Home | History | Annotate | Download | only in sensorservice
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <stdio.h>
     18 
     19 #include <utils/Log.h>
     20 
     21 #include "Fusion.h"
     22 
     23 namespace android {
     24 
     25 // -----------------------------------------------------------------------
     26 
     27 /*
     28  * gyroVAR gives the measured variance of the gyro's output per
     29  * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
     30  * which is independent of the sampling frequency.
     31  *
     32  * The variance of gyro's output at a given sampling period can be
     33  * calculated as:
     34  *      variance(T) = gyroVAR / T
     35  *
     36  * The variance of the INTEGRATED OUTPUT at a given sampling period can be
     37  * calculated as:
     38  *       variance_integrate_output(T) = gyroVAR * T
     39  *
     40  */
     41 static const float gyroVAR = 1e-7;      // (rad/s)^2 / Hz
     42 static const float biasVAR = 1e-8;      // (rad/s)^2 / s (guessed)
     43 
     44 /*
     45  * Standard deviations of accelerometer and magnetometer
     46  */
     47 static const float accSTDEV  = 0.05f;   // m/s^2 (measured 0.08 / CDD 0.05)
     48 static const float magSTDEV  = 0.5f;    // uT    (measured 0.7  / CDD 0.5)
     49 
     50 static const float SYMMETRY_TOLERANCE = 1e-10f;
     51 
     52 /*
     53  * Accelerometer updates will not be performed near free fall to avoid
     54  * ill-conditioning and div by zeros.
     55  * Threshhold: 10% of g, in m/s^2
     56  */
     57 static const float FREE_FALL_THRESHOLD = 0.981f;
     58 static const float FREE_FALL_THRESHOLD_SQ =
     59         FREE_FALL_THRESHOLD*FREE_FALL_THRESHOLD;
     60 
     61 /*
     62  * The geomagnetic-field should be between 30uT and 60uT.
     63  * Fields strengths greater than this likely indicate a local magnetic
     64  * disturbance which we do not want to update into the fused frame.
     65  */
     66 static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT
     67 static const float MAX_VALID_MAGNETIC_FIELD_SQ =
     68         MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD;
     69 
     70 /*
     71  * Values of the field smaller than this should be ignored in fusion to avoid
     72  * ill-conditioning. This state can happen with anomalous local magnetic
     73  * disturbances canceling the Earth field.
     74  */
     75 static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT
     76 static const float MIN_VALID_MAGNETIC_FIELD_SQ =
     77         MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD;
     78 
     79 /*
     80  * If the cross product of two vectors has magnitude squared less than this,
     81  * we reject it as invalid due to alignment of the vectors.
     82  * This threshold is used to check for the case where the magnetic field sample
     83  * is parallel to the gravity field, which can happen in certain places due
     84  * to magnetic field disturbances.
     85  */
     86 static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3;
     87 static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ =
     88     MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG;
     89 
     90 // -----------------------------------------------------------------------
     91 
     92 template <typename TYPE, size_t C, size_t R>
     93 static mat<TYPE, R, R> scaleCovariance(
     94         const mat<TYPE, C, R>& A,
     95         const mat<TYPE, C, C>& P) {
     96     // A*P*transpose(A);
     97     mat<TYPE, R, R> APAt;
     98     for (size_t r=0 ; r<R ; r++) {
     99         for (size_t j=r ; j<R ; j++) {
    100             double apat(0);
    101             for (size_t c=0 ; c<C ; c++) {
    102                 double v(A[c][r]*P[c][c]*0.5);
    103                 for (size_t k=c+1 ; k<C ; k++)
    104                     v += A[k][r] * P[c][k];
    105                 apat += 2 * v * A[c][j];
    106             }
    107             APAt[j][r] = apat;
    108             APAt[r][j] = apat;
    109         }
    110     }
    111     return APAt;
    112 }
    113 
    114 template <typename TYPE, typename OTHER_TYPE>
    115 static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
    116     mat<TYPE, 3, 3> r;
    117     r[0][0] = diag;
    118     r[1][1] = diag;
    119     r[2][2] = diag;
    120     r[0][1] = p.z;
    121     r[1][0] =-p.z;
    122     r[0][2] =-p.y;
    123     r[2][0] = p.y;
    124     r[1][2] = p.x;
    125     r[2][1] =-p.x;
    126     return r;
    127 }
    128 
    129 
    130 template<typename TYPE, size_t SIZE>
    131 class Covariance {
    132     mat<TYPE, SIZE, SIZE> mSumXX;
    133     vec<TYPE, SIZE> mSumX;
    134     size_t mN;
    135 public:
    136     Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
    137     void update(const vec<TYPE, SIZE>& x) {
    138         mSumXX += x*transpose(x);
    139         mSumX  += x;
    140         mN++;
    141     }
    142     mat<TYPE, SIZE, SIZE> operator()() const {
    143         const float N = 1.0f / mN;
    144         return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
    145     }
    146     void reset() {
    147         mN = 0;
    148         mSumXX = 0;
    149         mSumX = 0;
    150     }
    151     size_t getCount() const {
    152         return mN;
    153     }
    154 };
    155 
    156 // -----------------------------------------------------------------------
    157 
    158 Fusion::Fusion() {
    159     Phi[0][1] = 0;
    160     Phi[1][1] = 1;
    161 
    162     Ba.x = 0;
    163     Ba.y = 0;
    164     Ba.z = 1;
    165 
    166     Bm.x = 0;
    167     Bm.y = 1;
    168     Bm.z = 0;
    169 
    170     x0 = 0;
    171     x1 = 0;
    172 
    173     init();
    174 }
    175 
    176 void Fusion::init() {
    177     mInitState = 0;
    178 
    179     mGyroRate = 0;
    180 
    181     mCount[0] = 0;
    182     mCount[1] = 0;
    183     mCount[2] = 0;
    184 
    185     mData = 0;
    186 }
    187 
    188 void Fusion::initFusion(const vec4_t& q, float dT)
    189 {
    190     // initial estimate: E{ x(t0) }
    191     x0 = q;
    192     x1 = 0;
    193 
    194     // process noise covariance matrix: G.Q.Gt, with
    195     //
    196     //  G = | -1 0 |        Q = | q00 q10 |
    197     //      |  0 1 |            | q01 q11 |
    198     //
    199     // q00 = sv^2.dt + 1/3.su^2.dt^3
    200     // q10 = q01 = 1/2.su^2.dt^2
    201     // q11 = su^2.dt
    202     //
    203 
    204     const float dT2 = dT*dT;
    205     const float dT3 = dT2*dT;
    206 
    207     // variance of integrated output at 1/dT Hz (random drift)
    208     const float q00 = gyroVAR * dT + 0.33333f * biasVAR * dT3;
    209 
    210     // variance of drift rate ramp
    211     const float q11 = biasVAR * dT;
    212     const float q10 = 0.5f * biasVAR * dT2;
    213     const float q01 = q10;
    214 
    215     GQGt[0][0] =  q00;      // rad^2
    216     GQGt[1][0] = -q10;
    217     GQGt[0][1] = -q01;
    218     GQGt[1][1] =  q11;      // (rad/s)^2
    219 
    220     // initial covariance: Var{ x(t0) }
    221     // TODO: initialize P correctly
    222     P = 0;
    223 
    224     // it is unclear how to set the initial covariance. It does affect
    225     // how quickly the fusion converges. Experimentally it would take
    226     // about 10 seconds at 200 Hz to estimate the gyro-drift with an
    227     // initial covariance of 0, and about a second with an initial covariance
    228     // of about 1 deg/s.
    229     const float covv = 0;
    230     const float covu = 0.5f * (float(M_PI) / 180);
    231     mat33_t& Pv = P[0][0];
    232     Pv[0][0] = covv;
    233     Pv[1][1] = covv;
    234     Pv[2][2] = covv;
    235     mat33_t& Pu = P[1][1];
    236     Pu[0][0] = covu;
    237     Pu[1][1] = covu;
    238     Pu[2][2] = covu;
    239 }
    240 
    241 bool Fusion::hasEstimate() const {
    242     return (mInitState == (MAG|ACC|GYRO));
    243 }
    244 
    245 bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
    246     if (hasEstimate())
    247         return true;
    248 
    249     if (what == ACC) {
    250         mData[0] += d * (1/length(d));
    251         mCount[0]++;
    252         mInitState |= ACC;
    253     } else if (what == MAG) {
    254         mData[1] += d * (1/length(d));
    255         mCount[1]++;
    256         mInitState |= MAG;
    257     } else if (what == GYRO) {
    258         mGyroRate = dT;
    259         mData[2] += d*dT;
    260         mCount[2]++;
    261         if (mCount[2] == 64) {
    262             // 64 samples is good enough to estimate the gyro drift and
    263             // doesn't take too much time.
    264             mInitState |= GYRO;
    265         }
    266     }
    267 
    268     if (mInitState == (MAG|ACC|GYRO)) {
    269         // Average all the values we collected so far
    270         mData[0] *= 1.0f/mCount[0];
    271         mData[1] *= 1.0f/mCount[1];
    272         mData[2] *= 1.0f/mCount[2];
    273 
    274         // calculate the MRPs from the data collection, this gives us
    275         // a rough estimate of our initial state
    276         mat33_t R;
    277         vec3_t up(mData[0]);
    278         vec3_t east(cross_product(mData[1], up));
    279         east *= 1/length(east);
    280         vec3_t north(cross_product(up, east));
    281         R << east << north << up;
    282         const vec4_t q = matrixToQuat(R);
    283 
    284         initFusion(q, mGyroRate);
    285     }
    286 
    287     return false;
    288 }
    289 
    290 void Fusion::handleGyro(const vec3_t& w, float dT) {
    291     if (!checkInitComplete(GYRO, w, dT))
    292         return;
    293 
    294     predict(w, dT);
    295 }
    296 
    297 status_t Fusion::handleAcc(const vec3_t& a) {
    298     // ignore acceleration data if we're close to free-fall
    299     if (length_squared(a) < FREE_FALL_THRESHOLD_SQ) {
    300         return BAD_VALUE;
    301     }
    302 
    303     if (!checkInitComplete(ACC, a))
    304         return BAD_VALUE;
    305 
    306     const float l = 1/length(a);
    307     update(a*l, Ba, accSTDEV*l);
    308     return NO_ERROR;
    309 }
    310 
    311 status_t Fusion::handleMag(const vec3_t& m) {
    312     // the geomagnetic-field should be between 30uT and 60uT
    313     // reject if too large to avoid spurious magnetic sources
    314     const float magFieldSq = length_squared(m);
    315     if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) {
    316         return BAD_VALUE;
    317     } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) {
    318         // Also reject if too small since we will get ill-defined (zero mag)
    319         // cross-products below
    320         return BAD_VALUE;
    321     }
    322 
    323     if (!checkInitComplete(MAG, m))
    324         return BAD_VALUE;
    325 
    326     // Orthogonalize the magnetic field to the gravity field, mapping it into
    327     // tangent to Earth.
    328     const vec3_t up( getRotationMatrix() * Ba );
    329     const vec3_t east( cross_product(m, up) );
    330 
    331     // If the m and up vectors align, the cross product magnitude will
    332     // approach 0.
    333     // Reject this case as well to avoid div by zero problems and
    334     // ill-conditioning below.
    335     if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) {
    336         return BAD_VALUE;
    337     }
    338 
    339     // If we have created an orthogonal magnetic field successfully,
    340     // then pass it in as the update.
    341     vec3_t north( cross_product(up, east) );
    342 
    343     const float l = 1 / length(north);
    344     north *= l;
    345 
    346     update(north, Bm, magSTDEV*l);
    347     return NO_ERROR;
    348 }
    349 
    350 void Fusion::checkState() {
    351     // P needs to stay positive semidefinite or the fusion diverges. When we
    352     // detect divergence, we reset the fusion.
    353     // TODO(braun): Instead, find the reason for the divergence and fix it.
    354 
    355     if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) ||
    356         !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) {
    357         ALOGW("Sensor fusion diverged; resetting state.");
    358         P = 0;
    359     }
    360 }
    361 
    362 vec4_t Fusion::getAttitude() const {
    363     return x0;
    364 }
    365 
    366 vec3_t Fusion::getBias() const {
    367     return x1;
    368 }
    369 
    370 mat33_t Fusion::getRotationMatrix() const {
    371     return quatToMatrix(x0);
    372 }
    373 
    374 mat34_t Fusion::getF(const vec4_t& q) {
    375     mat34_t F;
    376 
    377     // This is used to compute the derivative of q
    378     // F = | [q.xyz]x |
    379     //     |  -q.xyz  |
    380 
    381     F[0].x = q.w;   F[1].x =-q.z;   F[2].x = q.y;
    382     F[0].y = q.z;   F[1].y = q.w;   F[2].y =-q.x;
    383     F[0].z =-q.y;   F[1].z = q.x;   F[2].z = q.w;
    384     F[0].w =-q.x;   F[1].w =-q.y;   F[2].w =-q.z;
    385     return F;
    386 }
    387 
    388 void Fusion::predict(const vec3_t& w, float dT) {
    389     const vec4_t q  = x0;
    390     const vec3_t b  = x1;
    391     const vec3_t we = w - b;
    392 
    393     // q(k+1) = O(we)*q(k)
    394     // --------------------
    395     //
    396     // O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x                   psi |
    397     //        | -psi'                              cos(0.5*||w||*dT) |
    398     //
    399     // psi = sin(0.5*||w||*dT)*w / ||w||
    400     //
    401     //
    402     // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G'
    403     // ----------------------------------------
    404     //
    405     // G = | -I33    0 |
    406     //     |    0  I33 |
    407     //
    408     //  Phi = | Phi00 Phi10 |
    409     //        |   0     1   |
    410     //
    411     //  Phi00 =   I33
    412     //          - [w]x   * sin(||w||*dt)/||w||
    413     //          + [w]x^2 * (1-cos(||w||*dT))/||w||^2
    414     //
    415     //  Phi10 =   [w]x   * (1        - cos(||w||*dt))/||w||^2
    416     //          - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3
    417     //          - I33*dT
    418 
    419     const mat33_t I33(1);
    420     const mat33_t I33dT(dT);
    421     const mat33_t wx(crossMatrix(we, 0));
    422     const mat33_t wx2(wx*wx);
    423     const float lwedT = length(we)*dT;
    424     const float hlwedT = 0.5f*lwedT;
    425     const float ilwe = 1/length(we);
    426     const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
    427     const float k1 = sinf(lwedT);
    428     const float k2 = cosf(hlwedT);
    429     const vec3_t psi(sinf(hlwedT)*ilwe*we);
    430     const mat33_t O33(crossMatrix(-psi, k2));
    431     mat44_t O;
    432     O[0].xyz = O33[0];  O[0].w = -psi.x;
    433     O[1].xyz = O33[1];  O[1].w = -psi.y;
    434     O[2].xyz = O33[2];  O[2].w = -psi.z;
    435     O[3].xyz = psi;     O[3].w = k2;
    436 
    437     Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
    438     Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
    439 
    440     x0 = O*q;
    441     if (x0.w < 0)
    442         x0 = -x0;
    443 
    444     P = Phi*P*transpose(Phi) + GQGt;
    445 
    446     checkState();
    447 }
    448 
    449 void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
    450     vec4_t q(x0);
    451     // measured vector in body space: h(p) = A(p)*Bi
    452     const mat33_t A(quatToMatrix(q));
    453     const vec3_t Bb(A*Bi);
    454 
    455     // Sensitivity matrix H = dh(p)/dp
    456     // H = [ L 0 ]
    457     const mat33_t L(crossMatrix(Bb, 0));
    458 
    459     // gain...
    460     // K = P*Ht / [H*P*Ht + R]
    461     vec<mat33_t, 2> K;
    462     const mat33_t R(sigma*sigma);
    463     const mat33_t S(scaleCovariance(L, P[0][0]) + R);
    464     const mat33_t Si(invert(S));
    465     const mat33_t LtSi(transpose(L)*Si);
    466     K[0] = P[0][0] * LtSi;
    467     K[1] = transpose(P[1][0])*LtSi;
    468 
    469     // update...
    470     // P = (I-K*H) * P
    471     // P -= K*H*P
    472     // | K0 | * | L 0 | * P = | K0*L  0 | * | P00  P10 | = | K0*L*P00  K0*L*P10 |
    473     // | K1 |                 | K1*L  0 |   | P01  P11 |   | K1*L*P00  K1*L*P10 |
    474     // Note: the Joseph form is numerically more stable and given by:
    475     //     P = (I-KH) * P * (I-KH)' + K*R*R'
    476     const mat33_t K0L(K[0] * L);
    477     const mat33_t K1L(K[1] * L);
    478     P[0][0] -= K0L*P[0][0];
    479     P[1][1] -= K1L*P[1][0];
    480     P[1][0] -= K0L*P[1][0];
    481     P[0][1] = transpose(P[1][0]);
    482 
    483     const vec3_t e(z - Bb);
    484     const vec3_t dq(K[0]*e);
    485     const vec3_t db(K[1]*e);
    486 
    487     q += getF(q)*(0.5f*dq);
    488     x0 = normalize_quat(q);
    489     x1 += db;
    490 
    491     checkState();
    492 }
    493 
    494 // -----------------------------------------------------------------------
    495 
    496 }; // namespace android
    497 
    498