Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Preconditioners for linear systems that arise in Structure from
     32 // Motion problems. VisibilityBasedPreconditioner implements three
     33 // preconditioners:
     34 //
     35 //  SCHUR_JACOBI
     36 //  CLUSTER_JACOBI
     37 //  CLUSTER_TRIDIAGONAL
     38 //
     39 // Detailed descriptions of these preconditions beyond what is
     40 // documented here can be found in
     41 //
     42 // Bundle Adjustment in the Large
     43 // S. Agarwal, N. Snavely, S. Seitz & R. Szeliski, ECCV 2010
     44 // http://www.cs.washington.edu/homes/sagarwal/bal.pdf
     45 //
     46 // Visibility Based Preconditioning for Bundle Adjustment
     47 // A. Kushal & S. Agarwal, submitted to CVPR 2012
     48 // http://www.cs.washington.edu/homes/sagarwal/vbp.pdf
     49 //
     50 // The three preconditioners share enough code that its most efficient
     51 // to implement them as part of the same code base.
     52 
     53 #ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
     54 #define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
     55 
     56 #include <set>
     57 #include <vector>
     58 #include <utility>
     59 #include "ceres/collections_port.h"
     60 #include "ceres/graph.h"
     61 #include "ceres/linear_solver.h"
     62 #include "ceres/linear_operator.h"
     63 #include "ceres/suitesparse.h"
     64 #include "ceres/internal/macros.h"
     65 #include "ceres/internal/scoped_ptr.h"
     66 
     67 namespace ceres {
     68 namespace internal {
     69 
     70 class BlockRandomAccessSparseMatrix;
     71 class BlockSparseMatrixBase;
     72 struct CompressedRowBlockStructure;
     73 class SchurEliminatorBase;
     74 
     75 // This class implements three preconditioners for Structure from
     76 // Motion/Bundle Adjustment problems. The name
     77 // VisibilityBasedPreconditioner comes from the fact that the sparsity
     78 // structure of the preconditioner matrix is determined by analyzing
     79 // the visibility structure of the scene, i.e. which cameras see which
     80 // points.
     81 //
     82 // Strictly speaking, SCHUR_JACOBI is not a visibility based
     83 // preconditioner but it is an extreme case of CLUSTER_JACOBI, where
     84 // every cluster contains exactly one camera block. Treating it as a
     85 // special case of CLUSTER_JACOBI makes it easy to implement as part
     86 // of the same code base with no significant loss of performance.
     87 //
     88 // In the following, we will only discuss CLUSTER_JACOBI and
     89 // CLUSTER_TRIDIAGONAL.
     90 //
     91 // The key idea of visibility based preconditioning is to identify
     92 // cameras that we expect have strong interactions, and then using the
     93 // entries in the Schur complement matrix corresponding to these
     94 // camera pairs as an approximation to the full Schur complement.
     95 //
     96 // CLUSTER_JACOBI identifies these camera pairs by clustering cameras,
     97 // and considering all non-zero camera pairs within each cluster. The
     98 // clustering in the current implementation is done using the
     99 // Canonical Views algorithm of Simon et al. (see
    100 // canonical_views_clustering.h). For the purposes of clustering, the
    101 // similarity or the degree of interaction between a pair of cameras
    102 // is measured by counting the number of points visible in both the
    103 // cameras. Thus the name VisibilityBasedPreconditioner. Further, if we
    104 // were to permute the parameter blocks such that all the cameras in
    105 // the same cluster occur contiguously, the preconditioner matrix will
    106 // be a block diagonal matrix with blocks corresponding to the
    107 // clusters. Thus in analogy with the Jacobi preconditioner we refer
    108 // to this as the CLUSTER_JACOBI preconditioner.
    109 //
    110 // CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI
    111 // preconditioner by considering the interaction between clusters and
    112 // identifying strong interactions between cluster pairs. This is done
    113 // by constructing a weighted graph on the clusters, with the weight
    114 // on the edges connecting two clusters proportional to the number of
    115 // 3D points visible to cameras in both the clusters. A degree-2
    116 // maximum spanning forest is identified in this graph and the camera
    117 // pairs contained in the edges of this forest are added to the
    118 // preconditioner. The detailed reasoning for this construction is
    119 // explained in the paper mentioned above.
    120 //
    121 // Degree-2 spanning trees and forests have the property that they
    122 // correspond to tri-diagonal matrices. Thus there exist a permutation
    123 // of the camera blocks under which the CLUSTER_TRIDIAGONAL
    124 // preconditioner matrix is a block tridiagonal matrix, and thus the
    125 // name for the preconditioner.
    126 //
    127 // Thread Safety: This class is NOT thread safe.
    128 //
    129 // Example usage:
    130 //
    131 //   LinearSolver::Options options;
    132 //   options.preconditioner_type = CLUSTER_JACOBI;
    133 //   options.num_eliminate_blocks = num_points;
    134 //   VisibilityBasedPreconditioner preconditioner(
    135 //      *A.block_structure(), options);
    136 //   preconditioner.Update(A, NULL);
    137 //   preconditioner.RightMultiply(x, y);
    138 //
    139 
    140 #ifndef CERES_NO_SUITESPARSE
    141 class VisibilityBasedPreconditioner : public LinearOperator {
    142  public:
    143   // Initialize the symbolic structure of the preconditioner. bs is
    144   // the block structure of the linear system to be solved. It is used
    145   // to determine the sparsity structure of the preconditioner matrix.
    146   //
    147   // It has the same structural requirement as other Schur complement
    148   // based solvers. Please see schur_eliminator.h for more details.
    149   //
    150   // LinearSolver::Options::num_eliminate_blocks should be set to the
    151   // number of e_blocks in the block structure.
    152   //
    153   // TODO(sameeragarwal): The use of LinearSolver::Options should
    154   // ultimately be replaced with Preconditioner::Options and some sort
    155   // of preconditioner factory along the lines of
    156   // LinearSolver::CreateLinearSolver. I will wait to do this till I
    157   // create a general purpose block Jacobi preconditioner for general
    158   // sparse problems along with a CGLS solver.
    159   VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
    160                                 const LinearSolver::Options& options);
    161   virtual ~VisibilityBasedPreconditioner();
    162 
    163   // Update the numerical value of the preconditioner for the linear
    164   // system:
    165   //
    166   //  |   A   | x = |b|
    167   //  |diag(D)|     |0|
    168   //
    169   // for some vector b. It is important that the matrix A have the
    170   // same block structure as the one used to construct this object.
    171   //
    172   // D can be NULL, in which case its interpreted as a diagonal matrix
    173   // of size zero.
    174   bool Update(const BlockSparseMatrixBase& A, const double* D);
    175 
    176 
    177   // LinearOperator interface. Since the operator is symmetric,
    178   // LeftMultiply and num_cols are just calls to RightMultiply and
    179   // num_rows respectively. Update() must be called before
    180   // RightMultiply can be called.
    181   virtual void RightMultiply(const double* x, double* y) const;
    182   virtual void LeftMultiply(const double* x, double* y) const {
    183     RightMultiply(x, y);
    184   }
    185   virtual int num_rows() const;
    186   virtual int num_cols() const { return num_rows(); }
    187 
    188   friend class VisibilityBasedPreconditionerTest;
    189  private:
    190   void ComputeSchurJacobiSparsity(const CompressedRowBlockStructure& bs);
    191   void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);
    192   void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);
    193   void InitStorage(const CompressedRowBlockStructure& bs);
    194   void InitEliminator(const CompressedRowBlockStructure& bs);
    195   bool Factorize();
    196   void ScaleOffDiagonalCells();
    197 
    198   void ClusterCameras(const vector< set<int> >& visibility);
    199   void FlattenMembershipMap(const HashMap<int, int>& membership_map,
    200                             vector<int>* membership_vector) const;
    201   void ComputeClusterVisibility(const vector<set<int> >& visibility,
    202                                 vector<set<int> >* cluster_visibility) const;
    203   Graph<int>* CreateClusterGraph(const vector<set<int> >& visibility) const;
    204   void ForestToClusterPairs(const Graph<int>& forest,
    205                             HashSet<pair<int, int> >* cluster_pairs) const;
    206   void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);
    207   bool IsBlockPairInPreconditioner(int block1, int block2) const;
    208   bool IsBlockPairOffDiagonal(int block1, int block2) const;
    209 
    210   LinearSolver::Options options_;
    211 
    212   // Number of parameter blocks in the schur complement.
    213   int num_blocks_;
    214   int num_clusters_;
    215 
    216   // Sizes of the blocks in the schur complement.
    217   vector<int> block_size_;
    218 
    219   // Mapping from cameras to clusters.
    220   vector<int> cluster_membership_;
    221 
    222   // Non-zero camera pairs from the schur complement matrix that are
    223   // present in the preconditioner, sorted by row (first element of
    224   // each pair), then column (second).
    225   set<pair<int, int> > block_pairs_;
    226 
    227   // Set of cluster pairs (including self pairs (i,i)) in the
    228   // preconditioner.
    229   HashSet<pair<int, int> > cluster_pairs_;
    230   scoped_ptr<SchurEliminatorBase> eliminator_;
    231 
    232   // Preconditioner matrix.
    233   scoped_ptr<BlockRandomAccessSparseMatrix> m_;
    234 
    235   // RightMultiply is a const method for LinearOperators. It is
    236   // implemented using CHOLMOD's sparse triangular matrix solve
    237   // function. This however requires non-const access to the
    238   // SuiteSparse context object, even though it does not result in any
    239   // of the state of the preconditioner being modified.
    240   SuiteSparse ss_;
    241 
    242   // Symbolic and numeric factorization of the preconditioner.
    243   cholmod_factor* factor_;
    244 
    245   // Temporary vector used by RightMultiply.
    246   cholmod_dense* tmp_rhs_;
    247   CERES_DISALLOW_COPY_AND_ASSIGN(VisibilityBasedPreconditioner);
    248 };
    249 #else  // SuiteSparse
    250 // If SuiteSparse is not compiled in, the preconditioner is not
    251 // available.
    252 class VisibilityBasedPreconditioner : public LinearOperator {
    253  public:
    254   VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
    255                                 const LinearSolver::Options& options) {
    256     LOG(FATAL) << "Visibility based preconditioning is not available. Please "
    257         "build Ceres with SuiteSparse.";
    258   }
    259   virtual ~VisibilityBasedPreconditioner() {}
    260   virtual void RightMultiply(const double* x, double* y) const {}
    261   virtual void LeftMultiply(const double* x, double* y) const {}
    262   virtual int num_rows() const { return -1; }
    263   virtual int num_cols() const { return -1; }
    264   bool Update(const BlockSparseMatrixBase& A, const double* D) {
    265     return false;
    266   }
    267 };
    268 #endif  // CERES_NO_SUITESPARSE
    269 
    270 }  // namespace internal
    271 }  // namespace ceres
    272 
    273 #endif  // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
    274