { 135 level >>= 1; 136 } 137 if (level > 9 - hdr->sharpness_) { 138 level = 9 - hdr->sharpness_; 139 } 140 } 141 info->f_ilevel_ = (level < 1) ? 1 : level; 142 info->f_inner_ = 0; 143 } 144 } 145 } 146 } 147 148 //------------------------------------------------------------------------------ 149 // This function is called after a row of macroblocks is finished decoding. 150 // It also takes into account the following restrictions: 151 // * In case of in-loop filtering, we must hold off sending some of the bottom 152 // pixels as they are yet unfiltered. They will be when the next macroblock 153 // row is decoded. Meanwhile, we must preserve them by rotating them in the 154 // cache area. This doesn't hold for the very bottom row of the uncropped 155 // picture of course. 156 // * we must clip the remaining pixels against the cropping area. The VP8Io 157 // struct must have the following fields set correctly before calling put(): 158 159 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB 160 161 // Finalize and transmit a complete row. Return false in case of user-abort. 162 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { 163 int ok = 1; 164 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 165 const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; 166 const int ysize = extra_y_rows * dec->cache_y_stride_; 167 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; 168 const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_; 169 const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_; 170 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; 171 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; 172 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; 173 const int first_row = (ctx->mb_y_ == 0); 174 const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1); 175 int y_start = MACROBLOCK_VPOS(ctx->mb_y_); 176 int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1); 177 178 if (ctx->filter_row_) { 179 FilterRow(dec); 180 } 181 182 if (io->put) { 183 if (!first_row) { 184 y_start -= extra_y_rows; 185 io->y = ydst; 186 io->u = udst; 187 io->v = vdst; 188 } else { 189 io->y = dec->cache_y_ + y_offset; 190 io->u = dec->cache_u_ + uv_offset; 191 io->v = dec->cache_v_ + uv_offset; 192 } 193 194 if (!last_row) { 195 y_end -= extra_y_rows; 196 } 197 if (y_end > io->crop_bottom) { 198 y_end = io->crop_bottom; // make sure we don't overflow on last row. 199 } 200 io->a = NULL; 201 if (dec->alpha_data_ != NULL && y_start < y_end) { 202 // TODO(skal): several things to correct here: 203 // * testing presence of alpha with dec->alpha_data_ is not a good idea 204 // * we're actually decompressing the full plane only once. It should be 205 // more obvious from signature. 206 // * we could free alpha_data_ right after this call, but we don't own. 207 io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); 208 if (io->a == NULL) { 209 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, 210 "Could not decode alpha data."); 211 } 212 } 213 if (y_start < io->crop_top) { 214 const int delta_y = io->crop_top - y_start; 215 y_start = io->crop_top; 216 assert(!(delta_y & 1)); 217 io->y += dec->cache_y_stride_ * delta_y; 218 io->u += dec->cache_uv_stride_ * (delta_y >> 1); 219 io->v += dec->cache_uv_stride_ * (delta_y >> 1); 220 if (io->a != NULL) { 221 io->a += io->width * delta_y; 222 } 223 } 224 if (y_start < y_end) { 225 io->y += io->crop_left; 226 io->u += io->crop_left >> 1; 227 io->v += io->crop_left >> 1; 228 if (io->a != NULL) { 229 io->a += io->crop_left; 230 } 231 io->mb_y = y_start - io->crop_top; 232 io->mb_w = io->crop_right - io->crop_left; 233 io->mb_h = y_end - y_start; 234 ok = io->put(io); 235 } 236 } 237 // rotate top samples if needed 238 if (ctx->id_ + 1 == dec->num_caches_) { 239 if (!last_row) { 240 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); 241 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); 242 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); 243 } 244 } 245 246 return ok; 247 } 248 249 #undef MACROBLOCK_VPOS 250 251 //------------------------------------------------------------------------------ 252 253 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { 254 int ok = 1; 255 VP8ThreadContext* const ctx = &dec->thread_ctx_; 256 if (!dec->use_threads_) { 257 // ctx->id_ and ctx->f_info_ are already set 258 ctx->mb_y_ = dec->mb_y_; 259 ctx->filter_row_ = dec->filter_row_; 260 ok = FinishRow(dec, io); 261 } else { 262 WebPWorker* const worker = &dec->worker_; 263 // Finish previous job *before* updating context 264 ok &= WebPWorkerSync(worker); 265 assert(worker->status_ == OK); 266 if (ok) { // spawn a new deblocking/output job 267 ctx->io_ = *io; 268 ctx->id_ = dec->cache_id_; 269 ctx->mb_y_ = dec->mb_y_; 270 ctx->filter_row_ = dec->filter_row_; 271 if (ctx->filter_row_) { // just swap filter info 272 VP8FInfo* const tmp = ctx->f_info_; 273 ctx->f_info_ = dec->f_info_; 274 dec->f_info_ = tmp; 275 } 276 WebPWorkerLaunch(worker); 277 if (++dec->cache_id_ == dec->num_caches_) { 278 dec->cache_id_ = 0; 279 } 280 } 281 } 282 return ok; 283 } 284 285 //------------------------------------------------------------------------------ 286 // Finish setting up the decoding parameter once user's setup() is called. 287 288 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { 289 // Call setup() first. This may trigger additional decoding features on 'io'. 290 // Note: Afterward, we must call teardown() not matter what. 291 if (io->setup && !io->setup(io)) { 292 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); 293 return dec->status_; 294 } 295 296 // Disable filtering per user request 297 if (io->bypass_filtering) { 298 dec->filter_type_ = 0; 299 } 300 // TODO(skal): filter type / strength / sharpness forcing 301 302 // Define the area where we can skip in-loop filtering, in case of cropping. 303 // 304 // 'Simple' filter reads two luma samples outside of the macroblock and 305 // and filters one. It doesn't filter the chroma samples. Hence, we can 306 // avoid doing the in-loop filtering before crop_top/crop_left position. 307 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. 308 // Means: there's a dependency chain that goes all the way up to the 309 // top-left corner of the picture (MB #0). We must filter all the previous 310 // macroblocks. 311 // TODO(skal): add an 'approximate_decoding' option, that won't produce 312 // a 1:1 bit-exactness for complex filtering? 313 { 314 const int extra_pixels = kFilterExtraRows[dec->filter_type_]; 315 if (dec->filter_type_ == 2) { 316 // For complex filter, we need to preserve the dependency chain. 317 dec->tl_mb_x_ = 0; 318 dec->tl_mb_y_ = 0; 319 } else { 320 // For simple filter, we can filter only the cropped region. 321 // We include 'extra_pixels' on the other side of the boundary, since 322 // vertical or horizontal filtering of the previous macroblock can 323 // modify some abutting pixels. 324 dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; 325 dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; 326 if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; 327 if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; 328 } 329 // We need some 'extra' pixels on the right/bottom. 330 dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; 331 dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; 332 if (dec->br_mb_x_ > dec->mb_w_) { 333 dec->br_mb_x_ = dec->mb_w_; 334 } 335 if (dec->br_mb_y_ > dec->mb_h_) { 336 dec->br_mb_y_ = dec->mb_h_; 337 } 338 } 339 PrecomputeFilterStrengths(dec); 340 return VP8_STATUS_OK; 341 } 342 343 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { 344 int ok = 1; 345 if (dec->use_threads_) { 346 ok = WebPWorkerSync(&dec->worker_); 347 } 348 349 if (io->teardown) { 350 io->teardown(io); 351 } 352 return ok; 353 } 354 355 //------------------------------------------------------------------------------ 356 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. 357 // 358 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges 359 // immediately, and needs to wait for first few rows of the next macroblock to 360 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending 361 // on strength). 362 // With two threads, the vertical positions of the rows being decoded are: 363 // Decode: [ 0..15][16..31][32..47][48..63][64..79][... 364 // Deblock: [ 0..11][12..27][28..43][44..59][... 365 // If we use two threads and two caches of 16 pixels, the sequence would be: 366 // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... 367 // Deblock: [ 0..11][12..27!!][-4..11][12..27][... 368 // The problem occurs during row [12..15!!] that both the decoding and 369 // deblocking threads are writing simultaneously. 370 // With 3 cache lines, one get a safe write pattern: 371 // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. 372 // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... 373 // Note that multi-threaded output _without_ deblocking can make use of two 374 // cache lines of 16 pixels only, since there's no lagging behind. The decoding 375 // and output process have non-concurrent writing: 376 // Decode: [ 0..15][16..31][ 0..15][16..31][... 377 // io->put: [ 0..15][16..31][ 0..15][... 378 379 #define MT_CACHE_LINES 3 380 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case 381 382 // Initialize multi/single-thread worker 383 static int InitThreadContext(VP8Decoder* const dec) { 384 dec->cache_id_ = 0; 385 if (dec->use_threads_) { 386 WebPWorker* const worker = &dec->worker_; 387 if (!WebPWorkerReset(worker)) { 388 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 389 "thread initialization failed."); 390 } 391 worker->data1 = dec; 392 worker->data2 = (void*)&dec->thread_ctx_.io_; 393 worker->hook = (WebPWorkerHook)FinishRow; 394 dec->num_caches_ = 395 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; 396 } else { 397 dec->num_caches_ = ST_CACHE_LINES; 398 } 399 return 1; 400 } 401 402 #undef MT_CACHE_LINES 403 #undef ST_CACHE_LINES 404 405 //------------------------------------------------------------------------------ 406 // Memory setup 407 408 static int AllocateMemory(VP8Decoder* const dec) { 409 const int num_caches = dec->num_caches_; 410 const int mb_w = dec->mb_w_; 411 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. 412 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); 413 const size_t top_size = (16 + 8 + 8) * mb_w; 414 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); 415 const size_t f_info_size = 416 (dec->filter_type_ > 0) ? 417 mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo) 418 : 0; 419 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); 420 const size_t coeffs_size = 384 * sizeof(*dec->coeffs_); 421 const size_t cache_height = (16 * num_caches 422 + kFilterExtraRows[dec->filter_type_]) * 3 / 2; 423 const size_t cache_size = top_size * cache_height; 424 // alpha_size is the only one that scales as width x height. 425 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? 426 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; 427 const uint64_t needed = (uint64_t)intra_pred_mode_size 428 + top_size + mb_info_size + f_info_size 429 + yuv_size + coeffs_size 430 + cache_size + alpha_size + ALIGN_MASK; 431 uint8_t* mem; 432 433 if (needed != (size_t)needed) return 0; // check for overflow 434 if (needed > dec->mem_size_) { 435 free(dec->mem_); 436 dec->mem_size_ = 0; 437 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); 438 if (dec->mem_ == NULL) { 439 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 440 "no memory during frame initialization."); 441 } 442 // down-cast is ok, thanks to WebPSafeAlloc() above. 443 dec->mem_size_ = (size_t)needed; 444 } 445 446 mem = (uint8_t*)dec->mem_; 447 dec->intra_t_ = (uint8_t*)mem; 448 mem += intra_pred_mode_size; 449 450 dec->y_t_ = (uint8_t*)mem; 451 mem += 16 * mb_w; 452 dec->u_t_ = (uint8_t*)mem; 453 mem += 8 * mb_w; 454 dec->v_t_ = (uint8_t*)mem; 455 mem += 8 * mb_w; 456 457 dec->mb_info_ = ((VP8MB*)mem) + 1; 458 mem += mb_info_size; 459 460 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; 461 mem += f_info_size; 462 dec->thread_ctx_.id_ = 0; 463 dec->thread_ctx_.f_info_ = dec->f_info_; 464 if (dec->use_threads_) { 465 // secondary cache line. The deblocking process need to make use of the 466 // filtering strength from previous macroblock row, while the new ones 467 // are being decoded in parallel. We'll just swap the pointers. 468 dec->thread_ctx_.f_info_ += mb_w; 469 } 470 471 mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); 472 assert((yuv_size & ALIGN_MASK) == 0); 473 dec->yuv_b_ = (uint8_t*)mem; 474 mem += yuv_size; 475 476 dec->coeffs_ = (int16_t*)mem; 477 mem += coeffs_size; 478 479 dec->cache_y_stride_ = 16 * mb_w; 480 dec->cache_uv_stride_ = 8 * mb_w; 481 { 482 const int extra_rows = kFilterExtraRows[dec->filter_type_]; 483 const int extra_y = extra_rows * dec->cache_y_stride_; 484 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; 485 dec->cache_y_ = ((uint8_t*)mem) + extra_y; 486 dec->cache_u_ = dec->cache_y_ 487 + 16 * num_caches * dec->cache_y_stride_ + extra_uv; 488 dec->cache_v_ = dec->cache_u_ 489 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; 490 dec->cache_id_ = 0; 491 } 492 mem += cache_size; 493 494 // alpha plane 495 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; 496 mem += alpha_size; 497 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); 498 499 // note: left-info is initialized once for all. 500 memset(dec->mb_info_ - 1, 0, mb_info_size); 501 502 // initialize top 503 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); 504 505 return 1; 506 } 507 508 static void InitIo(VP8Decoder* const dec, VP8Io* io) { 509 // prepare 'io' 510 io->mb_y = 0; 511 io->y = dec->cache_y_; 512 io->u = dec->cache_u_; 513 io->v = dec->cache_v_; 514 io->y_stride = dec->cache_y_stride_; 515 io->uv_stride = dec->cache_uv_stride_; 516 io->a = NULL; 517 } 518 519 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) { 520 if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. 521 if (!AllocateMemory(dec)) return 0; 522 InitIo(dec, io); 523 VP8DspInit(); // Init critical function pointers and look-up tables. 524 return 1; 525 } 526 527 //------------------------------------------------------------------------------ 528 // Main reconstruction function. 529 530 static const int kScan[16] = { 531 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 532 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, 533 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, 534 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS 535 }; 536 537 static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) { 538 if (mode == B_DC_PRED) { 539 if (dec->mb_x_ == 0) { 540 return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; 541 } else { 542 return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; 543 } 544 } 545 return mode; 546 } 547 548 static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) { 549 *(uint32_t*)dst = *(uint32_t*)src; 550 } 551 552 void VP8ReconstructBlock(VP8Decoder* const dec) { 553 int j; 554 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; 555 uint8_t* const u_dst = dec->yuv_b_ + U_OFF; 556 uint8_t* const v_dst = dec->yuv_b_ + V_OFF; 557 558 // Rotate in the left samples from previously decoded block. We move four 559 // pixels at a time for alignment reason, and because of in-loop filter. 560 if (dec->mb_x_ > 0) { 561 for (j = -1; j < 16; ++j) { 562 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); 563 } 564 for (j = -1; j < 8; ++j) { 565 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); 566 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); 567 } 568 } else { 569 for (j = 0; j < 16; ++j) { 570 y_dst[j * BPS - 1] = 129; 571 } 572 for (j = 0; j < 8; ++j) { 573 u_dst[j * BPS - 1] = 129; 574 v_dst[j * BPS - 1] = 129; 575 } 576 // Init top-left sample on left column too 577 if (dec->mb_y_ > 0) { 578 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; 579 } 580 } 581 { 582 // bring top samples into the cache 583 uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16; 584 uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8; 585 uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8; 586 const int16_t* coeffs = dec->coeffs_; 587 int n; 588 589 if (dec->mb_y_ > 0) { 590 memcpy(y_dst - BPS, top_y, 16); 591 memcpy(u_dst - BPS, top_u, 8); 592 memcpy(v_dst - BPS, top_v, 8); 593 } else if (dec->mb_x_ == 0) { 594 // we only need to do this init once at block (0,0). 595 // Afterward, it remains valid for the whole topmost row. 596 memset(y_dst - BPS - 1, 127, 16 + 4 + 1); 597 memset(u_dst - BPS - 1, 127, 8 + 1); 598 memset(v_dst - BPS - 1, 127, 8 + 1); 599 } 600 601 // predict and add residuals 602 603 if (dec->is_i4x4_) { // 4x4 604 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); 605 606 if (dec->mb_y_ > 0) { 607 if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border 608 top_right[0] = top_y[15] * 0x01010101u; 609 } else { 610 memcpy(top_right, top_y + 16, sizeof(*top_right)); 611 } 612 } 613 // replicate the top-right pixels below 614 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; 615 616 // predict and add residues for all 4x4 blocks in turn. 617 for (n = 0; n < 16; n++) { 618 uint8_t* const dst = y_dst + kScan[n]; 619 VP8PredLuma4[dec->imodes_[n]](dst); 620 if (dec->non_zero_ac_ & (1 << n)) { 621 VP8Transform(coeffs + n * 16, dst, 0); 622 } else if (dec->non_zero_ & (1 << n)) { // only DC is present 623 VP8TransformDC(coeffs + n * 16, dst); 624 } 625 } 626 } else { // 16x16 627 const int pred_func = CheckMode(dec, dec->imodes_[0]); 628 VP8PredLuma16[pred_func](y_dst); 629 if (dec->non_zero_) { 630 for (n = 0; n < 16; n++) { 631 uint8_t* const dst = y_dst + kScan[n]; 632 if (dec->non_zero_ac_ & (1 << n)) { 633 VP8Transform(coeffs + n * 16, dst, 0); 634 } else if (dec->non_zero_ & (1 << n)) { // only DC is present 635 VP8TransformDC(coeffs + n * 16, dst); 636 } 637 } 638 } 639 } 640 { 641 // Chroma 642 const int pred_func = CheckMode(dec, dec->uvmode_); 643 VP8PredChroma8[pred_func](u_dst); 644 VP8PredChroma8[pred_func](v_dst); 645 646 if (dec->non_zero_ & 0x0f0000) { // chroma-U 647 const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16; 648 if (dec->non_zero_ac_ & 0x0f0000) { 649 VP8TransformUV(u_coeffs, u_dst); 650 } else { 651 VP8TransformDCUV(u_coeffs, u_dst); 652 } 653 } 654 if (dec->non_zero_ & 0xf00000) { // chroma-V 655 const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16; 656 if (dec->non_zero_ac_ & 0xf00000) { 657 VP8TransformUV(v_coeffs, v_dst); 658 } else { 659 VP8TransformDCUV(v_coeffs, v_dst); 660 } 661 } 662 663 // stash away top samples for next block 664 if (dec->mb_y_ < dec->mb_h_ - 1) { 665 memcpy(top_y, y_dst + 15 * BPS, 16); 666 memcpy(top_u, u_dst + 7 * BPS, 8); 667 memcpy(top_v, v_dst + 7 * BPS, 8); 668 } 669 } 670 } 671 // Transfer reconstructed samples from yuv_b_ cache to final destination. 672 { 673 const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_; 674 const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_; 675 uint8_t* const y_out = dec->cache_y_ + dec->mb_x_ * 16 + y_offset; 676 uint8_t* const u_out = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset; 677 uint8_t* const v_out = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset; 678 for (j = 0; j < 16; ++j) { 679 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); 680 } 681 for (j = 0; j < 8; ++j) { 682 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); 683 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); 684 } 685 } 686 } 687 688 //------------------------------------------------------------------------------ 689 690 #if defined(__cplusplus) || defined(c_plusplus) 691 } // extern "C" 692 #endif 693