1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef X86INSTRUCTIONINFO_H 15 #define X86INSTRUCTIONINFO_H 16 17 #include "X86.h" 18 #include "X86RegisterInfo.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/Target/TargetInstrInfo.h" 21 22 #define GET_INSTRINFO_HEADER 23 #include "X86GenInstrInfo.inc" 24 25 namespace llvm { 26 class X86RegisterInfo; 27 class X86TargetMachine; 28 29 namespace X86 { 30 // X86 specific condition code. These correspond to X86_*_COND in 31 // X86InstrInfo.td. They must be kept in synch. 32 enum CondCode { 33 COND_A = 0, 34 COND_AE = 1, 35 COND_B = 2, 36 COND_BE = 3, 37 COND_E = 4, 38 COND_G = 5, 39 COND_GE = 6, 40 COND_L = 7, 41 COND_LE = 8, 42 COND_NE = 9, 43 COND_NO = 10, 44 COND_NP = 11, 45 COND_NS = 12, 46 COND_O = 13, 47 COND_P = 14, 48 COND_S = 15, 49 50 // Artificial condition codes. These are used by AnalyzeBranch 51 // to indicate a block terminated with two conditional branches to 52 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE, 53 // which can't be represented on x86 with a single condition. These 54 // are never used in MachineInstrs. 55 COND_NE_OR_P, 56 COND_NP_OR_E, 57 58 COND_INVALID 59 }; 60 61 // Turn condition code into conditional branch opcode. 62 unsigned GetCondBranchFromCond(CondCode CC); 63 64 // Turn CMov opcode into condition code. 65 CondCode getCondFromCMovOpc(unsigned Opc); 66 67 /// GetOppositeBranchCondition - Return the inverse of the specified cond, 68 /// e.g. turning COND_E to COND_NE. 69 CondCode GetOppositeBranchCondition(X86::CondCode CC); 70 } // end namespace X86; 71 72 73 /// isGlobalStubReference - Return true if the specified TargetFlag operand is 74 /// a reference to a stub for a global, not the global itself. 75 inline static bool isGlobalStubReference(unsigned char TargetFlag) { 76 switch (TargetFlag) { 77 case X86II::MO_DLLIMPORT: // dllimport stub. 78 case X86II::MO_GOTPCREL: // rip-relative GOT reference. 79 case X86II::MO_GOT: // normal GOT reference. 80 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref. 81 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref. 82 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref. 83 return true; 84 default: 85 return false; 86 } 87 } 88 89 /// isGlobalRelativeToPICBase - Return true if the specified global value 90 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this 91 /// is true, the addressing mode has the PIC base register added in (e.g. EBX). 92 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { 93 switch (TargetFlag) { 94 case X86II::MO_GOTOFF: // isPICStyleGOT: local global. 95 case X86II::MO_GOT: // isPICStyleGOT: other global. 96 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global. 97 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global. 98 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global. 99 case X86II::MO_TLVP: // ??? Pretty sure.. 100 return true; 101 default: 102 return false; 103 } 104 } 105 106 inline static bool isScale(const MachineOperand &MO) { 107 return MO.isImm() && 108 (MO.getImm() == 1 || MO.getImm() == 2 || 109 MO.getImm() == 4 || MO.getImm() == 8); 110 } 111 112 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) { 113 if (MI->getOperand(Op).isFI()) return true; 114 return Op+4 <= MI->getNumOperands() && 115 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) && 116 MI->getOperand(Op+2).isReg() && 117 (MI->getOperand(Op+3).isImm() || 118 MI->getOperand(Op+3).isGlobal() || 119 MI->getOperand(Op+3).isCPI() || 120 MI->getOperand(Op+3).isJTI()); 121 } 122 123 inline static bool isMem(const MachineInstr *MI, unsigned Op) { 124 if (MI->getOperand(Op).isFI()) return true; 125 return Op+5 <= MI->getNumOperands() && 126 MI->getOperand(Op+4).isReg() && 127 isLeaMem(MI, Op); 128 } 129 130 class X86InstrInfo : public X86GenInstrInfo { 131 X86TargetMachine &TM; 132 const X86RegisterInfo RI; 133 134 /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, 135 /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps. 136 /// 137 typedef DenseMap<unsigned, 138 std::pair<unsigned, unsigned> > RegOp2MemOpTableType; 139 RegOp2MemOpTableType RegOp2MemOpTable2Addr; 140 RegOp2MemOpTableType RegOp2MemOpTable0; 141 RegOp2MemOpTableType RegOp2MemOpTable1; 142 RegOp2MemOpTableType RegOp2MemOpTable2; 143 RegOp2MemOpTableType RegOp2MemOpTable3; 144 145 /// MemOp2RegOpTable - Load / store unfolding opcode map. 146 /// 147 typedef DenseMap<unsigned, 148 std::pair<unsigned, unsigned> > MemOp2RegOpTableType; 149 MemOp2RegOpTableType MemOp2RegOpTable; 150 151 static void AddTableEntry(RegOp2MemOpTableType &R2MTable, 152 MemOp2RegOpTableType &M2RTable, 153 unsigned RegOp, unsigned MemOp, unsigned Flags); 154 155 public: 156 explicit X86InstrInfo(X86TargetMachine &tm); 157 158 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As 159 /// such, whenever a client has an instance of instruction info, it should 160 /// always be able to get register info as well (through this method). 161 /// 162 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; } 163 164 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" 165 /// extension instruction. That is, it's like a copy where it's legal for the 166 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns 167 /// true, then it's expected the pre-extension value is available as a subreg 168 /// of the result register. This also returns the sub-register index in 169 /// SubIdx. 170 virtual bool isCoalescableExtInstr(const MachineInstr &MI, 171 unsigned &SrcReg, unsigned &DstReg, 172 unsigned &SubIdx) const; 173 174 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const; 175 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination 176 /// stack locations as well. This uses a heuristic so it isn't 177 /// reliable for correctness. 178 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, 179 int &FrameIndex) const; 180 181 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const; 182 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination 183 /// stack locations as well. This uses a heuristic so it isn't 184 /// reliable for correctness. 185 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, 186 int &FrameIndex) const; 187 188 bool isReallyTriviallyReMaterializable(const MachineInstr *MI, 189 AliasAnalysis *AA) const; 190 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 191 unsigned DestReg, unsigned SubIdx, 192 const MachineInstr *Orig, 193 const TargetRegisterInfo &TRI) const; 194 195 /// convertToThreeAddress - This method must be implemented by targets that 196 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 197 /// may be able to convert a two-address instruction into a true 198 /// three-address instruction on demand. This allows the X86 target (for 199 /// example) to convert ADD and SHL instructions into LEA instructions if they 200 /// would require register copies due to two-addressness. 201 /// 202 /// This method returns a null pointer if the transformation cannot be 203 /// performed, otherwise it returns the new instruction. 204 /// 205 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, 206 MachineBasicBlock::iterator &MBBI, 207 LiveVariables *LV) const; 208 209 /// commuteInstruction - We have a few instructions that must be hacked on to 210 /// commute them. 211 /// 212 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const; 213 214 // Branch analysis. 215 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const; 216 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 217 MachineBasicBlock *&FBB, 218 SmallVectorImpl<MachineOperand> &Cond, 219 bool AllowModify) const; 220 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; 221 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 222 MachineBasicBlock *FBB, 223 const SmallVectorImpl<MachineOperand> &Cond, 224 DebugLoc DL) const; 225 virtual bool canInsertSelect(const MachineBasicBlock&, 226 const SmallVectorImpl<MachineOperand> &Cond, 227 unsigned, unsigned, int&, int&, int&) const; 228 virtual void insertSelect(MachineBasicBlock &MBB, 229 MachineBasicBlock::iterator MI, DebugLoc DL, 230 unsigned DstReg, 231 const SmallVectorImpl<MachineOperand> &Cond, 232 unsigned TrueReg, unsigned FalseReg) const; 233 virtual void copyPhysReg(MachineBasicBlock &MBB, 234 MachineBasicBlock::iterator MI, DebugLoc DL, 235 unsigned DestReg, unsigned SrcReg, 236 bool KillSrc) const; 237 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 238 MachineBasicBlock::iterator MI, 239 unsigned SrcReg, bool isKill, int FrameIndex, 240 const TargetRegisterClass *RC, 241 const TargetRegisterInfo *TRI) const; 242 243 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, 244 SmallVectorImpl<MachineOperand> &Addr, 245 const TargetRegisterClass *RC, 246 MachineInstr::mmo_iterator MMOBegin, 247 MachineInstr::mmo_iterator MMOEnd, 248 SmallVectorImpl<MachineInstr*> &NewMIs) const; 249 250 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 251 MachineBasicBlock::iterator MI, 252 unsigned DestReg, int FrameIndex, 253 const TargetRegisterClass *RC, 254 const TargetRegisterInfo *TRI) const; 255 256 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 257 SmallVectorImpl<MachineOperand> &Addr, 258 const TargetRegisterClass *RC, 259 MachineInstr::mmo_iterator MMOBegin, 260 MachineInstr::mmo_iterator MMOEnd, 261 SmallVectorImpl<MachineInstr*> &NewMIs) const; 262 263 virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const; 264 265 virtual 266 MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, 267 int FrameIx, uint64_t Offset, 268 const MDNode *MDPtr, 269 DebugLoc DL) const; 270 271 /// foldMemoryOperand - If this target supports it, fold a load or store of 272 /// the specified stack slot into the specified machine instruction for the 273 /// specified operand(s). If this is possible, the target should perform the 274 /// folding and return true, otherwise it should return false. If it folds 275 /// the instruction, it is likely that the MachineInstruction the iterator 276 /// references has been changed. 277 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 278 MachineInstr* MI, 279 const SmallVectorImpl<unsigned> &Ops, 280 int FrameIndex) const; 281 282 /// foldMemoryOperand - Same as the previous version except it allows folding 283 /// of any load and store from / to any address, not just from a specific 284 /// stack slot. 285 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 286 MachineInstr* MI, 287 const SmallVectorImpl<unsigned> &Ops, 288 MachineInstr* LoadMI) const; 289 290 /// canFoldMemoryOperand - Returns true if the specified load / store is 291 /// folding is possible. 292 virtual bool canFoldMemoryOperand(const MachineInstr*, 293 const SmallVectorImpl<unsigned> &) const; 294 295 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 296 /// a store or a load and a store into two or more instruction. If this is 297 /// possible, returns true as well as the new instructions by reference. 298 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 299 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 300 SmallVectorImpl<MachineInstr*> &NewMIs) const; 301 302 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 303 SmallVectorImpl<SDNode*> &NewNodes) const; 304 305 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new 306 /// instruction after load / store are unfolded from an instruction of the 307 /// specified opcode. It returns zero if the specified unfolding is not 308 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 309 /// index of the operand which will hold the register holding the loaded 310 /// value. 311 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, 312 bool UnfoldLoad, bool UnfoldStore, 313 unsigned *LoadRegIndex = 0) const; 314 315 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler 316 /// to determine if two loads are loading from the same base address. It 317 /// should only return true if the base pointers are the same and the 318 /// only differences between the two addresses are the offset. It also returns 319 /// the offsets by reference. 320 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 321 int64_t &Offset1, int64_t &Offset2) const; 322 323 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 324 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 325 /// be scheduled togther. On some targets if two loads are loading from 326 /// addresses in the same cache line, it's better if they are scheduled 327 /// together. This function takes two integers that represent the load offsets 328 /// from the common base address. It returns true if it decides it's desirable 329 /// to schedule the two loads together. "NumLoads" is the number of loads that 330 /// have already been scheduled after Load1. 331 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 332 int64_t Offset1, int64_t Offset2, 333 unsigned NumLoads) const; 334 335 virtual void getNoopForMachoTarget(MCInst &NopInst) const; 336 337 virtual 338 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const; 339 340 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine 341 /// instruction that defines the specified register class. 342 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const; 343 344 static bool isX86_64ExtendedReg(const MachineOperand &MO) { 345 if (!MO.isReg()) return false; 346 return X86II::isX86_64ExtendedReg(MO.getReg()); 347 } 348 349 /// getGlobalBaseReg - Return a virtual register initialized with the 350 /// the global base register value. Output instructions required to 351 /// initialize the register in the function entry block, if necessary. 352 /// 353 unsigned getGlobalBaseReg(MachineFunction *MF) const; 354 355 std::pair<uint16_t, uint16_t> 356 getExecutionDomain(const MachineInstr *MI) const; 357 358 void setExecutionDomain(MachineInstr *MI, unsigned Domain) const; 359 360 unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, 361 const TargetRegisterInfo *TRI) const; 362 void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, 363 const TargetRegisterInfo *TRI) const; 364 365 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 366 MachineInstr* MI, 367 unsigned OpNum, 368 const SmallVectorImpl<MachineOperand> &MOs, 369 unsigned Size, unsigned Alignment) const; 370 371 bool isHighLatencyDef(int opc) const; 372 373 bool hasHighOperandLatency(const InstrItineraryData *ItinData, 374 const MachineRegisterInfo *MRI, 375 const MachineInstr *DefMI, unsigned DefIdx, 376 const MachineInstr *UseMI, unsigned UseIdx) const; 377 378 /// analyzeCompare - For a comparison instruction, return the source registers 379 /// in SrcReg and SrcReg2 if having two register operands, and the value it 380 /// compares against in CmpValue. Return true if the comparison instruction 381 /// can be analyzed. 382 virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, 383 unsigned &SrcReg2, 384 int &CmpMask, int &CmpValue) const; 385 386 /// optimizeCompareInstr - Check if there exists an earlier instruction that 387 /// operates on the same source operands and sets flags in the same way as 388 /// Compare; remove Compare if possible. 389 virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, 390 unsigned SrcReg2, int CmpMask, int CmpValue, 391 const MachineRegisterInfo *MRI) const; 392 393 /// optimizeLoadInstr - Try to remove the load by folding it to a register 394 /// operand at the use. We fold the load instructions if and only if the 395 /// def and use are in the same BB. We only look at one load and see 396 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register 397 /// defined by the load we are trying to fold. DefMI returns the machine 398 /// instruction that defines FoldAsLoadDefReg, and the function returns 399 /// the machine instruction generated due to folding. 400 virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI, 401 const MachineRegisterInfo *MRI, 402 unsigned &FoldAsLoadDefReg, 403 MachineInstr *&DefMI) const; 404 405 private: 406 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, 407 MachineFunction::iterator &MFI, 408 MachineBasicBlock::iterator &MBBI, 409 LiveVariables *LV) const; 410 411 /// isFrameOperand - Return true and the FrameIndex if the specified 412 /// operand and follow operands form a reference to the stack frame. 413 bool isFrameOperand(const MachineInstr *MI, unsigned int Op, 414 int &FrameIndex) const; 415 }; 416 417 } // End llvm namespace 418 419 #endif 420