Home | History | Annotate | Download | only in AST
      1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr constant evaluator.
     11 //
     12 // Constant expression evaluation produces four main results:
     13 //
     14 //  * A success/failure flag indicating whether constant folding was successful.
     15 //    This is the 'bool' return value used by most of the code in this file. A
     16 //    'false' return value indicates that constant folding has failed, and any
     17 //    appropriate diagnostic has already been produced.
     18 //
     19 //  * An evaluated result, valid only if constant folding has not failed.
     20 //
     21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
     22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
     23 //    where it is possible to determine the evaluated result regardless.
     24 //
     25 //  * A set of notes indicating why the evaluation was not a constant expression
     26 //    (under the C++11 rules only, at the moment), or, if folding failed too,
     27 //    why the expression could not be folded.
     28 //
     29 // If we are checking for a potential constant expression, failure to constant
     30 // fold a potential constant sub-expression will be indicated by a 'false'
     31 // return value (the expression could not be folded) and no diagnostic (the
     32 // expression is not necessarily non-constant).
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "clang/AST/APValue.h"
     37 #include "clang/AST/ASTContext.h"
     38 #include "clang/AST/ASTDiagnostic.h"
     39 #include "clang/AST/CharUnits.h"
     40 #include "clang/AST/Expr.h"
     41 #include "clang/AST/RecordLayout.h"
     42 #include "clang/AST/StmtVisitor.h"
     43 #include "clang/AST/TypeLoc.h"
     44 #include "clang/Basic/Builtins.h"
     45 #include "clang/Basic/TargetInfo.h"
     46 #include "llvm/ADT/SmallString.h"
     47 #include "llvm/Support/raw_ostream.h"
     48 #include <cstring>
     49 #include <functional>
     50 
     51 using namespace clang;
     52 using llvm::APSInt;
     53 using llvm::APFloat;
     54 
     55 static bool IsGlobalLValue(APValue::LValueBase B);
     56 
     57 namespace {
     58   struct LValue;
     59   struct CallStackFrame;
     60   struct EvalInfo;
     61 
     62   static QualType getType(APValue::LValueBase B) {
     63     if (!B) return QualType();
     64     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
     65       return D->getType();
     66     return B.get<const Expr*>()->getType();
     67   }
     68 
     69   /// Get an LValue path entry, which is known to not be an array index, as a
     70   /// field or base class.
     71   static
     72   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
     73     APValue::BaseOrMemberType Value;
     74     Value.setFromOpaqueValue(E.BaseOrMember);
     75     return Value;
     76   }
     77 
     78   /// Get an LValue path entry, which is known to not be an array index, as a
     79   /// field declaration.
     80   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
     81     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
     82   }
     83   /// Get an LValue path entry, which is known to not be an array index, as a
     84   /// base class declaration.
     85   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
     86     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
     87   }
     88   /// Determine whether this LValue path entry for a base class names a virtual
     89   /// base class.
     90   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
     91     return getAsBaseOrMember(E).getInt();
     92   }
     93 
     94   /// Find the path length and type of the most-derived subobject in the given
     95   /// path, and find the size of the containing array, if any.
     96   static
     97   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
     98                                     ArrayRef<APValue::LValuePathEntry> Path,
     99                                     uint64_t &ArraySize, QualType &Type) {
    100     unsigned MostDerivedLength = 0;
    101     Type = Base;
    102     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
    103       if (Type->isArrayType()) {
    104         const ConstantArrayType *CAT =
    105           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
    106         Type = CAT->getElementType();
    107         ArraySize = CAT->getSize().getZExtValue();
    108         MostDerivedLength = I + 1;
    109       } else if (Type->isAnyComplexType()) {
    110         const ComplexType *CT = Type->castAs<ComplexType>();
    111         Type = CT->getElementType();
    112         ArraySize = 2;
    113         MostDerivedLength = I + 1;
    114       } else if (const FieldDecl *FD = getAsField(Path[I])) {
    115         Type = FD->getType();
    116         ArraySize = 0;
    117         MostDerivedLength = I + 1;
    118       } else {
    119         // Path[I] describes a base class.
    120         ArraySize = 0;
    121       }
    122     }
    123     return MostDerivedLength;
    124   }
    125 
    126   // The order of this enum is important for diagnostics.
    127   enum CheckSubobjectKind {
    128     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
    129     CSK_This, CSK_Real, CSK_Imag
    130   };
    131 
    132   /// A path from a glvalue to a subobject of that glvalue.
    133   struct SubobjectDesignator {
    134     /// True if the subobject was named in a manner not supported by C++11. Such
    135     /// lvalues can still be folded, but they are not core constant expressions
    136     /// and we cannot perform lvalue-to-rvalue conversions on them.
    137     bool Invalid : 1;
    138 
    139     /// Is this a pointer one past the end of an object?
    140     bool IsOnePastTheEnd : 1;
    141 
    142     /// The length of the path to the most-derived object of which this is a
    143     /// subobject.
    144     unsigned MostDerivedPathLength : 30;
    145 
    146     /// The size of the array of which the most-derived object is an element, or
    147     /// 0 if the most-derived object is not an array element.
    148     uint64_t MostDerivedArraySize;
    149 
    150     /// The type of the most derived object referred to by this address.
    151     QualType MostDerivedType;
    152 
    153     typedef APValue::LValuePathEntry PathEntry;
    154 
    155     /// The entries on the path from the glvalue to the designated subobject.
    156     SmallVector<PathEntry, 8> Entries;
    157 
    158     SubobjectDesignator() : Invalid(true) {}
    159 
    160     explicit SubobjectDesignator(QualType T)
    161       : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
    162         MostDerivedArraySize(0), MostDerivedType(T) {}
    163 
    164     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
    165       : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
    166         MostDerivedPathLength(0), MostDerivedArraySize(0) {
    167       if (!Invalid) {
    168         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
    169         ArrayRef<PathEntry> VEntries = V.getLValuePath();
    170         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
    171         if (V.getLValueBase())
    172           MostDerivedPathLength =
    173               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
    174                                        V.getLValuePath(), MostDerivedArraySize,
    175                                        MostDerivedType);
    176       }
    177     }
    178 
    179     void setInvalid() {
    180       Invalid = true;
    181       Entries.clear();
    182     }
    183 
    184     /// Determine whether this is a one-past-the-end pointer.
    185     bool isOnePastTheEnd() const {
    186       if (IsOnePastTheEnd)
    187         return true;
    188       if (MostDerivedArraySize &&
    189           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
    190         return true;
    191       return false;
    192     }
    193 
    194     /// Check that this refers to a valid subobject.
    195     bool isValidSubobject() const {
    196       if (Invalid)
    197         return false;
    198       return !isOnePastTheEnd();
    199     }
    200     /// Check that this refers to a valid subobject, and if not, produce a
    201     /// relevant diagnostic and set the designator as invalid.
    202     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
    203 
    204     /// Update this designator to refer to the first element within this array.
    205     void addArrayUnchecked(const ConstantArrayType *CAT) {
    206       PathEntry Entry;
    207       Entry.ArrayIndex = 0;
    208       Entries.push_back(Entry);
    209 
    210       // This is a most-derived object.
    211       MostDerivedType = CAT->getElementType();
    212       MostDerivedArraySize = CAT->getSize().getZExtValue();
    213       MostDerivedPathLength = Entries.size();
    214     }
    215     /// Update this designator to refer to the given base or member of this
    216     /// object.
    217     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
    218       PathEntry Entry;
    219       APValue::BaseOrMemberType Value(D, Virtual);
    220       Entry.BaseOrMember = Value.getOpaqueValue();
    221       Entries.push_back(Entry);
    222 
    223       // If this isn't a base class, it's a new most-derived object.
    224       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
    225         MostDerivedType = FD->getType();
    226         MostDerivedArraySize = 0;
    227         MostDerivedPathLength = Entries.size();
    228       }
    229     }
    230     /// Update this designator to refer to the given complex component.
    231     void addComplexUnchecked(QualType EltTy, bool Imag) {
    232       PathEntry Entry;
    233       Entry.ArrayIndex = Imag;
    234       Entries.push_back(Entry);
    235 
    236       // This is technically a most-derived object, though in practice this
    237       // is unlikely to matter.
    238       MostDerivedType = EltTy;
    239       MostDerivedArraySize = 2;
    240       MostDerivedPathLength = Entries.size();
    241     }
    242     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
    243     /// Add N to the address of this subobject.
    244     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
    245       if (Invalid) return;
    246       if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
    247         Entries.back().ArrayIndex += N;
    248         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
    249           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
    250           setInvalid();
    251         }
    252         return;
    253       }
    254       // [expr.add]p4: For the purposes of these operators, a pointer to a
    255       // nonarray object behaves the same as a pointer to the first element of
    256       // an array of length one with the type of the object as its element type.
    257       if (IsOnePastTheEnd && N == (uint64_t)-1)
    258         IsOnePastTheEnd = false;
    259       else if (!IsOnePastTheEnd && N == 1)
    260         IsOnePastTheEnd = true;
    261       else if (N != 0) {
    262         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
    263         setInvalid();
    264       }
    265     }
    266   };
    267 
    268   /// A stack frame in the constexpr call stack.
    269   struct CallStackFrame {
    270     EvalInfo &Info;
    271 
    272     /// Parent - The caller of this stack frame.
    273     CallStackFrame *Caller;
    274 
    275     /// CallLoc - The location of the call expression for this call.
    276     SourceLocation CallLoc;
    277 
    278     /// Callee - The function which was called.
    279     const FunctionDecl *Callee;
    280 
    281     /// Index - The call index of this call.
    282     unsigned Index;
    283 
    284     /// This - The binding for the this pointer in this call, if any.
    285     const LValue *This;
    286 
    287     /// ParmBindings - Parameter bindings for this function call, indexed by
    288     /// parameters' function scope indices.
    289     const APValue *Arguments;
    290 
    291     // Note that we intentionally use std::map here so that references to
    292     // values are stable.
    293     typedef std::map<const Expr*, APValue> MapTy;
    294     typedef MapTy::const_iterator temp_iterator;
    295     /// Temporaries - Temporary lvalues materialized within this stack frame.
    296     MapTy Temporaries;
    297 
    298     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
    299                    const FunctionDecl *Callee, const LValue *This,
    300                    const APValue *Arguments);
    301     ~CallStackFrame();
    302   };
    303 
    304   /// A partial diagnostic which we might know in advance that we are not going
    305   /// to emit.
    306   class OptionalDiagnostic {
    307     PartialDiagnostic *Diag;
    308 
    309   public:
    310     explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
    311 
    312     template<typename T>
    313     OptionalDiagnostic &operator<<(const T &v) {
    314       if (Diag)
    315         *Diag << v;
    316       return *this;
    317     }
    318 
    319     OptionalDiagnostic &operator<<(const APSInt &I) {
    320       if (Diag) {
    321         SmallVector<char, 32> Buffer;
    322         I.toString(Buffer);
    323         *Diag << StringRef(Buffer.data(), Buffer.size());
    324       }
    325       return *this;
    326     }
    327 
    328     OptionalDiagnostic &operator<<(const APFloat &F) {
    329       if (Diag) {
    330         SmallVector<char, 32> Buffer;
    331         F.toString(Buffer);
    332         *Diag << StringRef(Buffer.data(), Buffer.size());
    333       }
    334       return *this;
    335     }
    336   };
    337 
    338   /// EvalInfo - This is a private struct used by the evaluator to capture
    339   /// information about a subexpression as it is folded.  It retains information
    340   /// about the AST context, but also maintains information about the folded
    341   /// expression.
    342   ///
    343   /// If an expression could be evaluated, it is still possible it is not a C
    344   /// "integer constant expression" or constant expression.  If not, this struct
    345   /// captures information about how and why not.
    346   ///
    347   /// One bit of information passed *into* the request for constant folding
    348   /// indicates whether the subexpression is "evaluated" or not according to C
    349   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
    350   /// evaluate the expression regardless of what the RHS is, but C only allows
    351   /// certain things in certain situations.
    352   struct EvalInfo {
    353     ASTContext &Ctx;
    354 
    355     /// EvalStatus - Contains information about the evaluation.
    356     Expr::EvalStatus &EvalStatus;
    357 
    358     /// CurrentCall - The top of the constexpr call stack.
    359     CallStackFrame *CurrentCall;
    360 
    361     /// CallStackDepth - The number of calls in the call stack right now.
    362     unsigned CallStackDepth;
    363 
    364     /// NextCallIndex - The next call index to assign.
    365     unsigned NextCallIndex;
    366 
    367     /// BottomFrame - The frame in which evaluation started. This must be
    368     /// initialized after CurrentCall and CallStackDepth.
    369     CallStackFrame BottomFrame;
    370 
    371     /// EvaluatingDecl - This is the declaration whose initializer is being
    372     /// evaluated, if any.
    373     const VarDecl *EvaluatingDecl;
    374 
    375     /// EvaluatingDeclValue - This is the value being constructed for the
    376     /// declaration whose initializer is being evaluated, if any.
    377     APValue *EvaluatingDeclValue;
    378 
    379     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
    380     /// notes attached to it will also be stored, otherwise they will not be.
    381     bool HasActiveDiagnostic;
    382 
    383     /// CheckingPotentialConstantExpression - Are we checking whether the
    384     /// expression is a potential constant expression? If so, some diagnostics
    385     /// are suppressed.
    386     bool CheckingPotentialConstantExpression;
    387 
    388     bool IntOverflowCheckMode;
    389 
    390     EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
    391              bool OverflowCheckMode=false)
    392       : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
    393         CallStackDepth(0), NextCallIndex(1),
    394         BottomFrame(*this, SourceLocation(), 0, 0, 0),
    395         EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
    396         CheckingPotentialConstantExpression(false),
    397         IntOverflowCheckMode(OverflowCheckMode) {}
    398 
    399     void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
    400       EvaluatingDecl = VD;
    401       EvaluatingDeclValue = &Value;
    402     }
    403 
    404     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
    405 
    406     bool CheckCallLimit(SourceLocation Loc) {
    407       // Don't perform any constexpr calls (other than the call we're checking)
    408       // when checking a potential constant expression.
    409       if (CheckingPotentialConstantExpression && CallStackDepth > 1)
    410         return false;
    411       if (NextCallIndex == 0) {
    412         // NextCallIndex has wrapped around.
    413         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
    414         return false;
    415       }
    416       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
    417         return true;
    418       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
    419         << getLangOpts().ConstexprCallDepth;
    420       return false;
    421     }
    422 
    423     CallStackFrame *getCallFrame(unsigned CallIndex) {
    424       assert(CallIndex && "no call index in getCallFrame");
    425       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
    426       // be null in this loop.
    427       CallStackFrame *Frame = CurrentCall;
    428       while (Frame->Index > CallIndex)
    429         Frame = Frame->Caller;
    430       return (Frame->Index == CallIndex) ? Frame : 0;
    431     }
    432 
    433   private:
    434     /// Add a diagnostic to the diagnostics list.
    435     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
    436       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
    437       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
    438       return EvalStatus.Diag->back().second;
    439     }
    440 
    441     /// Add notes containing a call stack to the current point of evaluation.
    442     void addCallStack(unsigned Limit);
    443 
    444   public:
    445     /// Diagnose that the evaluation cannot be folded.
    446     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
    447                               = diag::note_invalid_subexpr_in_const_expr,
    448                             unsigned ExtraNotes = 0) {
    449       // If we have a prior diagnostic, it will be noting that the expression
    450       // isn't a constant expression. This diagnostic is more important.
    451       // FIXME: We might want to show both diagnostics to the user.
    452       if (EvalStatus.Diag) {
    453         unsigned CallStackNotes = CallStackDepth - 1;
    454         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
    455         if (Limit)
    456           CallStackNotes = std::min(CallStackNotes, Limit + 1);
    457         if (CheckingPotentialConstantExpression)
    458           CallStackNotes = 0;
    459 
    460         HasActiveDiagnostic = true;
    461         EvalStatus.Diag->clear();
    462         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
    463         addDiag(Loc, DiagId);
    464         if (!CheckingPotentialConstantExpression)
    465           addCallStack(Limit);
    466         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
    467       }
    468       HasActiveDiagnostic = false;
    469       return OptionalDiagnostic();
    470     }
    471 
    472     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
    473                               = diag::note_invalid_subexpr_in_const_expr,
    474                             unsigned ExtraNotes = 0) {
    475       if (EvalStatus.Diag)
    476         return Diag(E->getExprLoc(), DiagId, ExtraNotes);
    477       HasActiveDiagnostic = false;
    478       return OptionalDiagnostic();
    479     }
    480 
    481     bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
    482 
    483     /// Diagnose that the evaluation does not produce a C++11 core constant
    484     /// expression.
    485     template<typename LocArg>
    486     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
    487                                  = diag::note_invalid_subexpr_in_const_expr,
    488                                unsigned ExtraNotes = 0) {
    489       // Don't override a previous diagnostic.
    490       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
    491         HasActiveDiagnostic = false;
    492         return OptionalDiagnostic();
    493       }
    494       return Diag(Loc, DiagId, ExtraNotes);
    495     }
    496 
    497     /// Add a note to a prior diagnostic.
    498     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
    499       if (!HasActiveDiagnostic)
    500         return OptionalDiagnostic();
    501       return OptionalDiagnostic(&addDiag(Loc, DiagId));
    502     }
    503 
    504     /// Add a stack of notes to a prior diagnostic.
    505     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
    506       if (HasActiveDiagnostic) {
    507         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
    508                                 Diags.begin(), Diags.end());
    509       }
    510     }
    511 
    512     /// Should we continue evaluation as much as possible after encountering a
    513     /// construct which can't be folded?
    514     bool keepEvaluatingAfterFailure() {
    515       // Should return true in IntOverflowCheckMode, so that we check for
    516       // overflow even if some subexpressions can't be evaluated as constants.
    517       return IntOverflowCheckMode ||
    518              (CheckingPotentialConstantExpression &&
    519               EvalStatus.Diag && EvalStatus.Diag->empty());
    520     }
    521   };
    522 
    523   /// Object used to treat all foldable expressions as constant expressions.
    524   struct FoldConstant {
    525     bool Enabled;
    526 
    527     explicit FoldConstant(EvalInfo &Info)
    528       : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
    529                 !Info.EvalStatus.HasSideEffects) {
    530     }
    531     // Treat the value we've computed since this object was created as constant.
    532     void Fold(EvalInfo &Info) {
    533       if (Enabled && !Info.EvalStatus.Diag->empty() &&
    534           !Info.EvalStatus.HasSideEffects)
    535         Info.EvalStatus.Diag->clear();
    536     }
    537   };
    538 
    539   /// RAII object used to suppress diagnostics and side-effects from a
    540   /// speculative evaluation.
    541   class SpeculativeEvaluationRAII {
    542     EvalInfo &Info;
    543     Expr::EvalStatus Old;
    544 
    545   public:
    546     SpeculativeEvaluationRAII(EvalInfo &Info,
    547                               SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
    548       : Info(Info), Old(Info.EvalStatus) {
    549       Info.EvalStatus.Diag = NewDiag;
    550     }
    551     ~SpeculativeEvaluationRAII() {
    552       Info.EvalStatus = Old;
    553     }
    554   };
    555 }
    556 
    557 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
    558                                          CheckSubobjectKind CSK) {
    559   if (Invalid)
    560     return false;
    561   if (isOnePastTheEnd()) {
    562     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
    563       << CSK;
    564     setInvalid();
    565     return false;
    566   }
    567   return true;
    568 }
    569 
    570 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
    571                                                     const Expr *E, uint64_t N) {
    572   if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
    573     Info.CCEDiag(E, diag::note_constexpr_array_index)
    574       << static_cast<int>(N) << /*array*/ 0
    575       << static_cast<unsigned>(MostDerivedArraySize);
    576   else
    577     Info.CCEDiag(E, diag::note_constexpr_array_index)
    578       << static_cast<int>(N) << /*non-array*/ 1;
    579   setInvalid();
    580 }
    581 
    582 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
    583                                const FunctionDecl *Callee, const LValue *This,
    584                                const APValue *Arguments)
    585     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
    586       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
    587   Info.CurrentCall = this;
    588   ++Info.CallStackDepth;
    589 }
    590 
    591 CallStackFrame::~CallStackFrame() {
    592   assert(Info.CurrentCall == this && "calls retired out of order");
    593   --Info.CallStackDepth;
    594   Info.CurrentCall = Caller;
    595 }
    596 
    597 /// Produce a string describing the given constexpr call.
    598 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
    599   unsigned ArgIndex = 0;
    600   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
    601                       !isa<CXXConstructorDecl>(Frame->Callee) &&
    602                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
    603 
    604   if (!IsMemberCall)
    605     Out << *Frame->Callee << '(';
    606 
    607   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
    608        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
    609     if (ArgIndex > (unsigned)IsMemberCall)
    610       Out << ", ";
    611 
    612     const ParmVarDecl *Param = *I;
    613     const APValue &Arg = Frame->Arguments[ArgIndex];
    614     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
    615 
    616     if (ArgIndex == 0 && IsMemberCall)
    617       Out << "->" << *Frame->Callee << '(';
    618   }
    619 
    620   Out << ')';
    621 }
    622 
    623 void EvalInfo::addCallStack(unsigned Limit) {
    624   // Determine which calls to skip, if any.
    625   unsigned ActiveCalls = CallStackDepth - 1;
    626   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
    627   if (Limit && Limit < ActiveCalls) {
    628     SkipStart = Limit / 2 + Limit % 2;
    629     SkipEnd = ActiveCalls - Limit / 2;
    630   }
    631 
    632   // Walk the call stack and add the diagnostics.
    633   unsigned CallIdx = 0;
    634   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
    635        Frame = Frame->Caller, ++CallIdx) {
    636     // Skip this call?
    637     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
    638       if (CallIdx == SkipStart) {
    639         // Note that we're skipping calls.
    640         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
    641           << unsigned(ActiveCalls - Limit);
    642       }
    643       continue;
    644     }
    645 
    646     SmallVector<char, 128> Buffer;
    647     llvm::raw_svector_ostream Out(Buffer);
    648     describeCall(Frame, Out);
    649     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
    650   }
    651 }
    652 
    653 namespace {
    654   struct ComplexValue {
    655   private:
    656     bool IsInt;
    657 
    658   public:
    659     APSInt IntReal, IntImag;
    660     APFloat FloatReal, FloatImag;
    661 
    662     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
    663 
    664     void makeComplexFloat() { IsInt = false; }
    665     bool isComplexFloat() const { return !IsInt; }
    666     APFloat &getComplexFloatReal() { return FloatReal; }
    667     APFloat &getComplexFloatImag() { return FloatImag; }
    668 
    669     void makeComplexInt() { IsInt = true; }
    670     bool isComplexInt() const { return IsInt; }
    671     APSInt &getComplexIntReal() { return IntReal; }
    672     APSInt &getComplexIntImag() { return IntImag; }
    673 
    674     void moveInto(APValue &v) const {
    675       if (isComplexFloat())
    676         v = APValue(FloatReal, FloatImag);
    677       else
    678         v = APValue(IntReal, IntImag);
    679     }
    680     void setFrom(const APValue &v) {
    681       assert(v.isComplexFloat() || v.isComplexInt());
    682       if (v.isComplexFloat()) {
    683         makeComplexFloat();
    684         FloatReal = v.getComplexFloatReal();
    685         FloatImag = v.getComplexFloatImag();
    686       } else {
    687         makeComplexInt();
    688         IntReal = v.getComplexIntReal();
    689         IntImag = v.getComplexIntImag();
    690       }
    691     }
    692   };
    693 
    694   struct LValue {
    695     APValue::LValueBase Base;
    696     CharUnits Offset;
    697     unsigned CallIndex;
    698     SubobjectDesignator Designator;
    699 
    700     const APValue::LValueBase getLValueBase() const { return Base; }
    701     CharUnits &getLValueOffset() { return Offset; }
    702     const CharUnits &getLValueOffset() const { return Offset; }
    703     unsigned getLValueCallIndex() const { return CallIndex; }
    704     SubobjectDesignator &getLValueDesignator() { return Designator; }
    705     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
    706 
    707     void moveInto(APValue &V) const {
    708       if (Designator.Invalid)
    709         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
    710       else
    711         V = APValue(Base, Offset, Designator.Entries,
    712                     Designator.IsOnePastTheEnd, CallIndex);
    713     }
    714     void setFrom(ASTContext &Ctx, const APValue &V) {
    715       assert(V.isLValue());
    716       Base = V.getLValueBase();
    717       Offset = V.getLValueOffset();
    718       CallIndex = V.getLValueCallIndex();
    719       Designator = SubobjectDesignator(Ctx, V);
    720     }
    721 
    722     void set(APValue::LValueBase B, unsigned I = 0) {
    723       Base = B;
    724       Offset = CharUnits::Zero();
    725       CallIndex = I;
    726       Designator = SubobjectDesignator(getType(B));
    727     }
    728 
    729     // Check that this LValue is not based on a null pointer. If it is, produce
    730     // a diagnostic and mark the designator as invalid.
    731     bool checkNullPointer(EvalInfo &Info, const Expr *E,
    732                           CheckSubobjectKind CSK) {
    733       if (Designator.Invalid)
    734         return false;
    735       if (!Base) {
    736         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
    737           << CSK;
    738         Designator.setInvalid();
    739         return false;
    740       }
    741       return true;
    742     }
    743 
    744     // Check this LValue refers to an object. If not, set the designator to be
    745     // invalid and emit a diagnostic.
    746     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
    747       // Outside C++11, do not build a designator referring to a subobject of
    748       // any object: we won't use such a designator for anything.
    749       if (!Info.getLangOpts().CPlusPlus11)
    750         Designator.setInvalid();
    751       return checkNullPointer(Info, E, CSK) &&
    752              Designator.checkSubobject(Info, E, CSK);
    753     }
    754 
    755     void addDecl(EvalInfo &Info, const Expr *E,
    756                  const Decl *D, bool Virtual = false) {
    757       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
    758         Designator.addDeclUnchecked(D, Virtual);
    759     }
    760     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
    761       if (checkSubobject(Info, E, CSK_ArrayToPointer))
    762         Designator.addArrayUnchecked(CAT);
    763     }
    764     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
    765       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
    766         Designator.addComplexUnchecked(EltTy, Imag);
    767     }
    768     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
    769       if (checkNullPointer(Info, E, CSK_ArrayIndex))
    770         Designator.adjustIndex(Info, E, N);
    771     }
    772   };
    773 
    774   struct MemberPtr {
    775     MemberPtr() {}
    776     explicit MemberPtr(const ValueDecl *Decl) :
    777       DeclAndIsDerivedMember(Decl, false), Path() {}
    778 
    779     /// The member or (direct or indirect) field referred to by this member
    780     /// pointer, or 0 if this is a null member pointer.
    781     const ValueDecl *getDecl() const {
    782       return DeclAndIsDerivedMember.getPointer();
    783     }
    784     /// Is this actually a member of some type derived from the relevant class?
    785     bool isDerivedMember() const {
    786       return DeclAndIsDerivedMember.getInt();
    787     }
    788     /// Get the class which the declaration actually lives in.
    789     const CXXRecordDecl *getContainingRecord() const {
    790       return cast<CXXRecordDecl>(
    791           DeclAndIsDerivedMember.getPointer()->getDeclContext());
    792     }
    793 
    794     void moveInto(APValue &V) const {
    795       V = APValue(getDecl(), isDerivedMember(), Path);
    796     }
    797     void setFrom(const APValue &V) {
    798       assert(V.isMemberPointer());
    799       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
    800       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
    801       Path.clear();
    802       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
    803       Path.insert(Path.end(), P.begin(), P.end());
    804     }
    805 
    806     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
    807     /// whether the member is a member of some class derived from the class type
    808     /// of the member pointer.
    809     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
    810     /// Path - The path of base/derived classes from the member declaration's
    811     /// class (exclusive) to the class type of the member pointer (inclusive).
    812     SmallVector<const CXXRecordDecl*, 4> Path;
    813 
    814     /// Perform a cast towards the class of the Decl (either up or down the
    815     /// hierarchy).
    816     bool castBack(const CXXRecordDecl *Class) {
    817       assert(!Path.empty());
    818       const CXXRecordDecl *Expected;
    819       if (Path.size() >= 2)
    820         Expected = Path[Path.size() - 2];
    821       else
    822         Expected = getContainingRecord();
    823       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
    824         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
    825         // if B does not contain the original member and is not a base or
    826         // derived class of the class containing the original member, the result
    827         // of the cast is undefined.
    828         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
    829         // (D::*). We consider that to be a language defect.
    830         return false;
    831       }
    832       Path.pop_back();
    833       return true;
    834     }
    835     /// Perform a base-to-derived member pointer cast.
    836     bool castToDerived(const CXXRecordDecl *Derived) {
    837       if (!getDecl())
    838         return true;
    839       if (!isDerivedMember()) {
    840         Path.push_back(Derived);
    841         return true;
    842       }
    843       if (!castBack(Derived))
    844         return false;
    845       if (Path.empty())
    846         DeclAndIsDerivedMember.setInt(false);
    847       return true;
    848     }
    849     /// Perform a derived-to-base member pointer cast.
    850     bool castToBase(const CXXRecordDecl *Base) {
    851       if (!getDecl())
    852         return true;
    853       if (Path.empty())
    854         DeclAndIsDerivedMember.setInt(true);
    855       if (isDerivedMember()) {
    856         Path.push_back(Base);
    857         return true;
    858       }
    859       return castBack(Base);
    860     }
    861   };
    862 
    863   /// Compare two member pointers, which are assumed to be of the same type.
    864   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
    865     if (!LHS.getDecl() || !RHS.getDecl())
    866       return !LHS.getDecl() && !RHS.getDecl();
    867     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
    868       return false;
    869     return LHS.Path == RHS.Path;
    870   }
    871 
    872   /// Kinds of constant expression checking, for diagnostics.
    873   enum CheckConstantExpressionKind {
    874     CCEK_Constant,    ///< A normal constant.
    875     CCEK_ReturnValue, ///< A constexpr function return value.
    876     CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
    877   };
    878 }
    879 
    880 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
    881 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
    882                             const LValue &This, const Expr *E,
    883                             CheckConstantExpressionKind CCEK = CCEK_Constant,
    884                             bool AllowNonLiteralTypes = false);
    885 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
    886 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
    887 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
    888                                   EvalInfo &Info);
    889 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
    890 static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
    891 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
    892                                     EvalInfo &Info);
    893 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
    894 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
    895 
    896 //===----------------------------------------------------------------------===//
    897 // Misc utilities
    898 //===----------------------------------------------------------------------===//
    899 
    900 /// Should this call expression be treated as a string literal?
    901 static bool IsStringLiteralCall(const CallExpr *E) {
    902   unsigned Builtin = E->isBuiltinCall();
    903   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
    904           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
    905 }
    906 
    907 static bool IsGlobalLValue(APValue::LValueBase B) {
    908   // C++11 [expr.const]p3 An address constant expression is a prvalue core
    909   // constant expression of pointer type that evaluates to...
    910 
    911   // ... a null pointer value, or a prvalue core constant expression of type
    912   // std::nullptr_t.
    913   if (!B) return true;
    914 
    915   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
    916     // ... the address of an object with static storage duration,
    917     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    918       return VD->hasGlobalStorage();
    919     // ... the address of a function,
    920     return isa<FunctionDecl>(D);
    921   }
    922 
    923   const Expr *E = B.get<const Expr*>();
    924   switch (E->getStmtClass()) {
    925   default:
    926     return false;
    927   case Expr::CompoundLiteralExprClass: {
    928     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
    929     return CLE->isFileScope() && CLE->isLValue();
    930   }
    931   // A string literal has static storage duration.
    932   case Expr::StringLiteralClass:
    933   case Expr::PredefinedExprClass:
    934   case Expr::ObjCStringLiteralClass:
    935   case Expr::ObjCEncodeExprClass:
    936   case Expr::CXXTypeidExprClass:
    937   case Expr::CXXUuidofExprClass:
    938     return true;
    939   case Expr::CallExprClass:
    940     return IsStringLiteralCall(cast<CallExpr>(E));
    941   // For GCC compatibility, &&label has static storage duration.
    942   case Expr::AddrLabelExprClass:
    943     return true;
    944   // A Block literal expression may be used as the initialization value for
    945   // Block variables at global or local static scope.
    946   case Expr::BlockExprClass:
    947     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
    948   case Expr::ImplicitValueInitExprClass:
    949     // FIXME:
    950     // We can never form an lvalue with an implicit value initialization as its
    951     // base through expression evaluation, so these only appear in one case: the
    952     // implicit variable declaration we invent when checking whether a constexpr
    953     // constructor can produce a constant expression. We must assume that such
    954     // an expression might be a global lvalue.
    955     return true;
    956   }
    957 }
    958 
    959 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
    960   assert(Base && "no location for a null lvalue");
    961   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
    962   if (VD)
    963     Info.Note(VD->getLocation(), diag::note_declared_at);
    964   else
    965     Info.Note(Base.get<const Expr*>()->getExprLoc(),
    966               diag::note_constexpr_temporary_here);
    967 }
    968 
    969 /// Check that this reference or pointer core constant expression is a valid
    970 /// value for an address or reference constant expression. Return true if we
    971 /// can fold this expression, whether or not it's a constant expression.
    972 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
    973                                           QualType Type, const LValue &LVal) {
    974   bool IsReferenceType = Type->isReferenceType();
    975 
    976   APValue::LValueBase Base = LVal.getLValueBase();
    977   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
    978 
    979   // Check that the object is a global. Note that the fake 'this' object we
    980   // manufacture when checking potential constant expressions is conservatively
    981   // assumed to be global here.
    982   if (!IsGlobalLValue(Base)) {
    983     if (Info.getLangOpts().CPlusPlus11) {
    984       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
    985       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
    986         << IsReferenceType << !Designator.Entries.empty()
    987         << !!VD << VD;
    988       NoteLValueLocation(Info, Base);
    989     } else {
    990       Info.Diag(Loc);
    991     }
    992     // Don't allow references to temporaries to escape.
    993     return false;
    994   }
    995   assert((Info.CheckingPotentialConstantExpression ||
    996           LVal.getLValueCallIndex() == 0) &&
    997          "have call index for global lvalue");
    998 
    999   // Check if this is a thread-local variable.
   1000   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
   1001     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
   1002       if (Var->isThreadSpecified())
   1003         return false;
   1004     }
   1005   }
   1006 
   1007   // Allow address constant expressions to be past-the-end pointers. This is
   1008   // an extension: the standard requires them to point to an object.
   1009   if (!IsReferenceType)
   1010     return true;
   1011 
   1012   // A reference constant expression must refer to an object.
   1013   if (!Base) {
   1014     // FIXME: diagnostic
   1015     Info.CCEDiag(Loc);
   1016     return true;
   1017   }
   1018 
   1019   // Does this refer one past the end of some object?
   1020   if (Designator.isOnePastTheEnd()) {
   1021     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
   1022     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
   1023       << !Designator.Entries.empty() << !!VD << VD;
   1024     NoteLValueLocation(Info, Base);
   1025   }
   1026 
   1027   return true;
   1028 }
   1029 
   1030 /// Check that this core constant expression is of literal type, and if not,
   1031 /// produce an appropriate diagnostic.
   1032 static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
   1033   if (!E->isRValue() || E->getType()->isLiteralType())
   1034     return true;
   1035 
   1036   // Prvalue constant expressions must be of literal types.
   1037   if (Info.getLangOpts().CPlusPlus11)
   1038     Info.Diag(E, diag::note_constexpr_nonliteral)
   1039       << E->getType();
   1040   else
   1041     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1042   return false;
   1043 }
   1044 
   1045 /// Check that this core constant expression value is a valid value for a
   1046 /// constant expression. If not, report an appropriate diagnostic. Does not
   1047 /// check that the expression is of literal type.
   1048 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
   1049                                     QualType Type, const APValue &Value) {
   1050   // Core issue 1454: For a literal constant expression of array or class type,
   1051   // each subobject of its value shall have been initialized by a constant
   1052   // expression.
   1053   if (Value.isArray()) {
   1054     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
   1055     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
   1056       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
   1057                                    Value.getArrayInitializedElt(I)))
   1058         return false;
   1059     }
   1060     if (!Value.hasArrayFiller())
   1061       return true;
   1062     return CheckConstantExpression(Info, DiagLoc, EltTy,
   1063                                    Value.getArrayFiller());
   1064   }
   1065   if (Value.isUnion() && Value.getUnionField()) {
   1066     return CheckConstantExpression(Info, DiagLoc,
   1067                                    Value.getUnionField()->getType(),
   1068                                    Value.getUnionValue());
   1069   }
   1070   if (Value.isStruct()) {
   1071     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
   1072     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
   1073       unsigned BaseIndex = 0;
   1074       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
   1075              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
   1076         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
   1077                                      Value.getStructBase(BaseIndex)))
   1078           return false;
   1079       }
   1080     }
   1081     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   1082          I != E; ++I) {
   1083       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
   1084                                    Value.getStructField(I->getFieldIndex())))
   1085         return false;
   1086     }
   1087   }
   1088 
   1089   if (Value.isLValue()) {
   1090     LValue LVal;
   1091     LVal.setFrom(Info.Ctx, Value);
   1092     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
   1093   }
   1094 
   1095   // Everything else is fine.
   1096   return true;
   1097 }
   1098 
   1099 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
   1100   return LVal.Base.dyn_cast<const ValueDecl*>();
   1101 }
   1102 
   1103 static bool IsLiteralLValue(const LValue &Value) {
   1104   return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
   1105 }
   1106 
   1107 static bool IsWeakLValue(const LValue &Value) {
   1108   const ValueDecl *Decl = GetLValueBaseDecl(Value);
   1109   return Decl && Decl->isWeak();
   1110 }
   1111 
   1112 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
   1113   // A null base expression indicates a null pointer.  These are always
   1114   // evaluatable, and they are false unless the offset is zero.
   1115   if (!Value.getLValueBase()) {
   1116     Result = !Value.getLValueOffset().isZero();
   1117     return true;
   1118   }
   1119 
   1120   // We have a non-null base.  These are generally known to be true, but if it's
   1121   // a weak declaration it can be null at runtime.
   1122   Result = true;
   1123   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
   1124   return !Decl || !Decl->isWeak();
   1125 }
   1126 
   1127 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
   1128   switch (Val.getKind()) {
   1129   case APValue::Uninitialized:
   1130     return false;
   1131   case APValue::Int:
   1132     Result = Val.getInt().getBoolValue();
   1133     return true;
   1134   case APValue::Float:
   1135     Result = !Val.getFloat().isZero();
   1136     return true;
   1137   case APValue::ComplexInt:
   1138     Result = Val.getComplexIntReal().getBoolValue() ||
   1139              Val.getComplexIntImag().getBoolValue();
   1140     return true;
   1141   case APValue::ComplexFloat:
   1142     Result = !Val.getComplexFloatReal().isZero() ||
   1143              !Val.getComplexFloatImag().isZero();
   1144     return true;
   1145   case APValue::LValue:
   1146     return EvalPointerValueAsBool(Val, Result);
   1147   case APValue::MemberPointer:
   1148     Result = Val.getMemberPointerDecl();
   1149     return true;
   1150   case APValue::Vector:
   1151   case APValue::Array:
   1152   case APValue::Struct:
   1153   case APValue::Union:
   1154   case APValue::AddrLabelDiff:
   1155     return false;
   1156   }
   1157 
   1158   llvm_unreachable("unknown APValue kind");
   1159 }
   1160 
   1161 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
   1162                                        EvalInfo &Info) {
   1163   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
   1164   APValue Val;
   1165   if (!Evaluate(Val, Info, E))
   1166     return false;
   1167   return HandleConversionToBool(Val, Result);
   1168 }
   1169 
   1170 template<typename T>
   1171 static void HandleOverflow(EvalInfo &Info, const Expr *E,
   1172                            const T &SrcValue, QualType DestType) {
   1173   Info.CCEDiag(E, diag::note_constexpr_overflow)
   1174     << SrcValue << DestType;
   1175 }
   1176 
   1177 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
   1178                                  QualType SrcType, const APFloat &Value,
   1179                                  QualType DestType, APSInt &Result) {
   1180   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
   1181   // Determine whether we are converting to unsigned or signed.
   1182   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
   1183 
   1184   Result = APSInt(DestWidth, !DestSigned);
   1185   bool ignored;
   1186   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
   1187       & APFloat::opInvalidOp)
   1188     HandleOverflow(Info, E, Value, DestType);
   1189   return true;
   1190 }
   1191 
   1192 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
   1193                                    QualType SrcType, QualType DestType,
   1194                                    APFloat &Result) {
   1195   APFloat Value = Result;
   1196   bool ignored;
   1197   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
   1198                      APFloat::rmNearestTiesToEven, &ignored)
   1199       & APFloat::opOverflow)
   1200     HandleOverflow(Info, E, Value, DestType);
   1201   return true;
   1202 }
   1203 
   1204 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
   1205                                  QualType DestType, QualType SrcType,
   1206                                  APSInt &Value) {
   1207   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
   1208   APSInt Result = Value;
   1209   // Figure out if this is a truncate, extend or noop cast.
   1210   // If the input is signed, do a sign extend, noop, or truncate.
   1211   Result = Result.extOrTrunc(DestWidth);
   1212   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
   1213   return Result;
   1214 }
   1215 
   1216 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
   1217                                  QualType SrcType, const APSInt &Value,
   1218                                  QualType DestType, APFloat &Result) {
   1219   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
   1220   if (Result.convertFromAPInt(Value, Value.isSigned(),
   1221                               APFloat::rmNearestTiesToEven)
   1222       & APFloat::opOverflow)
   1223     HandleOverflow(Info, E, Value, DestType);
   1224   return true;
   1225 }
   1226 
   1227 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
   1228                                   llvm::APInt &Res) {
   1229   APValue SVal;
   1230   if (!Evaluate(SVal, Info, E))
   1231     return false;
   1232   if (SVal.isInt()) {
   1233     Res = SVal.getInt();
   1234     return true;
   1235   }
   1236   if (SVal.isFloat()) {
   1237     Res = SVal.getFloat().bitcastToAPInt();
   1238     return true;
   1239   }
   1240   if (SVal.isVector()) {
   1241     QualType VecTy = E->getType();
   1242     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
   1243     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
   1244     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
   1245     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
   1246     Res = llvm::APInt::getNullValue(VecSize);
   1247     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
   1248       APValue &Elt = SVal.getVectorElt(i);
   1249       llvm::APInt EltAsInt;
   1250       if (Elt.isInt()) {
   1251         EltAsInt = Elt.getInt();
   1252       } else if (Elt.isFloat()) {
   1253         EltAsInt = Elt.getFloat().bitcastToAPInt();
   1254       } else {
   1255         // Don't try to handle vectors of anything other than int or float
   1256         // (not sure if it's possible to hit this case).
   1257         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1258         return false;
   1259       }
   1260       unsigned BaseEltSize = EltAsInt.getBitWidth();
   1261       if (BigEndian)
   1262         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
   1263       else
   1264         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
   1265     }
   1266     return true;
   1267   }
   1268   // Give up if the input isn't an int, float, or vector.  For example, we
   1269   // reject "(v4i16)(intptr_t)&a".
   1270   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1271   return false;
   1272 }
   1273 
   1274 /// Cast an lvalue referring to a base subobject to a derived class, by
   1275 /// truncating the lvalue's path to the given length.
   1276 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
   1277                                const RecordDecl *TruncatedType,
   1278                                unsigned TruncatedElements) {
   1279   SubobjectDesignator &D = Result.Designator;
   1280 
   1281   // Check we actually point to a derived class object.
   1282   if (TruncatedElements == D.Entries.size())
   1283     return true;
   1284   assert(TruncatedElements >= D.MostDerivedPathLength &&
   1285          "not casting to a derived class");
   1286   if (!Result.checkSubobject(Info, E, CSK_Derived))
   1287     return false;
   1288 
   1289   // Truncate the path to the subobject, and remove any derived-to-base offsets.
   1290   const RecordDecl *RD = TruncatedType;
   1291   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
   1292     if (RD->isInvalidDecl()) return false;
   1293     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   1294     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
   1295     if (isVirtualBaseClass(D.Entries[I]))
   1296       Result.Offset -= Layout.getVBaseClassOffset(Base);
   1297     else
   1298       Result.Offset -= Layout.getBaseClassOffset(Base);
   1299     RD = Base;
   1300   }
   1301   D.Entries.resize(TruncatedElements);
   1302   return true;
   1303 }
   1304 
   1305 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
   1306                                    const CXXRecordDecl *Derived,
   1307                                    const CXXRecordDecl *Base,
   1308                                    const ASTRecordLayout *RL = 0) {
   1309   if (!RL) {
   1310     if (Derived->isInvalidDecl()) return false;
   1311     RL = &Info.Ctx.getASTRecordLayout(Derived);
   1312   }
   1313 
   1314   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
   1315   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
   1316   return true;
   1317 }
   1318 
   1319 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
   1320                              const CXXRecordDecl *DerivedDecl,
   1321                              const CXXBaseSpecifier *Base) {
   1322   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
   1323 
   1324   if (!Base->isVirtual())
   1325     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
   1326 
   1327   SubobjectDesignator &D = Obj.Designator;
   1328   if (D.Invalid)
   1329     return false;
   1330 
   1331   // Extract most-derived object and corresponding type.
   1332   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
   1333   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
   1334     return false;
   1335 
   1336   // Find the virtual base class.
   1337   if (DerivedDecl->isInvalidDecl()) return false;
   1338   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
   1339   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
   1340   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
   1341   return true;
   1342 }
   1343 
   1344 /// Update LVal to refer to the given field, which must be a member of the type
   1345 /// currently described by LVal.
   1346 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
   1347                                const FieldDecl *FD,
   1348                                const ASTRecordLayout *RL = 0) {
   1349   if (!RL) {
   1350     if (FD->getParent()->isInvalidDecl()) return false;
   1351     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
   1352   }
   1353 
   1354   unsigned I = FD->getFieldIndex();
   1355   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
   1356   LVal.addDecl(Info, E, FD);
   1357   return true;
   1358 }
   1359 
   1360 /// Update LVal to refer to the given indirect field.
   1361 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
   1362                                        LValue &LVal,
   1363                                        const IndirectFieldDecl *IFD) {
   1364   for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
   1365                                          CE = IFD->chain_end(); C != CE; ++C)
   1366     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
   1367       return false;
   1368   return true;
   1369 }
   1370 
   1371 /// Get the size of the given type in char units.
   1372 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
   1373                          QualType Type, CharUnits &Size) {
   1374   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
   1375   // extension.
   1376   if (Type->isVoidType() || Type->isFunctionType()) {
   1377     Size = CharUnits::One();
   1378     return true;
   1379   }
   1380 
   1381   if (!Type->isConstantSizeType()) {
   1382     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
   1383     // FIXME: Better diagnostic.
   1384     Info.Diag(Loc);
   1385     return false;
   1386   }
   1387 
   1388   Size = Info.Ctx.getTypeSizeInChars(Type);
   1389   return true;
   1390 }
   1391 
   1392 /// Update a pointer value to model pointer arithmetic.
   1393 /// \param Info - Information about the ongoing evaluation.
   1394 /// \param E - The expression being evaluated, for diagnostic purposes.
   1395 /// \param LVal - The pointer value to be updated.
   1396 /// \param EltTy - The pointee type represented by LVal.
   1397 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
   1398 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
   1399                                         LValue &LVal, QualType EltTy,
   1400                                         int64_t Adjustment) {
   1401   CharUnits SizeOfPointee;
   1402   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
   1403     return false;
   1404 
   1405   // Compute the new offset in the appropriate width.
   1406   LVal.Offset += Adjustment * SizeOfPointee;
   1407   LVal.adjustIndex(Info, E, Adjustment);
   1408   return true;
   1409 }
   1410 
   1411 /// Update an lvalue to refer to a component of a complex number.
   1412 /// \param Info - Information about the ongoing evaluation.
   1413 /// \param LVal - The lvalue to be updated.
   1414 /// \param EltTy - The complex number's component type.
   1415 /// \param Imag - False for the real component, true for the imaginary.
   1416 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
   1417                                        LValue &LVal, QualType EltTy,
   1418                                        bool Imag) {
   1419   if (Imag) {
   1420     CharUnits SizeOfComponent;
   1421     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
   1422       return false;
   1423     LVal.Offset += SizeOfComponent;
   1424   }
   1425   LVal.addComplex(Info, E, EltTy, Imag);
   1426   return true;
   1427 }
   1428 
   1429 /// Try to evaluate the initializer for a variable declaration.
   1430 static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
   1431                                 const VarDecl *VD,
   1432                                 CallStackFrame *Frame, APValue &Result) {
   1433   // If this is a parameter to an active constexpr function call, perform
   1434   // argument substitution.
   1435   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
   1436     // Assume arguments of a potential constant expression are unknown
   1437     // constant expressions.
   1438     if (Info.CheckingPotentialConstantExpression)
   1439       return false;
   1440     if (!Frame || !Frame->Arguments) {
   1441       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1442       return false;
   1443     }
   1444     Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
   1445     return true;
   1446   }
   1447 
   1448   // Dig out the initializer, and use the declaration which it's attached to.
   1449   const Expr *Init = VD->getAnyInitializer(VD);
   1450   if (!Init || Init->isValueDependent()) {
   1451     // If we're checking a potential constant expression, the variable could be
   1452     // initialized later.
   1453     if (!Info.CheckingPotentialConstantExpression)
   1454       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1455     return false;
   1456   }
   1457 
   1458   // If we're currently evaluating the initializer of this declaration, use that
   1459   // in-flight value.
   1460   if (Info.EvaluatingDecl == VD) {
   1461     Result = *Info.EvaluatingDeclValue;
   1462     return !Result.isUninit();
   1463   }
   1464 
   1465   // Never evaluate the initializer of a weak variable. We can't be sure that
   1466   // this is the definition which will be used.
   1467   if (VD->isWeak()) {
   1468     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1469     return false;
   1470   }
   1471 
   1472   // Check that we can fold the initializer. In C++, we will have already done
   1473   // this in the cases where it matters for conformance.
   1474   SmallVector<PartialDiagnosticAt, 8> Notes;
   1475   if (!VD->evaluateValue(Notes)) {
   1476     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
   1477               Notes.size() + 1) << VD;
   1478     Info.Note(VD->getLocation(), diag::note_declared_at);
   1479     Info.addNotes(Notes);
   1480     return false;
   1481   } else if (!VD->checkInitIsICE()) {
   1482     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
   1483                  Notes.size() + 1) << VD;
   1484     Info.Note(VD->getLocation(), diag::note_declared_at);
   1485     Info.addNotes(Notes);
   1486   }
   1487 
   1488   Result = *VD->getEvaluatedValue();
   1489   return true;
   1490 }
   1491 
   1492 static bool IsConstNonVolatile(QualType T) {
   1493   Qualifiers Quals = T.getQualifiers();
   1494   return Quals.hasConst() && !Quals.hasVolatile();
   1495 }
   1496 
   1497 /// Get the base index of the given base class within an APValue representing
   1498 /// the given derived class.
   1499 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
   1500                              const CXXRecordDecl *Base) {
   1501   Base = Base->getCanonicalDecl();
   1502   unsigned Index = 0;
   1503   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
   1504          E = Derived->bases_end(); I != E; ++I, ++Index) {
   1505     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
   1506       return Index;
   1507   }
   1508 
   1509   llvm_unreachable("base class missing from derived class's bases list");
   1510 }
   1511 
   1512 /// Extract the value of a character from a string literal. CharType is used to
   1513 /// determine the expected signedness of the result -- a string literal used to
   1514 /// initialize an array of 'signed char' or 'unsigned char' might contain chars
   1515 /// of the wrong signedness.
   1516 static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
   1517                                             uint64_t Index, QualType CharType) {
   1518   // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
   1519   const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
   1520   assert(S && "unexpected string literal expression kind");
   1521   assert(CharType->isIntegerType() && "unexpected character type");
   1522 
   1523   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
   1524                CharType->isUnsignedIntegerType());
   1525   if (Index < S->getLength())
   1526     Value = S->getCodeUnit(Index);
   1527   return Value;
   1528 }
   1529 
   1530 /// Extract the designated sub-object of an rvalue.
   1531 static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
   1532                              APValue &Obj, QualType ObjType,
   1533                              const SubobjectDesignator &Sub, QualType SubType) {
   1534   if (Sub.Invalid)
   1535     // A diagnostic will have already been produced.
   1536     return false;
   1537   if (Sub.isOnePastTheEnd()) {
   1538     Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
   1539                 (unsigned)diag::note_constexpr_read_past_end :
   1540                 (unsigned)diag::note_invalid_subexpr_in_const_expr);
   1541     return false;
   1542   }
   1543   if (Sub.Entries.empty())
   1544     return true;
   1545   if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
   1546     // This object might be initialized later.
   1547     return false;
   1548 
   1549   APValue *O = &Obj;
   1550   // Walk the designator's path to find the subobject.
   1551   for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
   1552     if (ObjType->isArrayType()) {
   1553       // Next subobject is an array element.
   1554       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
   1555       assert(CAT && "vla in literal type?");
   1556       uint64_t Index = Sub.Entries[I].ArrayIndex;
   1557       if (CAT->getSize().ule(Index)) {
   1558         // Note, it should not be possible to form a pointer with a valid
   1559         // designator which points more than one past the end of the array.
   1560         Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
   1561                     (unsigned)diag::note_constexpr_read_past_end :
   1562                     (unsigned)diag::note_invalid_subexpr_in_const_expr);
   1563         return false;
   1564       }
   1565       // An array object is represented as either an Array APValue or as an
   1566       // LValue which refers to a string literal.
   1567       if (O->isLValue()) {
   1568         assert(I == N - 1 && "extracting subobject of character?");
   1569         assert(!O->hasLValuePath() || O->getLValuePath().empty());
   1570         Obj = APValue(ExtractStringLiteralCharacter(
   1571           Info, O->getLValueBase().get<const Expr*>(), Index, SubType));
   1572         return true;
   1573       } else if (O->getArrayInitializedElts() > Index)
   1574         O = &O->getArrayInitializedElt(Index);
   1575       else
   1576         O = &O->getArrayFiller();
   1577       ObjType = CAT->getElementType();
   1578     } else if (ObjType->isAnyComplexType()) {
   1579       // Next subobject is a complex number.
   1580       uint64_t Index = Sub.Entries[I].ArrayIndex;
   1581       if (Index > 1) {
   1582         Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
   1583                     (unsigned)diag::note_constexpr_read_past_end :
   1584                     (unsigned)diag::note_invalid_subexpr_in_const_expr);
   1585         return false;
   1586       }
   1587       assert(I == N - 1 && "extracting subobject of scalar?");
   1588       if (O->isComplexInt()) {
   1589         Obj = APValue(Index ? O->getComplexIntImag()
   1590                             : O->getComplexIntReal());
   1591       } else {
   1592         assert(O->isComplexFloat());
   1593         Obj = APValue(Index ? O->getComplexFloatImag()
   1594                             : O->getComplexFloatReal());
   1595       }
   1596       return true;
   1597     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
   1598       if (Field->isMutable()) {
   1599         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
   1600           << Field;
   1601         Info.Note(Field->getLocation(), diag::note_declared_at);
   1602         return false;
   1603       }
   1604 
   1605       // Next subobject is a class, struct or union field.
   1606       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
   1607       if (RD->isUnion()) {
   1608         const FieldDecl *UnionField = O->getUnionField();
   1609         if (!UnionField ||
   1610             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
   1611           Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
   1612             << Field << !UnionField << UnionField;
   1613           return false;
   1614         }
   1615         O = &O->getUnionValue();
   1616       } else
   1617         O = &O->getStructField(Field->getFieldIndex());
   1618       ObjType = Field->getType();
   1619 
   1620       if (ObjType.isVolatileQualified()) {
   1621         if (Info.getLangOpts().CPlusPlus) {
   1622           // FIXME: Include a description of the path to the volatile subobject.
   1623           Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
   1624             << 2 << Field;
   1625           Info.Note(Field->getLocation(), diag::note_declared_at);
   1626         } else {
   1627           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1628         }
   1629         return false;
   1630       }
   1631     } else {
   1632       // Next subobject is a base class.
   1633       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
   1634       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
   1635       O = &O->getStructBase(getBaseIndex(Derived, Base));
   1636       ObjType = Info.Ctx.getRecordType(Base);
   1637     }
   1638 
   1639     if (O->isUninit()) {
   1640       if (!Info.CheckingPotentialConstantExpression)
   1641         Info.Diag(E, diag::note_constexpr_read_uninit);
   1642       return false;
   1643     }
   1644   }
   1645 
   1646   // This may look super-stupid, but it serves an important purpose: if we just
   1647   // swapped Obj and *O, we'd create an object which had itself as a subobject.
   1648   // To avoid the leak, we ensure that Tmp ends up owning the original complete
   1649   // object, which is destroyed by Tmp's destructor.
   1650   APValue Tmp;
   1651   O->swap(Tmp);
   1652   Obj.swap(Tmp);
   1653   return true;
   1654 }
   1655 
   1656 /// Find the position where two subobject designators diverge, or equivalently
   1657 /// the length of the common initial subsequence.
   1658 static unsigned FindDesignatorMismatch(QualType ObjType,
   1659                                        const SubobjectDesignator &A,
   1660                                        const SubobjectDesignator &B,
   1661                                        bool &WasArrayIndex) {
   1662   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
   1663   for (/**/; I != N; ++I) {
   1664     if (!ObjType.isNull() &&
   1665         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
   1666       // Next subobject is an array element.
   1667       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
   1668         WasArrayIndex = true;
   1669         return I;
   1670       }
   1671       if (ObjType->isAnyComplexType())
   1672         ObjType = ObjType->castAs<ComplexType>()->getElementType();
   1673       else
   1674         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
   1675     } else {
   1676       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
   1677         WasArrayIndex = false;
   1678         return I;
   1679       }
   1680       if (const FieldDecl *FD = getAsField(A.Entries[I]))
   1681         // Next subobject is a field.
   1682         ObjType = FD->getType();
   1683       else
   1684         // Next subobject is a base class.
   1685         ObjType = QualType();
   1686     }
   1687   }
   1688   WasArrayIndex = false;
   1689   return I;
   1690 }
   1691 
   1692 /// Determine whether the given subobject designators refer to elements of the
   1693 /// same array object.
   1694 static bool AreElementsOfSameArray(QualType ObjType,
   1695                                    const SubobjectDesignator &A,
   1696                                    const SubobjectDesignator &B) {
   1697   if (A.Entries.size() != B.Entries.size())
   1698     return false;
   1699 
   1700   bool IsArray = A.MostDerivedArraySize != 0;
   1701   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
   1702     // A is a subobject of the array element.
   1703     return false;
   1704 
   1705   // If A (and B) designates an array element, the last entry will be the array
   1706   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
   1707   // of length 1' case, and the entire path must match.
   1708   bool WasArrayIndex;
   1709   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
   1710   return CommonLength >= A.Entries.size() - IsArray;
   1711 }
   1712 
   1713 /// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
   1714 /// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
   1715 /// for looking up the glvalue referred to by an entity of reference type.
   1716 ///
   1717 /// \param Info - Information about the ongoing evaluation.
   1718 /// \param Conv - The expression for which we are performing the conversion.
   1719 ///               Used for diagnostics.
   1720 /// \param Type - The type we expect this conversion to produce, before
   1721 ///               stripping cv-qualifiers in the case of a non-clas type.
   1722 /// \param LVal - The glvalue on which we are attempting to perform this action.
   1723 /// \param RVal - The produced value will be placed here.
   1724 static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
   1725                                            QualType Type,
   1726                                            const LValue &LVal, APValue &RVal) {
   1727   if (LVal.Designator.Invalid)
   1728     // A diagnostic will have already been produced.
   1729     return false;
   1730 
   1731   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
   1732 
   1733   if (!LVal.Base) {
   1734     // FIXME: Indirection through a null pointer deserves a specific diagnostic.
   1735     Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
   1736     return false;
   1737   }
   1738 
   1739   CallStackFrame *Frame = 0;
   1740   if (LVal.CallIndex) {
   1741     Frame = Info.getCallFrame(LVal.CallIndex);
   1742     if (!Frame) {
   1743       Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
   1744       NoteLValueLocation(Info, LVal.Base);
   1745       return false;
   1746     }
   1747   }
   1748 
   1749   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
   1750   // is not a constant expression (even if the object is non-volatile). We also
   1751   // apply this rule to C++98, in order to conform to the expected 'volatile'
   1752   // semantics.
   1753   if (Type.isVolatileQualified()) {
   1754     if (Info.getLangOpts().CPlusPlus)
   1755       Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
   1756     else
   1757       Info.Diag(Conv);
   1758     return false;
   1759   }
   1760 
   1761   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
   1762     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
   1763     // In C++11, constexpr, non-volatile variables initialized with constant
   1764     // expressions are constant expressions too. Inside constexpr functions,
   1765     // parameters are constant expressions even if they're non-const.
   1766     // In C, such things can also be folded, although they are not ICEs.
   1767     const VarDecl *VD = dyn_cast<VarDecl>(D);
   1768     if (VD) {
   1769       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
   1770         VD = VDef;
   1771     }
   1772     if (!VD || VD->isInvalidDecl()) {
   1773       Info.Diag(Conv);
   1774       return false;
   1775     }
   1776 
   1777     // DR1313: If the object is volatile-qualified but the glvalue was not,
   1778     // behavior is undefined so the result is not a constant expression.
   1779     QualType VT = VD->getType();
   1780     if (VT.isVolatileQualified()) {
   1781       if (Info.getLangOpts().CPlusPlus) {
   1782         Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
   1783         Info.Note(VD->getLocation(), diag::note_declared_at);
   1784       } else {
   1785         Info.Diag(Conv);
   1786       }
   1787       return false;
   1788     }
   1789 
   1790     if (!isa<ParmVarDecl>(VD)) {
   1791       if (VD->isConstexpr()) {
   1792         // OK, we can read this variable.
   1793       } else if (VT->isIntegralOrEnumerationType()) {
   1794         if (!VT.isConstQualified()) {
   1795           if (Info.getLangOpts().CPlusPlus) {
   1796             Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
   1797             Info.Note(VD->getLocation(), diag::note_declared_at);
   1798           } else {
   1799             Info.Diag(Conv);
   1800           }
   1801           return false;
   1802         }
   1803       } else if (VT->isFloatingType() && VT.isConstQualified()) {
   1804         // We support folding of const floating-point types, in order to make
   1805         // static const data members of such types (supported as an extension)
   1806         // more useful.
   1807         if (Info.getLangOpts().CPlusPlus11) {
   1808           Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
   1809           Info.Note(VD->getLocation(), diag::note_declared_at);
   1810         } else {
   1811           Info.CCEDiag(Conv);
   1812         }
   1813       } else {
   1814         // FIXME: Allow folding of values of any literal type in all languages.
   1815         if (Info.getLangOpts().CPlusPlus11) {
   1816           Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
   1817           Info.Note(VD->getLocation(), diag::note_declared_at);
   1818         } else {
   1819           Info.Diag(Conv);
   1820         }
   1821         return false;
   1822       }
   1823     }
   1824 
   1825     if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
   1826       return false;
   1827 
   1828     if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
   1829       return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
   1830 
   1831     // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
   1832     // conversion. This happens when the declaration and the lvalue should be
   1833     // considered synonymous, for instance when initializing an array of char
   1834     // from a string literal. Continue as if the initializer lvalue was the
   1835     // value we were originally given.
   1836     assert(RVal.getLValueOffset().isZero() &&
   1837            "offset for lvalue init of non-reference");
   1838     Base = RVal.getLValueBase().get<const Expr*>();
   1839 
   1840     if (unsigned CallIndex = RVal.getLValueCallIndex()) {
   1841       Frame = Info.getCallFrame(CallIndex);
   1842       if (!Frame) {
   1843         Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
   1844         NoteLValueLocation(Info, RVal.getLValueBase());
   1845         return false;
   1846       }
   1847     } else {
   1848       Frame = 0;
   1849     }
   1850   }
   1851 
   1852   // Volatile temporary objects cannot be read in constant expressions.
   1853   if (Base->getType().isVolatileQualified()) {
   1854     if (Info.getLangOpts().CPlusPlus) {
   1855       Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
   1856       Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
   1857     } else {
   1858       Info.Diag(Conv);
   1859     }
   1860     return false;
   1861   }
   1862 
   1863   if (Frame) {
   1864     // If this is a temporary expression with a nontrivial initializer, grab the
   1865     // value from the relevant stack frame.
   1866     RVal = Frame->Temporaries[Base];
   1867   } else if (const CompoundLiteralExpr *CLE
   1868              = dyn_cast<CompoundLiteralExpr>(Base)) {
   1869     // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
   1870     // initializer until now for such expressions. Such an expression can't be
   1871     // an ICE in C, so this only matters for fold.
   1872     assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
   1873     if (!Evaluate(RVal, Info, CLE->getInitializer()))
   1874       return false;
   1875   } else if (isa<StringLiteral>(Base)) {
   1876     // We represent a string literal array as an lvalue pointing at the
   1877     // corresponding expression, rather than building an array of chars.
   1878     // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
   1879     RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
   1880   } else {
   1881     Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
   1882     return false;
   1883   }
   1884 
   1885   return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
   1886                           Type);
   1887 }
   1888 
   1889 /// Build an lvalue for the object argument of a member function call.
   1890 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
   1891                                    LValue &This) {
   1892   if (Object->getType()->isPointerType())
   1893     return EvaluatePointer(Object, This, Info);
   1894 
   1895   if (Object->isGLValue())
   1896     return EvaluateLValue(Object, This, Info);
   1897 
   1898   if (Object->getType()->isLiteralType())
   1899     return EvaluateTemporary(Object, This, Info);
   1900 
   1901   return false;
   1902 }
   1903 
   1904 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
   1905 /// lvalue referring to the result.
   1906 ///
   1907 /// \param Info - Information about the ongoing evaluation.
   1908 /// \param BO - The member pointer access operation.
   1909 /// \param LV - Filled in with a reference to the resulting object.
   1910 /// \param IncludeMember - Specifies whether the member itself is included in
   1911 ///        the resulting LValue subobject designator. This is not possible when
   1912 ///        creating a bound member function.
   1913 /// \return The field or method declaration to which the member pointer refers,
   1914 ///         or 0 if evaluation fails.
   1915 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
   1916                                                   const BinaryOperator *BO,
   1917                                                   LValue &LV,
   1918                                                   bool IncludeMember = true) {
   1919   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
   1920 
   1921   bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
   1922   if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
   1923     return 0;
   1924 
   1925   MemberPtr MemPtr;
   1926   if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
   1927     return 0;
   1928 
   1929   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
   1930   // member value, the behavior is undefined.
   1931   if (!MemPtr.getDecl())
   1932     return 0;
   1933 
   1934   if (!EvalObjOK)
   1935     return 0;
   1936 
   1937   if (MemPtr.isDerivedMember()) {
   1938     // This is a member of some derived class. Truncate LV appropriately.
   1939     // The end of the derived-to-base path for the base object must match the
   1940     // derived-to-base path for the member pointer.
   1941     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
   1942         LV.Designator.Entries.size())
   1943       return 0;
   1944     unsigned PathLengthToMember =
   1945         LV.Designator.Entries.size() - MemPtr.Path.size();
   1946     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
   1947       const CXXRecordDecl *LVDecl = getAsBaseClass(
   1948           LV.Designator.Entries[PathLengthToMember + I]);
   1949       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
   1950       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
   1951         return 0;
   1952     }
   1953 
   1954     // Truncate the lvalue to the appropriate derived class.
   1955     if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
   1956                             PathLengthToMember))
   1957       return 0;
   1958   } else if (!MemPtr.Path.empty()) {
   1959     // Extend the LValue path with the member pointer's path.
   1960     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
   1961                                   MemPtr.Path.size() + IncludeMember);
   1962 
   1963     // Walk down to the appropriate base class.
   1964     QualType LVType = BO->getLHS()->getType();
   1965     if (const PointerType *PT = LVType->getAs<PointerType>())
   1966       LVType = PT->getPointeeType();
   1967     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
   1968     assert(RD && "member pointer access on non-class-type expression");
   1969     // The first class in the path is that of the lvalue.
   1970     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
   1971       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
   1972       if (!HandleLValueDirectBase(Info, BO, LV, RD, Base))
   1973         return 0;
   1974       RD = Base;
   1975     }
   1976     // Finally cast to the class containing the member.
   1977     if (!HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord()))
   1978       return 0;
   1979   }
   1980 
   1981   // Add the member. Note that we cannot build bound member functions here.
   1982   if (IncludeMember) {
   1983     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
   1984       if (!HandleLValueMember(Info, BO, LV, FD))
   1985         return 0;
   1986     } else if (const IndirectFieldDecl *IFD =
   1987                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
   1988       if (!HandleLValueIndirectMember(Info, BO, LV, IFD))
   1989         return 0;
   1990     } else {
   1991       llvm_unreachable("can't construct reference to bound member function");
   1992     }
   1993   }
   1994 
   1995   return MemPtr.getDecl();
   1996 }
   1997 
   1998 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
   1999 /// the provided lvalue, which currently refers to the base object.
   2000 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
   2001                                     LValue &Result) {
   2002   SubobjectDesignator &D = Result.Designator;
   2003   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
   2004     return false;
   2005 
   2006   QualType TargetQT = E->getType();
   2007   if (const PointerType *PT = TargetQT->getAs<PointerType>())
   2008     TargetQT = PT->getPointeeType();
   2009 
   2010   // Check this cast lands within the final derived-to-base subobject path.
   2011   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
   2012     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
   2013       << D.MostDerivedType << TargetQT;
   2014     return false;
   2015   }
   2016 
   2017   // Check the type of the final cast. We don't need to check the path,
   2018   // since a cast can only be formed if the path is unique.
   2019   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
   2020   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
   2021   const CXXRecordDecl *FinalType;
   2022   if (NewEntriesSize == D.MostDerivedPathLength)
   2023     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
   2024   else
   2025     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
   2026   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
   2027     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
   2028       << D.MostDerivedType << TargetQT;
   2029     return false;
   2030   }
   2031 
   2032   // Truncate the lvalue to the appropriate derived class.
   2033   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
   2034 }
   2035 
   2036 namespace {
   2037 enum EvalStmtResult {
   2038   /// Evaluation failed.
   2039   ESR_Failed,
   2040   /// Hit a 'return' statement.
   2041   ESR_Returned,
   2042   /// Evaluation succeeded.
   2043   ESR_Succeeded
   2044 };
   2045 }
   2046 
   2047 // Evaluate a statement.
   2048 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
   2049                                    const Stmt *S) {
   2050   switch (S->getStmtClass()) {
   2051   default:
   2052     return ESR_Failed;
   2053 
   2054   case Stmt::NullStmtClass:
   2055   case Stmt::DeclStmtClass:
   2056     return ESR_Succeeded;
   2057 
   2058   case Stmt::ReturnStmtClass: {
   2059     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
   2060     if (!Evaluate(Result, Info, RetExpr))
   2061       return ESR_Failed;
   2062     return ESR_Returned;
   2063   }
   2064 
   2065   case Stmt::CompoundStmtClass: {
   2066     const CompoundStmt *CS = cast<CompoundStmt>(S);
   2067     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
   2068            BE = CS->body_end(); BI != BE; ++BI) {
   2069       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
   2070       if (ESR != ESR_Succeeded)
   2071         return ESR;
   2072     }
   2073     return ESR_Succeeded;
   2074   }
   2075   }
   2076 }
   2077 
   2078 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
   2079 /// default constructor. If so, we'll fold it whether or not it's marked as
   2080 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
   2081 /// so we need special handling.
   2082 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
   2083                                            const CXXConstructorDecl *CD,
   2084                                            bool IsValueInitialization) {
   2085   if (!CD->isTrivial() || !CD->isDefaultConstructor())
   2086     return false;
   2087 
   2088   // Value-initialization does not call a trivial default constructor, so such a
   2089   // call is a core constant expression whether or not the constructor is
   2090   // constexpr.
   2091   if (!CD->isConstexpr() && !IsValueInitialization) {
   2092     if (Info.getLangOpts().CPlusPlus11) {
   2093       // FIXME: If DiagDecl is an implicitly-declared special member function,
   2094       // we should be much more explicit about why it's not constexpr.
   2095       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
   2096         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
   2097       Info.Note(CD->getLocation(), diag::note_declared_at);
   2098     } else {
   2099       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
   2100     }
   2101   }
   2102   return true;
   2103 }
   2104 
   2105 /// CheckConstexprFunction - Check that a function can be called in a constant
   2106 /// expression.
   2107 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
   2108                                    const FunctionDecl *Declaration,
   2109                                    const FunctionDecl *Definition) {
   2110   // Potential constant expressions can contain calls to declared, but not yet
   2111   // defined, constexpr functions.
   2112   if (Info.CheckingPotentialConstantExpression && !Definition &&
   2113       Declaration->isConstexpr())
   2114     return false;
   2115 
   2116   // Can we evaluate this function call?
   2117   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
   2118     return true;
   2119 
   2120   if (Info.getLangOpts().CPlusPlus11) {
   2121     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
   2122     // FIXME: If DiagDecl is an implicitly-declared special member function, we
   2123     // should be much more explicit about why it's not constexpr.
   2124     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
   2125       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
   2126       << DiagDecl;
   2127     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
   2128   } else {
   2129     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
   2130   }
   2131   return false;
   2132 }
   2133 
   2134 namespace {
   2135 typedef SmallVector<APValue, 8> ArgVector;
   2136 }
   2137 
   2138 /// EvaluateArgs - Evaluate the arguments to a function call.
   2139 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
   2140                          EvalInfo &Info) {
   2141   bool Success = true;
   2142   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
   2143        I != E; ++I) {
   2144     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
   2145       // If we're checking for a potential constant expression, evaluate all
   2146       // initializers even if some of them fail.
   2147       if (!Info.keepEvaluatingAfterFailure())
   2148         return false;
   2149       Success = false;
   2150     }
   2151   }
   2152   return Success;
   2153 }
   2154 
   2155 /// Evaluate a function call.
   2156 static bool HandleFunctionCall(SourceLocation CallLoc,
   2157                                const FunctionDecl *Callee, const LValue *This,
   2158                                ArrayRef<const Expr*> Args, const Stmt *Body,
   2159                                EvalInfo &Info, APValue &Result) {
   2160   ArgVector ArgValues(Args.size());
   2161   if (!EvaluateArgs(Args, ArgValues, Info))
   2162     return false;
   2163 
   2164   if (!Info.CheckCallLimit(CallLoc))
   2165     return false;
   2166 
   2167   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
   2168   return EvaluateStmt(Result, Info, Body) == ESR_Returned;
   2169 }
   2170 
   2171 /// Evaluate a constructor call.
   2172 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
   2173                                   ArrayRef<const Expr*> Args,
   2174                                   const CXXConstructorDecl *Definition,
   2175                                   EvalInfo &Info, APValue &Result) {
   2176   ArgVector ArgValues(Args.size());
   2177   if (!EvaluateArgs(Args, ArgValues, Info))
   2178     return false;
   2179 
   2180   if (!Info.CheckCallLimit(CallLoc))
   2181     return false;
   2182 
   2183   const CXXRecordDecl *RD = Definition->getParent();
   2184   if (RD->getNumVBases()) {
   2185     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
   2186     return false;
   2187   }
   2188 
   2189   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
   2190 
   2191   // If it's a delegating constructor, just delegate.
   2192   if (Definition->isDelegatingConstructor()) {
   2193     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
   2194     return EvaluateInPlace(Result, Info, This, (*I)->getInit());
   2195   }
   2196 
   2197   // For a trivial copy or move constructor, perform an APValue copy. This is
   2198   // essential for unions, where the operations performed by the constructor
   2199   // cannot be represented by ctor-initializers.
   2200   if (Definition->isDefaulted() &&
   2201       ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
   2202        (Definition->isMoveConstructor() && Definition->isTrivial()))) {
   2203     LValue RHS;
   2204     RHS.setFrom(Info.Ctx, ArgValues[0]);
   2205     return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
   2206                                           RHS, Result);
   2207   }
   2208 
   2209   // Reserve space for the struct members.
   2210   if (!RD->isUnion() && Result.isUninit())
   2211     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
   2212                      std::distance(RD->field_begin(), RD->field_end()));
   2213 
   2214   if (RD->isInvalidDecl()) return false;
   2215   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   2216 
   2217   bool Success = true;
   2218   unsigned BasesSeen = 0;
   2219 #ifndef NDEBUG
   2220   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
   2221 #endif
   2222   for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
   2223        E = Definition->init_end(); I != E; ++I) {
   2224     LValue Subobject = This;
   2225     APValue *Value = &Result;
   2226 
   2227     // Determine the subobject to initialize.
   2228     if ((*I)->isBaseInitializer()) {
   2229       QualType BaseType((*I)->getBaseClass(), 0);
   2230 #ifndef NDEBUG
   2231       // Non-virtual base classes are initialized in the order in the class
   2232       // definition. We have already checked for virtual base classes.
   2233       assert(!BaseIt->isVirtual() && "virtual base for literal type");
   2234       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
   2235              "base class initializers not in expected order");
   2236       ++BaseIt;
   2237 #endif
   2238       if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
   2239                                   BaseType->getAsCXXRecordDecl(), &Layout))
   2240         return false;
   2241       Value = &Result.getStructBase(BasesSeen++);
   2242     } else if (FieldDecl *FD = (*I)->getMember()) {
   2243       if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
   2244         return false;
   2245       if (RD->isUnion()) {
   2246         Result = APValue(FD);
   2247         Value = &Result.getUnionValue();
   2248       } else {
   2249         Value = &Result.getStructField(FD->getFieldIndex());
   2250       }
   2251     } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
   2252       // Walk the indirect field decl's chain to find the object to initialize,
   2253       // and make sure we've initialized every step along it.
   2254       for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
   2255                                              CE = IFD->chain_end();
   2256            C != CE; ++C) {
   2257         FieldDecl *FD = cast<FieldDecl>(*C);
   2258         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
   2259         // Switch the union field if it differs. This happens if we had
   2260         // preceding zero-initialization, and we're now initializing a union
   2261         // subobject other than the first.
   2262         // FIXME: In this case, the values of the other subobjects are
   2263         // specified, since zero-initialization sets all padding bits to zero.
   2264         if (Value->isUninit() ||
   2265             (Value->isUnion() && Value->getUnionField() != FD)) {
   2266           if (CD->isUnion())
   2267             *Value = APValue(FD);
   2268           else
   2269             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
   2270                              std::distance(CD->field_begin(), CD->field_end()));
   2271         }
   2272         if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
   2273           return false;
   2274         if (CD->isUnion())
   2275           Value = &Value->getUnionValue();
   2276         else
   2277           Value = &Value->getStructField(FD->getFieldIndex());
   2278       }
   2279     } else {
   2280       llvm_unreachable("unknown base initializer kind");
   2281     }
   2282 
   2283     if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
   2284                          (*I)->isBaseInitializer()
   2285                                       ? CCEK_Constant : CCEK_MemberInit)) {
   2286       // If we're checking for a potential constant expression, evaluate all
   2287       // initializers even if some of them fail.
   2288       if (!Info.keepEvaluatingAfterFailure())
   2289         return false;
   2290       Success = false;
   2291     }
   2292   }
   2293 
   2294   return Success;
   2295 }
   2296 
   2297 //===----------------------------------------------------------------------===//
   2298 // Generic Evaluation
   2299 //===----------------------------------------------------------------------===//
   2300 namespace {
   2301 
   2302 // FIXME: RetTy is always bool. Remove it.
   2303 template <class Derived, typename RetTy=bool>
   2304 class ExprEvaluatorBase
   2305   : public ConstStmtVisitor<Derived, RetTy> {
   2306 private:
   2307   RetTy DerivedSuccess(const APValue &V, const Expr *E) {
   2308     return static_cast<Derived*>(this)->Success(V, E);
   2309   }
   2310   RetTy DerivedZeroInitialization(const Expr *E) {
   2311     return static_cast<Derived*>(this)->ZeroInitialization(E);
   2312   }
   2313 
   2314   // Check whether a conditional operator with a non-constant condition is a
   2315   // potential constant expression. If neither arm is a potential constant
   2316   // expression, then the conditional operator is not either.
   2317   template<typename ConditionalOperator>
   2318   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
   2319     assert(Info.CheckingPotentialConstantExpression);
   2320 
   2321     // Speculatively evaluate both arms.
   2322     {
   2323       SmallVector<PartialDiagnosticAt, 8> Diag;
   2324       SpeculativeEvaluationRAII Speculate(Info, &Diag);
   2325 
   2326       StmtVisitorTy::Visit(E->getFalseExpr());
   2327       if (Diag.empty())
   2328         return;
   2329 
   2330       Diag.clear();
   2331       StmtVisitorTy::Visit(E->getTrueExpr());
   2332       if (Diag.empty())
   2333         return;
   2334     }
   2335 
   2336     Error(E, diag::note_constexpr_conditional_never_const);
   2337   }
   2338 
   2339 
   2340   template<typename ConditionalOperator>
   2341   bool HandleConditionalOperator(const ConditionalOperator *E) {
   2342     bool BoolResult;
   2343     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
   2344       if (Info.CheckingPotentialConstantExpression)
   2345         CheckPotentialConstantConditional(E);
   2346       return false;
   2347     }
   2348 
   2349     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
   2350     return StmtVisitorTy::Visit(EvalExpr);
   2351   }
   2352 
   2353 protected:
   2354   EvalInfo &Info;
   2355   typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
   2356   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
   2357 
   2358   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
   2359     return Info.CCEDiag(E, D);
   2360   }
   2361 
   2362   RetTy ZeroInitialization(const Expr *E) { return Error(E); }
   2363 
   2364 public:
   2365   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
   2366 
   2367   EvalInfo &getEvalInfo() { return Info; }
   2368 
   2369   /// Report an evaluation error. This should only be called when an error is
   2370   /// first discovered. When propagating an error, just return false.
   2371   bool Error(const Expr *E, diag::kind D) {
   2372     Info.Diag(E, D);
   2373     return false;
   2374   }
   2375   bool Error(const Expr *E) {
   2376     return Error(E, diag::note_invalid_subexpr_in_const_expr);
   2377   }
   2378 
   2379   RetTy VisitStmt(const Stmt *) {
   2380     llvm_unreachable("Expression evaluator should not be called on stmts");
   2381   }
   2382   RetTy VisitExpr(const Expr *E) {
   2383     return Error(E);
   2384   }
   2385 
   2386   RetTy VisitParenExpr(const ParenExpr *E)
   2387     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   2388   RetTy VisitUnaryExtension(const UnaryOperator *E)
   2389     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   2390   RetTy VisitUnaryPlus(const UnaryOperator *E)
   2391     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   2392   RetTy VisitChooseExpr(const ChooseExpr *E)
   2393     { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
   2394   RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
   2395     { return StmtVisitorTy::Visit(E->getResultExpr()); }
   2396   RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
   2397     { return StmtVisitorTy::Visit(E->getReplacement()); }
   2398   RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
   2399     { return StmtVisitorTy::Visit(E->getExpr()); }
   2400   // We cannot create any objects for which cleanups are required, so there is
   2401   // nothing to do here; all cleanups must come from unevaluated subexpressions.
   2402   RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
   2403     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   2404 
   2405   RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
   2406     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
   2407     return static_cast<Derived*>(this)->VisitCastExpr(E);
   2408   }
   2409   RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
   2410     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
   2411     return static_cast<Derived*>(this)->VisitCastExpr(E);
   2412   }
   2413 
   2414   RetTy VisitBinaryOperator(const BinaryOperator *E) {
   2415     switch (E->getOpcode()) {
   2416     default:
   2417       return Error(E);
   2418 
   2419     case BO_Comma:
   2420       VisitIgnoredValue(E->getLHS());
   2421       return StmtVisitorTy::Visit(E->getRHS());
   2422 
   2423     case BO_PtrMemD:
   2424     case BO_PtrMemI: {
   2425       LValue Obj;
   2426       if (!HandleMemberPointerAccess(Info, E, Obj))
   2427         return false;
   2428       APValue Result;
   2429       if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
   2430         return false;
   2431       return DerivedSuccess(Result, E);
   2432     }
   2433     }
   2434   }
   2435 
   2436   RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
   2437     // Evaluate and cache the common expression. We treat it as a temporary,
   2438     // even though it's not quite the same thing.
   2439     if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
   2440                   Info, E->getCommon()))
   2441       return false;
   2442 
   2443     return HandleConditionalOperator(E);
   2444   }
   2445 
   2446   RetTy VisitConditionalOperator(const ConditionalOperator *E) {
   2447     bool IsBcpCall = false;
   2448     // If the condition (ignoring parens) is a __builtin_constant_p call,
   2449     // the result is a constant expression if it can be folded without
   2450     // side-effects. This is an important GNU extension. See GCC PR38377
   2451     // for discussion.
   2452     if (const CallExpr *CallCE =
   2453           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
   2454       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
   2455         IsBcpCall = true;
   2456 
   2457     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
   2458     // constant expression; we can't check whether it's potentially foldable.
   2459     if (Info.CheckingPotentialConstantExpression && IsBcpCall)
   2460       return false;
   2461 
   2462     FoldConstant Fold(Info);
   2463 
   2464     if (!HandleConditionalOperator(E))
   2465       return false;
   2466 
   2467     if (IsBcpCall)
   2468       Fold.Fold(Info);
   2469 
   2470     return true;
   2471   }
   2472 
   2473   RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
   2474     APValue &Value = Info.CurrentCall->Temporaries[E];
   2475     if (Value.isUninit()) {
   2476       const Expr *Source = E->getSourceExpr();
   2477       if (!Source)
   2478         return Error(E);
   2479       if (Source == E) { // sanity checking.
   2480         assert(0 && "OpaqueValueExpr recursively refers to itself");
   2481         return Error(E);
   2482       }
   2483       return StmtVisitorTy::Visit(Source);
   2484     }
   2485     return DerivedSuccess(Value, E);
   2486   }
   2487 
   2488   RetTy VisitCallExpr(const CallExpr *E) {
   2489     const Expr *Callee = E->getCallee()->IgnoreParens();
   2490     QualType CalleeType = Callee->getType();
   2491 
   2492     const FunctionDecl *FD = 0;
   2493     LValue *This = 0, ThisVal;
   2494     ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
   2495     bool HasQualifier = false;
   2496 
   2497     // Extract function decl and 'this' pointer from the callee.
   2498     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
   2499       const ValueDecl *Member = 0;
   2500       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
   2501         // Explicit bound member calls, such as x.f() or p->g();
   2502         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
   2503           return false;
   2504         Member = ME->getMemberDecl();
   2505         This = &ThisVal;
   2506         HasQualifier = ME->hasQualifier();
   2507       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
   2508         // Indirect bound member calls ('.*' or '->*').
   2509         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
   2510         if (!Member) return false;
   2511         This = &ThisVal;
   2512       } else
   2513         return Error(Callee);
   2514 
   2515       FD = dyn_cast<FunctionDecl>(Member);
   2516       if (!FD)
   2517         return Error(Callee);
   2518     } else if (CalleeType->isFunctionPointerType()) {
   2519       LValue Call;
   2520       if (!EvaluatePointer(Callee, Call, Info))
   2521         return false;
   2522 
   2523       if (!Call.getLValueOffset().isZero())
   2524         return Error(Callee);
   2525       FD = dyn_cast_or_null<FunctionDecl>(
   2526                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
   2527       if (!FD)
   2528         return Error(Callee);
   2529 
   2530       // Overloaded operator calls to member functions are represented as normal
   2531       // calls with '*this' as the first argument.
   2532       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   2533       if (MD && !MD->isStatic()) {
   2534         // FIXME: When selecting an implicit conversion for an overloaded
   2535         // operator delete, we sometimes try to evaluate calls to conversion
   2536         // operators without a 'this' parameter!
   2537         if (Args.empty())
   2538           return Error(E);
   2539 
   2540         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
   2541           return false;
   2542         This = &ThisVal;
   2543         Args = Args.slice(1);
   2544       }
   2545 
   2546       // Don't call function pointers which have been cast to some other type.
   2547       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
   2548         return Error(E);
   2549     } else
   2550       return Error(E);
   2551 
   2552     if (This && !This->checkSubobject(Info, E, CSK_This))
   2553       return false;
   2554 
   2555     // DR1358 allows virtual constexpr functions in some cases. Don't allow
   2556     // calls to such functions in constant expressions.
   2557     if (This && !HasQualifier &&
   2558         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
   2559       return Error(E, diag::note_constexpr_virtual_call);
   2560 
   2561     const FunctionDecl *Definition = 0;
   2562     Stmt *Body = FD->getBody(Definition);
   2563     APValue Result;
   2564 
   2565     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
   2566         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
   2567                             Info, Result))
   2568       return false;
   2569 
   2570     return DerivedSuccess(Result, E);
   2571   }
   2572 
   2573   RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
   2574     return StmtVisitorTy::Visit(E->getInitializer());
   2575   }
   2576   RetTy VisitInitListExpr(const InitListExpr *E) {
   2577     if (E->getNumInits() == 0)
   2578       return DerivedZeroInitialization(E);
   2579     if (E->getNumInits() == 1)
   2580       return StmtVisitorTy::Visit(E->getInit(0));
   2581     return Error(E);
   2582   }
   2583   RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
   2584     return DerivedZeroInitialization(E);
   2585   }
   2586   RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
   2587     return DerivedZeroInitialization(E);
   2588   }
   2589   RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
   2590     return DerivedZeroInitialization(E);
   2591   }
   2592 
   2593   /// A member expression where the object is a prvalue is itself a prvalue.
   2594   RetTy VisitMemberExpr(const MemberExpr *E) {
   2595     assert(!E->isArrow() && "missing call to bound member function?");
   2596 
   2597     APValue Val;
   2598     if (!Evaluate(Val, Info, E->getBase()))
   2599       return false;
   2600 
   2601     QualType BaseTy = E->getBase()->getType();
   2602 
   2603     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
   2604     if (!FD) return Error(E);
   2605     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
   2606     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
   2607            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
   2608 
   2609     SubobjectDesignator Designator(BaseTy);
   2610     Designator.addDeclUnchecked(FD);
   2611 
   2612     return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
   2613            DerivedSuccess(Val, E);
   2614   }
   2615 
   2616   RetTy VisitCastExpr(const CastExpr *E) {
   2617     switch (E->getCastKind()) {
   2618     default:
   2619       break;
   2620 
   2621     case CK_AtomicToNonAtomic:
   2622     case CK_NonAtomicToAtomic:
   2623     case CK_NoOp:
   2624     case CK_UserDefinedConversion:
   2625       return StmtVisitorTy::Visit(E->getSubExpr());
   2626 
   2627     case CK_LValueToRValue: {
   2628       LValue LVal;
   2629       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
   2630         return false;
   2631       APValue RVal;
   2632       // Note, we use the subexpression's type in order to retain cv-qualifiers.
   2633       if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
   2634                                           LVal, RVal))
   2635         return false;
   2636       return DerivedSuccess(RVal, E);
   2637     }
   2638     }
   2639 
   2640     return Error(E);
   2641   }
   2642 
   2643   /// Visit a value which is evaluated, but whose value is ignored.
   2644   void VisitIgnoredValue(const Expr *E) {
   2645     APValue Scratch;
   2646     if (!Evaluate(Scratch, Info, E))
   2647       Info.EvalStatus.HasSideEffects = true;
   2648   }
   2649 };
   2650 
   2651 }
   2652 
   2653 //===----------------------------------------------------------------------===//
   2654 // Common base class for lvalue and temporary evaluation.
   2655 //===----------------------------------------------------------------------===//
   2656 namespace {
   2657 template<class Derived>
   2658 class LValueExprEvaluatorBase
   2659   : public ExprEvaluatorBase<Derived, bool> {
   2660 protected:
   2661   LValue &Result;
   2662   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
   2663   typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
   2664 
   2665   bool Success(APValue::LValueBase B) {
   2666     Result.set(B);
   2667     return true;
   2668   }
   2669 
   2670 public:
   2671   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
   2672     ExprEvaluatorBaseTy(Info), Result(Result) {}
   2673 
   2674   bool Success(const APValue &V, const Expr *E) {
   2675     Result.setFrom(this->Info.Ctx, V);
   2676     return true;
   2677   }
   2678 
   2679   bool VisitMemberExpr(const MemberExpr *E) {
   2680     // Handle non-static data members.
   2681     QualType BaseTy;
   2682     if (E->isArrow()) {
   2683       if (!EvaluatePointer(E->getBase(), Result, this->Info))
   2684         return false;
   2685       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
   2686     } else if (E->getBase()->isRValue()) {
   2687       assert(E->getBase()->getType()->isRecordType());
   2688       if (!EvaluateTemporary(E->getBase(), Result, this->Info))
   2689         return false;
   2690       BaseTy = E->getBase()->getType();
   2691     } else {
   2692       if (!this->Visit(E->getBase()))
   2693         return false;
   2694       BaseTy = E->getBase()->getType();
   2695     }
   2696 
   2697     const ValueDecl *MD = E->getMemberDecl();
   2698     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
   2699       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
   2700              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
   2701       (void)BaseTy;
   2702       if (!HandleLValueMember(this->Info, E, Result, FD))
   2703         return false;
   2704     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
   2705       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
   2706         return false;
   2707     } else
   2708       return this->Error(E);
   2709 
   2710     if (MD->getType()->isReferenceType()) {
   2711       APValue RefValue;
   2712       if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
   2713                                           RefValue))
   2714         return false;
   2715       return Success(RefValue, E);
   2716     }
   2717     return true;
   2718   }
   2719 
   2720   bool VisitBinaryOperator(const BinaryOperator *E) {
   2721     switch (E->getOpcode()) {
   2722     default:
   2723       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   2724 
   2725     case BO_PtrMemD:
   2726     case BO_PtrMemI:
   2727       return HandleMemberPointerAccess(this->Info, E, Result);
   2728     }
   2729   }
   2730 
   2731   bool VisitCastExpr(const CastExpr *E) {
   2732     switch (E->getCastKind()) {
   2733     default:
   2734       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   2735 
   2736     case CK_DerivedToBase:
   2737     case CK_UncheckedDerivedToBase: {
   2738       if (!this->Visit(E->getSubExpr()))
   2739         return false;
   2740 
   2741       // Now figure out the necessary offset to add to the base LV to get from
   2742       // the derived class to the base class.
   2743       QualType Type = E->getSubExpr()->getType();
   2744 
   2745       for (CastExpr::path_const_iterator PathI = E->path_begin(),
   2746            PathE = E->path_end(); PathI != PathE; ++PathI) {
   2747         if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
   2748                               *PathI))
   2749           return false;
   2750         Type = (*PathI)->getType();
   2751       }
   2752 
   2753       return true;
   2754     }
   2755     }
   2756   }
   2757 };
   2758 }
   2759 
   2760 //===----------------------------------------------------------------------===//
   2761 // LValue Evaluation
   2762 //
   2763 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
   2764 // function designators (in C), decl references to void objects (in C), and
   2765 // temporaries (if building with -Wno-address-of-temporary).
   2766 //
   2767 // LValue evaluation produces values comprising a base expression of one of the
   2768 // following types:
   2769 // - Declarations
   2770 //  * VarDecl
   2771 //  * FunctionDecl
   2772 // - Literals
   2773 //  * CompoundLiteralExpr in C
   2774 //  * StringLiteral
   2775 //  * CXXTypeidExpr
   2776 //  * PredefinedExpr
   2777 //  * ObjCStringLiteralExpr
   2778 //  * ObjCEncodeExpr
   2779 //  * AddrLabelExpr
   2780 //  * BlockExpr
   2781 //  * CallExpr for a MakeStringConstant builtin
   2782 // - Locals and temporaries
   2783 //  * Any Expr, with a CallIndex indicating the function in which the temporary
   2784 //    was evaluated.
   2785 // plus an offset in bytes.
   2786 //===----------------------------------------------------------------------===//
   2787 namespace {
   2788 class LValueExprEvaluator
   2789   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
   2790 public:
   2791   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
   2792     LValueExprEvaluatorBaseTy(Info, Result) {}
   2793 
   2794   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
   2795 
   2796   bool VisitDeclRefExpr(const DeclRefExpr *E);
   2797   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
   2798   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2799   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
   2800   bool VisitMemberExpr(const MemberExpr *E);
   2801   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
   2802   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
   2803   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
   2804   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
   2805   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
   2806   bool VisitUnaryDeref(const UnaryOperator *E);
   2807   bool VisitUnaryReal(const UnaryOperator *E);
   2808   bool VisitUnaryImag(const UnaryOperator *E);
   2809 
   2810   bool VisitCastExpr(const CastExpr *E) {
   2811     switch (E->getCastKind()) {
   2812     default:
   2813       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
   2814 
   2815     case CK_LValueBitCast:
   2816       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   2817       if (!Visit(E->getSubExpr()))
   2818         return false;
   2819       Result.Designator.setInvalid();
   2820       return true;
   2821 
   2822     case CK_BaseToDerived:
   2823       if (!Visit(E->getSubExpr()))
   2824         return false;
   2825       return HandleBaseToDerivedCast(Info, E, Result);
   2826     }
   2827   }
   2828 };
   2829 } // end anonymous namespace
   2830 
   2831 /// Evaluate an expression as an lvalue. This can be legitimately called on
   2832 /// expressions which are not glvalues, in a few cases:
   2833 ///  * function designators in C,
   2834 ///  * "extern void" objects,
   2835 ///  * temporaries, if building with -Wno-address-of-temporary.
   2836 static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
   2837   assert((E->isGLValue() || E->getType()->isFunctionType() ||
   2838           E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
   2839          "can't evaluate expression as an lvalue");
   2840   return LValueExprEvaluator(Info, Result).Visit(E);
   2841 }
   2842 
   2843 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
   2844   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
   2845     return Success(FD);
   2846   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   2847     return VisitVarDecl(E, VD);
   2848   return Error(E);
   2849 }
   2850 
   2851 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
   2852   if (!VD->getType()->isReferenceType()) {
   2853     if (isa<ParmVarDecl>(VD)) {
   2854       Result.set(VD, Info.CurrentCall->Index);
   2855       return true;
   2856     }
   2857     return Success(VD);
   2858   }
   2859 
   2860   APValue V;
   2861   if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
   2862     return false;
   2863   return Success(V, E);
   2864 }
   2865 
   2866 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
   2867     const MaterializeTemporaryExpr *E) {
   2868   if (E->GetTemporaryExpr()->isRValue()) {
   2869     if (E->getType()->isRecordType())
   2870       return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
   2871 
   2872     Result.set(E, Info.CurrentCall->Index);
   2873     return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
   2874                            Result, E->GetTemporaryExpr());
   2875   }
   2876 
   2877   // Materialization of an lvalue temporary occurs when we need to force a copy
   2878   // (for instance, if it's a bitfield).
   2879   // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
   2880   if (!Visit(E->GetTemporaryExpr()))
   2881     return false;
   2882   if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
   2883                                       Info.CurrentCall->Temporaries[E]))
   2884     return false;
   2885   Result.set(E, Info.CurrentCall->Index);
   2886   return true;
   2887 }
   2888 
   2889 bool
   2890 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
   2891   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
   2892   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
   2893   // only see this when folding in C, so there's no standard to follow here.
   2894   return Success(E);
   2895 }
   2896 
   2897 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
   2898   if (!E->isPotentiallyEvaluated())
   2899     return Success(E);
   2900 
   2901   Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
   2902     << E->getExprOperand()->getType()
   2903     << E->getExprOperand()->getSourceRange();
   2904   return false;
   2905 }
   2906 
   2907 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
   2908   return Success(E);
   2909 }
   2910 
   2911 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
   2912   // Handle static data members.
   2913   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
   2914     VisitIgnoredValue(E->getBase());
   2915     return VisitVarDecl(E, VD);
   2916   }
   2917 
   2918   // Handle static member functions.
   2919   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
   2920     if (MD->isStatic()) {
   2921       VisitIgnoredValue(E->getBase());
   2922       return Success(MD);
   2923     }
   2924   }
   2925 
   2926   // Handle non-static data members.
   2927   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
   2928 }
   2929 
   2930 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
   2931   // FIXME: Deal with vectors as array subscript bases.
   2932   if (E->getBase()->getType()->isVectorType())
   2933     return Error(E);
   2934 
   2935   if (!EvaluatePointer(E->getBase(), Result, Info))
   2936     return false;
   2937 
   2938   APSInt Index;
   2939   if (!EvaluateInteger(E->getIdx(), Index, Info))
   2940     return false;
   2941   int64_t IndexValue
   2942     = Index.isSigned() ? Index.getSExtValue()
   2943                        : static_cast<int64_t>(Index.getZExtValue());
   2944 
   2945   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
   2946 }
   2947 
   2948 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
   2949   return EvaluatePointer(E->getSubExpr(), Result, Info);
   2950 }
   2951 
   2952 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   2953   if (!Visit(E->getSubExpr()))
   2954     return false;
   2955   // __real is a no-op on scalar lvalues.
   2956   if (E->getSubExpr()->getType()->isAnyComplexType())
   2957     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
   2958   return true;
   2959 }
   2960 
   2961 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   2962   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
   2963          "lvalue __imag__ on scalar?");
   2964   if (!Visit(E->getSubExpr()))
   2965     return false;
   2966   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
   2967   return true;
   2968 }
   2969 
   2970 //===----------------------------------------------------------------------===//
   2971 // Pointer Evaluation
   2972 //===----------------------------------------------------------------------===//
   2973 
   2974 namespace {
   2975 class PointerExprEvaluator
   2976   : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
   2977   LValue &Result;
   2978 
   2979   bool Success(const Expr *E) {
   2980     Result.set(E);
   2981     return true;
   2982   }
   2983 public:
   2984 
   2985   PointerExprEvaluator(EvalInfo &info, LValue &Result)
   2986     : ExprEvaluatorBaseTy(info), Result(Result) {}
   2987 
   2988   bool Success(const APValue &V, const Expr *E) {
   2989     Result.setFrom(Info.Ctx, V);
   2990     return true;
   2991   }
   2992   bool ZeroInitialization(const Expr *E) {
   2993     return Success((Expr*)0);
   2994   }
   2995 
   2996   bool VisitBinaryOperator(const BinaryOperator *E);
   2997   bool VisitCastExpr(const CastExpr* E);
   2998   bool VisitUnaryAddrOf(const UnaryOperator *E);
   2999   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
   3000       { return Success(E); }
   3001   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
   3002       { return Success(E); }
   3003   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
   3004       { return Success(E); }
   3005   bool VisitCallExpr(const CallExpr *E);
   3006   bool VisitBlockExpr(const BlockExpr *E) {
   3007     if (!E->getBlockDecl()->hasCaptures())
   3008       return Success(E);
   3009     return Error(E);
   3010   }
   3011   bool VisitCXXThisExpr(const CXXThisExpr *E) {
   3012     if (!Info.CurrentCall->This)
   3013       return Error(E);
   3014     Result = *Info.CurrentCall->This;
   3015     return true;
   3016   }
   3017 
   3018   // FIXME: Missing: @protocol, @selector
   3019 };
   3020 } // end anonymous namespace
   3021 
   3022 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
   3023   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
   3024   return PointerExprEvaluator(Info, Result).Visit(E);
   3025 }
   3026 
   3027 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   3028   if (E->getOpcode() != BO_Add &&
   3029       E->getOpcode() != BO_Sub)
   3030     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   3031 
   3032   const Expr *PExp = E->getLHS();
   3033   const Expr *IExp = E->getRHS();
   3034   if (IExp->getType()->isPointerType())
   3035     std::swap(PExp, IExp);
   3036 
   3037   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
   3038   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
   3039     return false;
   3040 
   3041   llvm::APSInt Offset;
   3042   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
   3043     return false;
   3044   int64_t AdditionalOffset
   3045     = Offset.isSigned() ? Offset.getSExtValue()
   3046                         : static_cast<int64_t>(Offset.getZExtValue());
   3047   if (E->getOpcode() == BO_Sub)
   3048     AdditionalOffset = -AdditionalOffset;
   3049 
   3050   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
   3051   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
   3052                                      AdditionalOffset);
   3053 }
   3054 
   3055 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
   3056   return EvaluateLValue(E->getSubExpr(), Result, Info);
   3057 }
   3058 
   3059 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
   3060   const Expr* SubExpr = E->getSubExpr();
   3061 
   3062   switch (E->getCastKind()) {
   3063   default:
   3064     break;
   3065 
   3066   case CK_BitCast:
   3067   case CK_CPointerToObjCPointerCast:
   3068   case CK_BlockPointerToObjCPointerCast:
   3069   case CK_AnyPointerToBlockPointerCast:
   3070     if (!Visit(SubExpr))
   3071       return false;
   3072     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
   3073     // permitted in constant expressions in C++11. Bitcasts from cv void* are
   3074     // also static_casts, but we disallow them as a resolution to DR1312.
   3075     if (!E->getType()->isVoidPointerType()) {
   3076       Result.Designator.setInvalid();
   3077       if (SubExpr->getType()->isVoidPointerType())
   3078         CCEDiag(E, diag::note_constexpr_invalid_cast)
   3079           << 3 << SubExpr->getType();
   3080       else
   3081         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   3082     }
   3083     return true;
   3084 
   3085   case CK_DerivedToBase:
   3086   case CK_UncheckedDerivedToBase: {
   3087     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
   3088       return false;
   3089     if (!Result.Base && Result.Offset.isZero())
   3090       return true;
   3091 
   3092     // Now figure out the necessary offset to add to the base LV to get from
   3093     // the derived class to the base class.
   3094     QualType Type =
   3095         E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
   3096 
   3097     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   3098          PathE = E->path_end(); PathI != PathE; ++PathI) {
   3099       if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
   3100                             *PathI))
   3101         return false;
   3102       Type = (*PathI)->getType();
   3103     }
   3104 
   3105     return true;
   3106   }
   3107 
   3108   case CK_BaseToDerived:
   3109     if (!Visit(E->getSubExpr()))
   3110       return false;
   3111     if (!Result.Base && Result.Offset.isZero())
   3112       return true;
   3113     return HandleBaseToDerivedCast(Info, E, Result);
   3114 
   3115   case CK_NullToPointer:
   3116     VisitIgnoredValue(E->getSubExpr());
   3117     return ZeroInitialization(E);
   3118 
   3119   case CK_IntegralToPointer: {
   3120     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   3121 
   3122     APValue Value;
   3123     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
   3124       break;
   3125 
   3126     if (Value.isInt()) {
   3127       unsigned Size = Info.Ctx.getTypeSize(E->getType());
   3128       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
   3129       Result.Base = (Expr*)0;
   3130       Result.Offset = CharUnits::fromQuantity(N);
   3131       Result.CallIndex = 0;
   3132       Result.Designator.setInvalid();
   3133       return true;
   3134     } else {
   3135       // Cast is of an lvalue, no need to change value.
   3136       Result.setFrom(Info.Ctx, Value);
   3137       return true;
   3138     }
   3139   }
   3140   case CK_ArrayToPointerDecay:
   3141     if (SubExpr->isGLValue()) {
   3142       if (!EvaluateLValue(SubExpr, Result, Info))
   3143         return false;
   3144     } else {
   3145       Result.set(SubExpr, Info.CurrentCall->Index);
   3146       if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
   3147                            Info, Result, SubExpr))
   3148         return false;
   3149     }
   3150     // The result is a pointer to the first element of the array.
   3151     if (const ConstantArrayType *CAT
   3152           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
   3153       Result.addArray(Info, E, CAT);
   3154     else
   3155       Result.Designator.setInvalid();
   3156     return true;
   3157 
   3158   case CK_FunctionToPointerDecay:
   3159     return EvaluateLValue(SubExpr, Result, Info);
   3160   }
   3161 
   3162   return ExprEvaluatorBaseTy::VisitCastExpr(E);
   3163 }
   3164 
   3165 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
   3166   if (IsStringLiteralCall(E))
   3167     return Success(E);
   3168 
   3169   return ExprEvaluatorBaseTy::VisitCallExpr(E);
   3170 }
   3171 
   3172 //===----------------------------------------------------------------------===//
   3173 // Member Pointer Evaluation
   3174 //===----------------------------------------------------------------------===//
   3175 
   3176 namespace {
   3177 class MemberPointerExprEvaluator
   3178   : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
   3179   MemberPtr &Result;
   3180 
   3181   bool Success(const ValueDecl *D) {
   3182     Result = MemberPtr(D);
   3183     return true;
   3184   }
   3185 public:
   3186 
   3187   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
   3188     : ExprEvaluatorBaseTy(Info), Result(Result) {}
   3189 
   3190   bool Success(const APValue &V, const Expr *E) {
   3191     Result.setFrom(V);
   3192     return true;
   3193   }
   3194   bool ZeroInitialization(const Expr *E) {
   3195     return Success((const ValueDecl*)0);
   3196   }
   3197 
   3198   bool VisitCastExpr(const CastExpr *E);
   3199   bool VisitUnaryAddrOf(const UnaryOperator *E);
   3200 };
   3201 } // end anonymous namespace
   3202 
   3203 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
   3204                                   EvalInfo &Info) {
   3205   assert(E->isRValue() && E->getType()->isMemberPointerType());
   3206   return MemberPointerExprEvaluator(Info, Result).Visit(E);
   3207 }
   3208 
   3209 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
   3210   switch (E->getCastKind()) {
   3211   default:
   3212     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   3213 
   3214   case CK_NullToMemberPointer:
   3215     VisitIgnoredValue(E->getSubExpr());
   3216     return ZeroInitialization(E);
   3217 
   3218   case CK_BaseToDerivedMemberPointer: {
   3219     if (!Visit(E->getSubExpr()))
   3220       return false;
   3221     if (E->path_empty())
   3222       return true;
   3223     // Base-to-derived member pointer casts store the path in derived-to-base
   3224     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
   3225     // the wrong end of the derived->base arc, so stagger the path by one class.
   3226     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
   3227     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
   3228          PathI != PathE; ++PathI) {
   3229       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
   3230       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
   3231       if (!Result.castToDerived(Derived))
   3232         return Error(E);
   3233     }
   3234     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
   3235     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
   3236       return Error(E);
   3237     return true;
   3238   }
   3239 
   3240   case CK_DerivedToBaseMemberPointer:
   3241     if (!Visit(E->getSubExpr()))
   3242       return false;
   3243     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   3244          PathE = E->path_end(); PathI != PathE; ++PathI) {
   3245       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
   3246       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
   3247       if (!Result.castToBase(Base))
   3248         return Error(E);
   3249     }
   3250     return true;
   3251   }
   3252 }
   3253 
   3254 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
   3255   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
   3256   // member can be formed.
   3257   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
   3258 }
   3259 
   3260 //===----------------------------------------------------------------------===//
   3261 // Record Evaluation
   3262 //===----------------------------------------------------------------------===//
   3263 
   3264 namespace {
   3265   class RecordExprEvaluator
   3266   : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
   3267     const LValue &This;
   3268     APValue &Result;
   3269   public:
   3270 
   3271     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
   3272       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
   3273 
   3274     bool Success(const APValue &V, const Expr *E) {
   3275       Result = V;
   3276       return true;
   3277     }
   3278     bool ZeroInitialization(const Expr *E);
   3279 
   3280     bool VisitCastExpr(const CastExpr *E);
   3281     bool VisitInitListExpr(const InitListExpr *E);
   3282     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
   3283   };
   3284 }
   3285 
   3286 /// Perform zero-initialization on an object of non-union class type.
   3287 /// C++11 [dcl.init]p5:
   3288 ///  To zero-initialize an object or reference of type T means:
   3289 ///    [...]
   3290 ///    -- if T is a (possibly cv-qualified) non-union class type,
   3291 ///       each non-static data member and each base-class subobject is
   3292 ///       zero-initialized
   3293 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
   3294                                           const RecordDecl *RD,
   3295                                           const LValue &This, APValue &Result) {
   3296   assert(!RD->isUnion() && "Expected non-union class type");
   3297   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
   3298   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
   3299                    std::distance(RD->field_begin(), RD->field_end()));
   3300 
   3301   if (RD->isInvalidDecl()) return false;
   3302   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   3303 
   3304   if (CD) {
   3305     unsigned Index = 0;
   3306     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
   3307            End = CD->bases_end(); I != End; ++I, ++Index) {
   3308       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
   3309       LValue Subobject = This;
   3310       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
   3311         return false;
   3312       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
   3313                                          Result.getStructBase(Index)))
   3314         return false;
   3315     }
   3316   }
   3317 
   3318   for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
   3319        I != End; ++I) {
   3320     // -- if T is a reference type, no initialization is performed.
   3321     if (I->getType()->isReferenceType())
   3322       continue;
   3323 
   3324     LValue Subobject = This;
   3325     if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
   3326       return false;
   3327 
   3328     ImplicitValueInitExpr VIE(I->getType());
   3329     if (!EvaluateInPlace(
   3330           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
   3331       return false;
   3332   }
   3333 
   3334   return true;
   3335 }
   3336 
   3337 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
   3338   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
   3339   if (RD->isInvalidDecl()) return false;
   3340   if (RD->isUnion()) {
   3341     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
   3342     // object's first non-static named data member is zero-initialized
   3343     RecordDecl::field_iterator I = RD->field_begin();
   3344     if (I == RD->field_end()) {
   3345       Result = APValue((const FieldDecl*)0);
   3346       return true;
   3347     }
   3348 
   3349     LValue Subobject = This;
   3350     if (!HandleLValueMember(Info, E, Subobject, *I))
   3351       return false;
   3352     Result = APValue(*I);
   3353     ImplicitValueInitExpr VIE(I->getType());
   3354     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
   3355   }
   3356 
   3357   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
   3358     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
   3359     return false;
   3360   }
   3361 
   3362   return HandleClassZeroInitialization(Info, E, RD, This, Result);
   3363 }
   3364 
   3365 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
   3366   switch (E->getCastKind()) {
   3367   default:
   3368     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   3369 
   3370   case CK_ConstructorConversion:
   3371     return Visit(E->getSubExpr());
   3372 
   3373   case CK_DerivedToBase:
   3374   case CK_UncheckedDerivedToBase: {
   3375     APValue DerivedObject;
   3376     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
   3377       return false;
   3378     if (!DerivedObject.isStruct())
   3379       return Error(E->getSubExpr());
   3380 
   3381     // Derived-to-base rvalue conversion: just slice off the derived part.
   3382     APValue *Value = &DerivedObject;
   3383     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
   3384     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   3385          PathE = E->path_end(); PathI != PathE; ++PathI) {
   3386       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
   3387       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
   3388       Value = &Value->getStructBase(getBaseIndex(RD, Base));
   3389       RD = Base;
   3390     }
   3391     Result = *Value;
   3392     return true;
   3393   }
   3394   }
   3395 }
   3396 
   3397 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   3398   // Cannot constant-evaluate std::initializer_list inits.
   3399   if (E->initializesStdInitializerList())
   3400     return false;
   3401 
   3402   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
   3403   if (RD->isInvalidDecl()) return false;
   3404   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   3405 
   3406   if (RD->isUnion()) {
   3407     const FieldDecl *Field = E->getInitializedFieldInUnion();
   3408     Result = APValue(Field);
   3409     if (!Field)
   3410       return true;
   3411 
   3412     // If the initializer list for a union does not contain any elements, the
   3413     // first element of the union is value-initialized.
   3414     ImplicitValueInitExpr VIE(Field->getType());
   3415     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
   3416 
   3417     LValue Subobject = This;
   3418     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
   3419       return false;
   3420     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
   3421   }
   3422 
   3423   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
   3424          "initializer list for class with base classes");
   3425   Result = APValue(APValue::UninitStruct(), 0,
   3426                    std::distance(RD->field_begin(), RD->field_end()));
   3427   unsigned ElementNo = 0;
   3428   bool Success = true;
   3429   for (RecordDecl::field_iterator Field = RD->field_begin(),
   3430        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
   3431     // Anonymous bit-fields are not considered members of the class for
   3432     // purposes of aggregate initialization.
   3433     if (Field->isUnnamedBitfield())
   3434       continue;
   3435 
   3436     LValue Subobject = This;
   3437 
   3438     bool HaveInit = ElementNo < E->getNumInits();
   3439 
   3440     // FIXME: Diagnostics here should point to the end of the initializer
   3441     // list, not the start.
   3442     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
   3443                             Subobject, *Field, &Layout))
   3444       return false;
   3445 
   3446     // Perform an implicit value-initialization for members beyond the end of
   3447     // the initializer list.
   3448     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
   3449 
   3450     if (!EvaluateInPlace(
   3451           Result.getStructField(Field->getFieldIndex()),
   3452           Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
   3453       if (!Info.keepEvaluatingAfterFailure())
   3454         return false;
   3455       Success = false;
   3456     }
   3457   }
   3458 
   3459   return Success;
   3460 }
   3461 
   3462 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
   3463   const CXXConstructorDecl *FD = E->getConstructor();
   3464   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
   3465 
   3466   bool ZeroInit = E->requiresZeroInitialization();
   3467   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
   3468     // If we've already performed zero-initialization, we're already done.
   3469     if (!Result.isUninit())
   3470       return true;
   3471 
   3472     if (ZeroInit)
   3473       return ZeroInitialization(E);
   3474 
   3475     const CXXRecordDecl *RD = FD->getParent();
   3476     if (RD->isUnion())
   3477       Result = APValue((FieldDecl*)0);
   3478     else
   3479       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
   3480                        std::distance(RD->field_begin(), RD->field_end()));
   3481     return true;
   3482   }
   3483 
   3484   const FunctionDecl *Definition = 0;
   3485   FD->getBody(Definition);
   3486 
   3487   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
   3488     return false;
   3489 
   3490   // Avoid materializing a temporary for an elidable copy/move constructor.
   3491   if (E->isElidable() && !ZeroInit)
   3492     if (const MaterializeTemporaryExpr *ME
   3493           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
   3494       return Visit(ME->GetTemporaryExpr());
   3495 
   3496   if (ZeroInit && !ZeroInitialization(E))
   3497     return false;
   3498 
   3499   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
   3500   return HandleConstructorCall(E->getExprLoc(), This, Args,
   3501                                cast<CXXConstructorDecl>(Definition), Info,
   3502                                Result);
   3503 }
   3504 
   3505 static bool EvaluateRecord(const Expr *E, const LValue &This,
   3506                            APValue &Result, EvalInfo &Info) {
   3507   assert(E->isRValue() && E->getType()->isRecordType() &&
   3508          "can't evaluate expression as a record rvalue");
   3509   return RecordExprEvaluator(Info, This, Result).Visit(E);
   3510 }
   3511 
   3512 //===----------------------------------------------------------------------===//
   3513 // Temporary Evaluation
   3514 //
   3515 // Temporaries are represented in the AST as rvalues, but generally behave like
   3516 // lvalues. The full-object of which the temporary is a subobject is implicitly
   3517 // materialized so that a reference can bind to it.
   3518 //===----------------------------------------------------------------------===//
   3519 namespace {
   3520 class TemporaryExprEvaluator
   3521   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
   3522 public:
   3523   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
   3524     LValueExprEvaluatorBaseTy(Info, Result) {}
   3525 
   3526   /// Visit an expression which constructs the value of this temporary.
   3527   bool VisitConstructExpr(const Expr *E) {
   3528     Result.set(E, Info.CurrentCall->Index);
   3529     return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
   3530   }
   3531 
   3532   bool VisitCastExpr(const CastExpr *E) {
   3533     switch (E->getCastKind()) {
   3534     default:
   3535       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
   3536 
   3537     case CK_ConstructorConversion:
   3538       return VisitConstructExpr(E->getSubExpr());
   3539     }
   3540   }
   3541   bool VisitInitListExpr(const InitListExpr *E) {
   3542     return VisitConstructExpr(E);
   3543   }
   3544   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
   3545     return VisitConstructExpr(E);
   3546   }
   3547   bool VisitCallExpr(const CallExpr *E) {
   3548     return VisitConstructExpr(E);
   3549   }
   3550 };
   3551 } // end anonymous namespace
   3552 
   3553 /// Evaluate an expression of record type as a temporary.
   3554 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
   3555   assert(E->isRValue() && E->getType()->isRecordType());
   3556   return TemporaryExprEvaluator(Info, Result).Visit(E);
   3557 }
   3558 
   3559 //===----------------------------------------------------------------------===//
   3560 // Vector Evaluation
   3561 //===----------------------------------------------------------------------===//
   3562 
   3563 namespace {
   3564   class VectorExprEvaluator
   3565   : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
   3566     APValue &Result;
   3567   public:
   3568 
   3569     VectorExprEvaluator(EvalInfo &info, APValue &Result)
   3570       : ExprEvaluatorBaseTy(info), Result(Result) {}
   3571 
   3572     bool Success(const ArrayRef<APValue> &V, const Expr *E) {
   3573       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
   3574       // FIXME: remove this APValue copy.
   3575       Result = APValue(V.data(), V.size());
   3576       return true;
   3577     }
   3578     bool Success(const APValue &V, const Expr *E) {
   3579       assert(V.isVector());
   3580       Result = V;
   3581       return true;
   3582     }
   3583     bool ZeroInitialization(const Expr *E);
   3584 
   3585     bool VisitUnaryReal(const UnaryOperator *E)
   3586       { return Visit(E->getSubExpr()); }
   3587     bool VisitCastExpr(const CastExpr* E);
   3588     bool VisitInitListExpr(const InitListExpr *E);
   3589     bool VisitUnaryImag(const UnaryOperator *E);
   3590     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
   3591     //                 binary comparisons, binary and/or/xor,
   3592     //                 shufflevector, ExtVectorElementExpr
   3593   };
   3594 } // end anonymous namespace
   3595 
   3596 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
   3597   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
   3598   return VectorExprEvaluator(Info, Result).Visit(E);
   3599 }
   3600 
   3601 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
   3602   const VectorType *VTy = E->getType()->castAs<VectorType>();
   3603   unsigned NElts = VTy->getNumElements();
   3604 
   3605   const Expr *SE = E->getSubExpr();
   3606   QualType SETy = SE->getType();
   3607 
   3608   switch (E->getCastKind()) {
   3609   case CK_VectorSplat: {
   3610     APValue Val = APValue();
   3611     if (SETy->isIntegerType()) {
   3612       APSInt IntResult;
   3613       if (!EvaluateInteger(SE, IntResult, Info))
   3614          return false;
   3615       Val = APValue(IntResult);
   3616     } else if (SETy->isRealFloatingType()) {
   3617        APFloat F(0.0);
   3618        if (!EvaluateFloat(SE, F, Info))
   3619          return false;
   3620        Val = APValue(F);
   3621     } else {
   3622       return Error(E);
   3623     }
   3624 
   3625     // Splat and create vector APValue.
   3626     SmallVector<APValue, 4> Elts(NElts, Val);
   3627     return Success(Elts, E);
   3628   }
   3629   case CK_BitCast: {
   3630     // Evaluate the operand into an APInt we can extract from.
   3631     llvm::APInt SValInt;
   3632     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
   3633       return false;
   3634     // Extract the elements
   3635     QualType EltTy = VTy->getElementType();
   3636     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
   3637     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
   3638     SmallVector<APValue, 4> Elts;
   3639     if (EltTy->isRealFloatingType()) {
   3640       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
   3641       unsigned FloatEltSize = EltSize;
   3642       if (&Sem == &APFloat::x87DoubleExtended)
   3643         FloatEltSize = 80;
   3644       for (unsigned i = 0; i < NElts; i++) {
   3645         llvm::APInt Elt;
   3646         if (BigEndian)
   3647           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
   3648         else
   3649           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
   3650         Elts.push_back(APValue(APFloat(Sem, Elt)));
   3651       }
   3652     } else if (EltTy->isIntegerType()) {
   3653       for (unsigned i = 0; i < NElts; i++) {
   3654         llvm::APInt Elt;
   3655         if (BigEndian)
   3656           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
   3657         else
   3658           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
   3659         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
   3660       }
   3661     } else {
   3662       return Error(E);
   3663     }
   3664     return Success(Elts, E);
   3665   }
   3666   default:
   3667     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   3668   }
   3669 }
   3670 
   3671 bool
   3672 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   3673   const VectorType *VT = E->getType()->castAs<VectorType>();
   3674   unsigned NumInits = E->getNumInits();
   3675   unsigned NumElements = VT->getNumElements();
   3676 
   3677   QualType EltTy = VT->getElementType();
   3678   SmallVector<APValue, 4> Elements;
   3679 
   3680   // The number of initializers can be less than the number of
   3681   // vector elements. For OpenCL, this can be due to nested vector
   3682   // initialization. For GCC compatibility, missing trailing elements
   3683   // should be initialized with zeroes.
   3684   unsigned CountInits = 0, CountElts = 0;
   3685   while (CountElts < NumElements) {
   3686     // Handle nested vector initialization.
   3687     if (CountInits < NumInits
   3688         && E->getInit(CountInits)->getType()->isExtVectorType()) {
   3689       APValue v;
   3690       if (!EvaluateVector(E->getInit(CountInits), v, Info))
   3691         return Error(E);
   3692       unsigned vlen = v.getVectorLength();
   3693       for (unsigned j = 0; j < vlen; j++)
   3694         Elements.push_back(v.getVectorElt(j));
   3695       CountElts += vlen;
   3696     } else if (EltTy->isIntegerType()) {
   3697       llvm::APSInt sInt(32);
   3698       if (CountInits < NumInits) {
   3699         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
   3700           return false;
   3701       } else // trailing integer zero.
   3702         sInt = Info.Ctx.MakeIntValue(0, EltTy);
   3703       Elements.push_back(APValue(sInt));
   3704       CountElts++;
   3705     } else {
   3706       llvm::APFloat f(0.0);
   3707       if (CountInits < NumInits) {
   3708         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
   3709           return false;
   3710       } else // trailing float zero.
   3711         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
   3712       Elements.push_back(APValue(f));
   3713       CountElts++;
   3714     }
   3715     CountInits++;
   3716   }
   3717   return Success(Elements, E);
   3718 }
   3719 
   3720 bool
   3721 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
   3722   const VectorType *VT = E->getType()->getAs<VectorType>();
   3723   QualType EltTy = VT->getElementType();
   3724   APValue ZeroElement;
   3725   if (EltTy->isIntegerType())
   3726     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
   3727   else
   3728     ZeroElement =
   3729         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
   3730 
   3731   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
   3732   return Success(Elements, E);
   3733 }
   3734 
   3735 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   3736   VisitIgnoredValue(E->getSubExpr());
   3737   return ZeroInitialization(E);
   3738 }
   3739 
   3740 //===----------------------------------------------------------------------===//
   3741 // Array Evaluation
   3742 //===----------------------------------------------------------------------===//
   3743 
   3744 namespace {
   3745   class ArrayExprEvaluator
   3746   : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
   3747     const LValue &This;
   3748     APValue &Result;
   3749   public:
   3750 
   3751     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
   3752       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
   3753 
   3754     bool Success(const APValue &V, const Expr *E) {
   3755       assert((V.isArray() || V.isLValue()) &&
   3756              "expected array or string literal");
   3757       Result = V;
   3758       return true;
   3759     }
   3760 
   3761     bool ZeroInitialization(const Expr *E) {
   3762       const ConstantArrayType *CAT =
   3763           Info.Ctx.getAsConstantArrayType(E->getType());
   3764       if (!CAT)
   3765         return Error(E);
   3766 
   3767       Result = APValue(APValue::UninitArray(), 0,
   3768                        CAT->getSize().getZExtValue());
   3769       if (!Result.hasArrayFiller()) return true;
   3770 
   3771       // Zero-initialize all elements.
   3772       LValue Subobject = This;
   3773       Subobject.addArray(Info, E, CAT);
   3774       ImplicitValueInitExpr VIE(CAT->getElementType());
   3775       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
   3776     }
   3777 
   3778     bool VisitInitListExpr(const InitListExpr *E);
   3779     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
   3780   };
   3781 } // end anonymous namespace
   3782 
   3783 static bool EvaluateArray(const Expr *E, const LValue &This,
   3784                           APValue &Result, EvalInfo &Info) {
   3785   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
   3786   return ArrayExprEvaluator(Info, This, Result).Visit(E);
   3787 }
   3788 
   3789 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   3790   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
   3791   if (!CAT)
   3792     return Error(E);
   3793 
   3794   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
   3795   // an appropriately-typed string literal enclosed in braces.
   3796   if (E->isStringLiteralInit()) {
   3797     LValue LV;
   3798     if (!EvaluateLValue(E->getInit(0), LV, Info))
   3799       return false;
   3800     APValue Val;
   3801     LV.moveInto(Val);
   3802     return Success(Val, E);
   3803   }
   3804 
   3805   bool Success = true;
   3806 
   3807   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
   3808          "zero-initialized array shouldn't have any initialized elts");
   3809   APValue Filler;
   3810   if (Result.isArray() && Result.hasArrayFiller())
   3811     Filler = Result.getArrayFiller();
   3812 
   3813   Result = APValue(APValue::UninitArray(), E->getNumInits(),
   3814                    CAT->getSize().getZExtValue());
   3815 
   3816   // If the array was previously zero-initialized, preserve the
   3817   // zero-initialized values.
   3818   if (!Filler.isUninit()) {
   3819     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
   3820       Result.getArrayInitializedElt(I) = Filler;
   3821     if (Result.hasArrayFiller())
   3822       Result.getArrayFiller() = Filler;
   3823   }
   3824 
   3825   LValue Subobject = This;
   3826   Subobject.addArray(Info, E, CAT);
   3827   unsigned Index = 0;
   3828   for (InitListExpr::const_iterator I = E->begin(), End = E->end();
   3829        I != End; ++I, ++Index) {
   3830     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
   3831                          Info, Subobject, cast<Expr>(*I)) ||
   3832         !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
   3833                                      CAT->getElementType(), 1)) {
   3834       if (!Info.keepEvaluatingAfterFailure())
   3835         return false;
   3836       Success = false;
   3837     }
   3838   }
   3839 
   3840   if (!Result.hasArrayFiller()) return Success;
   3841   assert(E->hasArrayFiller() && "no array filler for incomplete init list");
   3842   // FIXME: The Subobject here isn't necessarily right. This rarely matters,
   3843   // but sometimes does:
   3844   //   struct S { constexpr S() : p(&p) {} void *p; };
   3845   //   S s[10] = {};
   3846   return EvaluateInPlace(Result.getArrayFiller(), Info,
   3847                          Subobject, E->getArrayFiller()) && Success;
   3848 }
   3849 
   3850 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
   3851   // FIXME: The Subobject here isn't necessarily right. This rarely matters,
   3852   // but sometimes does:
   3853   //   struct S { constexpr S() : p(&p) {} void *p; };
   3854   //   S s[10];
   3855   LValue Subobject = This;
   3856 
   3857   APValue *Value = &Result;
   3858   bool HadZeroInit = true;
   3859   QualType ElemTy = E->getType();
   3860   while (const ConstantArrayType *CAT =
   3861            Info.Ctx.getAsConstantArrayType(ElemTy)) {
   3862     Subobject.addArray(Info, E, CAT);
   3863     HadZeroInit &= !Value->isUninit();
   3864     if (!HadZeroInit)
   3865       *Value = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
   3866     if (!Value->hasArrayFiller())
   3867       return true;
   3868     Value = &Value->getArrayFiller();
   3869     ElemTy = CAT->getElementType();
   3870   }
   3871 
   3872   if (!ElemTy->isRecordType())
   3873     return Error(E);
   3874 
   3875   const CXXConstructorDecl *FD = E->getConstructor();
   3876 
   3877   bool ZeroInit = E->requiresZeroInitialization();
   3878   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
   3879     if (HadZeroInit)
   3880       return true;
   3881 
   3882     if (ZeroInit) {
   3883       ImplicitValueInitExpr VIE(ElemTy);
   3884       return EvaluateInPlace(*Value, Info, Subobject, &VIE);
   3885     }
   3886 
   3887     const CXXRecordDecl *RD = FD->getParent();
   3888     if (RD->isUnion())
   3889       *Value = APValue((FieldDecl*)0);
   3890     else
   3891       *Value =
   3892           APValue(APValue::UninitStruct(), RD->getNumBases(),
   3893                   std::distance(RD->field_begin(), RD->field_end()));
   3894     return true;
   3895   }
   3896 
   3897   const FunctionDecl *Definition = 0;
   3898   FD->getBody(Definition);
   3899 
   3900   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
   3901     return false;
   3902 
   3903   if (ZeroInit && !HadZeroInit) {
   3904     ImplicitValueInitExpr VIE(ElemTy);
   3905     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
   3906       return false;
   3907   }
   3908 
   3909   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
   3910   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
   3911                                cast<CXXConstructorDecl>(Definition),
   3912                                Info, *Value);
   3913 }
   3914 
   3915 //===----------------------------------------------------------------------===//
   3916 // Integer Evaluation
   3917 //
   3918 // As a GNU extension, we support casting pointers to sufficiently-wide integer
   3919 // types and back in constant folding. Integer values are thus represented
   3920 // either as an integer-valued APValue, or as an lvalue-valued APValue.
   3921 //===----------------------------------------------------------------------===//
   3922 
   3923 namespace {
   3924 class IntExprEvaluator
   3925   : public ExprEvaluatorBase<IntExprEvaluator, bool> {
   3926   APValue &Result;
   3927 public:
   3928   IntExprEvaluator(EvalInfo &info, APValue &result)
   3929     : ExprEvaluatorBaseTy(info), Result(result) {}
   3930 
   3931   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
   3932     assert(E->getType()->isIntegralOrEnumerationType() &&
   3933            "Invalid evaluation result.");
   3934     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
   3935            "Invalid evaluation result.");
   3936     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
   3937            "Invalid evaluation result.");
   3938     Result = APValue(SI);
   3939     return true;
   3940   }
   3941   bool Success(const llvm::APSInt &SI, const Expr *E) {
   3942     return Success(SI, E, Result);
   3943   }
   3944 
   3945   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
   3946     assert(E->getType()->isIntegralOrEnumerationType() &&
   3947            "Invalid evaluation result.");
   3948     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
   3949            "Invalid evaluation result.");
   3950     Result = APValue(APSInt(I));
   3951     Result.getInt().setIsUnsigned(
   3952                             E->getType()->isUnsignedIntegerOrEnumerationType());
   3953     return true;
   3954   }
   3955   bool Success(const llvm::APInt &I, const Expr *E) {
   3956     return Success(I, E, Result);
   3957   }
   3958 
   3959   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
   3960     assert(E->getType()->isIntegralOrEnumerationType() &&
   3961            "Invalid evaluation result.");
   3962     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
   3963     return true;
   3964   }
   3965   bool Success(uint64_t Value, const Expr *E) {
   3966     return Success(Value, E, Result);
   3967   }
   3968 
   3969   bool Success(CharUnits Size, const Expr *E) {
   3970     return Success(Size.getQuantity(), E);
   3971   }
   3972 
   3973   bool Success(const APValue &V, const Expr *E) {
   3974     if (V.isLValue() || V.isAddrLabelDiff()) {
   3975       Result = V;
   3976       return true;
   3977     }
   3978     return Success(V.getInt(), E);
   3979   }
   3980 
   3981   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
   3982 
   3983   //===--------------------------------------------------------------------===//
   3984   //                            Visitor Methods
   3985   //===--------------------------------------------------------------------===//
   3986 
   3987   bool VisitIntegerLiteral(const IntegerLiteral *E) {
   3988     return Success(E->getValue(), E);
   3989   }
   3990   bool VisitCharacterLiteral(const CharacterLiteral *E) {
   3991     return Success(E->getValue(), E);
   3992   }
   3993 
   3994   bool CheckReferencedDecl(const Expr *E, const Decl *D);
   3995   bool VisitDeclRefExpr(const DeclRefExpr *E) {
   3996     if (CheckReferencedDecl(E, E->getDecl()))
   3997       return true;
   3998 
   3999     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
   4000   }
   4001   bool VisitMemberExpr(const MemberExpr *E) {
   4002     if (CheckReferencedDecl(E, E->getMemberDecl())) {
   4003       VisitIgnoredValue(E->getBase());
   4004       return true;
   4005     }
   4006 
   4007     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
   4008   }
   4009 
   4010   bool VisitCallExpr(const CallExpr *E);
   4011   bool VisitBinaryOperator(const BinaryOperator *E);
   4012   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
   4013   bool VisitUnaryOperator(const UnaryOperator *E);
   4014 
   4015   bool VisitCastExpr(const CastExpr* E);
   4016   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
   4017 
   4018   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
   4019     return Success(E->getValue(), E);
   4020   }
   4021 
   4022   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
   4023     return Success(E->getValue(), E);
   4024   }
   4025 
   4026   // Note, GNU defines __null as an integer, not a pointer.
   4027   bool VisitGNUNullExpr(const GNUNullExpr *E) {
   4028     return ZeroInitialization(E);
   4029   }
   4030 
   4031   bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
   4032     return Success(E->getValue(), E);
   4033   }
   4034 
   4035   bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
   4036     return Success(E->getValue(), E);
   4037   }
   4038 
   4039   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
   4040     return Success(E->getValue(), E);
   4041   }
   4042 
   4043   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
   4044     return Success(E->getValue(), E);
   4045   }
   4046 
   4047   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
   4048     return Success(E->getValue(), E);
   4049   }
   4050 
   4051   bool VisitUnaryReal(const UnaryOperator *E);
   4052   bool VisitUnaryImag(const UnaryOperator *E);
   4053 
   4054   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
   4055   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
   4056 
   4057 private:
   4058   CharUnits GetAlignOfExpr(const Expr *E);
   4059   CharUnits GetAlignOfType(QualType T);
   4060   static QualType GetObjectType(APValue::LValueBase B);
   4061   bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
   4062   // FIXME: Missing: array subscript of vector, member of vector
   4063 };
   4064 } // end anonymous namespace
   4065 
   4066 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
   4067 /// produce either the integer value or a pointer.
   4068 ///
   4069 /// GCC has a heinous extension which folds casts between pointer types and
   4070 /// pointer-sized integral types. We support this by allowing the evaluation of
   4071 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
   4072 /// Some simple arithmetic on such values is supported (they are treated much
   4073 /// like char*).
   4074 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
   4075                                     EvalInfo &Info) {
   4076   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
   4077   return IntExprEvaluator(Info, Result).Visit(E);
   4078 }
   4079 
   4080 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
   4081   APValue Val;
   4082   if (!EvaluateIntegerOrLValue(E, Val, Info))
   4083     return false;
   4084   if (!Val.isInt()) {
   4085     // FIXME: It would be better to produce the diagnostic for casting
   4086     //        a pointer to an integer.
   4087     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   4088     return false;
   4089   }
   4090   Result = Val.getInt();
   4091   return true;
   4092 }
   4093 
   4094 /// Check whether the given declaration can be directly converted to an integral
   4095 /// rvalue. If not, no diagnostic is produced; there are other things we can
   4096 /// try.
   4097 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
   4098   // Enums are integer constant exprs.
   4099   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
   4100     // Check for signedness/width mismatches between E type and ECD value.
   4101     bool SameSign = (ECD->getInitVal().isSigned()
   4102                      == E->getType()->isSignedIntegerOrEnumerationType());
   4103     bool SameWidth = (ECD->getInitVal().getBitWidth()
   4104                       == Info.Ctx.getIntWidth(E->getType()));
   4105     if (SameSign && SameWidth)
   4106       return Success(ECD->getInitVal(), E);
   4107     else {
   4108       // Get rid of mismatch (otherwise Success assertions will fail)
   4109       // by computing a new value matching the type of E.
   4110       llvm::APSInt Val = ECD->getInitVal();
   4111       if (!SameSign)
   4112         Val.setIsSigned(!ECD->getInitVal().isSigned());
   4113       if (!SameWidth)
   4114         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
   4115       return Success(Val, E);
   4116     }
   4117   }
   4118   return false;
   4119 }
   4120 
   4121 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
   4122 /// as GCC.
   4123 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
   4124   // The following enum mimics the values returned by GCC.
   4125   // FIXME: Does GCC differ between lvalue and rvalue references here?
   4126   enum gcc_type_class {
   4127     no_type_class = -1,
   4128     void_type_class, integer_type_class, char_type_class,
   4129     enumeral_type_class, boolean_type_class,
   4130     pointer_type_class, reference_type_class, offset_type_class,
   4131     real_type_class, complex_type_class,
   4132     function_type_class, method_type_class,
   4133     record_type_class, union_type_class,
   4134     array_type_class, string_type_class,
   4135     lang_type_class
   4136   };
   4137 
   4138   // If no argument was supplied, default to "no_type_class". This isn't
   4139   // ideal, however it is what gcc does.
   4140   if (E->getNumArgs() == 0)
   4141     return no_type_class;
   4142 
   4143   QualType ArgTy = E->getArg(0)->getType();
   4144   if (ArgTy->isVoidType())
   4145     return void_type_class;
   4146   else if (ArgTy->isEnumeralType())
   4147     return enumeral_type_class;
   4148   else if (ArgTy->isBooleanType())
   4149     return boolean_type_class;
   4150   else if (ArgTy->isCharType())
   4151     return string_type_class; // gcc doesn't appear to use char_type_class
   4152   else if (ArgTy->isIntegerType())
   4153     return integer_type_class;
   4154   else if (ArgTy->isPointerType())
   4155     return pointer_type_class;
   4156   else if (ArgTy->isReferenceType())
   4157     return reference_type_class;
   4158   else if (ArgTy->isRealType())
   4159     return real_type_class;
   4160   else if (ArgTy->isComplexType())
   4161     return complex_type_class;
   4162   else if (ArgTy->isFunctionType())
   4163     return function_type_class;
   4164   else if (ArgTy->isStructureOrClassType())
   4165     return record_type_class;
   4166   else if (ArgTy->isUnionType())
   4167     return union_type_class;
   4168   else if (ArgTy->isArrayType())
   4169     return array_type_class;
   4170   else if (ArgTy->isUnionType())
   4171     return union_type_class;
   4172   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
   4173     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
   4174 }
   4175 
   4176 /// EvaluateBuiltinConstantPForLValue - Determine the result of
   4177 /// __builtin_constant_p when applied to the given lvalue.
   4178 ///
   4179 /// An lvalue is only "constant" if it is a pointer or reference to the first
   4180 /// character of a string literal.
   4181 template<typename LValue>
   4182 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
   4183   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
   4184   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
   4185 }
   4186 
   4187 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
   4188 /// GCC as we can manage.
   4189 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
   4190   QualType ArgType = Arg->getType();
   4191 
   4192   // __builtin_constant_p always has one operand. The rules which gcc follows
   4193   // are not precisely documented, but are as follows:
   4194   //
   4195   //  - If the operand is of integral, floating, complex or enumeration type,
   4196   //    and can be folded to a known value of that type, it returns 1.
   4197   //  - If the operand and can be folded to a pointer to the first character
   4198   //    of a string literal (or such a pointer cast to an integral type), it
   4199   //    returns 1.
   4200   //
   4201   // Otherwise, it returns 0.
   4202   //
   4203   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
   4204   // its support for this does not currently work.
   4205   if (ArgType->isIntegralOrEnumerationType()) {
   4206     Expr::EvalResult Result;
   4207     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
   4208       return false;
   4209 
   4210     APValue &V = Result.Val;
   4211     if (V.getKind() == APValue::Int)
   4212       return true;
   4213 
   4214     return EvaluateBuiltinConstantPForLValue(V);
   4215   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
   4216     return Arg->isEvaluatable(Ctx);
   4217   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
   4218     LValue LV;
   4219     Expr::EvalStatus Status;
   4220     EvalInfo Info(Ctx, Status);
   4221     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
   4222                           : EvaluatePointer(Arg, LV, Info)) &&
   4223         !Status.HasSideEffects)
   4224       return EvaluateBuiltinConstantPForLValue(LV);
   4225   }
   4226 
   4227   // Anything else isn't considered to be sufficiently constant.
   4228   return false;
   4229 }
   4230 
   4231 /// Retrieves the "underlying object type" of the given expression,
   4232 /// as used by __builtin_object_size.
   4233 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
   4234   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
   4235     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   4236       return VD->getType();
   4237   } else if (const Expr *E = B.get<const Expr*>()) {
   4238     if (isa<CompoundLiteralExpr>(E))
   4239       return E->getType();
   4240   }
   4241 
   4242   return QualType();
   4243 }
   4244 
   4245 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
   4246   LValue Base;
   4247 
   4248   {
   4249     // The operand of __builtin_object_size is never evaluated for side-effects.
   4250     // If there are any, but we can determine the pointed-to object anyway, then
   4251     // ignore the side-effects.
   4252     SpeculativeEvaluationRAII SpeculativeEval(Info);
   4253     if (!EvaluatePointer(E->getArg(0), Base, Info))
   4254       return false;
   4255   }
   4256 
   4257   // If we can prove the base is null, lower to zero now.
   4258   if (!Base.getLValueBase()) return Success(0, E);
   4259 
   4260   QualType T = GetObjectType(Base.getLValueBase());
   4261   if (T.isNull() ||
   4262       T->isIncompleteType() ||
   4263       T->isFunctionType() ||
   4264       T->isVariablyModifiedType() ||
   4265       T->isDependentType())
   4266     return Error(E);
   4267 
   4268   CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
   4269   CharUnits Offset = Base.getLValueOffset();
   4270 
   4271   if (!Offset.isNegative() && Offset <= Size)
   4272     Size -= Offset;
   4273   else
   4274     Size = CharUnits::Zero();
   4275   return Success(Size, E);
   4276 }
   4277 
   4278 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
   4279   switch (unsigned BuiltinOp = E->isBuiltinCall()) {
   4280   default:
   4281     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   4282 
   4283   case Builtin::BI__builtin_object_size: {
   4284     if (TryEvaluateBuiltinObjectSize(E))
   4285       return true;
   4286 
   4287     // If evaluating the argument has side-effects, we can't determine the size
   4288     // of the object, and so we lower it to unknown now. CodeGen relies on us to
   4289     // handle all cases where the expression has side-effects.
   4290     if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
   4291       if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
   4292         return Success(-1ULL, E);
   4293       return Success(0, E);
   4294     }
   4295 
   4296     // Expression had no side effects, but we couldn't statically determine the
   4297     // size of the referenced object.
   4298     return Error(E);
   4299   }
   4300 
   4301   case Builtin::BI__builtin_bswap16:
   4302   case Builtin::BI__builtin_bswap32:
   4303   case Builtin::BI__builtin_bswap64: {
   4304     APSInt Val;
   4305     if (!EvaluateInteger(E->getArg(0), Val, Info))
   4306       return false;
   4307 
   4308     return Success(Val.byteSwap(), E);
   4309   }
   4310 
   4311   case Builtin::BI__builtin_classify_type:
   4312     return Success(EvaluateBuiltinClassifyType(E), E);
   4313 
   4314   case Builtin::BI__builtin_constant_p:
   4315     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
   4316 
   4317   case Builtin::BI__builtin_eh_return_data_regno: {
   4318     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
   4319     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
   4320     return Success(Operand, E);
   4321   }
   4322 
   4323   case Builtin::BI__builtin_expect:
   4324     return Visit(E->getArg(0));
   4325 
   4326   case Builtin::BIstrlen:
   4327     // A call to strlen is not a constant expression.
   4328     if (Info.getLangOpts().CPlusPlus11)
   4329       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
   4330         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
   4331     else
   4332       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
   4333     // Fall through.
   4334   case Builtin::BI__builtin_strlen:
   4335     // As an extension, we support strlen() and __builtin_strlen() as constant
   4336     // expressions when the argument is a string literal.
   4337     if (const StringLiteral *S
   4338                = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
   4339       // The string literal may have embedded null characters. Find the first
   4340       // one and truncate there.
   4341       StringRef Str = S->getString();
   4342       StringRef::size_type Pos = Str.find(0);
   4343       if (Pos != StringRef::npos)
   4344         Str = Str.substr(0, Pos);
   4345 
   4346       return Success(Str.size(), E);
   4347     }
   4348 
   4349     return Error(E);
   4350 
   4351   case Builtin::BI__atomic_always_lock_free:
   4352   case Builtin::BI__atomic_is_lock_free:
   4353   case Builtin::BI__c11_atomic_is_lock_free: {
   4354     APSInt SizeVal;
   4355     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
   4356       return false;
   4357 
   4358     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
   4359     // of two less than the maximum inline atomic width, we know it is
   4360     // lock-free.  If the size isn't a power of two, or greater than the
   4361     // maximum alignment where we promote atomics, we know it is not lock-free
   4362     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
   4363     // the answer can only be determined at runtime; for example, 16-byte
   4364     // atomics have lock-free implementations on some, but not all,
   4365     // x86-64 processors.
   4366 
   4367     // Check power-of-two.
   4368     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
   4369     if (Size.isPowerOfTwo()) {
   4370       // Check against inlining width.
   4371       unsigned InlineWidthBits =
   4372           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
   4373       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
   4374         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
   4375             Size == CharUnits::One() ||
   4376             E->getArg(1)->isNullPointerConstant(Info.Ctx,
   4377                                                 Expr::NPC_NeverValueDependent))
   4378           // OK, we will inline appropriately-aligned operations of this size,
   4379           // and _Atomic(T) is appropriately-aligned.
   4380           return Success(1, E);
   4381 
   4382         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
   4383           castAs<PointerType>()->getPointeeType();
   4384         if (!PointeeType->isIncompleteType() &&
   4385             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
   4386           // OK, we will inline operations on this object.
   4387           return Success(1, E);
   4388         }
   4389       }
   4390     }
   4391 
   4392     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
   4393         Success(0, E) : Error(E);
   4394   }
   4395   }
   4396 }
   4397 
   4398 static bool HasSameBase(const LValue &A, const LValue &B) {
   4399   if (!A.getLValueBase())
   4400     return !B.getLValueBase();
   4401   if (!B.getLValueBase())
   4402     return false;
   4403 
   4404   if (A.getLValueBase().getOpaqueValue() !=
   4405       B.getLValueBase().getOpaqueValue()) {
   4406     const Decl *ADecl = GetLValueBaseDecl(A);
   4407     if (!ADecl)
   4408       return false;
   4409     const Decl *BDecl = GetLValueBaseDecl(B);
   4410     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
   4411       return false;
   4412   }
   4413 
   4414   return IsGlobalLValue(A.getLValueBase()) ||
   4415          A.getLValueCallIndex() == B.getLValueCallIndex();
   4416 }
   4417 
   4418 /// Perform the given integer operation, which is known to need at most BitWidth
   4419 /// bits, and check for overflow in the original type (if that type was not an
   4420 /// unsigned type).
   4421 template<typename Operation>
   4422 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
   4423                                    const APSInt &LHS, const APSInt &RHS,
   4424                                    unsigned BitWidth, Operation Op) {
   4425   if (LHS.isUnsigned())
   4426     return Op(LHS, RHS);
   4427 
   4428   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
   4429   APSInt Result = Value.trunc(LHS.getBitWidth());
   4430   if (Result.extend(BitWidth) != Value) {
   4431     if (Info.getIntOverflowCheckMode())
   4432       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
   4433         diag::warn_integer_constant_overflow)
   4434           << Result.toString(10) << E->getType();
   4435     else
   4436       HandleOverflow(Info, E, Value, E->getType());
   4437   }
   4438   return Result;
   4439 }
   4440 
   4441 namespace {
   4442 
   4443 /// \brief Data recursive integer evaluator of certain binary operators.
   4444 ///
   4445 /// We use a data recursive algorithm for binary operators so that we are able
   4446 /// to handle extreme cases of chained binary operators without causing stack
   4447 /// overflow.
   4448 class DataRecursiveIntBinOpEvaluator {
   4449   struct EvalResult {
   4450     APValue Val;
   4451     bool Failed;
   4452 
   4453     EvalResult() : Failed(false) { }
   4454 
   4455     void swap(EvalResult &RHS) {
   4456       Val.swap(RHS.Val);
   4457       Failed = RHS.Failed;
   4458       RHS.Failed = false;
   4459     }
   4460   };
   4461 
   4462   struct Job {
   4463     const Expr *E;
   4464     EvalResult LHSResult; // meaningful only for binary operator expression.
   4465     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
   4466 
   4467     Job() : StoredInfo(0) { }
   4468     void startSpeculativeEval(EvalInfo &Info) {
   4469       OldEvalStatus = Info.EvalStatus;
   4470       Info.EvalStatus.Diag = 0;
   4471       StoredInfo = &Info;
   4472     }
   4473     ~Job() {
   4474       if (StoredInfo) {
   4475         StoredInfo->EvalStatus = OldEvalStatus;
   4476       }
   4477     }
   4478   private:
   4479     EvalInfo *StoredInfo; // non-null if status changed.
   4480     Expr::EvalStatus OldEvalStatus;
   4481   };
   4482 
   4483   SmallVector<Job, 16> Queue;
   4484 
   4485   IntExprEvaluator &IntEval;
   4486   EvalInfo &Info;
   4487   APValue &FinalResult;
   4488 
   4489 public:
   4490   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
   4491     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
   4492 
   4493   /// \brief True if \param E is a binary operator that we are going to handle
   4494   /// data recursively.
   4495   /// We handle binary operators that are comma, logical, or that have operands
   4496   /// with integral or enumeration type.
   4497   static bool shouldEnqueue(const BinaryOperator *E) {
   4498     return E->getOpcode() == BO_Comma ||
   4499            E->isLogicalOp() ||
   4500            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   4501             E->getRHS()->getType()->isIntegralOrEnumerationType());
   4502   }
   4503 
   4504   bool Traverse(const BinaryOperator *E) {
   4505     enqueue(E);
   4506     EvalResult PrevResult;
   4507     while (!Queue.empty())
   4508       process(PrevResult);
   4509 
   4510     if (PrevResult.Failed) return false;
   4511 
   4512     FinalResult.swap(PrevResult.Val);
   4513     return true;
   4514   }
   4515 
   4516 private:
   4517   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
   4518     return IntEval.Success(Value, E, Result);
   4519   }
   4520   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
   4521     return IntEval.Success(Value, E, Result);
   4522   }
   4523   bool Error(const Expr *E) {
   4524     return IntEval.Error(E);
   4525   }
   4526   bool Error(const Expr *E, diag::kind D) {
   4527     return IntEval.Error(E, D);
   4528   }
   4529 
   4530   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
   4531     return Info.CCEDiag(E, D);
   4532   }
   4533 
   4534   // \brief Returns true if visiting the RHS is necessary, false otherwise.
   4535   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
   4536                          bool &SuppressRHSDiags);
   4537 
   4538   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
   4539                   const BinaryOperator *E, APValue &Result);
   4540 
   4541   void EvaluateExpr(const Expr *E, EvalResult &Result) {
   4542     Result.Failed = !Evaluate(Result.Val, Info, E);
   4543     if (Result.Failed)
   4544       Result.Val = APValue();
   4545   }
   4546 
   4547   void process(EvalResult &Result);
   4548 
   4549   void enqueue(const Expr *E) {
   4550     E = E->IgnoreParens();
   4551     Queue.resize(Queue.size()+1);
   4552     Queue.back().E = E;
   4553     Queue.back().Kind = Job::AnyExprKind;
   4554   }
   4555 };
   4556 
   4557 }
   4558 
   4559 bool DataRecursiveIntBinOpEvaluator::
   4560        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
   4561                          bool &SuppressRHSDiags) {
   4562   if (E->getOpcode() == BO_Comma) {
   4563     // Ignore LHS but note if we could not evaluate it.
   4564     if (LHSResult.Failed)
   4565       Info.EvalStatus.HasSideEffects = true;
   4566     return true;
   4567   }
   4568 
   4569   if (E->isLogicalOp()) {
   4570     bool lhsResult;
   4571     if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
   4572       // We were able to evaluate the LHS, see if we can get away with not
   4573       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
   4574       if (lhsResult == (E->getOpcode() == BO_LOr)) {
   4575         Success(lhsResult, E, LHSResult.Val);
   4576         return false; // Ignore RHS
   4577       }
   4578     } else {
   4579       // Since we weren't able to evaluate the left hand side, it
   4580       // must have had side effects.
   4581       Info.EvalStatus.HasSideEffects = true;
   4582 
   4583       // We can't evaluate the LHS; however, sometimes the result
   4584       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
   4585       // Don't ignore RHS and suppress diagnostics from this arm.
   4586       SuppressRHSDiags = true;
   4587     }
   4588 
   4589     return true;
   4590   }
   4591 
   4592   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   4593          E->getRHS()->getType()->isIntegralOrEnumerationType());
   4594 
   4595   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
   4596     return false; // Ignore RHS;
   4597 
   4598   return true;
   4599 }
   4600 
   4601 bool DataRecursiveIntBinOpEvaluator::
   4602        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
   4603                   const BinaryOperator *E, APValue &Result) {
   4604   if (E->getOpcode() == BO_Comma) {
   4605     if (RHSResult.Failed)
   4606       return false;
   4607     Result = RHSResult.Val;
   4608     return true;
   4609   }
   4610 
   4611   if (E->isLogicalOp()) {
   4612     bool lhsResult, rhsResult;
   4613     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
   4614     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
   4615 
   4616     if (LHSIsOK) {
   4617       if (RHSIsOK) {
   4618         if (E->getOpcode() == BO_LOr)
   4619           return Success(lhsResult || rhsResult, E, Result);
   4620         else
   4621           return Success(lhsResult && rhsResult, E, Result);
   4622       }
   4623     } else {
   4624       if (RHSIsOK) {
   4625         // We can't evaluate the LHS; however, sometimes the result
   4626         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
   4627         if (rhsResult == (E->getOpcode() == BO_LOr))
   4628           return Success(rhsResult, E, Result);
   4629       }
   4630     }
   4631 
   4632     return false;
   4633   }
   4634 
   4635   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   4636          E->getRHS()->getType()->isIntegralOrEnumerationType());
   4637 
   4638   if (LHSResult.Failed || RHSResult.Failed)
   4639     return false;
   4640 
   4641   const APValue &LHSVal = LHSResult.Val;
   4642   const APValue &RHSVal = RHSResult.Val;
   4643 
   4644   // Handle cases like (unsigned long)&a + 4.
   4645   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
   4646     Result = LHSVal;
   4647     CharUnits AdditionalOffset = CharUnits::fromQuantity(
   4648                                                          RHSVal.getInt().getZExtValue());
   4649     if (E->getOpcode() == BO_Add)
   4650       Result.getLValueOffset() += AdditionalOffset;
   4651     else
   4652       Result.getLValueOffset() -= AdditionalOffset;
   4653     return true;
   4654   }
   4655 
   4656   // Handle cases like 4 + (unsigned long)&a
   4657   if (E->getOpcode() == BO_Add &&
   4658       RHSVal.isLValue() && LHSVal.isInt()) {
   4659     Result = RHSVal;
   4660     Result.getLValueOffset() += CharUnits::fromQuantity(
   4661                                                         LHSVal.getInt().getZExtValue());
   4662     return true;
   4663   }
   4664 
   4665   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
   4666     // Handle (intptr_t)&&A - (intptr_t)&&B.
   4667     if (!LHSVal.getLValueOffset().isZero() ||
   4668         !RHSVal.getLValueOffset().isZero())
   4669       return false;
   4670     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
   4671     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
   4672     if (!LHSExpr || !RHSExpr)
   4673       return false;
   4674     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
   4675     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
   4676     if (!LHSAddrExpr || !RHSAddrExpr)
   4677       return false;
   4678     // Make sure both labels come from the same function.
   4679     if (LHSAddrExpr->getLabel()->getDeclContext() !=
   4680         RHSAddrExpr->getLabel()->getDeclContext())
   4681       return false;
   4682     Result = APValue(LHSAddrExpr, RHSAddrExpr);
   4683     return true;
   4684   }
   4685 
   4686   // All the following cases expect both operands to be an integer
   4687   if (!LHSVal.isInt() || !RHSVal.isInt())
   4688     return Error(E);
   4689 
   4690   const APSInt &LHS = LHSVal.getInt();
   4691   APSInt RHS = RHSVal.getInt();
   4692 
   4693   switch (E->getOpcode()) {
   4694     default:
   4695       return Error(E);
   4696     case BO_Mul:
   4697       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
   4698                                           LHS.getBitWidth() * 2,
   4699                                           std::multiplies<APSInt>()), E,
   4700                      Result);
   4701     case BO_Add:
   4702       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
   4703                                           LHS.getBitWidth() + 1,
   4704                                           std::plus<APSInt>()), E, Result);
   4705     case BO_Sub:
   4706       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
   4707                                           LHS.getBitWidth() + 1,
   4708                                           std::minus<APSInt>()), E, Result);
   4709     case BO_And: return Success(LHS & RHS, E, Result);
   4710     case BO_Xor: return Success(LHS ^ RHS, E, Result);
   4711     case BO_Or:  return Success(LHS | RHS, E, Result);
   4712     case BO_Div:
   4713     case BO_Rem:
   4714       if (RHS == 0)
   4715         return Error(E, diag::note_expr_divide_by_zero);
   4716       // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
   4717       // not actually undefined behavior in C++11 due to a language defect.
   4718       if (RHS.isNegative() && RHS.isAllOnesValue() &&
   4719           LHS.isSigned() && LHS.isMinSignedValue())
   4720         HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
   4721       return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
   4722                      Result);
   4723     case BO_Shl: {
   4724       if (Info.getLangOpts().OpenCL)
   4725         // OpenCL 6.3j: shift values are effectively % word size of LHS.
   4726         RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
   4727                       static_cast<uint64_t>(LHS.getBitWidth() - 1)),
   4728                       RHS.isUnsigned());
   4729       else if (RHS.isSigned() && RHS.isNegative()) {
   4730         // During constant-folding, a negative shift is an opposite shift. Such
   4731         // a shift is not a constant expression.
   4732         CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
   4733         RHS = -RHS;
   4734         goto shift_right;
   4735       }
   4736 
   4737     shift_left:
   4738       // C++11 [expr.shift]p1: Shift width must be less than the bit width of
   4739       // the shifted type.
   4740       unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
   4741       if (SA != RHS) {
   4742         CCEDiag(E, diag::note_constexpr_large_shift)
   4743         << RHS << E->getType() << LHS.getBitWidth();
   4744       } else if (LHS.isSigned()) {
   4745         // C++11 [expr.shift]p2: A signed left shift must have a non-negative
   4746         // operand, and must not overflow the corresponding unsigned type.
   4747         if (LHS.isNegative())
   4748           CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
   4749         else if (LHS.countLeadingZeros() < SA)
   4750           CCEDiag(E, diag::note_constexpr_lshift_discards);
   4751       }
   4752 
   4753       return Success(LHS << SA, E, Result);
   4754     }
   4755     case BO_Shr: {
   4756       if (Info.getLangOpts().OpenCL)
   4757         // OpenCL 6.3j: shift values are effectively % word size of LHS.
   4758         RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
   4759                       static_cast<uint64_t>(LHS.getBitWidth() - 1)),
   4760                       RHS.isUnsigned());
   4761       else if (RHS.isSigned() && RHS.isNegative()) {
   4762         // During constant-folding, a negative shift is an opposite shift. Such a
   4763         // shift is not a constant expression.
   4764         CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
   4765         RHS = -RHS;
   4766         goto shift_left;
   4767       }
   4768 
   4769     shift_right:
   4770       // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
   4771       // shifted type.
   4772       unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
   4773       if (SA != RHS)
   4774         CCEDiag(E, diag::note_constexpr_large_shift)
   4775         << RHS << E->getType() << LHS.getBitWidth();
   4776 
   4777       return Success(LHS >> SA, E, Result);
   4778     }
   4779 
   4780     case BO_LT: return Success(LHS < RHS, E, Result);
   4781     case BO_GT: return Success(LHS > RHS, E, Result);
   4782     case BO_LE: return Success(LHS <= RHS, E, Result);
   4783     case BO_GE: return Success(LHS >= RHS, E, Result);
   4784     case BO_EQ: return Success(LHS == RHS, E, Result);
   4785     case BO_NE: return Success(LHS != RHS, E, Result);
   4786   }
   4787 }
   4788 
   4789 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
   4790   Job &job = Queue.back();
   4791 
   4792   switch (job.Kind) {
   4793     case Job::AnyExprKind: {
   4794       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
   4795         if (shouldEnqueue(Bop)) {
   4796           job.Kind = Job::BinOpKind;
   4797           enqueue(Bop->getLHS());
   4798           return;
   4799         }
   4800       }
   4801 
   4802       EvaluateExpr(job.E, Result);
   4803       Queue.pop_back();
   4804       return;
   4805     }
   4806 
   4807     case Job::BinOpKind: {
   4808       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
   4809       bool SuppressRHSDiags = false;
   4810       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
   4811         Queue.pop_back();
   4812         return;
   4813       }
   4814       if (SuppressRHSDiags)
   4815         job.startSpeculativeEval(Info);
   4816       job.LHSResult.swap(Result);
   4817       job.Kind = Job::BinOpVisitedLHSKind;
   4818       enqueue(Bop->getRHS());
   4819       return;
   4820     }
   4821 
   4822     case Job::BinOpVisitedLHSKind: {
   4823       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
   4824       EvalResult RHS;
   4825       RHS.swap(Result);
   4826       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
   4827       Queue.pop_back();
   4828       return;
   4829     }
   4830   }
   4831 
   4832   llvm_unreachable("Invalid Job::Kind!");
   4833 }
   4834 
   4835 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   4836   if (E->isAssignmentOp())
   4837     return Error(E);
   4838 
   4839   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
   4840     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
   4841 
   4842   QualType LHSTy = E->getLHS()->getType();
   4843   QualType RHSTy = E->getRHS()->getType();
   4844 
   4845   if (LHSTy->isAnyComplexType()) {
   4846     assert(RHSTy->isAnyComplexType() && "Invalid comparison");
   4847     ComplexValue LHS, RHS;
   4848 
   4849     bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
   4850     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   4851       return false;
   4852 
   4853     if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
   4854       return false;
   4855 
   4856     if (LHS.isComplexFloat()) {
   4857       APFloat::cmpResult CR_r =
   4858         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
   4859       APFloat::cmpResult CR_i =
   4860         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
   4861 
   4862       if (E->getOpcode() == BO_EQ)
   4863         return Success((CR_r == APFloat::cmpEqual &&
   4864                         CR_i == APFloat::cmpEqual), E);
   4865       else {
   4866         assert(E->getOpcode() == BO_NE &&
   4867                "Invalid complex comparison.");
   4868         return Success(((CR_r == APFloat::cmpGreaterThan ||
   4869                          CR_r == APFloat::cmpLessThan ||
   4870                          CR_r == APFloat::cmpUnordered) ||
   4871                         (CR_i == APFloat::cmpGreaterThan ||
   4872                          CR_i == APFloat::cmpLessThan ||
   4873                          CR_i == APFloat::cmpUnordered)), E);
   4874       }
   4875     } else {
   4876       if (E->getOpcode() == BO_EQ)
   4877         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
   4878                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
   4879       else {
   4880         assert(E->getOpcode() == BO_NE &&
   4881                "Invalid compex comparison.");
   4882         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
   4883                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
   4884       }
   4885     }
   4886   }
   4887 
   4888   if (LHSTy->isRealFloatingType() &&
   4889       RHSTy->isRealFloatingType()) {
   4890     APFloat RHS(0.0), LHS(0.0);
   4891 
   4892     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
   4893     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   4894       return false;
   4895 
   4896     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
   4897       return false;
   4898 
   4899     APFloat::cmpResult CR = LHS.compare(RHS);
   4900 
   4901     switch (E->getOpcode()) {
   4902     default:
   4903       llvm_unreachable("Invalid binary operator!");
   4904     case BO_LT:
   4905       return Success(CR == APFloat::cmpLessThan, E);
   4906     case BO_GT:
   4907       return Success(CR == APFloat::cmpGreaterThan, E);
   4908     case BO_LE:
   4909       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
   4910     case BO_GE:
   4911       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
   4912                      E);
   4913     case BO_EQ:
   4914       return Success(CR == APFloat::cmpEqual, E);
   4915     case BO_NE:
   4916       return Success(CR == APFloat::cmpGreaterThan
   4917                      || CR == APFloat::cmpLessThan
   4918                      || CR == APFloat::cmpUnordered, E);
   4919     }
   4920   }
   4921 
   4922   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
   4923     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
   4924       LValue LHSValue, RHSValue;
   4925 
   4926       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
   4927       if (!LHSOK && Info.keepEvaluatingAfterFailure())
   4928         return false;
   4929 
   4930       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
   4931         return false;
   4932 
   4933       // Reject differing bases from the normal codepath; we special-case
   4934       // comparisons to null.
   4935       if (!HasSameBase(LHSValue, RHSValue)) {
   4936         if (E->getOpcode() == BO_Sub) {
   4937           // Handle &&A - &&B.
   4938           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
   4939             return false;
   4940           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
   4941           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
   4942           if (!LHSExpr || !RHSExpr)
   4943             return false;
   4944           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
   4945           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
   4946           if (!LHSAddrExpr || !RHSAddrExpr)
   4947             return false;
   4948           // Make sure both labels come from the same function.
   4949           if (LHSAddrExpr->getLabel()->getDeclContext() !=
   4950               RHSAddrExpr->getLabel()->getDeclContext())
   4951             return false;
   4952           Result = APValue(LHSAddrExpr, RHSAddrExpr);
   4953           return true;
   4954         }
   4955         // Inequalities and subtractions between unrelated pointers have
   4956         // unspecified or undefined behavior.
   4957         if (!E->isEqualityOp())
   4958           return Error(E);
   4959         // A constant address may compare equal to the address of a symbol.
   4960         // The one exception is that address of an object cannot compare equal
   4961         // to a null pointer constant.
   4962         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
   4963             (!RHSValue.Base && !RHSValue.Offset.isZero()))
   4964           return Error(E);
   4965         // It's implementation-defined whether distinct literals will have
   4966         // distinct addresses. In clang, the result of such a comparison is
   4967         // unspecified, so it is not a constant expression. However, we do know
   4968         // that the address of a literal will be non-null.
   4969         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
   4970             LHSValue.Base && RHSValue.Base)
   4971           return Error(E);
   4972         // We can't tell whether weak symbols will end up pointing to the same
   4973         // object.
   4974         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
   4975           return Error(E);
   4976         // Pointers with different bases cannot represent the same object.
   4977         // (Note that clang defaults to -fmerge-all-constants, which can
   4978         // lead to inconsistent results for comparisons involving the address
   4979         // of a constant; this generally doesn't matter in practice.)
   4980         return Success(E->getOpcode() == BO_NE, E);
   4981       }
   4982 
   4983       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
   4984       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
   4985 
   4986       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
   4987       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
   4988 
   4989       if (E->getOpcode() == BO_Sub) {
   4990         // C++11 [expr.add]p6:
   4991         //   Unless both pointers point to elements of the same array object, or
   4992         //   one past the last element of the array object, the behavior is
   4993         //   undefined.
   4994         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
   4995             !AreElementsOfSameArray(getType(LHSValue.Base),
   4996                                     LHSDesignator, RHSDesignator))
   4997           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
   4998 
   4999         QualType Type = E->getLHS()->getType();
   5000         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
   5001 
   5002         CharUnits ElementSize;
   5003         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
   5004           return false;
   5005 
   5006         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
   5007         // and produce incorrect results when it overflows. Such behavior
   5008         // appears to be non-conforming, but is common, so perhaps we should
   5009         // assume the standard intended for such cases to be undefined behavior
   5010         // and check for them.
   5011 
   5012         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
   5013         // overflow in the final conversion to ptrdiff_t.
   5014         APSInt LHS(
   5015           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
   5016         APSInt RHS(
   5017           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
   5018         APSInt ElemSize(
   5019           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
   5020         APSInt TrueResult = (LHS - RHS) / ElemSize;
   5021         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
   5022 
   5023         if (Result.extend(65) != TrueResult)
   5024           HandleOverflow(Info, E, TrueResult, E->getType());
   5025         return Success(Result, E);
   5026       }
   5027 
   5028       // C++11 [expr.rel]p3:
   5029       //   Pointers to void (after pointer conversions) can be compared, with a
   5030       //   result defined as follows: If both pointers represent the same
   5031       //   address or are both the null pointer value, the result is true if the
   5032       //   operator is <= or >= and false otherwise; otherwise the result is
   5033       //   unspecified.
   5034       // We interpret this as applying to pointers to *cv* void.
   5035       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
   5036           E->isRelationalOp())
   5037         CCEDiag(E, diag::note_constexpr_void_comparison);
   5038 
   5039       // C++11 [expr.rel]p2:
   5040       // - If two pointers point to non-static data members of the same object,
   5041       //   or to subobjects or array elements fo such members, recursively, the
   5042       //   pointer to the later declared member compares greater provided the
   5043       //   two members have the same access control and provided their class is
   5044       //   not a union.
   5045       //   [...]
   5046       // - Otherwise pointer comparisons are unspecified.
   5047       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
   5048           E->isRelationalOp()) {
   5049         bool WasArrayIndex;
   5050         unsigned Mismatch =
   5051           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
   5052                                  RHSDesignator, WasArrayIndex);
   5053         // At the point where the designators diverge, the comparison has a
   5054         // specified value if:
   5055         //  - we are comparing array indices
   5056         //  - we are comparing fields of a union, or fields with the same access
   5057         // Otherwise, the result is unspecified and thus the comparison is not a
   5058         // constant expression.
   5059         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
   5060             Mismatch < RHSDesignator.Entries.size()) {
   5061           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
   5062           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
   5063           if (!LF && !RF)
   5064             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
   5065           else if (!LF)
   5066             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
   5067               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
   5068               << RF->getParent() << RF;
   5069           else if (!RF)
   5070             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
   5071               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
   5072               << LF->getParent() << LF;
   5073           else if (!LF->getParent()->isUnion() &&
   5074                    LF->getAccess() != RF->getAccess())
   5075             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
   5076               << LF << LF->getAccess() << RF << RF->getAccess()
   5077               << LF->getParent();
   5078         }
   5079       }
   5080 
   5081       // The comparison here must be unsigned, and performed with the same
   5082       // width as the pointer.
   5083       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
   5084       uint64_t CompareLHS = LHSOffset.getQuantity();
   5085       uint64_t CompareRHS = RHSOffset.getQuantity();
   5086       assert(PtrSize <= 64 && "Unexpected pointer width");
   5087       uint64_t Mask = ~0ULL >> (64 - PtrSize);
   5088       CompareLHS &= Mask;
   5089       CompareRHS &= Mask;
   5090 
   5091       // If there is a base and this is a relational operator, we can only
   5092       // compare pointers within the object in question; otherwise, the result
   5093       // depends on where the object is located in memory.
   5094       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
   5095         QualType BaseTy = getType(LHSValue.Base);
   5096         if (BaseTy->isIncompleteType())
   5097           return Error(E);
   5098         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
   5099         uint64_t OffsetLimit = Size.getQuantity();
   5100         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
   5101           return Error(E);
   5102       }
   5103 
   5104       switch (E->getOpcode()) {
   5105       default: llvm_unreachable("missing comparison operator");
   5106       case BO_LT: return Success(CompareLHS < CompareRHS, E);
   5107       case BO_GT: return Success(CompareLHS > CompareRHS, E);
   5108       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
   5109       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
   5110       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
   5111       case BO_NE: return Success(CompareLHS != CompareRHS, E);
   5112       }
   5113     }
   5114   }
   5115 
   5116   if (LHSTy->isMemberPointerType()) {
   5117     assert(E->isEqualityOp() && "unexpected member pointer operation");
   5118     assert(RHSTy->isMemberPointerType() && "invalid comparison");
   5119 
   5120     MemberPtr LHSValue, RHSValue;
   5121 
   5122     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
   5123     if (!LHSOK && Info.keepEvaluatingAfterFailure())
   5124       return false;
   5125 
   5126     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
   5127       return false;
   5128 
   5129     // C++11 [expr.eq]p2:
   5130     //   If both operands are null, they compare equal. Otherwise if only one is
   5131     //   null, they compare unequal.
   5132     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
   5133       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
   5134       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
   5135     }
   5136 
   5137     //   Otherwise if either is a pointer to a virtual member function, the
   5138     //   result is unspecified.
   5139     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
   5140       if (MD->isVirtual())
   5141         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
   5142     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
   5143       if (MD->isVirtual())
   5144         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
   5145 
   5146     //   Otherwise they compare equal if and only if they would refer to the
   5147     //   same member of the same most derived object or the same subobject if
   5148     //   they were dereferenced with a hypothetical object of the associated
   5149     //   class type.
   5150     bool Equal = LHSValue == RHSValue;
   5151     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
   5152   }
   5153 
   5154   if (LHSTy->isNullPtrType()) {
   5155     assert(E->isComparisonOp() && "unexpected nullptr operation");
   5156     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
   5157     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
   5158     // are compared, the result is true of the operator is <=, >= or ==, and
   5159     // false otherwise.
   5160     BinaryOperator::Opcode Opcode = E->getOpcode();
   5161     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
   5162   }
   5163 
   5164   assert((!LHSTy->isIntegralOrEnumerationType() ||
   5165           !RHSTy->isIntegralOrEnumerationType()) &&
   5166          "DataRecursiveIntBinOpEvaluator should have handled integral types");
   5167   // We can't continue from here for non-integral types.
   5168   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   5169 }
   5170 
   5171 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
   5172   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
   5173   //   result shall be the alignment of the referenced type."
   5174   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
   5175     T = Ref->getPointeeType();
   5176 
   5177   // __alignof is defined to return the preferred alignment.
   5178   return Info.Ctx.toCharUnitsFromBits(
   5179     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
   5180 }
   5181 
   5182 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
   5183   E = E->IgnoreParens();
   5184 
   5185   // alignof decl is always accepted, even if it doesn't make sense: we default
   5186   // to 1 in those cases.
   5187   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   5188     return Info.Ctx.getDeclAlign(DRE->getDecl(),
   5189                                  /*RefAsPointee*/true);
   5190 
   5191   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
   5192     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
   5193                                  /*RefAsPointee*/true);
   5194 
   5195   return GetAlignOfType(E->getType());
   5196 }
   5197 
   5198 
   5199 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
   5200 /// a result as the expression's type.
   5201 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
   5202                                     const UnaryExprOrTypeTraitExpr *E) {
   5203   switch(E->getKind()) {
   5204   case UETT_AlignOf: {
   5205     if (E->isArgumentType())
   5206       return Success(GetAlignOfType(E->getArgumentType()), E);
   5207     else
   5208       return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
   5209   }
   5210 
   5211   case UETT_VecStep: {
   5212     QualType Ty = E->getTypeOfArgument();
   5213 
   5214     if (Ty->isVectorType()) {
   5215       unsigned n = Ty->castAs<VectorType>()->getNumElements();
   5216 
   5217       // The vec_step built-in functions that take a 3-component
   5218       // vector return 4. (OpenCL 1.1 spec 6.11.12)
   5219       if (n == 3)
   5220         n = 4;
   5221 
   5222       return Success(n, E);
   5223     } else
   5224       return Success(1, E);
   5225   }
   5226 
   5227   case UETT_SizeOf: {
   5228     QualType SrcTy = E->getTypeOfArgument();
   5229     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   5230     //   the result is the size of the referenced type."
   5231     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
   5232       SrcTy = Ref->getPointeeType();
   5233 
   5234     CharUnits Sizeof;
   5235     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
   5236       return false;
   5237     return Success(Sizeof, E);
   5238   }
   5239   }
   5240 
   5241   llvm_unreachable("unknown expr/type trait");
   5242 }
   5243 
   5244 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
   5245   CharUnits Result;
   5246   unsigned n = OOE->getNumComponents();
   5247   if (n == 0)
   5248     return Error(OOE);
   5249   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
   5250   for (unsigned i = 0; i != n; ++i) {
   5251     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
   5252     switch (ON.getKind()) {
   5253     case OffsetOfExpr::OffsetOfNode::Array: {
   5254       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
   5255       APSInt IdxResult;
   5256       if (!EvaluateInteger(Idx, IdxResult, Info))
   5257         return false;
   5258       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
   5259       if (!AT)
   5260         return Error(OOE);
   5261       CurrentType = AT->getElementType();
   5262       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
   5263       Result += IdxResult.getSExtValue() * ElementSize;
   5264         break;
   5265     }
   5266 
   5267     case OffsetOfExpr::OffsetOfNode::Field: {
   5268       FieldDecl *MemberDecl = ON.getField();
   5269       const RecordType *RT = CurrentType->getAs<RecordType>();
   5270       if (!RT)
   5271         return Error(OOE);
   5272       RecordDecl *RD = RT->getDecl();
   5273       if (RD->isInvalidDecl()) return false;
   5274       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
   5275       unsigned i = MemberDecl->getFieldIndex();
   5276       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   5277       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
   5278       CurrentType = MemberDecl->getType().getNonReferenceType();
   5279       break;
   5280     }
   5281 
   5282     case OffsetOfExpr::OffsetOfNode::Identifier:
   5283       llvm_unreachable("dependent __builtin_offsetof");
   5284 
   5285     case OffsetOfExpr::OffsetOfNode::Base: {
   5286       CXXBaseSpecifier *BaseSpec = ON.getBase();
   5287       if (BaseSpec->isVirtual())
   5288         return Error(OOE);
   5289 
   5290       // Find the layout of the class whose base we are looking into.
   5291       const RecordType *RT = CurrentType->getAs<RecordType>();
   5292       if (!RT)
   5293         return Error(OOE);
   5294       RecordDecl *RD = RT->getDecl();
   5295       if (RD->isInvalidDecl()) return false;
   5296       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
   5297 
   5298       // Find the base class itself.
   5299       CurrentType = BaseSpec->getType();
   5300       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   5301       if (!BaseRT)
   5302         return Error(OOE);
   5303 
   5304       // Add the offset to the base.
   5305       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
   5306       break;
   5307     }
   5308     }
   5309   }
   5310   return Success(Result, OOE);
   5311 }
   5312 
   5313 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   5314   switch (E->getOpcode()) {
   5315   default:
   5316     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
   5317     // See C99 6.6p3.
   5318     return Error(E);
   5319   case UO_Extension:
   5320     // FIXME: Should extension allow i-c-e extension expressions in its scope?
   5321     // If so, we could clear the diagnostic ID.
   5322     return Visit(E->getSubExpr());
   5323   case UO_Plus:
   5324     // The result is just the value.
   5325     return Visit(E->getSubExpr());
   5326   case UO_Minus: {
   5327     if (!Visit(E->getSubExpr()))
   5328       return false;
   5329     if (!Result.isInt()) return Error(E);
   5330     const APSInt &Value = Result.getInt();
   5331     if (Value.isSigned() && Value.isMinSignedValue())
   5332       HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
   5333                      E->getType());
   5334     return Success(-Value, E);
   5335   }
   5336   case UO_Not: {
   5337     if (!Visit(E->getSubExpr()))
   5338       return false;
   5339     if (!Result.isInt()) return Error(E);
   5340     return Success(~Result.getInt(), E);
   5341   }
   5342   case UO_LNot: {
   5343     bool bres;
   5344     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
   5345       return false;
   5346     return Success(!bres, E);
   5347   }
   5348   }
   5349 }
   5350 
   5351 /// HandleCast - This is used to evaluate implicit or explicit casts where the
   5352 /// result type is integer.
   5353 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5354   const Expr *SubExpr = E->getSubExpr();
   5355   QualType DestType = E->getType();
   5356   QualType SrcType = SubExpr->getType();
   5357 
   5358   switch (E->getCastKind()) {
   5359   case CK_BaseToDerived:
   5360   case CK_DerivedToBase:
   5361   case CK_UncheckedDerivedToBase:
   5362   case CK_Dynamic:
   5363   case CK_ToUnion:
   5364   case CK_ArrayToPointerDecay:
   5365   case CK_FunctionToPointerDecay:
   5366   case CK_NullToPointer:
   5367   case CK_NullToMemberPointer:
   5368   case CK_BaseToDerivedMemberPointer:
   5369   case CK_DerivedToBaseMemberPointer:
   5370   case CK_ReinterpretMemberPointer:
   5371   case CK_ConstructorConversion:
   5372   case CK_IntegralToPointer:
   5373   case CK_ToVoid:
   5374   case CK_VectorSplat:
   5375   case CK_IntegralToFloating:
   5376   case CK_FloatingCast:
   5377   case CK_CPointerToObjCPointerCast:
   5378   case CK_BlockPointerToObjCPointerCast:
   5379   case CK_AnyPointerToBlockPointerCast:
   5380   case CK_ObjCObjectLValueCast:
   5381   case CK_FloatingRealToComplex:
   5382   case CK_FloatingComplexToReal:
   5383   case CK_FloatingComplexCast:
   5384   case CK_FloatingComplexToIntegralComplex:
   5385   case CK_IntegralRealToComplex:
   5386   case CK_IntegralComplexCast:
   5387   case CK_IntegralComplexToFloatingComplex:
   5388   case CK_BuiltinFnToFnPtr:
   5389   case CK_ZeroToOCLEvent:
   5390     llvm_unreachable("invalid cast kind for integral value");
   5391 
   5392   case CK_BitCast:
   5393   case CK_Dependent:
   5394   case CK_LValueBitCast:
   5395   case CK_ARCProduceObject:
   5396   case CK_ARCConsumeObject:
   5397   case CK_ARCReclaimReturnedObject:
   5398   case CK_ARCExtendBlockObject:
   5399   case CK_CopyAndAutoreleaseBlockObject:
   5400     return Error(E);
   5401 
   5402   case CK_UserDefinedConversion:
   5403   case CK_LValueToRValue:
   5404   case CK_AtomicToNonAtomic:
   5405   case CK_NonAtomicToAtomic:
   5406   case CK_NoOp:
   5407     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5408 
   5409   case CK_MemberPointerToBoolean:
   5410   case CK_PointerToBoolean:
   5411   case CK_IntegralToBoolean:
   5412   case CK_FloatingToBoolean:
   5413   case CK_FloatingComplexToBoolean:
   5414   case CK_IntegralComplexToBoolean: {
   5415     bool BoolResult;
   5416     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
   5417       return false;
   5418     return Success(BoolResult, E);
   5419   }
   5420 
   5421   case CK_IntegralCast: {
   5422     if (!Visit(SubExpr))
   5423       return false;
   5424 
   5425     if (!Result.isInt()) {
   5426       // Allow casts of address-of-label differences if they are no-ops
   5427       // or narrowing.  (The narrowing case isn't actually guaranteed to
   5428       // be constant-evaluatable except in some narrow cases which are hard
   5429       // to detect here.  We let it through on the assumption the user knows
   5430       // what they are doing.)
   5431       if (Result.isAddrLabelDiff())
   5432         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
   5433       // Only allow casts of lvalues if they are lossless.
   5434       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
   5435     }
   5436 
   5437     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
   5438                                       Result.getInt()), E);
   5439   }
   5440 
   5441   case CK_PointerToIntegral: {
   5442     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   5443 
   5444     LValue LV;
   5445     if (!EvaluatePointer(SubExpr, LV, Info))
   5446       return false;
   5447 
   5448     if (LV.getLValueBase()) {
   5449       // Only allow based lvalue casts if they are lossless.
   5450       // FIXME: Allow a larger integer size than the pointer size, and allow
   5451       // narrowing back down to pointer width in subsequent integral casts.
   5452       // FIXME: Check integer type's active bits, not its type size.
   5453       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
   5454         return Error(E);
   5455 
   5456       LV.Designator.setInvalid();
   5457       LV.moveInto(Result);
   5458       return true;
   5459     }
   5460 
   5461     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
   5462                                          SrcType);
   5463     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
   5464   }
   5465 
   5466   case CK_IntegralComplexToReal: {
   5467     ComplexValue C;
   5468     if (!EvaluateComplex(SubExpr, C, Info))
   5469       return false;
   5470     return Success(C.getComplexIntReal(), E);
   5471   }
   5472 
   5473   case CK_FloatingToIntegral: {
   5474     APFloat F(0.0);
   5475     if (!EvaluateFloat(SubExpr, F, Info))
   5476       return false;
   5477 
   5478     APSInt Value;
   5479     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
   5480       return false;
   5481     return Success(Value, E);
   5482   }
   5483   }
   5484 
   5485   llvm_unreachable("unknown cast resulting in integral value");
   5486 }
   5487 
   5488 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   5489   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   5490     ComplexValue LV;
   5491     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
   5492       return false;
   5493     if (!LV.isComplexInt())
   5494       return Error(E);
   5495     return Success(LV.getComplexIntReal(), E);
   5496   }
   5497 
   5498   return Visit(E->getSubExpr());
   5499 }
   5500 
   5501 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   5502   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
   5503     ComplexValue LV;
   5504     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
   5505       return false;
   5506     if (!LV.isComplexInt())
   5507       return Error(E);
   5508     return Success(LV.getComplexIntImag(), E);
   5509   }
   5510 
   5511   VisitIgnoredValue(E->getSubExpr());
   5512   return Success(0, E);
   5513 }
   5514 
   5515 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
   5516   return Success(E->getPackLength(), E);
   5517 }
   5518 
   5519 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
   5520   return Success(E->getValue(), E);
   5521 }
   5522 
   5523 //===----------------------------------------------------------------------===//
   5524 // Float Evaluation
   5525 //===----------------------------------------------------------------------===//
   5526 
   5527 namespace {
   5528 class FloatExprEvaluator
   5529   : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
   5530   APFloat &Result;
   5531 public:
   5532   FloatExprEvaluator(EvalInfo &info, APFloat &result)
   5533     : ExprEvaluatorBaseTy(info), Result(result) {}
   5534 
   5535   bool Success(const APValue &V, const Expr *e) {
   5536     Result = V.getFloat();
   5537     return true;
   5538   }
   5539 
   5540   bool ZeroInitialization(const Expr *E) {
   5541     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
   5542     return true;
   5543   }
   5544 
   5545   bool VisitCallExpr(const CallExpr *E);
   5546 
   5547   bool VisitUnaryOperator(const UnaryOperator *E);
   5548   bool VisitBinaryOperator(const BinaryOperator *E);
   5549   bool VisitFloatingLiteral(const FloatingLiteral *E);
   5550   bool VisitCastExpr(const CastExpr *E);
   5551 
   5552   bool VisitUnaryReal(const UnaryOperator *E);
   5553   bool VisitUnaryImag(const UnaryOperator *E);
   5554 
   5555   // FIXME: Missing: array subscript of vector, member of vector
   5556 };
   5557 } // end anonymous namespace
   5558 
   5559 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
   5560   assert(E->isRValue() && E->getType()->isRealFloatingType());
   5561   return FloatExprEvaluator(Info, Result).Visit(E);
   5562 }
   5563 
   5564 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
   5565                                   QualType ResultTy,
   5566                                   const Expr *Arg,
   5567                                   bool SNaN,
   5568                                   llvm::APFloat &Result) {
   5569   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
   5570   if (!S) return false;
   5571 
   5572   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
   5573 
   5574   llvm::APInt fill;
   5575 
   5576   // Treat empty strings as if they were zero.
   5577   if (S->getString().empty())
   5578     fill = llvm::APInt(32, 0);
   5579   else if (S->getString().getAsInteger(0, fill))
   5580     return false;
   5581 
   5582   if (SNaN)
   5583     Result = llvm::APFloat::getSNaN(Sem, false, &fill);
   5584   else
   5585     Result = llvm::APFloat::getQNaN(Sem, false, &fill);
   5586   return true;
   5587 }
   5588 
   5589 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
   5590   switch (E->isBuiltinCall()) {
   5591   default:
   5592     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   5593 
   5594   case Builtin::BI__builtin_huge_val:
   5595   case Builtin::BI__builtin_huge_valf:
   5596   case Builtin::BI__builtin_huge_vall:
   5597   case Builtin::BI__builtin_inf:
   5598   case Builtin::BI__builtin_inff:
   5599   case Builtin::BI__builtin_infl: {
   5600     const llvm::fltSemantics &Sem =
   5601       Info.Ctx.getFloatTypeSemantics(E->getType());
   5602     Result = llvm::APFloat::getInf(Sem);
   5603     return true;
   5604   }
   5605 
   5606   case Builtin::BI__builtin_nans:
   5607   case Builtin::BI__builtin_nansf:
   5608   case Builtin::BI__builtin_nansl:
   5609     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
   5610                                true, Result))
   5611       return Error(E);
   5612     return true;
   5613 
   5614   case Builtin::BI__builtin_nan:
   5615   case Builtin::BI__builtin_nanf:
   5616   case Builtin::BI__builtin_nanl:
   5617     // If this is __builtin_nan() turn this into a nan, otherwise we
   5618     // can't constant fold it.
   5619     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
   5620                                false, Result))
   5621       return Error(E);
   5622     return true;
   5623 
   5624   case Builtin::BI__builtin_fabs:
   5625   case Builtin::BI__builtin_fabsf:
   5626   case Builtin::BI__builtin_fabsl:
   5627     if (!EvaluateFloat(E->getArg(0), Result, Info))
   5628       return false;
   5629 
   5630     if (Result.isNegative())
   5631       Result.changeSign();
   5632     return true;
   5633 
   5634   case Builtin::BI__builtin_copysign:
   5635   case Builtin::BI__builtin_copysignf:
   5636   case Builtin::BI__builtin_copysignl: {
   5637     APFloat RHS(0.);
   5638     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
   5639         !EvaluateFloat(E->getArg(1), RHS, Info))
   5640       return false;
   5641     Result.copySign(RHS);
   5642     return true;
   5643   }
   5644   }
   5645 }
   5646 
   5647 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   5648   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   5649     ComplexValue CV;
   5650     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
   5651       return false;
   5652     Result = CV.FloatReal;
   5653     return true;
   5654   }
   5655 
   5656   return Visit(E->getSubExpr());
   5657 }
   5658 
   5659 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   5660   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   5661     ComplexValue CV;
   5662     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
   5663       return false;
   5664     Result = CV.FloatImag;
   5665     return true;
   5666   }
   5667 
   5668   VisitIgnoredValue(E->getSubExpr());
   5669   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
   5670   Result = llvm::APFloat::getZero(Sem);
   5671   return true;
   5672 }
   5673 
   5674 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   5675   switch (E->getOpcode()) {
   5676   default: return Error(E);
   5677   case UO_Plus:
   5678     return EvaluateFloat(E->getSubExpr(), Result, Info);
   5679   case UO_Minus:
   5680     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
   5681       return false;
   5682     Result.changeSign();
   5683     return true;
   5684   }
   5685 }
   5686 
   5687 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   5688   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
   5689     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   5690 
   5691   APFloat RHS(0.0);
   5692   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
   5693   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   5694     return false;
   5695   if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
   5696     return false;
   5697 
   5698   switch (E->getOpcode()) {
   5699   default: return Error(E);
   5700   case BO_Mul:
   5701     Result.multiply(RHS, APFloat::rmNearestTiesToEven);
   5702     break;
   5703   case BO_Add:
   5704     Result.add(RHS, APFloat::rmNearestTiesToEven);
   5705     break;
   5706   case BO_Sub:
   5707     Result.subtract(RHS, APFloat::rmNearestTiesToEven);
   5708     break;
   5709   case BO_Div:
   5710     Result.divide(RHS, APFloat::rmNearestTiesToEven);
   5711     break;
   5712   }
   5713 
   5714   if (Result.isInfinity() || Result.isNaN())
   5715     CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
   5716   return true;
   5717 }
   5718 
   5719 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
   5720   Result = E->getValue();
   5721   return true;
   5722 }
   5723 
   5724 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5725   const Expr* SubExpr = E->getSubExpr();
   5726 
   5727   switch (E->getCastKind()) {
   5728   default:
   5729     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5730 
   5731   case CK_IntegralToFloating: {
   5732     APSInt IntResult;
   5733     return EvaluateInteger(SubExpr, IntResult, Info) &&
   5734            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
   5735                                 E->getType(), Result);
   5736   }
   5737 
   5738   case CK_FloatingCast: {
   5739     if (!Visit(SubExpr))
   5740       return false;
   5741     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
   5742                                   Result);
   5743   }
   5744 
   5745   case CK_FloatingComplexToReal: {
   5746     ComplexValue V;
   5747     if (!EvaluateComplex(SubExpr, V, Info))
   5748       return false;
   5749     Result = V.getComplexFloatReal();
   5750     return true;
   5751   }
   5752   }
   5753 }
   5754 
   5755 //===----------------------------------------------------------------------===//
   5756 // Complex Evaluation (for float and integer)
   5757 //===----------------------------------------------------------------------===//
   5758 
   5759 namespace {
   5760 class ComplexExprEvaluator
   5761   : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
   5762   ComplexValue &Result;
   5763 
   5764 public:
   5765   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
   5766     : ExprEvaluatorBaseTy(info), Result(Result) {}
   5767 
   5768   bool Success(const APValue &V, const Expr *e) {
   5769     Result.setFrom(V);
   5770     return true;
   5771   }
   5772 
   5773   bool ZeroInitialization(const Expr *E);
   5774 
   5775   //===--------------------------------------------------------------------===//
   5776   //                            Visitor Methods
   5777   //===--------------------------------------------------------------------===//
   5778 
   5779   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
   5780   bool VisitCastExpr(const CastExpr *E);
   5781   bool VisitBinaryOperator(const BinaryOperator *E);
   5782   bool VisitUnaryOperator(const UnaryOperator *E);
   5783   bool VisitInitListExpr(const InitListExpr *E);
   5784 };
   5785 } // end anonymous namespace
   5786 
   5787 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
   5788                             EvalInfo &Info) {
   5789   assert(E->isRValue() && E->getType()->isAnyComplexType());
   5790   return ComplexExprEvaluator(Info, Result).Visit(E);
   5791 }
   5792 
   5793 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
   5794   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
   5795   if (ElemTy->isRealFloatingType()) {
   5796     Result.makeComplexFloat();
   5797     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
   5798     Result.FloatReal = Zero;
   5799     Result.FloatImag = Zero;
   5800   } else {
   5801     Result.makeComplexInt();
   5802     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
   5803     Result.IntReal = Zero;
   5804     Result.IntImag = Zero;
   5805   }
   5806   return true;
   5807 }
   5808 
   5809 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
   5810   const Expr* SubExpr = E->getSubExpr();
   5811 
   5812   if (SubExpr->getType()->isRealFloatingType()) {
   5813     Result.makeComplexFloat();
   5814     APFloat &Imag = Result.FloatImag;
   5815     if (!EvaluateFloat(SubExpr, Imag, Info))
   5816       return false;
   5817 
   5818     Result.FloatReal = APFloat(Imag.getSemantics());
   5819     return true;
   5820   } else {
   5821     assert(SubExpr->getType()->isIntegerType() &&
   5822            "Unexpected imaginary literal.");
   5823 
   5824     Result.makeComplexInt();
   5825     APSInt &Imag = Result.IntImag;
   5826     if (!EvaluateInteger(SubExpr, Imag, Info))
   5827       return false;
   5828 
   5829     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
   5830     return true;
   5831   }
   5832 }
   5833 
   5834 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5835 
   5836   switch (E->getCastKind()) {
   5837   case CK_BitCast:
   5838   case CK_BaseToDerived:
   5839   case CK_DerivedToBase:
   5840   case CK_UncheckedDerivedToBase:
   5841   case CK_Dynamic:
   5842   case CK_ToUnion:
   5843   case CK_ArrayToPointerDecay:
   5844   case CK_FunctionToPointerDecay:
   5845   case CK_NullToPointer:
   5846   case CK_NullToMemberPointer:
   5847   case CK_BaseToDerivedMemberPointer:
   5848   case CK_DerivedToBaseMemberPointer:
   5849   case CK_MemberPointerToBoolean:
   5850   case CK_ReinterpretMemberPointer:
   5851   case CK_ConstructorConversion:
   5852   case CK_IntegralToPointer:
   5853   case CK_PointerToIntegral:
   5854   case CK_PointerToBoolean:
   5855   case CK_ToVoid:
   5856   case CK_VectorSplat:
   5857   case CK_IntegralCast:
   5858   case CK_IntegralToBoolean:
   5859   case CK_IntegralToFloating:
   5860   case CK_FloatingToIntegral:
   5861   case CK_FloatingToBoolean:
   5862   case CK_FloatingCast:
   5863   case CK_CPointerToObjCPointerCast:
   5864   case CK_BlockPointerToObjCPointerCast:
   5865   case CK_AnyPointerToBlockPointerCast:
   5866   case CK_ObjCObjectLValueCast:
   5867   case CK_FloatingComplexToReal:
   5868   case CK_FloatingComplexToBoolean:
   5869   case CK_IntegralComplexToReal:
   5870   case CK_IntegralComplexToBoolean:
   5871   case CK_ARCProduceObject:
   5872   case CK_ARCConsumeObject:
   5873   case CK_ARCReclaimReturnedObject:
   5874   case CK_ARCExtendBlockObject:
   5875   case CK_CopyAndAutoreleaseBlockObject:
   5876   case CK_BuiltinFnToFnPtr:
   5877   case CK_ZeroToOCLEvent:
   5878     llvm_unreachable("invalid cast kind for complex value");
   5879 
   5880   case CK_LValueToRValue:
   5881   case CK_AtomicToNonAtomic:
   5882   case CK_NonAtomicToAtomic:
   5883   case CK_NoOp:
   5884     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5885 
   5886   case CK_Dependent:
   5887   case CK_LValueBitCast:
   5888   case CK_UserDefinedConversion:
   5889     return Error(E);
   5890 
   5891   case CK_FloatingRealToComplex: {
   5892     APFloat &Real = Result.FloatReal;
   5893     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
   5894       return false;
   5895 
   5896     Result.makeComplexFloat();
   5897     Result.FloatImag = APFloat(Real.getSemantics());
   5898     return true;
   5899   }
   5900 
   5901   case CK_FloatingComplexCast: {
   5902     if (!Visit(E->getSubExpr()))
   5903       return false;
   5904 
   5905     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   5906     QualType From
   5907       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   5908 
   5909     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
   5910            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
   5911   }
   5912 
   5913   case CK_FloatingComplexToIntegralComplex: {
   5914     if (!Visit(E->getSubExpr()))
   5915       return false;
   5916 
   5917     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   5918     QualType From
   5919       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   5920     Result.makeComplexInt();
   5921     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
   5922                                 To, Result.IntReal) &&
   5923            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
   5924                                 To, Result.IntImag);
   5925   }
   5926 
   5927   case CK_IntegralRealToComplex: {
   5928     APSInt &Real = Result.IntReal;
   5929     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
   5930       return false;
   5931 
   5932     Result.makeComplexInt();
   5933     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
   5934     return true;
   5935   }
   5936 
   5937   case CK_IntegralComplexCast: {
   5938     if (!Visit(E->getSubExpr()))
   5939       return false;
   5940 
   5941     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   5942     QualType From
   5943       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   5944 
   5945     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
   5946     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
   5947     return true;
   5948   }
   5949 
   5950   case CK_IntegralComplexToFloatingComplex: {
   5951     if (!Visit(E->getSubExpr()))
   5952       return false;
   5953 
   5954     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
   5955     QualType From
   5956       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
   5957     Result.makeComplexFloat();
   5958     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
   5959                                 To, Result.FloatReal) &&
   5960            HandleIntToFloatCast(Info, E, From, Result.IntImag,
   5961                                 To, Result.FloatImag);
   5962   }
   5963   }
   5964 
   5965   llvm_unreachable("unknown cast resulting in complex value");
   5966 }
   5967 
   5968 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   5969   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
   5970     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   5971 
   5972   bool LHSOK = Visit(E->getLHS());
   5973   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   5974     return false;
   5975 
   5976   ComplexValue RHS;
   5977   if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
   5978     return false;
   5979 
   5980   assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
   5981          "Invalid operands to binary operator.");
   5982   switch (E->getOpcode()) {
   5983   default: return Error(E);
   5984   case BO_Add:
   5985     if (Result.isComplexFloat()) {
   5986       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
   5987                                        APFloat::rmNearestTiesToEven);
   5988       Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
   5989                                        APFloat::rmNearestTiesToEven);
   5990     } else {
   5991       Result.getComplexIntReal() += RHS.getComplexIntReal();
   5992       Result.getComplexIntImag() += RHS.getComplexIntImag();
   5993     }
   5994     break;
   5995   case BO_Sub:
   5996     if (Result.isComplexFloat()) {
   5997       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
   5998                                             APFloat::rmNearestTiesToEven);
   5999       Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
   6000                                             APFloat::rmNearestTiesToEven);
   6001     } else {
   6002       Result.getComplexIntReal() -= RHS.getComplexIntReal();
   6003       Result.getComplexIntImag() -= RHS.getComplexIntImag();
   6004     }
   6005     break;
   6006   case BO_Mul:
   6007     if (Result.isComplexFloat()) {
   6008       ComplexValue LHS = Result;
   6009       APFloat &LHS_r = LHS.getComplexFloatReal();
   6010       APFloat &LHS_i = LHS.getComplexFloatImag();
   6011       APFloat &RHS_r = RHS.getComplexFloatReal();
   6012       APFloat &RHS_i = RHS.getComplexFloatImag();
   6013 
   6014       APFloat Tmp = LHS_r;
   6015       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   6016       Result.getComplexFloatReal() = Tmp;
   6017       Tmp = LHS_i;
   6018       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   6019       Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
   6020 
   6021       Tmp = LHS_r;
   6022       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   6023       Result.getComplexFloatImag() = Tmp;
   6024       Tmp = LHS_i;
   6025       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   6026       Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
   6027     } else {
   6028       ComplexValue LHS = Result;
   6029       Result.getComplexIntReal() =
   6030         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
   6031          LHS.getComplexIntImag() * RHS.getComplexIntImag());
   6032       Result.getComplexIntImag() =
   6033         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
   6034          LHS.getComplexIntImag() * RHS.getComplexIntReal());
   6035     }
   6036     break;
   6037   case BO_Div:
   6038     if (Result.isComplexFloat()) {
   6039       ComplexValue LHS = Result;
   6040       APFloat &LHS_r = LHS.getComplexFloatReal();
   6041       APFloat &LHS_i = LHS.getComplexFloatImag();
   6042       APFloat &RHS_r = RHS.getComplexFloatReal();
   6043       APFloat &RHS_i = RHS.getComplexFloatImag();
   6044       APFloat &Res_r = Result.getComplexFloatReal();
   6045       APFloat &Res_i = Result.getComplexFloatImag();
   6046 
   6047       APFloat Den = RHS_r;
   6048       Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   6049       APFloat Tmp = RHS_i;
   6050       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   6051       Den.add(Tmp, APFloat::rmNearestTiesToEven);
   6052 
   6053       Res_r = LHS_r;
   6054       Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   6055       Tmp = LHS_i;
   6056       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   6057       Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
   6058       Res_r.divide(Den, APFloat::rmNearestTiesToEven);
   6059 
   6060       Res_i = LHS_i;
   6061       Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   6062       Tmp = LHS_r;
   6063       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   6064       Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
   6065       Res_i.divide(Den, APFloat::rmNearestTiesToEven);
   6066     } else {
   6067       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
   6068         return Error(E, diag::note_expr_divide_by_zero);
   6069 
   6070       ComplexValue LHS = Result;
   6071       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
   6072         RHS.getComplexIntImag() * RHS.getComplexIntImag();
   6073       Result.getComplexIntReal() =
   6074         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
   6075          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
   6076       Result.getComplexIntImag() =
   6077         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
   6078          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
   6079     }
   6080     break;
   6081   }
   6082 
   6083   return true;
   6084 }
   6085 
   6086 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   6087   // Get the operand value into 'Result'.
   6088   if (!Visit(E->getSubExpr()))
   6089     return false;
   6090 
   6091   switch (E->getOpcode()) {
   6092   default:
   6093     return Error(E);
   6094   case UO_Extension:
   6095     return true;
   6096   case UO_Plus:
   6097     // The result is always just the subexpr.
   6098     return true;
   6099   case UO_Minus:
   6100     if (Result.isComplexFloat()) {
   6101       Result.getComplexFloatReal().changeSign();
   6102       Result.getComplexFloatImag().changeSign();
   6103     }
   6104     else {
   6105       Result.getComplexIntReal() = -Result.getComplexIntReal();
   6106       Result.getComplexIntImag() = -Result.getComplexIntImag();
   6107     }
   6108     return true;
   6109   case UO_Not:
   6110     if (Result.isComplexFloat())
   6111       Result.getComplexFloatImag().changeSign();
   6112     else
   6113       Result.getComplexIntImag() = -Result.getComplexIntImag();
   6114     return true;
   6115   }
   6116 }
   6117 
   6118 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   6119   if (E->getNumInits() == 2) {
   6120     if (E->getType()->isComplexType()) {
   6121       Result.makeComplexFloat();
   6122       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
   6123         return false;
   6124       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
   6125         return false;
   6126     } else {
   6127       Result.makeComplexInt();
   6128       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
   6129         return false;
   6130       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
   6131         return false;
   6132     }
   6133     return true;
   6134   }
   6135   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
   6136 }
   6137 
   6138 //===----------------------------------------------------------------------===//
   6139 // Void expression evaluation, primarily for a cast to void on the LHS of a
   6140 // comma operator
   6141 //===----------------------------------------------------------------------===//
   6142 
   6143 namespace {
   6144 class VoidExprEvaluator
   6145   : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
   6146 public:
   6147   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
   6148 
   6149   bool Success(const APValue &V, const Expr *e) { return true; }
   6150 
   6151   bool VisitCastExpr(const CastExpr *E) {
   6152     switch (E->getCastKind()) {
   6153     default:
   6154       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   6155     case CK_ToVoid:
   6156       VisitIgnoredValue(E->getSubExpr());
   6157       return true;
   6158     }
   6159   }
   6160 };
   6161 } // end anonymous namespace
   6162 
   6163 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
   6164   assert(E->isRValue() && E->getType()->isVoidType());
   6165   return VoidExprEvaluator(Info).Visit(E);
   6166 }
   6167 
   6168 //===----------------------------------------------------------------------===//
   6169 // Top level Expr::EvaluateAsRValue method.
   6170 //===----------------------------------------------------------------------===//
   6171 
   6172 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
   6173   // In C, function designators are not lvalues, but we evaluate them as if they
   6174   // are.
   6175   if (E->isGLValue() || E->getType()->isFunctionType()) {
   6176     LValue LV;
   6177     if (!EvaluateLValue(E, LV, Info))
   6178       return false;
   6179     LV.moveInto(Result);
   6180   } else if (E->getType()->isVectorType()) {
   6181     if (!EvaluateVector(E, Result, Info))
   6182       return false;
   6183   } else if (E->getType()->isIntegralOrEnumerationType()) {
   6184     if (!IntExprEvaluator(Info, Result).Visit(E))
   6185       return false;
   6186   } else if (E->getType()->hasPointerRepresentation()) {
   6187     LValue LV;
   6188     if (!EvaluatePointer(E, LV, Info))
   6189       return false;
   6190     LV.moveInto(Result);
   6191   } else if (E->getType()->isRealFloatingType()) {
   6192     llvm::APFloat F(0.0);
   6193     if (!EvaluateFloat(E, F, Info))
   6194       return false;
   6195     Result = APValue(F);
   6196   } else if (E->getType()->isAnyComplexType()) {
   6197     ComplexValue C;
   6198     if (!EvaluateComplex(E, C, Info))
   6199       return false;
   6200     C.moveInto(Result);
   6201   } else if (E->getType()->isMemberPointerType()) {
   6202     MemberPtr P;
   6203     if (!EvaluateMemberPointer(E, P, Info))
   6204       return false;
   6205     P.moveInto(Result);
   6206     return true;
   6207   } else if (E->getType()->isArrayType()) {
   6208     LValue LV;
   6209     LV.set(E, Info.CurrentCall->Index);
   6210     if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
   6211       return false;
   6212     Result = Info.CurrentCall->Temporaries[E];
   6213   } else if (E->getType()->isRecordType()) {
   6214     LValue LV;
   6215     LV.set(E, Info.CurrentCall->Index);
   6216     if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
   6217       return false;
   6218     Result = Info.CurrentCall->Temporaries[E];
   6219   } else if (E->getType()->isVoidType()) {
   6220     if (!Info.getLangOpts().CPlusPlus11)
   6221       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
   6222         << E->getType();
   6223     if (!EvaluateVoid(E, Info))
   6224       return false;
   6225   } else if (Info.getLangOpts().CPlusPlus11) {
   6226     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
   6227     return false;
   6228   } else {
   6229     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   6230     return false;
   6231   }
   6232 
   6233   return true;
   6234 }
   6235 
   6236 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
   6237 /// cases, the in-place evaluation is essential, since later initializers for
   6238 /// an object can indirectly refer to subobjects which were initialized earlier.
   6239 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
   6240                             const Expr *E, CheckConstantExpressionKind CCEK,
   6241                             bool AllowNonLiteralTypes) {
   6242   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
   6243     return false;
   6244 
   6245   if (E->isRValue()) {
   6246     // Evaluate arrays and record types in-place, so that later initializers can
   6247     // refer to earlier-initialized members of the object.
   6248     if (E->getType()->isArrayType())
   6249       return EvaluateArray(E, This, Result, Info);
   6250     else if (E->getType()->isRecordType())
   6251       return EvaluateRecord(E, This, Result, Info);
   6252   }
   6253 
   6254   // For any other type, in-place evaluation is unimportant.
   6255   return Evaluate(Result, Info, E);
   6256 }
   6257 
   6258 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
   6259 /// lvalue-to-rvalue cast if it is an lvalue.
   6260 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
   6261   if (!CheckLiteralType(Info, E))
   6262     return false;
   6263 
   6264   if (!::Evaluate(Result, Info, E))
   6265     return false;
   6266 
   6267   if (E->isGLValue()) {
   6268     LValue LV;
   6269     LV.setFrom(Info.Ctx, Result);
   6270     if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
   6271       return false;
   6272   }
   6273 
   6274   // Check this core constant expression is a constant expression.
   6275   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
   6276 }
   6277 
   6278 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
   6279                                  const ASTContext &Ctx, bool &IsConst) {
   6280   // Fast-path evaluations of integer literals, since we sometimes see files
   6281   // containing vast quantities of these.
   6282   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
   6283     Result.Val = APValue(APSInt(L->getValue(),
   6284                                 L->getType()->isUnsignedIntegerType()));
   6285     IsConst = true;
   6286     return true;
   6287   }
   6288 
   6289   // FIXME: Evaluating values of large array and record types can cause
   6290   // performance problems. Only do so in C++11 for now.
   6291   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
   6292                           Exp->getType()->isRecordType()) &&
   6293       !Ctx.getLangOpts().CPlusPlus11) {
   6294     IsConst = false;
   6295     return true;
   6296   }
   6297   return false;
   6298 }
   6299 
   6300 
   6301 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
   6302 /// any crazy technique (that has nothing to do with language standards) that
   6303 /// we want to.  If this function returns true, it returns the folded constant
   6304 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
   6305 /// will be applied to the result.
   6306 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
   6307   bool IsConst;
   6308   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
   6309     return IsConst;
   6310 
   6311   EvalInfo Info(Ctx, Result);
   6312   return ::EvaluateAsRValue(Info, this, Result.Val);
   6313 }
   6314 
   6315 bool Expr::EvaluateAsBooleanCondition(bool &Result,
   6316                                       const ASTContext &Ctx) const {
   6317   EvalResult Scratch;
   6318   return EvaluateAsRValue(Scratch, Ctx) &&
   6319          HandleConversionToBool(Scratch.Val, Result);
   6320 }
   6321 
   6322 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
   6323                          SideEffectsKind AllowSideEffects) const {
   6324   if (!getType()->isIntegralOrEnumerationType())
   6325     return false;
   6326 
   6327   EvalResult ExprResult;
   6328   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
   6329       (!AllowSideEffects && ExprResult.HasSideEffects))
   6330     return false;
   6331 
   6332   Result = ExprResult.Val.getInt();
   6333   return true;
   6334 }
   6335 
   6336 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
   6337   EvalInfo Info(Ctx, Result);
   6338 
   6339   LValue LV;
   6340   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
   6341       !CheckLValueConstantExpression(Info, getExprLoc(),
   6342                                      Ctx.getLValueReferenceType(getType()), LV))
   6343     return false;
   6344 
   6345   LV.moveInto(Result.Val);
   6346   return true;
   6347 }
   6348 
   6349 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
   6350                                  const VarDecl *VD,
   6351                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
   6352   // FIXME: Evaluating initializers for large array and record types can cause
   6353   // performance problems. Only do so in C++11 for now.
   6354   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
   6355       !Ctx.getLangOpts().CPlusPlus11)
   6356     return false;
   6357 
   6358   Expr::EvalStatus EStatus;
   6359   EStatus.Diag = &Notes;
   6360 
   6361   EvalInfo InitInfo(Ctx, EStatus);
   6362   InitInfo.setEvaluatingDecl(VD, Value);
   6363 
   6364   LValue LVal;
   6365   LVal.set(VD);
   6366 
   6367   // C++11 [basic.start.init]p2:
   6368   //  Variables with static storage duration or thread storage duration shall be
   6369   //  zero-initialized before any other initialization takes place.
   6370   // This behavior is not present in C.
   6371   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
   6372       !VD->getType()->isReferenceType()) {
   6373     ImplicitValueInitExpr VIE(VD->getType());
   6374     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
   6375                          /*AllowNonLiteralTypes=*/true))
   6376       return false;
   6377   }
   6378 
   6379   if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
   6380                          /*AllowNonLiteralTypes=*/true) ||
   6381       EStatus.HasSideEffects)
   6382     return false;
   6383 
   6384   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
   6385                                  Value);
   6386 }
   6387 
   6388 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
   6389 /// constant folded, but discard the result.
   6390 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
   6391   EvalResult Result;
   6392   return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
   6393 }
   6394 
   6395 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
   6396                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
   6397   EvalResult EvalResult;
   6398   EvalResult.Diag = Diag;
   6399   bool Result = EvaluateAsRValue(EvalResult, Ctx);
   6400   (void)Result;
   6401   assert(Result && "Could not evaluate expression");
   6402   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
   6403 
   6404   return EvalResult.Val.getInt();
   6405 }
   6406 
   6407 void Expr::EvaluateForOverflow(const ASTContext &Ctx,
   6408                     SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
   6409   bool IsConst;
   6410   EvalResult EvalResult;
   6411   EvalResult.Diag = Diags;
   6412   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
   6413     EvalInfo Info(Ctx, EvalResult, true);
   6414     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
   6415   }
   6416 }
   6417 
   6418  bool Expr::EvalResult::isGlobalLValue() const {
   6419    assert(Val.isLValue());
   6420    return IsGlobalLValue(Val.getLValueBase());
   6421  }
   6422 
   6423 
   6424 /// isIntegerConstantExpr - this recursive routine will test if an expression is
   6425 /// an integer constant expression.
   6426 
   6427 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
   6428 /// comma, etc
   6429 
   6430 // CheckICE - This function does the fundamental ICE checking: the returned
   6431 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
   6432 // and a (possibly null) SourceLocation indicating the location of the problem.
   6433 //
   6434 // Note that to reduce code duplication, this helper does no evaluation
   6435 // itself; the caller checks whether the expression is evaluatable, and
   6436 // in the rare cases where CheckICE actually cares about the evaluated
   6437 // value, it calls into Evalute.
   6438 
   6439 namespace {
   6440 
   6441 enum ICEKind {
   6442   /// This expression is an ICE.
   6443   IK_ICE,
   6444   /// This expression is not an ICE, but if it isn't evaluated, it's
   6445   /// a legal subexpression for an ICE. This return value is used to handle
   6446   /// the comma operator in C99 mode, and non-constant subexpressions.
   6447   IK_ICEIfUnevaluated,
   6448   /// This expression is not an ICE, and is not a legal subexpression for one.
   6449   IK_NotICE
   6450 };
   6451 
   6452 struct ICEDiag {
   6453   ICEKind Kind;
   6454   SourceLocation Loc;
   6455 
   6456   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
   6457 };
   6458 
   6459 }
   6460 
   6461 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
   6462 
   6463 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
   6464 
   6465 static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
   6466   Expr::EvalResult EVResult;
   6467   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
   6468       !EVResult.Val.isInt())
   6469     return ICEDiag(IK_NotICE, E->getLocStart());
   6470 
   6471   return NoDiag();
   6472 }
   6473 
   6474 static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
   6475   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
   6476   if (!E->getType()->isIntegralOrEnumerationType())
   6477     return ICEDiag(IK_NotICE, E->getLocStart());
   6478 
   6479   switch (E->getStmtClass()) {
   6480 #define ABSTRACT_STMT(Node)
   6481 #define STMT(Node, Base) case Expr::Node##Class:
   6482 #define EXPR(Node, Base)
   6483 #include "clang/AST/StmtNodes.inc"
   6484   case Expr::PredefinedExprClass:
   6485   case Expr::FloatingLiteralClass:
   6486   case Expr::ImaginaryLiteralClass:
   6487   case Expr::StringLiteralClass:
   6488   case Expr::ArraySubscriptExprClass:
   6489   case Expr::MemberExprClass:
   6490   case Expr::CompoundAssignOperatorClass:
   6491   case Expr::CompoundLiteralExprClass:
   6492   case Expr::ExtVectorElementExprClass:
   6493   case Expr::DesignatedInitExprClass:
   6494   case Expr::ImplicitValueInitExprClass:
   6495   case Expr::ParenListExprClass:
   6496   case Expr::VAArgExprClass:
   6497   case Expr::AddrLabelExprClass:
   6498   case Expr::StmtExprClass:
   6499   case Expr::CXXMemberCallExprClass:
   6500   case Expr::CUDAKernelCallExprClass:
   6501   case Expr::CXXDynamicCastExprClass:
   6502   case Expr::CXXTypeidExprClass:
   6503   case Expr::CXXUuidofExprClass:
   6504   case Expr::CXXNullPtrLiteralExprClass:
   6505   case Expr::UserDefinedLiteralClass:
   6506   case Expr::CXXThisExprClass:
   6507   case Expr::CXXThrowExprClass:
   6508   case Expr::CXXNewExprClass:
   6509   case Expr::CXXDeleteExprClass:
   6510   case Expr::CXXPseudoDestructorExprClass:
   6511   case Expr::UnresolvedLookupExprClass:
   6512   case Expr::DependentScopeDeclRefExprClass:
   6513   case Expr::CXXConstructExprClass:
   6514   case Expr::CXXBindTemporaryExprClass:
   6515   case Expr::ExprWithCleanupsClass:
   6516   case Expr::CXXTemporaryObjectExprClass:
   6517   case Expr::CXXUnresolvedConstructExprClass:
   6518   case Expr::CXXDependentScopeMemberExprClass:
   6519   case Expr::UnresolvedMemberExprClass:
   6520   case Expr::ObjCStringLiteralClass:
   6521   case Expr::ObjCBoxedExprClass:
   6522   case Expr::ObjCArrayLiteralClass:
   6523   case Expr::ObjCDictionaryLiteralClass:
   6524   case Expr::ObjCEncodeExprClass:
   6525   case Expr::ObjCMessageExprClass:
   6526   case Expr::ObjCSelectorExprClass:
   6527   case Expr::ObjCProtocolExprClass:
   6528   case Expr::ObjCIvarRefExprClass:
   6529   case Expr::ObjCPropertyRefExprClass:
   6530   case Expr::ObjCSubscriptRefExprClass:
   6531   case Expr::ObjCIsaExprClass:
   6532   case Expr::ShuffleVectorExprClass:
   6533   case Expr::BlockExprClass:
   6534   case Expr::NoStmtClass:
   6535   case Expr::OpaqueValueExprClass:
   6536   case Expr::PackExpansionExprClass:
   6537   case Expr::SubstNonTypeTemplateParmPackExprClass:
   6538   case Expr::FunctionParmPackExprClass:
   6539   case Expr::AsTypeExprClass:
   6540   case Expr::ObjCIndirectCopyRestoreExprClass:
   6541   case Expr::MaterializeTemporaryExprClass:
   6542   case Expr::PseudoObjectExprClass:
   6543   case Expr::AtomicExprClass:
   6544   case Expr::InitListExprClass:
   6545   case Expr::LambdaExprClass:
   6546     return ICEDiag(IK_NotICE, E->getLocStart());
   6547 
   6548   case Expr::SizeOfPackExprClass:
   6549   case Expr::GNUNullExprClass:
   6550     // GCC considers the GNU __null value to be an integral constant expression.
   6551     return NoDiag();
   6552 
   6553   case Expr::SubstNonTypeTemplateParmExprClass:
   6554     return
   6555       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
   6556 
   6557   case Expr::ParenExprClass:
   6558     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
   6559   case Expr::GenericSelectionExprClass:
   6560     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
   6561   case Expr::IntegerLiteralClass:
   6562   case Expr::CharacterLiteralClass:
   6563   case Expr::ObjCBoolLiteralExprClass:
   6564   case Expr::CXXBoolLiteralExprClass:
   6565   case Expr::CXXScalarValueInitExprClass:
   6566   case Expr::UnaryTypeTraitExprClass:
   6567   case Expr::BinaryTypeTraitExprClass:
   6568   case Expr::TypeTraitExprClass:
   6569   case Expr::ArrayTypeTraitExprClass:
   6570   case Expr::ExpressionTraitExprClass:
   6571   case Expr::CXXNoexceptExprClass:
   6572     return NoDiag();
   6573   case Expr::CallExprClass:
   6574   case Expr::CXXOperatorCallExprClass: {
   6575     // C99 6.6/3 allows function calls within unevaluated subexpressions of
   6576     // constant expressions, but they can never be ICEs because an ICE cannot
   6577     // contain an operand of (pointer to) function type.
   6578     const CallExpr *CE = cast<CallExpr>(E);
   6579     if (CE->isBuiltinCall())
   6580       return CheckEvalInICE(E, Ctx);
   6581     return ICEDiag(IK_NotICE, E->getLocStart());
   6582   }
   6583   case Expr::DeclRefExprClass: {
   6584     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
   6585       return NoDiag();
   6586     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
   6587     if (Ctx.getLangOpts().CPlusPlus &&
   6588         D && IsConstNonVolatile(D->getType())) {
   6589       // Parameter variables are never constants.  Without this check,
   6590       // getAnyInitializer() can find a default argument, which leads
   6591       // to chaos.
   6592       if (isa<ParmVarDecl>(D))
   6593         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   6594 
   6595       // C++ 7.1.5.1p2
   6596       //   A variable of non-volatile const-qualified integral or enumeration
   6597       //   type initialized by an ICE can be used in ICEs.
   6598       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
   6599         if (!Dcl->getType()->isIntegralOrEnumerationType())
   6600           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   6601 
   6602         const VarDecl *VD;
   6603         // Look for a declaration of this variable that has an initializer, and
   6604         // check whether it is an ICE.
   6605         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
   6606           return NoDiag();
   6607         else
   6608           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   6609       }
   6610     }
   6611     return ICEDiag(IK_NotICE, E->getLocStart());
   6612   }
   6613   case Expr::UnaryOperatorClass: {
   6614     const UnaryOperator *Exp = cast<UnaryOperator>(E);
   6615     switch (Exp->getOpcode()) {
   6616     case UO_PostInc:
   6617     case UO_PostDec:
   6618     case UO_PreInc:
   6619     case UO_PreDec:
   6620     case UO_AddrOf:
   6621     case UO_Deref:
   6622       // C99 6.6/3 allows increment and decrement within unevaluated
   6623       // subexpressions of constant expressions, but they can never be ICEs
   6624       // because an ICE cannot contain an lvalue operand.
   6625       return ICEDiag(IK_NotICE, E->getLocStart());
   6626     case UO_Extension:
   6627     case UO_LNot:
   6628     case UO_Plus:
   6629     case UO_Minus:
   6630     case UO_Not:
   6631     case UO_Real:
   6632     case UO_Imag:
   6633       return CheckICE(Exp->getSubExpr(), Ctx);
   6634     }
   6635 
   6636     // OffsetOf falls through here.
   6637   }
   6638   case Expr::OffsetOfExprClass: {
   6639     // Note that per C99, offsetof must be an ICE. And AFAIK, using
   6640     // EvaluateAsRValue matches the proposed gcc behavior for cases like
   6641     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
   6642     // compliance: we should warn earlier for offsetof expressions with
   6643     // array subscripts that aren't ICEs, and if the array subscripts
   6644     // are ICEs, the value of the offsetof must be an integer constant.
   6645     return CheckEvalInICE(E, Ctx);
   6646   }
   6647   case Expr::UnaryExprOrTypeTraitExprClass: {
   6648     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
   6649     if ((Exp->getKind() ==  UETT_SizeOf) &&
   6650         Exp->getTypeOfArgument()->isVariableArrayType())
   6651       return ICEDiag(IK_NotICE, E->getLocStart());
   6652     return NoDiag();
   6653   }
   6654   case Expr::BinaryOperatorClass: {
   6655     const BinaryOperator *Exp = cast<BinaryOperator>(E);
   6656     switch (Exp->getOpcode()) {
   6657     case BO_PtrMemD:
   6658     case BO_PtrMemI:
   6659     case BO_Assign:
   6660     case BO_MulAssign:
   6661     case BO_DivAssign:
   6662     case BO_RemAssign:
   6663     case BO_AddAssign:
   6664     case BO_SubAssign:
   6665     case BO_ShlAssign:
   6666     case BO_ShrAssign:
   6667     case BO_AndAssign:
   6668     case BO_XorAssign:
   6669     case BO_OrAssign:
   6670       // C99 6.6/3 allows assignments within unevaluated subexpressions of
   6671       // constant expressions, but they can never be ICEs because an ICE cannot
   6672       // contain an lvalue operand.
   6673       return ICEDiag(IK_NotICE, E->getLocStart());
   6674 
   6675     case BO_Mul:
   6676     case BO_Div:
   6677     case BO_Rem:
   6678     case BO_Add:
   6679     case BO_Sub:
   6680     case BO_Shl:
   6681     case BO_Shr:
   6682     case BO_LT:
   6683     case BO_GT:
   6684     case BO_LE:
   6685     case BO_GE:
   6686     case BO_EQ:
   6687     case BO_NE:
   6688     case BO_And:
   6689     case BO_Xor:
   6690     case BO_Or:
   6691     case BO_Comma: {
   6692       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
   6693       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
   6694       if (Exp->getOpcode() == BO_Div ||
   6695           Exp->getOpcode() == BO_Rem) {
   6696         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
   6697         // we don't evaluate one.
   6698         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
   6699           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
   6700           if (REval == 0)
   6701             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   6702           if (REval.isSigned() && REval.isAllOnesValue()) {
   6703             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
   6704             if (LEval.isMinSignedValue())
   6705               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   6706           }
   6707         }
   6708       }
   6709       if (Exp->getOpcode() == BO_Comma) {
   6710         if (Ctx.getLangOpts().C99) {
   6711           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
   6712           // if it isn't evaluated.
   6713           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
   6714             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   6715         } else {
   6716           // In both C89 and C++, commas in ICEs are illegal.
   6717           return ICEDiag(IK_NotICE, E->getLocStart());
   6718         }
   6719       }
   6720       return Worst(LHSResult, RHSResult);
   6721     }
   6722     case BO_LAnd:
   6723     case BO_LOr: {
   6724       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
   6725       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
   6726       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
   6727         // Rare case where the RHS has a comma "side-effect"; we need
   6728         // to actually check the condition to see whether the side
   6729         // with the comma is evaluated.
   6730         if ((Exp->getOpcode() == BO_LAnd) !=
   6731             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
   6732           return RHSResult;
   6733         return NoDiag();
   6734       }
   6735 
   6736       return Worst(LHSResult, RHSResult);
   6737     }
   6738     }
   6739   }
   6740   case Expr::ImplicitCastExprClass:
   6741   case Expr::CStyleCastExprClass:
   6742   case Expr::CXXFunctionalCastExprClass:
   6743   case Expr::CXXStaticCastExprClass:
   6744   case Expr::CXXReinterpretCastExprClass:
   6745   case Expr::CXXConstCastExprClass:
   6746   case Expr::ObjCBridgedCastExprClass: {
   6747     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
   6748     if (isa<ExplicitCastExpr>(E)) {
   6749       if (const FloatingLiteral *FL
   6750             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
   6751         unsigned DestWidth = Ctx.getIntWidth(E->getType());
   6752         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
   6753         APSInt IgnoredVal(DestWidth, !DestSigned);
   6754         bool Ignored;
   6755         // If the value does not fit in the destination type, the behavior is
   6756         // undefined, so we are not required to treat it as a constant
   6757         // expression.
   6758         if (FL->getValue().convertToInteger(IgnoredVal,
   6759                                             llvm::APFloat::rmTowardZero,
   6760                                             &Ignored) & APFloat::opInvalidOp)
   6761           return ICEDiag(IK_NotICE, E->getLocStart());
   6762         return NoDiag();
   6763       }
   6764     }
   6765     switch (cast<CastExpr>(E)->getCastKind()) {
   6766     case CK_LValueToRValue:
   6767     case CK_AtomicToNonAtomic:
   6768     case CK_NonAtomicToAtomic:
   6769     case CK_NoOp:
   6770     case CK_IntegralToBoolean:
   6771     case CK_IntegralCast:
   6772       return CheckICE(SubExpr, Ctx);
   6773     default:
   6774       return ICEDiag(IK_NotICE, E->getLocStart());
   6775     }
   6776   }
   6777   case Expr::BinaryConditionalOperatorClass: {
   6778     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
   6779     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
   6780     if (CommonResult.Kind == IK_NotICE) return CommonResult;
   6781     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
   6782     if (FalseResult.Kind == IK_NotICE) return FalseResult;
   6783     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
   6784     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
   6785         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
   6786     return FalseResult;
   6787   }
   6788   case Expr::ConditionalOperatorClass: {
   6789     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
   6790     // If the condition (ignoring parens) is a __builtin_constant_p call,
   6791     // then only the true side is actually considered in an integer constant
   6792     // expression, and it is fully evaluated.  This is an important GNU
   6793     // extension.  See GCC PR38377 for discussion.
   6794     if (const CallExpr *CallCE
   6795         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
   6796       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
   6797         return CheckEvalInICE(E, Ctx);
   6798     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
   6799     if (CondResult.Kind == IK_NotICE)
   6800       return CondResult;
   6801 
   6802     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
   6803     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
   6804 
   6805     if (TrueResult.Kind == IK_NotICE)
   6806       return TrueResult;
   6807     if (FalseResult.Kind == IK_NotICE)
   6808       return FalseResult;
   6809     if (CondResult.Kind == IK_ICEIfUnevaluated)
   6810       return CondResult;
   6811     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
   6812       return NoDiag();
   6813     // Rare case where the diagnostics depend on which side is evaluated
   6814     // Note that if we get here, CondResult is 0, and at least one of
   6815     // TrueResult and FalseResult is non-zero.
   6816     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
   6817       return FalseResult;
   6818     return TrueResult;
   6819   }
   6820   case Expr::CXXDefaultArgExprClass:
   6821     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
   6822   case Expr::ChooseExprClass: {
   6823     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
   6824   }
   6825   }
   6826 
   6827   llvm_unreachable("Invalid StmtClass!");
   6828 }
   6829 
   6830 /// Evaluate an expression as a C++11 integral constant expression.
   6831 static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
   6832                                                     const Expr *E,
   6833                                                     llvm::APSInt *Value,
   6834                                                     SourceLocation *Loc) {
   6835   if (!E->getType()->isIntegralOrEnumerationType()) {
   6836     if (Loc) *Loc = E->getExprLoc();
   6837     return false;
   6838   }
   6839 
   6840   APValue Result;
   6841   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
   6842     return false;
   6843 
   6844   assert(Result.isInt() && "pointer cast to int is not an ICE");
   6845   if (Value) *Value = Result.getInt();
   6846   return true;
   6847 }
   6848 
   6849 bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
   6850   if (Ctx.getLangOpts().CPlusPlus11)
   6851     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
   6852 
   6853   ICEDiag D = CheckICE(this, Ctx);
   6854   if (D.Kind != IK_ICE) {
   6855     if (Loc) *Loc = D.Loc;
   6856     return false;
   6857   }
   6858   return true;
   6859 }
   6860 
   6861 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
   6862                                  SourceLocation *Loc, bool isEvaluated) const {
   6863   if (Ctx.getLangOpts().CPlusPlus11)
   6864     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
   6865 
   6866   if (!isIntegerConstantExpr(Ctx, Loc))
   6867     return false;
   6868   if (!EvaluateAsInt(Value, Ctx))
   6869     llvm_unreachable("ICE cannot be evaluated!");
   6870   return true;
   6871 }
   6872 
   6873 bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
   6874   return CheckICE(this, Ctx).Kind == IK_ICE;
   6875 }
   6876 
   6877 bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
   6878                                SourceLocation *Loc) const {
   6879   // We support this checking in C++98 mode in order to diagnose compatibility
   6880   // issues.
   6881   assert(Ctx.getLangOpts().CPlusPlus);
   6882 
   6883   // Build evaluation settings.
   6884   Expr::EvalStatus Status;
   6885   SmallVector<PartialDiagnosticAt, 8> Diags;
   6886   Status.Diag = &Diags;
   6887   EvalInfo Info(Ctx, Status);
   6888 
   6889   APValue Scratch;
   6890   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
   6891 
   6892   if (!Diags.empty()) {
   6893     IsConstExpr = false;
   6894     if (Loc) *Loc = Diags[0].first;
   6895   } else if (!IsConstExpr) {
   6896     // FIXME: This shouldn't happen.
   6897     if (Loc) *Loc = getExprLoc();
   6898   }
   6899 
   6900   return IsConstExpr;
   6901 }
   6902 
   6903 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
   6904                                    SmallVectorImpl<
   6905                                      PartialDiagnosticAt> &Diags) {
   6906   // FIXME: It would be useful to check constexpr function templates, but at the
   6907   // moment the constant expression evaluator cannot cope with the non-rigorous
   6908   // ASTs which we build for dependent expressions.
   6909   if (FD->isDependentContext())
   6910     return true;
   6911 
   6912   Expr::EvalStatus Status;
   6913   Status.Diag = &Diags;
   6914 
   6915   EvalInfo Info(FD->getASTContext(), Status);
   6916   Info.CheckingPotentialConstantExpression = true;
   6917 
   6918   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   6919   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
   6920 
   6921   // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
   6922   // is a temporary being used as the 'this' pointer.
   6923   LValue This;
   6924   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
   6925   This.set(&VIE, Info.CurrentCall->Index);
   6926 
   6927   ArrayRef<const Expr*> Args;
   6928 
   6929   SourceLocation Loc = FD->getLocation();
   6930 
   6931   APValue Scratch;
   6932   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
   6933     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
   6934   else
   6935     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
   6936                        Args, FD->getBody(), Info, Scratch);
   6937 
   6938   return Diags.empty();
   6939 }
   6940