1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #define DEBUG_TYPE "regalloc" 33 34 #include "llvm/CodeGen/RegAllocPBQP.h" 35 #include "RegisterCoalescer.h" 36 #include "Spiller.h" 37 #include "llvm/Analysis/AliasAnalysis.h" 38 #include "llvm/CodeGen/CalcSpillWeights.h" 39 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveStackAnalysis.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineLoopInfo.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/PBQP/Graph.h" 47 #include "llvm/CodeGen/PBQP/HeuristicSolver.h" 48 #include "llvm/CodeGen/PBQP/Heuristics/Briggs.h" 49 #include "llvm/CodeGen/RegAllocRegistry.h" 50 #include "llvm/CodeGen/VirtRegMap.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <limits> 57 #include <memory> 58 #include <set> 59 #include <sstream> 60 #include <vector> 61 62 using namespace llvm; 63 64 static RegisterRegAlloc 65 registerPBQPRepAlloc("pbqp", "PBQP register allocator", 66 createDefaultPBQPRegisterAllocator); 67 68 static cl::opt<bool> 69 pbqpCoalescing("pbqp-coalescing", 70 cl::desc("Attempt coalescing during PBQP register allocation."), 71 cl::init(false), cl::Hidden); 72 73 #ifndef NDEBUG 74 static cl::opt<bool> 75 pbqpDumpGraphs("pbqp-dump-graphs", 76 cl::desc("Dump graphs for each function/round in the compilation unit."), 77 cl::init(false), cl::Hidden); 78 #endif 79 80 namespace { 81 82 /// 83 /// PBQP based allocators solve the register allocation problem by mapping 84 /// register allocation problems to Partitioned Boolean Quadratic 85 /// Programming problems. 86 class RegAllocPBQP : public MachineFunctionPass { 87 public: 88 89 static char ID; 90 91 /// Construct a PBQP register allocator. 92 RegAllocPBQP(std::auto_ptr<PBQPBuilder> b, char *cPassID=0) 93 : MachineFunctionPass(ID), builder(b), customPassID(cPassID) { 94 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 95 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 96 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 97 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 98 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 99 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 100 } 101 102 /// Return the pass name. 103 virtual const char* getPassName() const { 104 return "PBQP Register Allocator"; 105 } 106 107 /// PBQP analysis usage. 108 virtual void getAnalysisUsage(AnalysisUsage &au) const; 109 110 /// Perform register allocation 111 virtual bool runOnMachineFunction(MachineFunction &MF); 112 113 private: 114 115 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 116 typedef std::vector<const LiveInterval*> Node2LIMap; 117 typedef std::vector<unsigned> AllowedSet; 118 typedef std::vector<AllowedSet> AllowedSetMap; 119 typedef std::pair<unsigned, unsigned> RegPair; 120 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 121 typedef std::set<unsigned> RegSet; 122 123 124 std::auto_ptr<PBQPBuilder> builder; 125 126 char *customPassID; 127 128 MachineFunction *mf; 129 const TargetMachine *tm; 130 const TargetRegisterInfo *tri; 131 const TargetInstrInfo *tii; 132 const MachineLoopInfo *loopInfo; 133 MachineRegisterInfo *mri; 134 135 std::auto_ptr<Spiller> spiller; 136 LiveIntervals *lis; 137 LiveStacks *lss; 138 VirtRegMap *vrm; 139 140 RegSet vregsToAlloc, emptyIntervalVRegs; 141 142 /// \brief Finds the initial set of vreg intervals to allocate. 143 void findVRegIntervalsToAlloc(); 144 145 /// \brief Given a solved PBQP problem maps this solution back to a register 146 /// assignment. 147 bool mapPBQPToRegAlloc(const PBQPRAProblem &problem, 148 const PBQP::Solution &solution); 149 150 /// \brief Postprocessing before final spilling. Sets basic block "live in" 151 /// variables. 152 void finalizeAlloc() const; 153 154 }; 155 156 char RegAllocPBQP::ID = 0; 157 158 } // End anonymous namespace. 159 160 unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const { 161 Node2VReg::const_iterator vregItr = node2VReg.find(node); 162 assert(vregItr != node2VReg.end() && "No vreg for node."); 163 return vregItr->second; 164 } 165 166 PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const { 167 VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg); 168 assert(nodeItr != vreg2Node.end() && "No node for vreg."); 169 return nodeItr->second; 170 171 } 172 173 const PBQPRAProblem::AllowedSet& 174 PBQPRAProblem::getAllowedSet(unsigned vreg) const { 175 AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg); 176 assert(allowedSetItr != allowedSets.end() && "No pregs for vreg."); 177 const AllowedSet &allowedSet = allowedSetItr->second; 178 return allowedSet; 179 } 180 181 unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const { 182 assert(isPRegOption(vreg, option) && "Not a preg option."); 183 184 const AllowedSet& allowedSet = getAllowedSet(vreg); 185 assert(option <= allowedSet.size() && "Option outside allowed set."); 186 return allowedSet[option - 1]; 187 } 188 189 std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf, 190 const LiveIntervals *lis, 191 const MachineLoopInfo *loopInfo, 192 const RegSet &vregs) { 193 194 LiveIntervals *LIS = const_cast<LiveIntervals*>(lis); 195 MachineRegisterInfo *mri = &mf->getRegInfo(); 196 const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo(); 197 198 std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem()); 199 PBQP::Graph &g = p->getGraph(); 200 RegSet pregs; 201 202 // Collect the set of preg intervals, record that they're used in the MF. 203 for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) { 204 if (mri->def_empty(Reg)) 205 continue; 206 pregs.insert(Reg); 207 mri->setPhysRegUsed(Reg); 208 } 209 210 // Iterate over vregs. 211 for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end(); 212 vregItr != vregEnd; ++vregItr) { 213 unsigned vreg = *vregItr; 214 const TargetRegisterClass *trc = mri->getRegClass(vreg); 215 LiveInterval *vregLI = &LIS->getInterval(vreg); 216 217 // Record any overlaps with regmask operands. 218 BitVector regMaskOverlaps; 219 LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps); 220 221 // Compute an initial allowed set for the current vreg. 222 typedef std::vector<unsigned> VRAllowed; 223 VRAllowed vrAllowed; 224 ArrayRef<uint16_t> rawOrder = trc->getRawAllocationOrder(*mf); 225 for (unsigned i = 0; i != rawOrder.size(); ++i) { 226 unsigned preg = rawOrder[i]; 227 if (mri->isReserved(preg)) 228 continue; 229 230 // vregLI crosses a regmask operand that clobbers preg. 231 if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg)) 232 continue; 233 234 // vregLI overlaps fixed regunit interference. 235 bool Interference = false; 236 for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) { 237 if (vregLI->overlaps(LIS->getRegUnit(*Units))) { 238 Interference = true; 239 break; 240 } 241 } 242 if (Interference) 243 continue; 244 245 // preg is usable for this virtual register. 246 vrAllowed.push_back(preg); 247 } 248 249 // Construct the node. 250 PBQP::Graph::NodeItr node = 251 g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0)); 252 253 // Record the mapping and allowed set in the problem. 254 p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end()); 255 256 PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ? 257 vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min(); 258 259 addSpillCosts(g.getNodeCosts(node), spillCost); 260 } 261 262 for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end(); 263 vr1Itr != vrEnd; ++vr1Itr) { 264 unsigned vr1 = *vr1Itr; 265 const LiveInterval &l1 = lis->getInterval(vr1); 266 const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1); 267 268 for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr); 269 vr2Itr != vrEnd; ++vr2Itr) { 270 unsigned vr2 = *vr2Itr; 271 const LiveInterval &l2 = lis->getInterval(vr2); 272 const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2); 273 274 assert(!l2.empty() && "Empty interval in vreg set?"); 275 if (l1.overlaps(l2)) { 276 PBQP::Graph::EdgeItr edge = 277 g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2), 278 PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0)); 279 280 addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri); 281 } 282 } 283 } 284 285 return p; 286 } 287 288 void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec, 289 PBQP::PBQPNum spillCost) { 290 costVec[0] = spillCost; 291 } 292 293 void PBQPBuilder::addInterferenceCosts( 294 PBQP::Matrix &costMat, 295 const PBQPRAProblem::AllowedSet &vr1Allowed, 296 const PBQPRAProblem::AllowedSet &vr2Allowed, 297 const TargetRegisterInfo *tri) { 298 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch."); 299 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch."); 300 301 for (unsigned i = 0; i != vr1Allowed.size(); ++i) { 302 unsigned preg1 = vr1Allowed[i]; 303 304 for (unsigned j = 0; j != vr2Allowed.size(); ++j) { 305 unsigned preg2 = vr2Allowed[j]; 306 307 if (tri->regsOverlap(preg1, preg2)) { 308 costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 309 } 310 } 311 } 312 } 313 314 std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build( 315 MachineFunction *mf, 316 const LiveIntervals *lis, 317 const MachineLoopInfo *loopInfo, 318 const RegSet &vregs) { 319 320 std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs); 321 PBQP::Graph &g = p->getGraph(); 322 323 const TargetMachine &tm = mf->getTarget(); 324 CoalescerPair cp(*tm.getRegisterInfo()); 325 326 // Scan the machine function and add a coalescing cost whenever CoalescerPair 327 // gives the Ok. 328 for (MachineFunction::const_iterator mbbItr = mf->begin(), 329 mbbEnd = mf->end(); 330 mbbItr != mbbEnd; ++mbbItr) { 331 const MachineBasicBlock *mbb = &*mbbItr; 332 333 for (MachineBasicBlock::const_iterator miItr = mbb->begin(), 334 miEnd = mbb->end(); 335 miItr != miEnd; ++miItr) { 336 const MachineInstr *mi = &*miItr; 337 338 if (!cp.setRegisters(mi)) { 339 continue; // Not coalescable. 340 } 341 342 if (cp.getSrcReg() == cp.getDstReg()) { 343 continue; // Already coalesced. 344 } 345 346 unsigned dst = cp.getDstReg(), 347 src = cp.getSrcReg(); 348 349 const float copyFactor = 0.5; // Cost of copy relative to load. Current 350 // value plucked randomly out of the air. 351 352 PBQP::PBQPNum cBenefit = 353 copyFactor * LiveIntervals::getSpillWeight(false, true, 354 loopInfo->getLoopDepth(mbb)); 355 356 if (cp.isPhys()) { 357 if (!mf->getRegInfo().isAllocatable(dst)) { 358 continue; 359 } 360 361 const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src); 362 unsigned pregOpt = 0; 363 while (pregOpt < allowed.size() && allowed[pregOpt] != dst) { 364 ++pregOpt; 365 } 366 if (pregOpt < allowed.size()) { 367 ++pregOpt; // +1 to account for spill option. 368 PBQP::Graph::NodeItr node = p->getNodeForVReg(src); 369 addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit); 370 } 371 } else { 372 const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst); 373 const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src); 374 PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst); 375 PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src); 376 PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2); 377 if (edge == g.edgesEnd()) { 378 edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1, 379 allowed2->size() + 1, 380 0)); 381 } else { 382 if (g.getEdgeNode1(edge) == node2) { 383 std::swap(node1, node2); 384 std::swap(allowed1, allowed2); 385 } 386 } 387 388 addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2, 389 cBenefit); 390 } 391 } 392 } 393 394 return p; 395 } 396 397 void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec, 398 unsigned pregOption, 399 PBQP::PBQPNum benefit) { 400 costVec[pregOption] += -benefit; 401 } 402 403 void PBQPBuilderWithCoalescing::addVirtRegCoalesce( 404 PBQP::Matrix &costMat, 405 const PBQPRAProblem::AllowedSet &vr1Allowed, 406 const PBQPRAProblem::AllowedSet &vr2Allowed, 407 PBQP::PBQPNum benefit) { 408 409 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch."); 410 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch."); 411 412 for (unsigned i = 0; i != vr1Allowed.size(); ++i) { 413 unsigned preg1 = vr1Allowed[i]; 414 for (unsigned j = 0; j != vr2Allowed.size(); ++j) { 415 unsigned preg2 = vr2Allowed[j]; 416 417 if (preg1 == preg2) { 418 costMat[i + 1][j + 1] += -benefit; 419 } 420 } 421 } 422 } 423 424 425 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 426 au.setPreservesCFG(); 427 au.addRequired<AliasAnalysis>(); 428 au.addPreserved<AliasAnalysis>(); 429 au.addRequired<SlotIndexes>(); 430 au.addPreserved<SlotIndexes>(); 431 au.addRequired<LiveIntervals>(); 432 au.addPreserved<LiveIntervals>(); 433 //au.addRequiredID(SplitCriticalEdgesID); 434 if (customPassID) 435 au.addRequiredID(*customPassID); 436 au.addRequired<CalculateSpillWeights>(); 437 au.addRequired<LiveStacks>(); 438 au.addPreserved<LiveStacks>(); 439 au.addRequired<MachineDominatorTree>(); 440 au.addPreserved<MachineDominatorTree>(); 441 au.addRequired<MachineLoopInfo>(); 442 au.addPreserved<MachineLoopInfo>(); 443 au.addRequired<VirtRegMap>(); 444 au.addPreserved<VirtRegMap>(); 445 MachineFunctionPass::getAnalysisUsage(au); 446 } 447 448 void RegAllocPBQP::findVRegIntervalsToAlloc() { 449 450 // Iterate over all live ranges. 451 for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) { 452 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 453 if (mri->reg_nodbg_empty(Reg)) 454 continue; 455 LiveInterval *li = &lis->getInterval(Reg); 456 457 // If this live interval is non-empty we will use pbqp to allocate it. 458 // Empty intervals we allocate in a simple post-processing stage in 459 // finalizeAlloc. 460 if (!li->empty()) { 461 vregsToAlloc.insert(li->reg); 462 } else { 463 emptyIntervalVRegs.insert(li->reg); 464 } 465 } 466 } 467 468 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem, 469 const PBQP::Solution &solution) { 470 // Set to true if we have any spills 471 bool anotherRoundNeeded = false; 472 473 // Clear the existing allocation. 474 vrm->clearAllVirt(); 475 476 const PBQP::Graph &g = problem.getGraph(); 477 // Iterate over the nodes mapping the PBQP solution to a register 478 // assignment. 479 for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(), 480 nodeEnd = g.nodesEnd(); 481 node != nodeEnd; ++node) { 482 unsigned vreg = problem.getVRegForNode(node); 483 unsigned alloc = solution.getSelection(node); 484 485 if (problem.isPRegOption(vreg, alloc)) { 486 unsigned preg = problem.getPRegForOption(vreg, alloc); 487 DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> " 488 << tri->getName(preg) << "\n"); 489 assert(preg != 0 && "Invalid preg selected."); 490 vrm->assignVirt2Phys(vreg, preg); 491 } else if (problem.isSpillOption(vreg, alloc)) { 492 vregsToAlloc.erase(vreg); 493 SmallVector<LiveInterval*, 8> newSpills; 494 LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm); 495 spiller->spill(LRE); 496 497 DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: " 498 << LRE.getParent().weight << ", New vregs: "); 499 500 // Copy any newly inserted live intervals into the list of regs to 501 // allocate. 502 for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end(); 503 itr != end; ++itr) { 504 assert(!(*itr)->empty() && "Empty spill range."); 505 DEBUG(dbgs() << PrintReg((*itr)->reg, tri) << " "); 506 vregsToAlloc.insert((*itr)->reg); 507 } 508 509 DEBUG(dbgs() << ")\n"); 510 511 // We need another round if spill intervals were added. 512 anotherRoundNeeded |= !LRE.empty(); 513 } else { 514 llvm_unreachable("Unknown allocation option."); 515 } 516 } 517 518 return !anotherRoundNeeded; 519 } 520 521 522 void RegAllocPBQP::finalizeAlloc() const { 523 // First allocate registers for the empty intervals. 524 for (RegSet::const_iterator 525 itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end(); 526 itr != end; ++itr) { 527 LiveInterval *li = &lis->getInterval(*itr); 528 529 unsigned physReg = mri->getSimpleHint(li->reg); 530 531 if (physReg == 0) { 532 const TargetRegisterClass *liRC = mri->getRegClass(li->reg); 533 physReg = liRC->getRawAllocationOrder(*mf).front(); 534 } 535 536 vrm->assignVirt2Phys(li->reg, physReg); 537 } 538 } 539 540 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 541 542 mf = &MF; 543 tm = &mf->getTarget(); 544 tri = tm->getRegisterInfo(); 545 tii = tm->getInstrInfo(); 546 mri = &mf->getRegInfo(); 547 548 lis = &getAnalysis<LiveIntervals>(); 549 lss = &getAnalysis<LiveStacks>(); 550 loopInfo = &getAnalysis<MachineLoopInfo>(); 551 552 vrm = &getAnalysis<VirtRegMap>(); 553 spiller.reset(createInlineSpiller(*this, MF, *vrm)); 554 555 mri->freezeReservedRegs(MF); 556 557 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n"); 558 559 // Allocator main loop: 560 // 561 // * Map current regalloc problem to a PBQP problem 562 // * Solve the PBQP problem 563 // * Map the solution back to a register allocation 564 // * Spill if necessary 565 // 566 // This process is continued till no more spills are generated. 567 568 // Find the vreg intervals in need of allocation. 569 findVRegIntervalsToAlloc(); 570 571 #ifndef NDEBUG 572 const Function* func = mf->getFunction(); 573 std::string fqn = 574 func->getParent()->getModuleIdentifier() + "." + 575 func->getName().str(); 576 #endif 577 578 // If there are non-empty intervals allocate them using pbqp. 579 if (!vregsToAlloc.empty()) { 580 581 bool pbqpAllocComplete = false; 582 unsigned round = 0; 583 584 while (!pbqpAllocComplete) { 585 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n"); 586 587 std::auto_ptr<PBQPRAProblem> problem = 588 builder->build(mf, lis, loopInfo, vregsToAlloc); 589 590 #ifndef NDEBUG 591 if (pbqpDumpGraphs) { 592 std::ostringstream rs; 593 rs << round; 594 std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph"); 595 std::string tmp; 596 raw_fd_ostream os(graphFileName.c_str(), tmp); 597 DEBUG(dbgs() << "Dumping graph for round " << round << " to \"" 598 << graphFileName << "\"\n"); 599 problem->getGraph().dump(os); 600 } 601 #endif 602 603 PBQP::Solution solution = 604 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve( 605 problem->getGraph()); 606 607 pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution); 608 609 ++round; 610 } 611 } 612 613 // Finalise allocation, allocate empty ranges. 614 finalizeAlloc(); 615 vregsToAlloc.clear(); 616 emptyIntervalVRegs.clear(); 617 618 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n"); 619 620 return true; 621 } 622 623 FunctionPass* llvm::createPBQPRegisterAllocator( 624 std::auto_ptr<PBQPBuilder> builder, 625 char *customPassID) { 626 return new RegAllocPBQP(builder, customPassID); 627 } 628 629 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 630 if (pbqpCoalescing) { 631 return createPBQPRegisterAllocator( 632 std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing())); 633 } // else 634 return createPBQPRegisterAllocator( 635 std::auto_ptr<PBQPBuilder>(new PBQPBuilder())); 636 } 637 638 #undef DEBUG_TYPE 639