Home | History | Annotate | Download | only in gpu
      1 
      2 /*
      3  * Copyright 2011 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "GrPathUtils.h"
     11 #include "GrPoint.h"
     12 #include "SkGeometry.h"
     13 
     14 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
     15                                           const SkMatrix& viewM,
     16                                           const GrRect& pathBounds) {
     17     // In order to tesselate the path we get a bound on how much the matrix can
     18     // stretch when mapping to screen coordinates.
     19     SkScalar stretch = viewM.getMaxStretch();
     20     SkScalar srcTol = devTol;
     21 
     22     if (stretch < 0) {
     23         // take worst case mapRadius amoung four corners.
     24         // (less than perfect)
     25         for (int i = 0; i < 4; ++i) {
     26             SkMatrix mat;
     27             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
     28                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
     29             mat.postConcat(viewM);
     30             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
     31         }
     32     }
     33     srcTol = SkScalarDiv(srcTol, stretch);
     34     return srcTol;
     35 }
     36 
     37 static const int MAX_POINTS_PER_CURVE = 1 << 10;
     38 static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f);
     39 
     40 uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
     41                                           SkScalar tol) {
     42     if (tol < gMinCurveTol) {
     43         tol = gMinCurveTol;
     44     }
     45     GrAssert(tol > 0);
     46 
     47     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
     48     if (d <= tol) {
     49         return 1;
     50     } else {
     51         // Each time we subdivide, d should be cut in 4. So we need to
     52         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
     53         // points.
     54         // 2^(log4(x)) = sqrt(x);
     55         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
     56         int pow2 = GrNextPow2(temp);
     57         // Because of NaNs & INFs we can wind up with a degenerate temp
     58         // such that pow2 comes out negative. Also, our point generator
     59         // will always output at least one pt.
     60         if (pow2 < 1) {
     61             pow2 = 1;
     62         }
     63         return GrMin(pow2, MAX_POINTS_PER_CURVE);
     64     }
     65 }
     66 
     67 uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
     68                                               const GrPoint& p1,
     69                                               const GrPoint& p2,
     70                                               SkScalar tolSqd,
     71                                               GrPoint** points,
     72                                               uint32_t pointsLeft) {
     73     if (pointsLeft < 2 ||
     74         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
     75         (*points)[0] = p2;
     76         *points += 1;
     77         return 1;
     78     }
     79 
     80     GrPoint q[] = {
     81         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
     82         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
     83     };
     84     GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
     85 
     86     pointsLeft >>= 1;
     87     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
     88     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
     89     return a + b;
     90 }
     91 
     92 uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
     93                                            SkScalar tol) {
     94     if (tol < gMinCurveTol) {
     95         tol = gMinCurveTol;
     96     }
     97     GrAssert(tol > 0);
     98 
     99     SkScalar d = GrMax(
    100         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
    101         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
    102     d = SkScalarSqrt(d);
    103     if (d <= tol) {
    104         return 1;
    105     } else {
    106         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
    107         int pow2 = GrNextPow2(temp);
    108         // Because of NaNs & INFs we can wind up with a degenerate temp
    109         // such that pow2 comes out negative. Also, our point generator
    110         // will always output at least one pt.
    111         if (pow2 < 1) {
    112             pow2 = 1;
    113         }
    114         return GrMin(pow2, MAX_POINTS_PER_CURVE);
    115     }
    116 }
    117 
    118 uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
    119                                           const GrPoint& p1,
    120                                           const GrPoint& p2,
    121                                           const GrPoint& p3,
    122                                           SkScalar tolSqd,
    123                                           GrPoint** points,
    124                                           uint32_t pointsLeft) {
    125     if (pointsLeft < 2 ||
    126         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
    127          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
    128             (*points)[0] = p3;
    129             *points += 1;
    130             return 1;
    131         }
    132     GrPoint q[] = {
    133         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    134         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    135         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    136     };
    137     GrPoint r[] = {
    138         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    139         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    140     };
    141     GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    142     pointsLeft >>= 1;
    143     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    144     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    145     return a + b;
    146 }
    147 
    148 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
    149                                      SkScalar tol) {
    150     if (tol < gMinCurveTol) {
    151         tol = gMinCurveTol;
    152     }
    153     GrAssert(tol > 0);
    154 
    155     int pointCount = 0;
    156     *subpaths = 1;
    157 
    158     bool first = true;
    159 
    160     SkPath::Iter iter(path, false);
    161     GrPathCmd cmd;
    162 
    163     GrPoint pts[4];
    164     while ((cmd = (GrPathCmd)iter.next(pts)) != kEnd_PathCmd) {
    165 
    166         switch (cmd) {
    167             case kLine_PathCmd:
    168                 pointCount += 1;
    169                 break;
    170             case kQuadratic_PathCmd:
    171                 pointCount += quadraticPointCount(pts, tol);
    172                 break;
    173             case kCubic_PathCmd:
    174                 pointCount += cubicPointCount(pts, tol);
    175                 break;
    176             case kMove_PathCmd:
    177                 pointCount += 1;
    178                 if (!first) {
    179                     ++(*subpaths);
    180                 }
    181                 break;
    182             default:
    183                 break;
    184         }
    185         first = false;
    186     }
    187     return pointCount;
    188 }
    189 
    190 void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
    191     // can't make this static, no cons :(
    192     SkMatrix UVpts;
    193 #ifndef SK_SCALAR_IS_FLOAT
    194     GrCrash("Expected scalar is float.");
    195 #endif
    196     SkMatrix m;
    197     // We want M such that M * xy_pt = uv_pt
    198     // We know M * control_pts = [0  1/2 1]
    199     //                           [0  0   1]
    200     //                           [1  1   1]
    201     // We invert the control pt matrix and post concat to both sides to get M.
    202     UVpts.setAll(0,   SK_ScalarHalf,  SK_Scalar1,
    203                  0,               0,  SK_Scalar1,
    204                  SkScalarToPersp(SK_Scalar1),
    205                  SkScalarToPersp(SK_Scalar1),
    206                  SkScalarToPersp(SK_Scalar1));
    207     m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
    208              qPts[0].fY, qPts[1].fY, qPts[2].fY,
    209              SkScalarToPersp(SK_Scalar1),
    210              SkScalarToPersp(SK_Scalar1),
    211              SkScalarToPersp(SK_Scalar1));
    212     if (!m.invert(&m)) {
    213         // The quad is degenerate. Hopefully this is rare. Find the pts that are
    214         // farthest apart to compute a line (unless it is really a pt).
    215         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
    216         int maxEdge = 0;
    217         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
    218         if (d > maxD) {
    219             maxD = d;
    220             maxEdge = 1;
    221         }
    222         d = qPts[2].distanceToSqd(qPts[0]);
    223         if (d > maxD) {
    224             maxD = d;
    225             maxEdge = 2;
    226         }
    227         // We could have a tolerance here, not sure if it would improve anything
    228         if (maxD > 0) {
    229             // Set the matrix to give (u = 0, v = distance_to_line)
    230             GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
    231             // when looking from the point 0 down the line we want positive
    232             // distances to be to the left. This matches the non-degenerate
    233             // case.
    234             lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
    235             lineVec.dot(qPts[0]);
    236             // first row
    237             fM[0] = 0;
    238             fM[1] = 0;
    239             fM[2] = 0;
    240             // second row
    241             fM[3] = lineVec.fX;
    242             fM[4] = lineVec.fY;
    243             fM[5] = -lineVec.dot(qPts[maxEdge]);
    244         } else {
    245             // It's a point. It should cover zero area. Just set the matrix such
    246             // that (u, v) will always be far away from the quad.
    247             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
    248             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
    249         }
    250     } else {
    251         m.postConcat(UVpts);
    252 
    253         // The matrix should not have perspective.
    254         SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f));
    255         GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
    256         GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
    257 
    258         // It may not be normalized to have 1.0 in the bottom right
    259         float m33 = m.get(SkMatrix::kMPersp2);
    260         if (1.f != m33) {
    261             m33 = 1.f / m33;
    262             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
    263             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
    264             fM[2] = m33 * m.get(SkMatrix::kMTransX);
    265             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
    266             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
    267             fM[5] = m33 * m.get(SkMatrix::kMTransY);
    268         } else {
    269             fM[0] = m.get(SkMatrix::kMScaleX);
    270             fM[1] = m.get(SkMatrix::kMSkewX);
    271             fM[2] = m.get(SkMatrix::kMTransX);
    272             fM[3] = m.get(SkMatrix::kMSkewY);
    273             fM[4] = m.get(SkMatrix::kMScaleY);
    274             fM[5] = m.get(SkMatrix::kMTransY);
    275         }
    276     }
    277 }
    278 
    279 namespace {
    280 
    281 // a is the first control point of the cubic.
    282 // ab is the vector from a to the second control point.
    283 // dc is the vector from the fourth to the third control point.
    284 // d is the fourth control point.
    285 // p is the candidate quadratic control point.
    286 // this assumes that the cubic doesn't inflect and is simple
    287 bool is_point_within_cubic_tangents(const SkPoint& a,
    288                                     const SkVector& ab,
    289                                     const SkVector& dc,
    290                                     const SkPoint& d,
    291                                     SkPath::Direction dir,
    292                                     const SkPoint p) {
    293     SkVector ap = p - a;
    294     SkScalar apXab = ap.cross(ab);
    295     if (SkPath::kCW_Direction == dir) {
    296         if (apXab > 0) {
    297             return false;
    298         }
    299     } else {
    300         GrAssert(SkPath::kCCW_Direction == dir);
    301         if (apXab < 0) {
    302             return false;
    303         }
    304     }
    305 
    306     SkVector dp = p - d;
    307     SkScalar dpXdc = dp.cross(dc);
    308     if (SkPath::kCW_Direction == dir) {
    309         if (dpXdc < 0) {
    310             return false;
    311         }
    312     } else {
    313         GrAssert(SkPath::kCCW_Direction == dir);
    314         if (dpXdc > 0) {
    315             return false;
    316         }
    317     }
    318     return true;
    319 }
    320 
    321 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
    322                                        SkScalar toleranceSqd,
    323                                        bool constrainWithinTangents,
    324                                        SkPath::Direction dir,
    325                                        SkTArray<SkPoint, true>* quads,
    326                                        int sublevel = 0) {
    327 
    328     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    329     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
    330 
    331     SkVector ab = p[1] - p[0];
    332     SkVector dc = p[2] - p[3];
    333 
    334     if (ab.isZero()) {
    335         if (dc.isZero()) {
    336             SkPoint* degQuad = quads->push_back_n(3);
    337             degQuad[0] = p[0];
    338             degQuad[1] = p[0];
    339             degQuad[2] = p[3];
    340             return;
    341         }
    342         ab = p[2] - p[0];
    343     }
    344     if (dc.isZero()) {
    345         dc = p[1] - p[3];
    346     }
    347 
    348     // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
    349     // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
    350     // the max subdivision count. However, in this case the cubic is approaching a line and the
    351     // accuracy of the quad point isn't so important. We check if the two middle cubic control
    352     // points are very close to the baseline vector. If so then we just pick quadratic points on the
    353     // control polygon.
    354 
    355     if (constrainWithinTangents) {
    356         SkVector da = p[0] - p[3];
    357         SkScalar invDALengthSqd = da.lengthSqd();
    358         if (invDALengthSqd > SK_ScalarNearlyZero) {
    359             invDALengthSqd = SkScalarInvert(invDALengthSqd);
    360             // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
    361             // same goed for point c using vector cd.
    362             SkScalar detABSqd = ab.cross(da);
    363             detABSqd = SkScalarSquare(detABSqd);
    364             SkScalar detDCSqd = dc.cross(da);
    365             detDCSqd = SkScalarSquare(detDCSqd);
    366             if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
    367                 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
    368                 SkPoint b = p[0] + ab;
    369                 SkPoint c = p[3] + dc;
    370                 SkPoint mid = b + c;
    371                 mid.scale(SK_ScalarHalf);
    372                 // Insert two quadratics to cover the case when ab points away from d and/or dc
    373                 // points away from a.
    374                 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
    375                     SkPoint* qpts = quads->push_back_n(6);
    376                     qpts[0] = p[0];
    377                     qpts[1] = b;
    378                     qpts[2] = mid;
    379                     qpts[3] = mid;
    380                     qpts[4] = c;
    381                     qpts[5] = p[3];
    382                 } else {
    383                     SkPoint* qpts = quads->push_back_n(3);
    384                     qpts[0] = p[0];
    385                     qpts[1] = mid;
    386                     qpts[2] = p[3];
    387                 }
    388                 return;
    389             }
    390         }
    391     }
    392 
    393     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    394     static const int kMaxSubdivs = 10;
    395 
    396     ab.scale(kLengthScale);
    397     dc.scale(kLengthScale);
    398 
    399     // e0 and e1 are extrapolations along vectors ab and dc.
    400     SkVector c0 = p[0];
    401     c0 += ab;
    402     SkVector c1 = p[3];
    403     c1 += dc;
    404 
    405     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
    406     if (dSqd < toleranceSqd) {
    407         SkPoint cAvg = c0;
    408         cAvg += c1;
    409         cAvg.scale(SK_ScalarHalf);
    410 
    411         bool subdivide = false;
    412 
    413         if (constrainWithinTangents &&
    414             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
    415             // choose a new cAvg that is the intersection of the two tangent lines.
    416             ab.setOrthog(ab);
    417             SkScalar z0 = -ab.dot(p[0]);
    418             dc.setOrthog(dc);
    419             SkScalar z1 = -dc.dot(p[3]);
    420             cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
    421             cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
    422             SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
    423             z = SkScalarInvert(z);
    424             cAvg.fX *= z;
    425             cAvg.fY *= z;
    426             if (sublevel <= kMaxSubdivs) {
    427                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
    428                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
    429                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
    430                 // the distances and tolerance can't be negative.
    431                 // (d0 + d1)^2 > toleranceSqd
    432                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
    433                 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
    434                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
    435             }
    436         }
    437         if (!subdivide) {
    438             SkPoint* pts = quads->push_back_n(3);
    439             pts[0] = p[0];
    440             pts[1] = cAvg;
    441             pts[2] = p[3];
    442             return;
    443         }
    444     }
    445     SkPoint choppedPts[7];
    446     SkChopCubicAtHalf(p, choppedPts);
    447     convert_noninflect_cubic_to_quads(choppedPts + 0,
    448                                       toleranceSqd,
    449                                       constrainWithinTangents,
    450                                       dir,
    451                                       quads,
    452                                       sublevel + 1);
    453     convert_noninflect_cubic_to_quads(choppedPts + 3,
    454                                       toleranceSqd,
    455                                       constrainWithinTangents,
    456                                       dir,
    457                                       quads,
    458                                       sublevel + 1);
    459 }
    460 }
    461 
    462 void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
    463                                       SkScalar tolScale,
    464                                       bool constrainWithinTangents,
    465                                       SkPath::Direction dir,
    466                                       SkTArray<SkPoint, true>* quads) {
    467     SkPoint chopped[10];
    468     int count = SkChopCubicAtInflections(p, chopped);
    469 
    470     // base tolerance is 1 pixel.
    471     static const SkScalar kTolerance = SK_Scalar1;
    472     const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
    473 
    474     for (int i = 0; i < count; ++i) {
    475         SkPoint* cubic = chopped + 3*i;
    476         convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
    477     }
    478 
    479 }
    480