Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "asm-printer"
     15 #include "llvm/CodeGen/AsmPrinter.h"
     16 #include "DwarfDebug.h"
     17 #include "DwarfException.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/ConstantFolding.h"
     21 #include "llvm/Assembly/Writer.h"
     22 #include "llvm/CodeGen/GCMetadataPrinter.h"
     23 #include "llvm/CodeGen/MachineConstantPool.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineModuleInfo.h"
     29 #include "llvm/DebugInfo.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/IR/Operator.h"
     33 #include "llvm/MC/MCAsmInfo.h"
     34 #include "llvm/MC/MCContext.h"
     35 #include "llvm/MC/MCExpr.h"
     36 #include "llvm/MC/MCInst.h"
     37 #include "llvm/MC/MCSection.h"
     38 #include "llvm/MC/MCStreamer.h"
     39 #include "llvm/MC/MCSymbol.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/Format.h"
     42 #include "llvm/Support/MathExtras.h"
     43 #include "llvm/Support/Timer.h"
     44 #include "llvm/Target/Mangler.h"
     45 #include "llvm/Target/TargetInstrInfo.h"
     46 #include "llvm/Target/TargetLowering.h"
     47 #include "llvm/Target/TargetLoweringObjectFile.h"
     48 #include "llvm/Target/TargetOptions.h"
     49 #include "llvm/Target/TargetRegisterInfo.h"
     50 using namespace llvm;
     51 
     52 static const char *DWARFGroupName = "DWARF Emission";
     53 static const char *DbgTimerName = "DWARF Debug Writer";
     54 static const char *EHTimerName = "DWARF Exception Writer";
     55 
     56 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     57 
     58 char AsmPrinter::ID = 0;
     59 
     60 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
     61 static gcp_map_type &getGCMap(void *&P) {
     62   if (P == 0)
     63     P = new gcp_map_type();
     64   return *(gcp_map_type*)P;
     65 }
     66 
     67 
     68 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     69 /// value in log2 form.  This rounds up to the preferred alignment if possible
     70 /// and legal.
     71 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
     72                                    unsigned InBits = 0) {
     73   unsigned NumBits = 0;
     74   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     75     NumBits = TD.getPreferredAlignmentLog(GVar);
     76 
     77   // If InBits is specified, round it to it.
     78   if (InBits > NumBits)
     79     NumBits = InBits;
     80 
     81   // If the GV has a specified alignment, take it into account.
     82   if (GV->getAlignment() == 0)
     83     return NumBits;
     84 
     85   unsigned GVAlign = Log2_32(GV->getAlignment());
     86 
     87   // If the GVAlign is larger than NumBits, or if we are required to obey
     88   // NumBits because the GV has an assigned section, obey it.
     89   if (GVAlign > NumBits || GV->hasSection())
     90     NumBits = GVAlign;
     91   return NumBits;
     92 }
     93 
     94 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
     95   : MachineFunctionPass(ID),
     96     TM(tm), MAI(tm.getMCAsmInfo()),
     97     OutContext(Streamer.getContext()),
     98     OutStreamer(Streamer),
     99     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
    100   DD = 0; DE = 0; MMI = 0; LI = 0;
    101   CurrentFnSym = CurrentFnSymForSize = 0;
    102   GCMetadataPrinters = 0;
    103   VerboseAsm = Streamer.isVerboseAsm();
    104 }
    105 
    106 AsmPrinter::~AsmPrinter() {
    107   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
    108 
    109   if (GCMetadataPrinters != 0) {
    110     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    111 
    112     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
    113       delete I->second;
    114     delete &GCMap;
    115     GCMetadataPrinters = 0;
    116   }
    117 
    118   delete &OutStreamer;
    119 }
    120 
    121 /// getFunctionNumber - Return a unique ID for the current function.
    122 ///
    123 unsigned AsmPrinter::getFunctionNumber() const {
    124   return MF->getFunctionNumber();
    125 }
    126 
    127 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    128   return TM.getTargetLowering()->getObjFileLowering();
    129 }
    130 
    131 /// getDataLayout - Return information about data layout.
    132 const DataLayout &AsmPrinter::getDataLayout() const {
    133   return *TM.getDataLayout();
    134 }
    135 
    136 /// getCurrentSection() - Return the current section we are emitting to.
    137 const MCSection *AsmPrinter::getCurrentSection() const {
    138   return OutStreamer.getCurrentSection();
    139 }
    140 
    141 
    142 
    143 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    144   AU.setPreservesAll();
    145   MachineFunctionPass::getAnalysisUsage(AU);
    146   AU.addRequired<MachineModuleInfo>();
    147   AU.addRequired<GCModuleInfo>();
    148   if (isVerbose())
    149     AU.addRequired<MachineLoopInfo>();
    150 }
    151 
    152 bool AsmPrinter::doInitialization(Module &M) {
    153   OutStreamer.InitStreamer();
    154 
    155   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    156   MMI->AnalyzeModule(M);
    157 
    158   // Initialize TargetLoweringObjectFile.
    159   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    160     .Initialize(OutContext, TM);
    161 
    162   Mang = new Mangler(OutContext, *TM.getDataLayout());
    163 
    164   // Allow the target to emit any magic that it wants at the start of the file.
    165   EmitStartOfAsmFile(M);
    166 
    167   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    168   // don't, this at least helps the user find where a global came from.
    169   if (MAI->hasSingleParameterDotFile()) {
    170     // .file "foo.c"
    171     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
    172   }
    173 
    174   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    175   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    176   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
    177     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    178       MP->beginAssembly(*this);
    179 
    180   // Emit module-level inline asm if it exists.
    181   if (!M.getModuleInlineAsm().empty()) {
    182     OutStreamer.AddComment("Start of file scope inline assembly");
    183     OutStreamer.AddBlankLine();
    184     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
    185     OutStreamer.AddComment("End of file scope inline assembly");
    186     OutStreamer.AddBlankLine();
    187   }
    188 
    189   if (MAI->doesSupportDebugInformation())
    190     DD = new DwarfDebug(this, &M);
    191 
    192   switch (MAI->getExceptionHandlingType()) {
    193   case ExceptionHandling::None:
    194     return false;
    195   case ExceptionHandling::SjLj:
    196   case ExceptionHandling::DwarfCFI:
    197     DE = new DwarfCFIException(this);
    198     return false;
    199   case ExceptionHandling::ARM:
    200     DE = new ARMException(this);
    201     return false;
    202   case ExceptionHandling::Win64:
    203     DE = new Win64Exception(this);
    204     return false;
    205   }
    206 
    207   llvm_unreachable("Unknown exception type.");
    208 }
    209 
    210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
    211   switch ((GlobalValue::LinkageTypes)Linkage) {
    212   case GlobalValue::CommonLinkage:
    213   case GlobalValue::LinkOnceAnyLinkage:
    214   case GlobalValue::LinkOnceODRLinkage:
    215   case GlobalValue::LinkOnceODRAutoHideLinkage:
    216   case GlobalValue::WeakAnyLinkage:
    217   case GlobalValue::WeakODRLinkage:
    218   case GlobalValue::LinkerPrivateWeakLinkage:
    219     if (MAI->getWeakDefDirective() != 0) {
    220       // .globl _foo
    221       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    222 
    223       if ((GlobalValue::LinkageTypes)Linkage !=
    224           GlobalValue::LinkOnceODRAutoHideLinkage)
    225         // .weak_definition _foo
    226         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    227       else
    228         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    229     } else if (MAI->getLinkOnceDirective() != 0) {
    230       // .globl _foo
    231       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    232       //NOTE: linkonce is handled by the section the symbol was assigned to.
    233     } else {
    234       // .weak _foo
    235       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
    236     }
    237     break;
    238   case GlobalValue::DLLExportLinkage:
    239   case GlobalValue::AppendingLinkage:
    240     // FIXME: appending linkage variables should go into a section of
    241     // their name or something.  For now, just emit them as external.
    242   case GlobalValue::ExternalLinkage:
    243     // If external or appending, declare as a global symbol.
    244     // .globl _foo
    245     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    246     break;
    247   case GlobalValue::PrivateLinkage:
    248   case GlobalValue::InternalLinkage:
    249   case GlobalValue::LinkerPrivateLinkage:
    250     break;
    251   default:
    252     llvm_unreachable("Unknown linkage type!");
    253   }
    254 }
    255 
    256 
    257 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    259   if (GV->hasInitializer()) {
    260     // Check to see if this is a special global used by LLVM, if so, emit it.
    261     if (EmitSpecialLLVMGlobal(GV))
    262       return;
    263 
    264     if (isVerbose()) {
    265       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
    266                      /*PrintType=*/false, GV->getParent());
    267       OutStreamer.GetCommentOS() << '\n';
    268     }
    269   }
    270 
    271   MCSymbol *GVSym = Mang->getSymbol(GV);
    272   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
    273 
    274   if (!GV->hasInitializer())   // External globals require no extra code.
    275     return;
    276 
    277   if (MAI->hasDotTypeDotSizeDirective())
    278     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
    279 
    280   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    281 
    282   const DataLayout *TD = TM.getDataLayout();
    283   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
    284 
    285   // If the alignment is specified, we *must* obey it.  Overaligning a global
    286   // with a specified alignment is a prompt way to break globals emitted to
    287   // sections and expected to be contiguous (e.g. ObjC metadata).
    288   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
    289 
    290   // Handle common and BSS local symbols (.lcomm).
    291   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
    292     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    293     unsigned Align = 1 << AlignLog;
    294 
    295     // Handle common symbols.
    296     if (GVKind.isCommon()) {
    297       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    298         Align = 0;
    299 
    300       // .comm _foo, 42, 4
    301       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    302       return;
    303     }
    304 
    305     // Handle local BSS symbols.
    306     if (MAI->hasMachoZeroFillDirective()) {
    307       const MCSection *TheSection =
    308         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    309       // .zerofill __DATA, __bss, _foo, 400, 5
    310       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
    311       return;
    312     }
    313 
    314     // Use .lcomm only if it supports user-specified alignment.
    315     // Otherwise, while it would still be correct to use .lcomm in some
    316     // cases (e.g. when Align == 1), the external assembler might enfore
    317     // some -unknown- default alignment behavior, which could cause
    318     // spurious differences between external and integrated assembler.
    319     // Prefer to simply fall back to .local / .comm in this case.
    320     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
    321       // .lcomm _foo, 42
    322       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
    323       return;
    324     }
    325 
    326     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    327       Align = 0;
    328 
    329     // .local _foo
    330     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
    331     // .comm _foo, 42, 4
    332     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    333     return;
    334   }
    335 
    336   const MCSection *TheSection =
    337     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    338 
    339   // Handle the zerofill directive on darwin, which is a special form of BSS
    340   // emission.
    341   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
    342     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
    343 
    344     // .globl _foo
    345     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    346     // .zerofill __DATA, __common, _foo, 400, 5
    347     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
    348     return;
    349   }
    350 
    351   // Handle thread local data for mach-o which requires us to output an
    352   // additional structure of data and mangle the original symbol so that we
    353   // can reference it later.
    354   //
    355   // TODO: This should become an "emit thread local global" method on TLOF.
    356   // All of this macho specific stuff should be sunk down into TLOFMachO and
    357   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    358   // TLOF class.  This will also make it more obvious that stuff like
    359   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    360   // specific code.
    361   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    362     // Emit the .tbss symbol
    363     MCSymbol *MangSym =
    364       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    365 
    366     if (GVKind.isThreadBSS())
    367       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    368     else if (GVKind.isThreadData()) {
    369       OutStreamer.SwitchSection(TheSection);
    370 
    371       EmitAlignment(AlignLog, GV);
    372       OutStreamer.EmitLabel(MangSym);
    373 
    374       EmitGlobalConstant(GV->getInitializer());
    375     }
    376 
    377     OutStreamer.AddBlankLine();
    378 
    379     // Emit the variable struct for the runtime.
    380     const MCSection *TLVSect
    381       = getObjFileLowering().getTLSExtraDataSection();
    382 
    383     OutStreamer.SwitchSection(TLVSect);
    384     // Emit the linkage here.
    385     EmitLinkage(GV->getLinkage(), GVSym);
    386     OutStreamer.EmitLabel(GVSym);
    387 
    388     // Three pointers in size:
    389     //   - __tlv_bootstrap - used to make sure support exists
    390     //   - spare pointer, used when mapped by the runtime
    391     //   - pointer to mangled symbol above with initializer
    392     unsigned PtrSize = TD->getPointerSizeInBits()/8;
    393     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    394 				PtrSize);
    395     OutStreamer.EmitIntValue(0, PtrSize);
    396     OutStreamer.EmitSymbolValue(MangSym, PtrSize);
    397 
    398     OutStreamer.AddBlankLine();
    399     return;
    400   }
    401 
    402   OutStreamer.SwitchSection(TheSection);
    403 
    404   EmitLinkage(GV->getLinkage(), GVSym);
    405   EmitAlignment(AlignLog, GV);
    406 
    407   OutStreamer.EmitLabel(GVSym);
    408 
    409   EmitGlobalConstant(GV->getInitializer());
    410 
    411   if (MAI->hasDotTypeDotSizeDirective())
    412     // .size foo, 42
    413     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
    414 
    415   OutStreamer.AddBlankLine();
    416 }
    417 
    418 /// EmitFunctionHeader - This method emits the header for the current
    419 /// function.
    420 void AsmPrinter::EmitFunctionHeader() {
    421   // Print out constants referenced by the function
    422   EmitConstantPool();
    423 
    424   // Print the 'header' of function.
    425   const Function *F = MF->getFunction();
    426 
    427   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
    428   EmitVisibility(CurrentFnSym, F->getVisibility());
    429 
    430   EmitLinkage(F->getLinkage(), CurrentFnSym);
    431   EmitAlignment(MF->getAlignment(), F);
    432 
    433   if (MAI->hasDotTypeDotSizeDirective())
    434     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    435 
    436   if (isVerbose()) {
    437     WriteAsOperand(OutStreamer.GetCommentOS(), F,
    438                    /*PrintType=*/false, F->getParent());
    439     OutStreamer.GetCommentOS() << '\n';
    440   }
    441 
    442   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    443   // do their wild and crazy things as required.
    444   EmitFunctionEntryLabel();
    445 
    446   // If the function had address-taken blocks that got deleted, then we have
    447   // references to the dangling symbols.  Emit them at the start of the function
    448   // so that we don't get references to undefined symbols.
    449   std::vector<MCSymbol*> DeadBlockSyms;
    450   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    451   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    452     OutStreamer.AddComment("Address taken block that was later removed");
    453     OutStreamer.EmitLabel(DeadBlockSyms[i]);
    454   }
    455 
    456   // Add some workaround for linkonce linkage on Cygwin\MinGW.
    457   if (MAI->getLinkOnceDirective() != 0 &&
    458       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
    459     // FIXME: What is this?
    460     MCSymbol *FakeStub =
    461       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
    462                                    CurrentFnSym->getName());
    463     OutStreamer.EmitLabel(FakeStub);
    464   }
    465 
    466   // Emit pre-function debug and/or EH information.
    467   if (DE) {
    468     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    469     DE->BeginFunction(MF);
    470   }
    471   if (DD) {
    472     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    473     DD->beginFunction(MF);
    474   }
    475 }
    476 
    477 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    478 /// function.  This can be overridden by targets as required to do custom stuff.
    479 void AsmPrinter::EmitFunctionEntryLabel() {
    480   // The function label could have already been emitted if two symbols end up
    481   // conflicting due to asm renaming.  Detect this and emit an error.
    482   if (CurrentFnSym->isUndefined())
    483     return OutStreamer.EmitLabel(CurrentFnSym);
    484 
    485   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    486                      "' label emitted multiple times to assembly file");
    487 }
    488 
    489 /// emitComments - Pretty-print comments for instructions.
    490 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    491   const MachineFunction *MF = MI.getParent()->getParent();
    492   const TargetMachine &TM = MF->getTarget();
    493 
    494   // Check for spills and reloads
    495   int FI;
    496 
    497   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    498 
    499   // We assume a single instruction only has a spill or reload, not
    500   // both.
    501   const MachineMemOperand *MMO;
    502   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
    503     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    504       MMO = *MI.memoperands_begin();
    505       CommentOS << MMO->getSize() << "-byte Reload\n";
    506     }
    507   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
    508     if (FrameInfo->isSpillSlotObjectIndex(FI))
    509       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    510   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
    511     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    512       MMO = *MI.memoperands_begin();
    513       CommentOS << MMO->getSize() << "-byte Spill\n";
    514     }
    515   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
    516     if (FrameInfo->isSpillSlotObjectIndex(FI))
    517       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    518   }
    519 
    520   // Check for spill-induced copies
    521   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    522     CommentOS << " Reload Reuse\n";
    523 }
    524 
    525 /// emitImplicitDef - This method emits the specified machine instruction
    526 /// that is an implicit def.
    527 static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
    528   unsigned RegNo = MI->getOperand(0).getReg();
    529   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
    530                             AP.TM.getRegisterInfo()->getName(RegNo));
    531   AP.OutStreamer.AddBlankLine();
    532 }
    533 
    534 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
    535   std::string Str = "kill:";
    536   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    537     const MachineOperand &Op = MI->getOperand(i);
    538     assert(Op.isReg() && "KILL instruction must have only register operands");
    539     Str += ' ';
    540     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
    541     Str += (Op.isDef() ? "<def>" : "<kill>");
    542   }
    543   AP.OutStreamer.AddComment(Str);
    544   AP.OutStreamer.AddBlankLine();
    545 }
    546 
    547 /// emitDebugValueComment - This method handles the target-independent form
    548 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    549 /// means the target will need to handle MI in EmitInstruction.
    550 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    551   // This code handles only the 3-operand target-independent form.
    552   if (MI->getNumOperands() != 3)
    553     return false;
    554 
    555   SmallString<128> Str;
    556   raw_svector_ostream OS(Str);
    557   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
    558 
    559   // cast away const; DIetc do not take const operands for some reason.
    560   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
    561   if (V.getContext().isSubprogram())
    562     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
    563   OS << V.getName() << " <- ";
    564 
    565   // Register or immediate value. Register 0 means undef.
    566   if (MI->getOperand(0).isFPImm()) {
    567     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    568     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    569       OS << (double)APF.convertToFloat();
    570     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    571       OS << APF.convertToDouble();
    572     } else {
    573       // There is no good way to print long double.  Convert a copy to
    574       // double.  Ah well, it's only a comment.
    575       bool ignored;
    576       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    577                   &ignored);
    578       OS << "(long double) " << APF.convertToDouble();
    579     }
    580   } else if (MI->getOperand(0).isImm()) {
    581     OS << MI->getOperand(0).getImm();
    582   } else if (MI->getOperand(0).isCImm()) {
    583     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    584   } else {
    585     assert(MI->getOperand(0).isReg() && "Unknown operand type");
    586     if (MI->getOperand(0).getReg() == 0) {
    587       // Suppress offset, it is not meaningful here.
    588       OS << "undef";
    589       // NOTE: Want this comment at start of line, don't emit with AddComment.
    590       AP.OutStreamer.EmitRawText(OS.str());
    591       return true;
    592     }
    593     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
    594   }
    595 
    596   OS << '+' << MI->getOperand(1).getImm();
    597   // NOTE: Want this comment at start of line, don't emit with AddComment.
    598   AP.OutStreamer.EmitRawText(OS.str());
    599   return true;
    600 }
    601 
    602 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    603   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    604       MF->getFunction()->needsUnwindTableEntry())
    605     return CFI_M_EH;
    606 
    607   if (MMI->hasDebugInfo())
    608     return CFI_M_Debug;
    609 
    610   return CFI_M_None;
    611 }
    612 
    613 bool AsmPrinter::needsSEHMoves() {
    614   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
    615     MF->getFunction()->needsUnwindTableEntry();
    616 }
    617 
    618 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
    619   return MAI->doesDwarfUseRelocationsAcrossSections();
    620 }
    621 
    622 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
    623   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
    624 
    625   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
    626     return;
    627 
    628   if (needsCFIMoves() == CFI_M_None)
    629     return;
    630 
    631   if (MMI->getCompactUnwindEncoding() != 0)
    632     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
    633 
    634   MachineModuleInfo &MMI = MF->getMMI();
    635   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    636   bool FoundOne = false;
    637   (void)FoundOne;
    638   for (std::vector<MachineMove>::iterator I = Moves.begin(),
    639          E = Moves.end(); I != E; ++I) {
    640     if (I->getLabel() == Label) {
    641       EmitCFIFrameMove(*I);
    642       FoundOne = true;
    643     }
    644   }
    645   assert(FoundOne);
    646 }
    647 
    648 /// EmitFunctionBody - This method emits the body and trailer for a
    649 /// function.
    650 void AsmPrinter::EmitFunctionBody() {
    651   // Emit target-specific gunk before the function body.
    652   EmitFunctionBodyStart();
    653 
    654   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
    655 
    656   // Print out code for the function.
    657   bool HasAnyRealCode = false;
    658   const MachineInstr *LastMI = 0;
    659   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
    660        I != E; ++I) {
    661     // Print a label for the basic block.
    662     EmitBasicBlockStart(I);
    663     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
    664          II != IE; ++II) {
    665       LastMI = II;
    666 
    667       // Print the assembly for the instruction.
    668       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
    669           !II->isDebugValue()) {
    670         HasAnyRealCode = true;
    671         ++EmittedInsts;
    672       }
    673 
    674       if (ShouldPrintDebugScopes) {
    675         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    676         DD->beginInstruction(II);
    677       }
    678 
    679       if (isVerbose())
    680         emitComments(*II, OutStreamer.GetCommentOS());
    681 
    682       switch (II->getOpcode()) {
    683       case TargetOpcode::PROLOG_LABEL:
    684         emitPrologLabel(*II);
    685         break;
    686 
    687       case TargetOpcode::EH_LABEL:
    688       case TargetOpcode::GC_LABEL:
    689         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
    690         break;
    691       case TargetOpcode::INLINEASM:
    692         EmitInlineAsm(II);
    693         break;
    694       case TargetOpcode::DBG_VALUE:
    695         if (isVerbose()) {
    696           if (!emitDebugValueComment(II, *this))
    697             EmitInstruction(II);
    698         }
    699         break;
    700       case TargetOpcode::IMPLICIT_DEF:
    701         if (isVerbose()) emitImplicitDef(II, *this);
    702         break;
    703       case TargetOpcode::KILL:
    704         if (isVerbose()) emitKill(II, *this);
    705         break;
    706       default:
    707         if (!TM.hasMCUseLoc())
    708           MCLineEntry::Make(&OutStreamer, getCurrentSection());
    709 
    710         EmitInstruction(II);
    711         break;
    712       }
    713 
    714       if (ShouldPrintDebugScopes) {
    715         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    716         DD->endInstruction(II);
    717       }
    718     }
    719   }
    720 
    721   // If the last instruction was a prolog label, then we have a situation where
    722   // we emitted a prolog but no function body. This results in the ending prolog
    723   // label equaling the end of function label and an invalid "row" in the
    724   // FDE. We need to emit a noop in this situation so that the FDE's rows are
    725   // valid.
    726   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
    727 
    728   // If the function is empty and the object file uses .subsections_via_symbols,
    729   // then we need to emit *something* to the function body to prevent the
    730   // labels from collapsing together.  Just emit a noop.
    731   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
    732     MCInst Noop;
    733     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
    734     if (Noop.getOpcode()) {
    735       OutStreamer.AddComment("avoids zero-length function");
    736       OutStreamer.EmitInstruction(Noop);
    737     } else  // Target not mc-ized yet.
    738       OutStreamer.EmitRawText(StringRef("\tnop\n"));
    739   }
    740 
    741   const Function *F = MF->getFunction();
    742   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
    743     const BasicBlock *BB = i;
    744     if (!BB->hasAddressTaken())
    745       continue;
    746     MCSymbol *Sym = GetBlockAddressSymbol(BB);
    747     if (Sym->isDefined())
    748       continue;
    749     OutStreamer.AddComment("Address of block that was removed by CodeGen");
    750     OutStreamer.EmitLabel(Sym);
    751   }
    752 
    753   // Emit target-specific gunk after the function body.
    754   EmitFunctionBodyEnd();
    755 
    756   // If the target wants a .size directive for the size of the function, emit
    757   // it.
    758   if (MAI->hasDotTypeDotSizeDirective()) {
    759     // Create a symbol for the end of function, so we can get the size as
    760     // difference between the function label and the temp label.
    761     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
    762     OutStreamer.EmitLabel(FnEndLabel);
    763 
    764     const MCExpr *SizeExp =
    765       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
    766                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
    767                                                       OutContext),
    768                               OutContext);
    769     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
    770   }
    771 
    772   // Emit post-function debug information.
    773   if (DD) {
    774     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    775     DD->endFunction(MF);
    776   }
    777   if (DE) {
    778     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    779     DE->EndFunction();
    780   }
    781   MMI->EndFunction();
    782 
    783   // Print out jump tables referenced by the function.
    784   EmitJumpTableInfo();
    785 
    786   OutStreamer.AddBlankLine();
    787 }
    788 
    789 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
    790 /// operands.
    791 MachineLocation AsmPrinter::
    792 getDebugValueLocation(const MachineInstr *MI) const {
    793   // Target specific DBG_VALUE instructions are handled by each target.
    794   return MachineLocation();
    795 }
    796 
    797 /// EmitDwarfRegOp - Emit dwarf register operation.
    798 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
    799   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    800   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
    801 
    802   for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
    803        ++SR) {
    804     Reg = TRI->getDwarfRegNum(*SR, false);
    805     // FIXME: Get the bit range this register uses of the superregister
    806     // so that we can produce a DW_OP_bit_piece
    807   }
    808 
    809   // FIXME: Handle cases like a super register being encoded as
    810   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
    811 
    812   // FIXME: We have no reasonable way of handling errors in here. The
    813   // caller might be in the middle of an dwarf expression. We should
    814   // probably assert that Reg >= 0 once debug info generation is more mature.
    815 
    816   if (int Offset =  MLoc.getOffset()) {
    817     if (Reg < 32) {
    818       OutStreamer.AddComment(
    819         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
    820       EmitInt8(dwarf::DW_OP_breg0 + Reg);
    821     } else {
    822       OutStreamer.AddComment("DW_OP_bregx");
    823       EmitInt8(dwarf::DW_OP_bregx);
    824       OutStreamer.AddComment(Twine(Reg));
    825       EmitULEB128(Reg);
    826     }
    827     EmitSLEB128(Offset);
    828   } else {
    829     if (Reg < 32) {
    830       OutStreamer.AddComment(
    831         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
    832       EmitInt8(dwarf::DW_OP_reg0 + Reg);
    833     } else {
    834       OutStreamer.AddComment("DW_OP_regx");
    835       EmitInt8(dwarf::DW_OP_regx);
    836       OutStreamer.AddComment(Twine(Reg));
    837       EmitULEB128(Reg);
    838     }
    839   }
    840 
    841   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
    842 }
    843 
    844 bool AsmPrinter::doFinalization(Module &M) {
    845   // Emit global variables.
    846   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    847        I != E; ++I)
    848     EmitGlobalVariable(I);
    849 
    850   // Emit visibility info for declarations
    851   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    852     const Function &F = *I;
    853     if (!F.isDeclaration())
    854       continue;
    855     GlobalValue::VisibilityTypes V = F.getVisibility();
    856     if (V == GlobalValue::DefaultVisibility)
    857       continue;
    858 
    859     MCSymbol *Name = Mang->getSymbol(&F);
    860     EmitVisibility(Name, V, false);
    861   }
    862 
    863   // Emit module flags.
    864   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
    865   M.getModuleFlagsMetadata(ModuleFlags);
    866   if (!ModuleFlags.empty())
    867     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
    868 
    869   // Finalize debug and EH information.
    870   if (DE) {
    871     {
    872       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    873       DE->EndModule();
    874     }
    875     delete DE; DE = 0;
    876   }
    877   if (DD) {
    878     {
    879       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    880       DD->endModule();
    881     }
    882     delete DD; DD = 0;
    883   }
    884 
    885   // If the target wants to know about weak references, print them all.
    886   if (MAI->getWeakRefDirective()) {
    887     // FIXME: This is not lazy, it would be nice to only print weak references
    888     // to stuff that is actually used.  Note that doing so would require targets
    889     // to notice uses in operands (due to constant exprs etc).  This should
    890     // happen with the MC stuff eventually.
    891 
    892     // Print out module-level global variables here.
    893     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    894          I != E; ++I) {
    895       if (!I->hasExternalWeakLinkage()) continue;
    896       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    897     }
    898 
    899     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    900       if (!I->hasExternalWeakLinkage()) continue;
    901       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    902     }
    903   }
    904 
    905   if (MAI->hasSetDirective()) {
    906     OutStreamer.AddBlankLine();
    907     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
    908          I != E; ++I) {
    909       MCSymbol *Name = Mang->getSymbol(I);
    910 
    911       const GlobalValue *GV = I->getAliasedGlobal();
    912       MCSymbol *Target = Mang->getSymbol(GV);
    913 
    914       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
    915         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
    916       else if (I->hasWeakLinkage())
    917         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
    918       else
    919         assert(I->hasLocalLinkage() && "Invalid alias linkage");
    920 
    921       EmitVisibility(Name, I->getVisibility());
    922 
    923       // Emit the directives as assignments aka .set:
    924       OutStreamer.EmitAssignment(Name,
    925                                  MCSymbolRefExpr::Create(Target, OutContext));
    926     }
    927   }
    928 
    929   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    930   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    931   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
    932     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
    933       MP->finishAssembly(*this);
    934 
    935   // If we don't have any trampolines, then we don't require stack memory
    936   // to be executable. Some targets have a directive to declare this.
    937   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
    938   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
    939     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
    940       OutStreamer.SwitchSection(S);
    941 
    942   // Allow the target to emit any magic that it wants at the end of the file,
    943   // after everything else has gone out.
    944   EmitEndOfAsmFile(M);
    945 
    946   delete Mang; Mang = 0;
    947   MMI = 0;
    948 
    949   OutStreamer.Finish();
    950   OutStreamer.reset();
    951 
    952   return false;
    953 }
    954 
    955 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
    956   this->MF = &MF;
    957   // Get the function symbol.
    958   CurrentFnSym = Mang->getSymbol(MF.getFunction());
    959   CurrentFnSymForSize = CurrentFnSym;
    960 
    961   if (isVerbose())
    962     LI = &getAnalysis<MachineLoopInfo>();
    963 }
    964 
    965 namespace {
    966   // SectionCPs - Keep track the alignment, constpool entries per Section.
    967   struct SectionCPs {
    968     const MCSection *S;
    969     unsigned Alignment;
    970     SmallVector<unsigned, 4> CPEs;
    971     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
    972   };
    973 }
    974 
    975 /// EmitConstantPool - Print to the current output stream assembly
    976 /// representations of the constants in the constant pool MCP. This is
    977 /// used to print out constants which have been "spilled to memory" by
    978 /// the code generator.
    979 ///
    980 void AsmPrinter::EmitConstantPool() {
    981   const MachineConstantPool *MCP = MF->getConstantPool();
    982   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
    983   if (CP.empty()) return;
    984 
    985   // Calculate sections for constant pool entries. We collect entries to go into
    986   // the same section together to reduce amount of section switch statements.
    987   SmallVector<SectionCPs, 4> CPSections;
    988   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    989     const MachineConstantPoolEntry &CPE = CP[i];
    990     unsigned Align = CPE.getAlignment();
    991 
    992     SectionKind Kind;
    993     switch (CPE.getRelocationInfo()) {
    994     default: llvm_unreachable("Unknown section kind");
    995     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
    996     case 1:
    997       Kind = SectionKind::getReadOnlyWithRelLocal();
    998       break;
    999     case 0:
   1000     switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
   1001     case 4:  Kind = SectionKind::getMergeableConst4(); break;
   1002     case 8:  Kind = SectionKind::getMergeableConst8(); break;
   1003     case 16: Kind = SectionKind::getMergeableConst16();break;
   1004     default: Kind = SectionKind::getMergeableConst(); break;
   1005     }
   1006     }
   1007 
   1008     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
   1009 
   1010     // The number of sections are small, just do a linear search from the
   1011     // last section to the first.
   1012     bool Found = false;
   1013     unsigned SecIdx = CPSections.size();
   1014     while (SecIdx != 0) {
   1015       if (CPSections[--SecIdx].S == S) {
   1016         Found = true;
   1017         break;
   1018       }
   1019     }
   1020     if (!Found) {
   1021       SecIdx = CPSections.size();
   1022       CPSections.push_back(SectionCPs(S, Align));
   1023     }
   1024 
   1025     if (Align > CPSections[SecIdx].Alignment)
   1026       CPSections[SecIdx].Alignment = Align;
   1027     CPSections[SecIdx].CPEs.push_back(i);
   1028   }
   1029 
   1030   // Now print stuff into the calculated sections.
   1031   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1032     OutStreamer.SwitchSection(CPSections[i].S);
   1033     EmitAlignment(Log2_32(CPSections[i].Alignment));
   1034 
   1035     unsigned Offset = 0;
   1036     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1037       unsigned CPI = CPSections[i].CPEs[j];
   1038       MachineConstantPoolEntry CPE = CP[CPI];
   1039 
   1040       // Emit inter-object padding for alignment.
   1041       unsigned AlignMask = CPE.getAlignment() - 1;
   1042       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1043       OutStreamer.EmitZeros(NewOffset - Offset);
   1044 
   1045       Type *Ty = CPE.getType();
   1046       Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
   1047       OutStreamer.EmitLabel(GetCPISymbol(CPI));
   1048 
   1049       if (CPE.isMachineConstantPoolEntry())
   1050         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1051       else
   1052         EmitGlobalConstant(CPE.Val.ConstVal);
   1053     }
   1054   }
   1055 }
   1056 
   1057 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1058 /// by the current function to the current output stream.
   1059 ///
   1060 void AsmPrinter::EmitJumpTableInfo() {
   1061   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1062   if (MJTI == 0) return;
   1063   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1064   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1065   if (JT.empty()) return;
   1066 
   1067   // Pick the directive to use to print the jump table entries, and switch to
   1068   // the appropriate section.
   1069   const Function *F = MF->getFunction();
   1070   bool JTInDiffSection = false;
   1071   if (// In PIC mode, we need to emit the jump table to the same section as the
   1072       // function body itself, otherwise the label differences won't make sense.
   1073       // FIXME: Need a better predicate for this: what about custom entries?
   1074       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
   1075       // We should also do if the section name is NULL or function is declared
   1076       // in discardable section
   1077       // FIXME: this isn't the right predicate, should be based on the MCSection
   1078       // for the function.
   1079       F->isWeakForLinker()) {
   1080     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
   1081   } else {
   1082     // Otherwise, drop it in the readonly section.
   1083     const MCSection *ReadOnlySection =
   1084       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
   1085     OutStreamer.SwitchSection(ReadOnlySection);
   1086     JTInDiffSection = true;
   1087   }
   1088 
   1089   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
   1090 
   1091   // Jump tables in code sections are marked with a data_region directive
   1092   // where that's supported.
   1093   if (!JTInDiffSection)
   1094     OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
   1095 
   1096   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1097     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1098 
   1099     // If this jump table was deleted, ignore it.
   1100     if (JTBBs.empty()) continue;
   1101 
   1102     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
   1103     // .set directive for each unique entry.  This reduces the number of
   1104     // relocations the assembler will generate for the jump table.
   1105     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1106         MAI->hasSetDirective()) {
   1107       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1108       const TargetLowering *TLI = TM.getTargetLowering();
   1109       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1110       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1111         const MachineBasicBlock *MBB = JTBBs[ii];
   1112         if (!EmittedSets.insert(MBB)) continue;
   1113 
   1114         // .set LJTSet, LBB32-base
   1115         const MCExpr *LHS =
   1116           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1117         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1118                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
   1119       }
   1120     }
   1121 
   1122     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1123     // before each jump table.  The first label is never referenced, but tells
   1124     // the assembler and linker the extents of the jump table object.  The
   1125     // second label is actually referenced by the code.
   1126     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
   1127       // FIXME: This doesn't have to have any specific name, just any randomly
   1128       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1129       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
   1130 
   1131     OutStreamer.EmitLabel(GetJTISymbol(JTI));
   1132 
   1133     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1134       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1135   }
   1136   if (!JTInDiffSection)
   1137     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
   1138 }
   1139 
   1140 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1141 /// current stream.
   1142 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1143                                     const MachineBasicBlock *MBB,
   1144                                     unsigned UID) const {
   1145   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1146   const MCExpr *Value = 0;
   1147   switch (MJTI->getEntryKind()) {
   1148   case MachineJumpTableInfo::EK_Inline:
   1149     llvm_unreachable("Cannot emit EK_Inline jump table entry");
   1150   case MachineJumpTableInfo::EK_Custom32:
   1151     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
   1152                                                               OutContext);
   1153     break;
   1154   case MachineJumpTableInfo::EK_BlockAddress:
   1155     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1156     //     .word LBB123
   1157     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1158     break;
   1159   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1160     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1161     // with a relocation as gp-relative, e.g.:
   1162     //     .gprel32 LBB123
   1163     MCSymbol *MBBSym = MBB->getSymbol();
   1164     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1165     return;
   1166   }
   1167 
   1168   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
   1169     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
   1170     // with a relocation as gp-relative, e.g.:
   1171     //     .gpdword LBB123
   1172     MCSymbol *MBBSym = MBB->getSymbol();
   1173     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1174     return;
   1175   }
   1176 
   1177   case MachineJumpTableInfo::EK_LabelDifference32: {
   1178     // EK_LabelDifference32 - Each entry is the address of the block minus
   1179     // the address of the jump table.  This is used for PIC jump tables where
   1180     // gprel32 is not supported.  e.g.:
   1181     //      .word LBB123 - LJTI1_2
   1182     // If the .set directive is supported, this is emitted as:
   1183     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1184     //      .word L4_5_set_123
   1185 
   1186     // If we have emitted set directives for the jump table entries, print
   1187     // them rather than the entries themselves.  If we're emitting PIC, then
   1188     // emit the table entries as differences between two text section labels.
   1189     if (MAI->hasSetDirective()) {
   1190       // If we used .set, reference the .set's symbol.
   1191       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
   1192                                       OutContext);
   1193       break;
   1194     }
   1195     // Otherwise, use the difference as the jump table entry.
   1196     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1197     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
   1198     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
   1199     break;
   1200   }
   1201   }
   1202 
   1203   assert(Value && "Unknown entry kind!");
   1204 
   1205   unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
   1206   OutStreamer.EmitValue(Value, EntrySize);
   1207 }
   1208 
   1209 
   1210 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1211 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1212 /// do nothing and return false.
   1213 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1214   if (GV->getName() == "llvm.used") {
   1215     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1216       EmitLLVMUsedList(GV->getInitializer());
   1217     return true;
   1218   }
   1219 
   1220   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1221   if (GV->getSection() == "llvm.metadata" ||
   1222       GV->hasAvailableExternallyLinkage())
   1223     return true;
   1224 
   1225   if (!GV->hasAppendingLinkage()) return false;
   1226 
   1227   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1228 
   1229   if (GV->getName() == "llvm.global_ctors") {
   1230     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
   1231 
   1232     if (TM.getRelocationModel() == Reloc::Static &&
   1233         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1234       StringRef Sym(".constructors_used");
   1235       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1236                                       MCSA_Reference);
   1237     }
   1238     return true;
   1239   }
   1240 
   1241   if (GV->getName() == "llvm.global_dtors") {
   1242     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
   1243 
   1244     if (TM.getRelocationModel() == Reloc::Static &&
   1245         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1246       StringRef Sym(".destructors_used");
   1247       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1248                                       MCSA_Reference);
   1249     }
   1250     return true;
   1251   }
   1252 
   1253   return false;
   1254 }
   1255 
   1256 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1257 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1258 /// is true, as being used with this directive.
   1259 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
   1260   // Should be an array of 'i8*'.
   1261   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1262   if (InitList == 0) return;
   1263 
   1264   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1265     const GlobalValue *GV =
   1266       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1267     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
   1268       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
   1269   }
   1270 }
   1271 
   1272 typedef std::pair<unsigned, Constant*> Structor;
   1273 
   1274 static bool priority_order(const Structor& lhs, const Structor& rhs) {
   1275   return lhs.first < rhs.first;
   1276 }
   1277 
   1278 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1279 /// priority.
   1280 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
   1281   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1282   // init priority.
   1283   if (!isa<ConstantArray>(List)) return;
   1284 
   1285   // Sanity check the structors list.
   1286   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1287   if (!InitList) return; // Not an array!
   1288   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1289   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
   1290   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1291       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1292 
   1293   // Gather the structors in a form that's convenient for sorting by priority.
   1294   SmallVector<Structor, 8> Structors;
   1295   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1296     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
   1297     if (!CS) continue; // Malformed.
   1298     if (CS->getOperand(1)->isNullValue())
   1299       break;  // Found a null terminator, skip the rest.
   1300     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1301     if (!Priority) continue; // Malformed.
   1302     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
   1303                                        CS->getOperand(1)));
   1304   }
   1305 
   1306   // Emit the function pointers in the target-specific order
   1307   const DataLayout *TD = TM.getDataLayout();
   1308   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
   1309   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
   1310   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
   1311     const MCSection *OutputSection =
   1312       (isCtor ?
   1313        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
   1314        getObjFileLowering().getStaticDtorSection(Structors[i].first));
   1315     OutStreamer.SwitchSection(OutputSection);
   1316     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
   1317       EmitAlignment(Align);
   1318     EmitXXStructor(Structors[i].second);
   1319   }
   1320 }
   1321 
   1322 //===--------------------------------------------------------------------===//
   1323 // Emission and print routines
   1324 //
   1325 
   1326 /// EmitInt8 - Emit a byte directive and value.
   1327 ///
   1328 void AsmPrinter::EmitInt8(int Value) const {
   1329   OutStreamer.EmitIntValue(Value, 1);
   1330 }
   1331 
   1332 /// EmitInt16 - Emit a short directive and value.
   1333 ///
   1334 void AsmPrinter::EmitInt16(int Value) const {
   1335   OutStreamer.EmitIntValue(Value, 2);
   1336 }
   1337 
   1338 /// EmitInt32 - Emit a long directive and value.
   1339 ///
   1340 void AsmPrinter::EmitInt32(int Value) const {
   1341   OutStreamer.EmitIntValue(Value, 4);
   1342 }
   1343 
   1344 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
   1345 /// in bytes of the directive is specified by Size and Hi/Lo specify the
   1346 /// labels.  This implicitly uses .set if it is available.
   1347 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1348                                      unsigned Size) const {
   1349   // Get the Hi-Lo expression.
   1350   const MCExpr *Diff =
   1351     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
   1352                             MCSymbolRefExpr::Create(Lo, OutContext),
   1353                             OutContext);
   1354 
   1355   if (!MAI->hasSetDirective()) {
   1356     OutStreamer.EmitValue(Diff, Size);
   1357     return;
   1358   }
   1359 
   1360   // Otherwise, emit with .set (aka assignment).
   1361   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1362   OutStreamer.EmitAssignment(SetLabel, Diff);
   1363   OutStreamer.EmitSymbolValue(SetLabel, Size);
   1364 }
   1365 
   1366 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
   1367 /// where the size in bytes of the directive is specified by Size and Hi/Lo
   1368 /// specify the labels.  This implicitly uses .set if it is available.
   1369 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
   1370                                            const MCSymbol *Lo, unsigned Size)
   1371   const {
   1372 
   1373   // Emit Hi+Offset - Lo
   1374   // Get the Hi+Offset expression.
   1375   const MCExpr *Plus =
   1376     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
   1377                             MCConstantExpr::Create(Offset, OutContext),
   1378                             OutContext);
   1379 
   1380   // Get the Hi+Offset-Lo expression.
   1381   const MCExpr *Diff =
   1382     MCBinaryExpr::CreateSub(Plus,
   1383                             MCSymbolRefExpr::Create(Lo, OutContext),
   1384                             OutContext);
   1385 
   1386   if (!MAI->hasSetDirective())
   1387     OutStreamer.EmitValue(Diff, 4);
   1388   else {
   1389     // Otherwise, emit with .set (aka assignment).
   1390     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1391     OutStreamer.EmitAssignment(SetLabel, Diff);
   1392     OutStreamer.EmitSymbolValue(SetLabel, 4);
   1393   }
   1394 }
   1395 
   1396 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1397 /// where the size in bytes of the directive is specified by Size and Label
   1398 /// specifies the label.  This implicitly uses .set if it is available.
   1399 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1400                                       unsigned Size)
   1401   const {
   1402 
   1403   // Emit Label+Offset (or just Label if Offset is zero)
   1404   const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
   1405   if (Offset)
   1406     Expr = MCBinaryExpr::CreateAdd(Expr,
   1407                                    MCConstantExpr::Create(Offset, OutContext),
   1408                                    OutContext);
   1409 
   1410   OutStreamer.EmitValue(Expr, Size);
   1411 }
   1412 
   1413 
   1414 //===----------------------------------------------------------------------===//
   1415 
   1416 // EmitAlignment - Emit an alignment directive to the specified power of
   1417 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1418 // byte alignment.  If a global value is specified, and if that global has
   1419 // an explicit alignment requested, it will override the alignment request
   1420 // if required for correctness.
   1421 //
   1422 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
   1423   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
   1424 
   1425   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1426 
   1427   if (getCurrentSection()->getKind().isText())
   1428     OutStreamer.EmitCodeAlignment(1 << NumBits);
   1429   else
   1430     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
   1431 }
   1432 
   1433 //===----------------------------------------------------------------------===//
   1434 // Constant emission.
   1435 //===----------------------------------------------------------------------===//
   1436 
   1437 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
   1438 ///
   1439 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
   1440   MCContext &Ctx = AP.OutContext;
   1441 
   1442   if (CV->isNullValue() || isa<UndefValue>(CV))
   1443     return MCConstantExpr::Create(0, Ctx);
   1444 
   1445   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1446     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
   1447 
   1448   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1449     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
   1450 
   1451   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1452     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
   1453 
   1454   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1455   if (CE == 0) {
   1456     llvm_unreachable("Unknown constant value to lower!");
   1457   }
   1458 
   1459   switch (CE->getOpcode()) {
   1460   default:
   1461     // If the code isn't optimized, there may be outstanding folding
   1462     // opportunities. Attempt to fold the expression using DataLayout as a
   1463     // last resort before giving up.
   1464     if (Constant *C =
   1465           ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
   1466       if (C != CE)
   1467         return lowerConstant(C, AP);
   1468 
   1469     // Otherwise report the problem to the user.
   1470     {
   1471       std::string S;
   1472       raw_string_ostream OS(S);
   1473       OS << "Unsupported expression in static initializer: ";
   1474       WriteAsOperand(OS, CE, /*PrintType=*/false,
   1475                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
   1476       report_fatal_error(OS.str());
   1477     }
   1478   case Instruction::GetElementPtr: {
   1479     const DataLayout &TD = *AP.TM.getDataLayout();
   1480     // Generate a symbolic expression for the byte address
   1481     APInt OffsetAI(TD.getPointerSizeInBits(), 0);
   1482     cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
   1483 
   1484     const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
   1485     if (!OffsetAI)
   1486       return Base;
   1487 
   1488     int64_t Offset = OffsetAI.getSExtValue();
   1489     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
   1490                                    Ctx);
   1491   }
   1492 
   1493   case Instruction::Trunc:
   1494     // We emit the value and depend on the assembler to truncate the generated
   1495     // expression properly.  This is important for differences between
   1496     // blockaddress labels.  Since the two labels are in the same function, it
   1497     // is reasonable to treat their delta as a 32-bit value.
   1498     // FALL THROUGH.
   1499   case Instruction::BitCast:
   1500     return lowerConstant(CE->getOperand(0), AP);
   1501 
   1502   case Instruction::IntToPtr: {
   1503     const DataLayout &TD = *AP.TM.getDataLayout();
   1504     // Handle casts to pointers by changing them into casts to the appropriate
   1505     // integer type.  This promotes constant folding and simplifies this code.
   1506     Constant *Op = CE->getOperand(0);
   1507     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
   1508                                       false/*ZExt*/);
   1509     return lowerConstant(Op, AP);
   1510   }
   1511 
   1512   case Instruction::PtrToInt: {
   1513     const DataLayout &TD = *AP.TM.getDataLayout();
   1514     // Support only foldable casts to/from pointers that can be eliminated by
   1515     // changing the pointer to the appropriately sized integer type.
   1516     Constant *Op = CE->getOperand(0);
   1517     Type *Ty = CE->getType();
   1518 
   1519     const MCExpr *OpExpr = lowerConstant(Op, AP);
   1520 
   1521     // We can emit the pointer value into this slot if the slot is an
   1522     // integer slot equal to the size of the pointer.
   1523     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
   1524       return OpExpr;
   1525 
   1526     // Otherwise the pointer is smaller than the resultant integer, mask off
   1527     // the high bits so we are sure to get a proper truncation if the input is
   1528     // a constant expr.
   1529     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
   1530     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
   1531     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
   1532   }
   1533 
   1534   // The MC library also has a right-shift operator, but it isn't consistently
   1535   // signed or unsigned between different targets.
   1536   case Instruction::Add:
   1537   case Instruction::Sub:
   1538   case Instruction::Mul:
   1539   case Instruction::SDiv:
   1540   case Instruction::SRem:
   1541   case Instruction::Shl:
   1542   case Instruction::And:
   1543   case Instruction::Or:
   1544   case Instruction::Xor: {
   1545     const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
   1546     const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
   1547     switch (CE->getOpcode()) {
   1548     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1549     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
   1550     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
   1551     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
   1552     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
   1553     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
   1554     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
   1555     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
   1556     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
   1557     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
   1558     }
   1559   }
   1560   }
   1561 }
   1562 
   1563 static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
   1564                                    AsmPrinter &AP);
   1565 
   1566 /// isRepeatedByteSequence - Determine whether the given value is
   1567 /// composed of a repeated sequence of identical bytes and return the
   1568 /// byte value.  If it is not a repeated sequence, return -1.
   1569 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
   1570   StringRef Data = V->getRawDataValues();
   1571   assert(!Data.empty() && "Empty aggregates should be CAZ node");
   1572   char C = Data[0];
   1573   for (unsigned i = 1, e = Data.size(); i != e; ++i)
   1574     if (Data[i] != C) return -1;
   1575   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
   1576 }
   1577 
   1578 
   1579 /// isRepeatedByteSequence - Determine whether the given value is
   1580 /// composed of a repeated sequence of identical bytes and return the
   1581 /// byte value.  If it is not a repeated sequence, return -1.
   1582 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
   1583 
   1584   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1585     if (CI->getBitWidth() > 64) return -1;
   1586 
   1587     uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
   1588     uint64_t Value = CI->getZExtValue();
   1589 
   1590     // Make sure the constant is at least 8 bits long and has a power
   1591     // of 2 bit width.  This guarantees the constant bit width is
   1592     // always a multiple of 8 bits, avoiding issues with padding out
   1593     // to Size and other such corner cases.
   1594     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
   1595 
   1596     uint8_t Byte = static_cast<uint8_t>(Value);
   1597 
   1598     for (unsigned i = 1; i < Size; ++i) {
   1599       Value >>= 8;
   1600       if (static_cast<uint8_t>(Value) != Byte) return -1;
   1601     }
   1602     return Byte;
   1603   }
   1604   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1605     // Make sure all array elements are sequences of the same repeated
   1606     // byte.
   1607     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
   1608     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
   1609     if (Byte == -1) return -1;
   1610 
   1611     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1612       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
   1613       if (ThisByte == -1) return -1;
   1614       if (Byte != ThisByte) return -1;
   1615     }
   1616     return Byte;
   1617   }
   1618 
   1619   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
   1620     return isRepeatedByteSequence(CDS);
   1621 
   1622   return -1;
   1623 }
   1624 
   1625 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
   1626                                              unsigned AddrSpace,AsmPrinter &AP){
   1627 
   1628   // See if we can aggregate this into a .fill, if so, emit it as such.
   1629   int Value = isRepeatedByteSequence(CDS, AP.TM);
   1630   if (Value != -1) {
   1631     uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
   1632     // Don't emit a 1-byte object as a .fill.
   1633     if (Bytes > 1)
   1634       return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
   1635   }
   1636 
   1637   // If this can be emitted with .ascii/.asciz, emit it as such.
   1638   if (CDS->isString())
   1639     return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
   1640 
   1641   // Otherwise, emit the values in successive locations.
   1642   unsigned ElementByteSize = CDS->getElementByteSize();
   1643   if (isa<IntegerType>(CDS->getElementType())) {
   1644     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1645       if (AP.isVerbose())
   1646         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1647                                                 CDS->getElementAsInteger(i));
   1648       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
   1649                                   ElementByteSize, AddrSpace);
   1650     }
   1651   } else if (ElementByteSize == 4) {
   1652     // FP Constants are printed as integer constants to avoid losing
   1653     // precision.
   1654     assert(CDS->getElementType()->isFloatTy());
   1655     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1656       union {
   1657         float F;
   1658         uint32_t I;
   1659       };
   1660 
   1661       F = CDS->getElementAsFloat(i);
   1662       if (AP.isVerbose())
   1663         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
   1664       AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
   1665     }
   1666   } else {
   1667     assert(CDS->getElementType()->isDoubleTy());
   1668     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1669       union {
   1670         double F;
   1671         uint64_t I;
   1672       };
   1673 
   1674       F = CDS->getElementAsDouble(i);
   1675       if (AP.isVerbose())
   1676         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
   1677       AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
   1678     }
   1679   }
   1680 
   1681   const DataLayout &TD = *AP.TM.getDataLayout();
   1682   unsigned Size = TD.getTypeAllocSize(CDS->getType());
   1683   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
   1684                         CDS->getNumElements();
   1685   if (unsigned Padding = Size - EmittedSize)
   1686     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
   1687 
   1688 }
   1689 
   1690 static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
   1691                                     AsmPrinter &AP) {
   1692   // See if we can aggregate some values.  Make sure it can be
   1693   // represented as a series of bytes of the constant value.
   1694   int Value = isRepeatedByteSequence(CA, AP.TM);
   1695 
   1696   if (Value != -1) {
   1697     uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
   1698     AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
   1699   }
   1700   else {
   1701     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1702       emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
   1703   }
   1704 }
   1705 
   1706 static void emitGlobalConstantVector(const ConstantVector *CV,
   1707                                      unsigned AddrSpace, AsmPrinter &AP) {
   1708   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   1709     emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
   1710 
   1711   const DataLayout &TD = *AP.TM.getDataLayout();
   1712   unsigned Size = TD.getTypeAllocSize(CV->getType());
   1713   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
   1714                          CV->getType()->getNumElements();
   1715   if (unsigned Padding = Size - EmittedSize)
   1716     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
   1717 }
   1718 
   1719 static void emitGlobalConstantStruct(const ConstantStruct *CS,
   1720                                      unsigned AddrSpace, AsmPrinter &AP) {
   1721   // Print the fields in successive locations. Pad to align if needed!
   1722   const DataLayout *TD = AP.TM.getDataLayout();
   1723   unsigned Size = TD->getTypeAllocSize(CS->getType());
   1724   const StructLayout *Layout = TD->getStructLayout(CS->getType());
   1725   uint64_t SizeSoFar = 0;
   1726   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   1727     const Constant *Field = CS->getOperand(i);
   1728 
   1729     // Check if padding is needed and insert one or more 0s.
   1730     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
   1731     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   1732                         - Layout->getElementOffset(i)) - FieldSize;
   1733     SizeSoFar += FieldSize + PadSize;
   1734 
   1735     // Now print the actual field value.
   1736     emitGlobalConstantImpl(Field, AddrSpace, AP);
   1737 
   1738     // Insert padding - this may include padding to increase the size of the
   1739     // current field up to the ABI size (if the struct is not packed) as well
   1740     // as padding to ensure that the next field starts at the right offset.
   1741     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
   1742   }
   1743   assert(SizeSoFar == Layout->getSizeInBytes() &&
   1744          "Layout of constant struct may be incorrect!");
   1745 }
   1746 
   1747 static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
   1748                                  AsmPrinter &AP) {
   1749   APInt API = CFP->getValueAPF().bitcastToAPInt();
   1750 
   1751   // First print a comment with what we think the original floating-point value
   1752   // should have been.
   1753   if (AP.isVerbose()) {
   1754     SmallString<8> StrVal;
   1755     CFP->getValueAPF().toString(StrVal);
   1756 
   1757     CFP->getType()->print(AP.OutStreamer.GetCommentOS());
   1758     AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
   1759   }
   1760 
   1761   // Now iterate through the APInt chunks, emitting them in endian-correct
   1762   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
   1763   // floats).
   1764   unsigned NumBytes = API.getBitWidth() / 8;
   1765   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
   1766   const uint64_t *p = API.getRawData();
   1767 
   1768   // PPC's long double has odd notions of endianness compared to how LLVM
   1769   // handles it: p[0] goes first for *big* endian on PPC.
   1770   if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
   1771     int Chunk = API.getNumWords() - 1;
   1772 
   1773     if (TrailingBytes)
   1774       AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes, AddrSpace);
   1775 
   1776     for (; Chunk >= 0; --Chunk)
   1777       AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
   1778   } else {
   1779     unsigned Chunk;
   1780     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
   1781       AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
   1782 
   1783     if (TrailingBytes)
   1784       AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes, AddrSpace);
   1785   }
   1786 
   1787   // Emit the tail padding for the long double.
   1788   const DataLayout &TD = *AP.TM.getDataLayout();
   1789   AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
   1790                            TD.getTypeStoreSize(CFP->getType()), AddrSpace);
   1791 }
   1792 
   1793 static void emitGlobalConstantLargeInt(const ConstantInt *CI,
   1794                                        unsigned AddrSpace, AsmPrinter &AP) {
   1795   const DataLayout *TD = AP.TM.getDataLayout();
   1796   unsigned BitWidth = CI->getBitWidth();
   1797   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
   1798 
   1799   // We don't expect assemblers to support integer data directives
   1800   // for more than 64 bits, so we emit the data in at most 64-bit
   1801   // quantities at a time.
   1802   const uint64_t *RawData = CI->getValue().getRawData();
   1803   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   1804     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
   1805     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1806   }
   1807 }
   1808 
   1809 static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
   1810                                    AsmPrinter &AP) {
   1811   const DataLayout *TD = AP.TM.getDataLayout();
   1812   uint64_t Size = TD->getTypeAllocSize(CV->getType());
   1813   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
   1814     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
   1815 
   1816   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   1817     switch (Size) {
   1818     case 1:
   1819     case 2:
   1820     case 4:
   1821     case 8:
   1822       if (AP.isVerbose())
   1823         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1824                                                 CI->getZExtValue());
   1825       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
   1826       return;
   1827     default:
   1828       emitGlobalConstantLargeInt(CI, AddrSpace, AP);
   1829       return;
   1830     }
   1831   }
   1832 
   1833   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   1834     return emitGlobalConstantFP(CFP, AddrSpace, AP);
   1835 
   1836   if (isa<ConstantPointerNull>(CV)) {
   1837     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
   1838     return;
   1839   }
   1840 
   1841   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
   1842     return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
   1843 
   1844   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   1845     return emitGlobalConstantArray(CVA, AddrSpace, AP);
   1846 
   1847   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   1848     return emitGlobalConstantStruct(CVS, AddrSpace, AP);
   1849 
   1850   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   1851     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
   1852     // vectors).
   1853     if (CE->getOpcode() == Instruction::BitCast)
   1854       return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
   1855 
   1856     if (Size > 8) {
   1857       // If the constant expression's size is greater than 64-bits, then we have
   1858       // to emit the value in chunks. Try to constant fold the value and emit it
   1859       // that way.
   1860       Constant *New = ConstantFoldConstantExpression(CE, TD);
   1861       if (New && New != CE)
   1862         return emitGlobalConstantImpl(New, AddrSpace, AP);
   1863     }
   1864   }
   1865 
   1866   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   1867     return emitGlobalConstantVector(V, AddrSpace, AP);
   1868 
   1869   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   1870   // thread the streamer with EmitValue.
   1871   AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
   1872 }
   1873 
   1874 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   1875 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
   1876   uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
   1877   if (Size)
   1878     emitGlobalConstantImpl(CV, AddrSpace, *this);
   1879   else if (MAI->hasSubsectionsViaSymbols()) {
   1880     // If the global has zero size, emit a single byte so that two labels don't
   1881     // look like they are at the same location.
   1882     OutStreamer.EmitIntValue(0, 1, AddrSpace);
   1883   }
   1884 }
   1885 
   1886 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   1887   // Target doesn't support this yet!
   1888   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   1889 }
   1890 
   1891 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   1892   if (Offset > 0)
   1893     OS << '+' << Offset;
   1894   else if (Offset < 0)
   1895     OS << Offset;
   1896 }
   1897 
   1898 //===----------------------------------------------------------------------===//
   1899 // Symbol Lowering Routines.
   1900 //===----------------------------------------------------------------------===//
   1901 
   1902 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
   1903 /// temporary label with the specified stem and unique ID.
   1904 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
   1905   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
   1906                                       Name + Twine(ID));
   1907 }
   1908 
   1909 /// GetTempSymbol - Return an assembler temporary label with the specified
   1910 /// stem.
   1911 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
   1912   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
   1913                                       Name);
   1914 }
   1915 
   1916 
   1917 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   1918   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   1919 }
   1920 
   1921 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   1922   return MMI->getAddrLabelSymbol(BB);
   1923 }
   1924 
   1925 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   1926 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   1927   return OutContext.GetOrCreateSymbol
   1928     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
   1929      + "_" + Twine(CPID));
   1930 }
   1931 
   1932 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   1933 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   1934   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   1935 }
   1936 
   1937 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   1938 /// FIXME: privatize to AsmPrinter.
   1939 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   1940   return OutContext.GetOrCreateSymbol
   1941   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
   1942    Twine(UID) + "_set_" + Twine(MBBID));
   1943 }
   1944 
   1945 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
   1946 /// global value name as its base, with the specified suffix, and where the
   1947 /// symbol is forced to have private linkage if ForcePrivate is true.
   1948 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
   1949                                                    StringRef Suffix,
   1950                                                    bool ForcePrivate) const {
   1951   SmallString<60> NameStr;
   1952   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
   1953   NameStr.append(Suffix.begin(), Suffix.end());
   1954   return OutContext.GetOrCreateSymbol(NameStr.str());
   1955 }
   1956 
   1957 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
   1958 /// ExternalSymbol.
   1959 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   1960   SmallString<60> NameStr;
   1961   Mang->getNameWithPrefix(NameStr, Sym);
   1962   return OutContext.GetOrCreateSymbol(NameStr.str());
   1963 }
   1964 
   1965 
   1966 
   1967 /// PrintParentLoopComment - Print comments about parent loops of this one.
   1968 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   1969                                    unsigned FunctionNumber) {
   1970   if (Loop == 0) return;
   1971   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   1972   OS.indent(Loop->getLoopDepth()*2)
   1973     << "Parent Loop BB" << FunctionNumber << "_"
   1974     << Loop->getHeader()->getNumber()
   1975     << " Depth=" << Loop->getLoopDepth() << '\n';
   1976 }
   1977 
   1978 
   1979 /// PrintChildLoopComment - Print comments about child loops within
   1980 /// the loop for this basic block, with nesting.
   1981 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   1982                                   unsigned FunctionNumber) {
   1983   // Add child loop information
   1984   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
   1985     OS.indent((*CL)->getLoopDepth()*2)
   1986       << "Child Loop BB" << FunctionNumber << "_"
   1987       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
   1988       << '\n';
   1989     PrintChildLoopComment(OS, *CL, FunctionNumber);
   1990   }
   1991 }
   1992 
   1993 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   1994 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   1995                                        const MachineLoopInfo *LI,
   1996                                        const AsmPrinter &AP) {
   1997   // Add loop depth information
   1998   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   1999   if (Loop == 0) return;
   2000 
   2001   MachineBasicBlock *Header = Loop->getHeader();
   2002   assert(Header && "No header for loop");
   2003 
   2004   // If this block is not a loop header, just print out what is the loop header
   2005   // and return.
   2006   if (Header != &MBB) {
   2007     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
   2008                               Twine(AP.getFunctionNumber())+"_" +
   2009                               Twine(Loop->getHeader()->getNumber())+
   2010                               " Depth="+Twine(Loop->getLoopDepth()));
   2011     return;
   2012   }
   2013 
   2014   // Otherwise, it is a loop header.  Print out information about child and
   2015   // parent loops.
   2016   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
   2017 
   2018   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   2019 
   2020   OS << "=>";
   2021   OS.indent(Loop->getLoopDepth()*2-2);
   2022 
   2023   OS << "This ";
   2024   if (Loop->empty())
   2025     OS << "Inner ";
   2026   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   2027 
   2028   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   2029 }
   2030 
   2031 
   2032 /// EmitBasicBlockStart - This method prints the label for the specified
   2033 /// MachineBasicBlock, an alignment (if present) and a comment describing
   2034 /// it if appropriate.
   2035 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
   2036   // Emit an alignment directive for this block, if needed.
   2037   if (unsigned Align = MBB->getAlignment())
   2038     EmitAlignment(Align);
   2039 
   2040   // If the block has its address taken, emit any labels that were used to
   2041   // reference the block.  It is possible that there is more than one label
   2042   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   2043   // the references were generated.
   2044   if (MBB->hasAddressTaken()) {
   2045     const BasicBlock *BB = MBB->getBasicBlock();
   2046     if (isVerbose())
   2047       OutStreamer.AddComment("Block address taken");
   2048 
   2049     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
   2050 
   2051     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
   2052       OutStreamer.EmitLabel(Syms[i]);
   2053   }
   2054 
   2055   // Print some verbose block comments.
   2056   if (isVerbose()) {
   2057     if (const BasicBlock *BB = MBB->getBasicBlock())
   2058       if (BB->hasName())
   2059         OutStreamer.AddComment("%" + BB->getName());
   2060     emitBasicBlockLoopComments(*MBB, LI, *this);
   2061   }
   2062 
   2063   // Print the main label for the block.
   2064   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
   2065     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
   2066       // NOTE: Want this comment at start of line, don't emit with AddComment.
   2067       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
   2068                               Twine(MBB->getNumber()) + ":");
   2069     }
   2070   } else {
   2071     OutStreamer.EmitLabel(MBB->getSymbol());
   2072   }
   2073 }
   2074 
   2075 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   2076                                 bool IsDefinition) const {
   2077   MCSymbolAttr Attr = MCSA_Invalid;
   2078 
   2079   switch (Visibility) {
   2080   default: break;
   2081   case GlobalValue::HiddenVisibility:
   2082     if (IsDefinition)
   2083       Attr = MAI->getHiddenVisibilityAttr();
   2084     else
   2085       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2086     break;
   2087   case GlobalValue::ProtectedVisibility:
   2088     Attr = MAI->getProtectedVisibilityAttr();
   2089     break;
   2090   }
   2091 
   2092   if (Attr != MCSA_Invalid)
   2093     OutStreamer.EmitSymbolAttribute(Sym, Attr);
   2094 }
   2095 
   2096 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2097 /// exactly one predecessor and the control transfer mechanism between
   2098 /// the predecessor and this block is a fall-through.
   2099 bool AsmPrinter::
   2100 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2101   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2102   // then nothing falls through to it.
   2103   if (MBB->isLandingPad() || MBB->pred_empty())
   2104     return false;
   2105 
   2106   // If there isn't exactly one predecessor, it can't be a fall through.
   2107   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
   2108   ++PI2;
   2109   if (PI2 != MBB->pred_end())
   2110     return false;
   2111 
   2112   // The predecessor has to be immediately before this block.
   2113   MachineBasicBlock *Pred = *PI;
   2114 
   2115   if (!Pred->isLayoutSuccessor(MBB))
   2116     return false;
   2117 
   2118   // If the block is completely empty, then it definitely does fall through.
   2119   if (Pred->empty())
   2120     return true;
   2121 
   2122   // Check the terminators in the previous blocks
   2123   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
   2124          IE = Pred->end(); II != IE; ++II) {
   2125     MachineInstr &MI = *II;
   2126 
   2127     // If it is not a simple branch, we are in a table somewhere.
   2128     if (!MI.isBranch() || MI.isIndirectBranch())
   2129       return false;
   2130 
   2131     // If we are the operands of one of the branches, this is not
   2132     // a fall through.
   2133     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
   2134            OE = MI.operands_end(); OI != OE; ++OI) {
   2135       const MachineOperand& OP = *OI;
   2136       if (OP.isJTI())
   2137         return false;
   2138       if (OP.isMBB() && OP.getMBB() == MBB)
   2139         return false;
   2140     }
   2141   }
   2142 
   2143   return true;
   2144 }
   2145 
   2146 
   2147 
   2148 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
   2149   if (!S->usesMetadata())
   2150     return 0;
   2151 
   2152   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2153   gcp_map_type::iterator GCPI = GCMap.find(S);
   2154   if (GCPI != GCMap.end())
   2155     return GCPI->second;
   2156 
   2157   const char *Name = S->getName().c_str();
   2158 
   2159   for (GCMetadataPrinterRegistry::iterator
   2160          I = GCMetadataPrinterRegistry::begin(),
   2161          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2162     if (strcmp(Name, I->getName()) == 0) {
   2163       GCMetadataPrinter *GMP = I->instantiate();
   2164       GMP->S = S;
   2165       GCMap.insert(std::make_pair(S, GMP));
   2166       return GMP;
   2167     }
   2168 
   2169   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2170 }
   2171