1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: keir (at) google.com (Keir Mierle) 30 // 31 // Based on the templated version in public/numeric_diff_cost_function.h. 32 33 #include "ceres/runtime_numeric_diff_cost_function.h" 34 35 #include <algorithm> 36 #include <numeric> 37 #include <vector> 38 #include "Eigen/Dense" 39 #include "ceres/cost_function.h" 40 #include "ceres/internal/scoped_ptr.h" 41 #include "glog/logging.h" 42 43 namespace ceres { 44 namespace internal { 45 namespace { 46 47 bool EvaluateJacobianForParameterBlock(const CostFunction* function, 48 int parameter_block_size, 49 int parameter_block, 50 RuntimeNumericDiffMethod method, 51 double relative_step_size, 52 double const* residuals_at_eval_point, 53 double** parameters, 54 double** jacobians) { 55 using Eigen::Map; 56 using Eigen::Matrix; 57 using Eigen::Dynamic; 58 using Eigen::RowMajor; 59 60 typedef Matrix<double, Dynamic, 1> ResidualVector; 61 typedef Matrix<double, Dynamic, 1> ParameterVector; 62 typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix; 63 64 int num_residuals = function->num_residuals(); 65 66 Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block], 67 num_residuals, 68 parameter_block_size); 69 70 // Mutate one element at a time and then restore. 71 Map<ParameterVector> x_plus_delta(parameters[parameter_block], 72 parameter_block_size); 73 ParameterVector x(x_plus_delta); 74 ParameterVector step_size = x.array().abs() * relative_step_size; 75 76 // To handle cases where a paremeter is exactly zero, instead use the mean 77 // step_size for the other dimensions. 78 double fallback_step_size = step_size.sum() / step_size.rows(); 79 if (fallback_step_size == 0.0) { 80 // If all the parameters are zero, there's no good answer. Use the given 81 // relative step_size as absolute step_size and hope for the best. 82 fallback_step_size = relative_step_size; 83 } 84 85 // For each parameter in the parameter block, use finite differences to 86 // compute the derivative for that parameter. 87 for (int j = 0; j < parameter_block_size; ++j) { 88 if (step_size(j) == 0.0) { 89 // The parameter is exactly zero, so compromise and use the mean step_size 90 // from the other parameters. This can break in many cases, but it's hard 91 // to pick a good number without problem specific knowledge. 92 step_size(j) = fallback_step_size; 93 } 94 x_plus_delta(j) = x(j) + step_size(j); 95 96 ResidualVector residuals(num_residuals); 97 if (!function->Evaluate(parameters, &residuals[0], NULL)) { 98 // Something went wrong; bail. 99 return false; 100 } 101 102 // Compute this column of the jacobian in 3 steps: 103 // 1. Store residuals for the forward part. 104 // 2. Subtract residuals for the backward (or 0) part. 105 // 3. Divide out the run. 106 parameter_jacobian.col(j) = residuals; 107 108 double one_over_h = 1 / step_size(j); 109 if (method == CENTRAL) { 110 // Compute the function on the other side of x(j). 111 x_plus_delta(j) = x(j) - step_size(j); 112 113 if (!function->Evaluate(parameters, &residuals[0], NULL)) { 114 // Something went wrong; bail. 115 return false; 116 } 117 parameter_jacobian.col(j) -= residuals; 118 one_over_h /= 2; 119 } else { 120 // Forward difference only; reuse existing residuals evaluation. 121 parameter_jacobian.col(j) -= 122 Map<const ResidualVector>(residuals_at_eval_point, num_residuals); 123 } 124 x_plus_delta(j) = x(j); // Restore x_plus_delta. 125 126 // Divide out the run to get slope. 127 parameter_jacobian.col(j) *= one_over_h; 128 } 129 return true; 130 } 131 132 class RuntimeNumericDiffCostFunction : public CostFunction { 133 public: 134 RuntimeNumericDiffCostFunction(const CostFunction* function, 135 RuntimeNumericDiffMethod method, 136 double relative_step_size) 137 : function_(function), 138 method_(method), 139 relative_step_size_(relative_step_size) { 140 *mutable_parameter_block_sizes() = function->parameter_block_sizes(); 141 set_num_residuals(function->num_residuals()); 142 } 143 144 virtual ~RuntimeNumericDiffCostFunction() { } 145 146 virtual bool Evaluate(double const* const* parameters, 147 double* residuals, 148 double** jacobians) const { 149 // Get the function value (residuals) at the the point to evaluate. 150 bool success = function_->Evaluate(parameters, residuals, NULL); 151 if (!success) { 152 // Something went wrong; ignore the jacobian. 153 return false; 154 } 155 if (!jacobians) { 156 // Nothing to do; just forward. 157 return true; 158 } 159 160 const vector<int16>& block_sizes = function_->parameter_block_sizes(); 161 CHECK(!block_sizes.empty()); 162 163 // Create local space for a copy of the parameters which will get mutated. 164 int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0); 165 vector<double> parameters_copy(parameters_size); 166 vector<double*> parameters_references_copy(block_sizes.size()); 167 parameters_references_copy[0] = ¶meters_copy[0]; 168 for (int block = 1; block < block_sizes.size(); ++block) { 169 parameters_references_copy[block] = parameters_references_copy[block - 1] 170 + block_sizes[block - 1]; 171 } 172 173 // Copy the parameters into the local temp space. 174 for (int block = 0; block < block_sizes.size(); ++block) { 175 memcpy(parameters_references_copy[block], 176 parameters[block], 177 block_sizes[block] * sizeof(*parameters[block])); 178 } 179 180 for (int block = 0; block < block_sizes.size(); ++block) { 181 if (!jacobians[block]) { 182 // No jacobian requested for this parameter / residual pair. 183 continue; 184 } 185 if (!EvaluateJacobianForParameterBlock(function_, 186 block_sizes[block], 187 block, 188 method_, 189 relative_step_size_, 190 residuals, 191 ¶meters_references_copy[0], 192 jacobians)) { 193 return false; 194 } 195 } 196 return true; 197 } 198 199 private: 200 const CostFunction* function_; 201 RuntimeNumericDiffMethod method_; 202 double relative_step_size_; 203 }; 204 205 } // namespace 206 207 CostFunction* CreateRuntimeNumericDiffCostFunction( 208 const CostFunction* cost_function, 209 RuntimeNumericDiffMethod method, 210 double relative_step_size) { 211 return new RuntimeNumericDiffCostFunction(cost_function, 212 method, 213 relative_step_size); 214 } 215 216 } // namespace internal 217 } // namespace ceres 218