Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/IR/Intrinsics.h"
     17 #include "llvm/Support/ConstantRange.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
     20 using namespace llvm;
     21 using namespace PatternMatch;
     22 
     23 
     24 /// AddOne - Add one to a ConstantInt.
     25 static Constant *AddOne(ConstantInt *C) {
     26   return ConstantInt::get(C->getContext(), C->getValue() + 1);
     27 }
     28 /// SubOne - Subtract one from a ConstantInt.
     29 static Constant *SubOne(ConstantInt *C) {
     30   return ConstantInt::get(C->getContext(), C->getValue()-1);
     31 }
     32 
     33 /// isFreeToInvert - Return true if the specified value is free to invert (apply
     34 /// ~ to).  This happens in cases where the ~ can be eliminated.
     35 static inline bool isFreeToInvert(Value *V) {
     36   // ~(~(X)) -> X.
     37   if (BinaryOperator::isNot(V))
     38     return true;
     39 
     40   // Constants can be considered to be not'ed values.
     41   if (isa<ConstantInt>(V))
     42     return true;
     43 
     44   // Compares can be inverted if they have a single use.
     45   if (CmpInst *CI = dyn_cast<CmpInst>(V))
     46     return CI->hasOneUse();
     47 
     48   return false;
     49 }
     50 
     51 static inline Value *dyn_castNotVal(Value *V) {
     52   // If this is not(not(x)) don't return that this is a not: we want the two
     53   // not's to be folded first.
     54   if (BinaryOperator::isNot(V)) {
     55     Value *Operand = BinaryOperator::getNotArgument(V);
     56     if (!isFreeToInvert(Operand))
     57       return Operand;
     58   }
     59 
     60   // Constants can be considered to be not'ed values...
     61   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
     62     return ConstantInt::get(C->getType(), ~C->getValue());
     63   return 0;
     64 }
     65 
     66 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
     67 /// predicate into a three bit mask. It also returns whether it is an ordered
     68 /// predicate by reference.
     69 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
     70   isOrdered = false;
     71   switch (CC) {
     72   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
     73   case FCmpInst::FCMP_UNO:                   return 0;  // 000
     74   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
     75   case FCmpInst::FCMP_UGT:                   return 1;  // 001
     76   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
     77   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
     78   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
     79   case FCmpInst::FCMP_UGE:                   return 3;  // 011
     80   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
     81   case FCmpInst::FCMP_ULT:                   return 4;  // 100
     82   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
     83   case FCmpInst::FCMP_UNE:                   return 5;  // 101
     84   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
     85   case FCmpInst::FCMP_ULE:                   return 6;  // 110
     86     // True -> 7
     87   default:
     88     // Not expecting FCMP_FALSE and FCMP_TRUE;
     89     llvm_unreachable("Unexpected FCmp predicate!");
     90   }
     91 }
     92 
     93 /// getNewICmpValue - This is the complement of getICmpCode, which turns an
     94 /// opcode and two operands into either a constant true or false, or a brand
     95 /// new ICmp instruction. The sign is passed in to determine which kind
     96 /// of predicate to use in the new icmp instruction.
     97 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
     98                               InstCombiner::BuilderTy *Builder) {
     99   ICmpInst::Predicate NewPred;
    100   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
    101     return NewConstant;
    102   return Builder->CreateICmp(NewPred, LHS, RHS);
    103 }
    104 
    105 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
    106 /// opcode and two operands into either a FCmp instruction. isordered is passed
    107 /// in to determine which kind of predicate to use in the new fcmp instruction.
    108 static Value *getFCmpValue(bool isordered, unsigned code,
    109                            Value *LHS, Value *RHS,
    110                            InstCombiner::BuilderTy *Builder) {
    111   CmpInst::Predicate Pred;
    112   switch (code) {
    113   default: llvm_unreachable("Illegal FCmp code!");
    114   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
    115   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
    116   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
    117   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
    118   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
    119   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
    120   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
    121   case 7:
    122     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
    123     Pred = FCmpInst::FCMP_ORD; break;
    124   }
    125   return Builder->CreateFCmp(Pred, LHS, RHS);
    126 }
    127 
    128 // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
    129 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
    130 // guaranteed to be a binary operator.
    131 Instruction *InstCombiner::OptAndOp(Instruction *Op,
    132                                     ConstantInt *OpRHS,
    133                                     ConstantInt *AndRHS,
    134                                     BinaryOperator &TheAnd) {
    135   Value *X = Op->getOperand(0);
    136   Constant *Together = 0;
    137   if (!Op->isShift())
    138     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
    139 
    140   switch (Op->getOpcode()) {
    141   case Instruction::Xor:
    142     if (Op->hasOneUse()) {
    143       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
    144       Value *And = Builder->CreateAnd(X, AndRHS);
    145       And->takeName(Op);
    146       return BinaryOperator::CreateXor(And, Together);
    147     }
    148     break;
    149   case Instruction::Or:
    150     if (Op->hasOneUse()){
    151       if (Together != OpRHS) {
    152         // (X | C1) & C2 --> (X | (C1&C2)) & C2
    153         Value *Or = Builder->CreateOr(X, Together);
    154         Or->takeName(Op);
    155         return BinaryOperator::CreateAnd(Or, AndRHS);
    156       }
    157 
    158       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
    159       if (TogetherCI && !TogetherCI->isZero()){
    160         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
    161         // NOTE: This reduces the number of bits set in the & mask, which
    162         // can expose opportunities for store narrowing.
    163         Together = ConstantExpr::getXor(AndRHS, Together);
    164         Value *And = Builder->CreateAnd(X, Together);
    165         And->takeName(Op);
    166         return BinaryOperator::CreateOr(And, OpRHS);
    167       }
    168     }
    169 
    170     break;
    171   case Instruction::Add:
    172     if (Op->hasOneUse()) {
    173       // Adding a one to a single bit bit-field should be turned into an XOR
    174       // of the bit.  First thing to check is to see if this AND is with a
    175       // single bit constant.
    176       const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
    177 
    178       // If there is only one bit set.
    179       if (AndRHSV.isPowerOf2()) {
    180         // Ok, at this point, we know that we are masking the result of the
    181         // ADD down to exactly one bit.  If the constant we are adding has
    182         // no bits set below this bit, then we can eliminate the ADD.
    183         const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
    184 
    185         // Check to see if any bits below the one bit set in AndRHSV are set.
    186         if ((AddRHS & (AndRHSV-1)) == 0) {
    187           // If not, the only thing that can effect the output of the AND is
    188           // the bit specified by AndRHSV.  If that bit is set, the effect of
    189           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    190           // no effect.
    191           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
    192             TheAnd.setOperand(0, X);
    193             return &TheAnd;
    194           } else {
    195             // Pull the XOR out of the AND.
    196             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
    197             NewAnd->takeName(Op);
    198             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    199           }
    200         }
    201       }
    202     }
    203     break;
    204 
    205   case Instruction::Shl: {
    206     // We know that the AND will not produce any of the bits shifted in, so if
    207     // the anded constant includes them, clear them now!
    208     //
    209     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    210     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    211     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    212     ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
    213                                        AndRHS->getValue() & ShlMask);
    214 
    215     if (CI->getValue() == ShlMask)
    216       // Masking out bits that the shift already masks.
    217       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    218 
    219     if (CI != AndRHS) {                  // Reducing bits set in and.
    220       TheAnd.setOperand(1, CI);
    221       return &TheAnd;
    222     }
    223     break;
    224   }
    225   case Instruction::LShr: {
    226     // We know that the AND will not produce any of the bits shifted in, so if
    227     // the anded constant includes them, clear them now!  This only applies to
    228     // unsigned shifts, because a signed shr may bring in set bits!
    229     //
    230     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    231     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    232     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    233     ConstantInt *CI = ConstantInt::get(Op->getContext(),
    234                                        AndRHS->getValue() & ShrMask);
    235 
    236     if (CI->getValue() == ShrMask)
    237       // Masking out bits that the shift already masks.
    238       return ReplaceInstUsesWith(TheAnd, Op);
    239 
    240     if (CI != AndRHS) {
    241       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
    242       return &TheAnd;
    243     }
    244     break;
    245   }
    246   case Instruction::AShr:
    247     // Signed shr.
    248     // See if this is shifting in some sign extension, then masking it out
    249     // with an and.
    250     if (Op->hasOneUse()) {
    251       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    252       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    253       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    254       Constant *C = ConstantInt::get(Op->getContext(),
    255                                      AndRHS->getValue() & ShrMask);
    256       if (C == AndRHS) {          // Masking out bits shifted in.
    257         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
    258         // Make the argument unsigned.
    259         Value *ShVal = Op->getOperand(0);
    260         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
    261         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
    262       }
    263     }
    264     break;
    265   }
    266   return 0;
    267 }
    268 
    269 
    270 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
    271 /// true, otherwise (V < Lo || V >= Hi).  In practice, we emit the more efficient
    272 /// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
    273 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
    274 /// insert new instructions.
    275 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    276                                      bool isSigned, bool Inside) {
    277   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
    278             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
    279          "Lo is not <= Hi in range emission code!");
    280 
    281   if (Inside) {
    282     if (Lo == Hi)  // Trivially false.
    283       return ConstantInt::getFalse(V->getContext());
    284 
    285     // V >= Min && V < Hi --> V < Hi
    286     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    287       ICmpInst::Predicate pred = (isSigned ?
    288         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
    289       return Builder->CreateICmp(pred, V, Hi);
    290     }
    291 
    292     // Emit V-Lo <u Hi-Lo
    293     Constant *NegLo = ConstantExpr::getNeg(Lo);
    294     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    295     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    296     return Builder->CreateICmpULT(Add, UpperBound);
    297   }
    298 
    299   if (Lo == Hi)  // Trivially true.
    300     return ConstantInt::getTrue(V->getContext());
    301 
    302   // V < Min || V >= Hi -> V > Hi-1
    303   Hi = SubOne(cast<ConstantInt>(Hi));
    304   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    305     ICmpInst::Predicate pred = (isSigned ?
    306         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    307     return Builder->CreateICmp(pred, V, Hi);
    308   }
    309 
    310   // Emit V-Lo >u Hi-1-Lo
    311   // Note that Hi has already had one subtracted from it, above.
    312   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
    313   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    314   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
    315   return Builder->CreateICmpUGT(Add, LowerBound);
    316 }
    317 
    318 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
    319 // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
    320 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
    321 // not, since all 1s are not contiguous.
    322 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
    323   const APInt& V = Val->getValue();
    324   uint32_t BitWidth = Val->getType()->getBitWidth();
    325   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
    326 
    327   // look for the first zero bit after the run of ones
    328   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
    329   // look for the first non-zero bit
    330   ME = V.getActiveBits();
    331   return true;
    332 }
    333 
    334 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
    335 /// where isSub determines whether the operator is a sub.  If we can fold one of
    336 /// the following xforms:
    337 ///
    338 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
    339 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    340 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    341 ///
    342 /// return (A +/- B).
    343 ///
    344 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
    345                                         ConstantInt *Mask, bool isSub,
    346                                         Instruction &I) {
    347   Instruction *LHSI = dyn_cast<Instruction>(LHS);
    348   if (!LHSI || LHSI->getNumOperands() != 2 ||
    349       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
    350 
    351   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
    352 
    353   switch (LHSI->getOpcode()) {
    354   default: return 0;
    355   case Instruction::And:
    356     if (ConstantExpr::getAnd(N, Mask) == Mask) {
    357       // If the AndRHS is a power of two minus one (0+1+), this is simple.
    358       if ((Mask->getValue().countLeadingZeros() +
    359            Mask->getValue().countPopulation()) ==
    360           Mask->getValue().getBitWidth())
    361         break;
    362 
    363       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
    364       // part, we don't need any explicit masks to take them out of A.  If that
    365       // is all N is, ignore it.
    366       uint32_t MB = 0, ME = 0;
    367       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
    368         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
    369         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
    370         if (MaskedValueIsZero(RHS, Mask))
    371           break;
    372       }
    373     }
    374     return 0;
    375   case Instruction::Or:
    376   case Instruction::Xor:
    377     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    378     if ((Mask->getValue().countLeadingZeros() +
    379          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
    380         && ConstantExpr::getAnd(N, Mask)->isNullValue())
    381       break;
    382     return 0;
    383   }
    384 
    385   if (isSub)
    386     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
    387   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
    388 }
    389 
    390 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
    391 /// One of A and B is considered the mask, the other the value. This is
    392 /// described as the "AMask" or "BMask" part of the enum. If the enum
    393 /// contains only "Mask", then both A and B can be considered masks.
    394 /// If A is the mask, then it was proven, that (A & C) == C. This
    395 /// is trivial if C == A, or C == 0. If both A and C are constants, this
    396 /// proof is also easy.
    397 /// For the following explanations we assume that A is the mask.
    398 /// The part "AllOnes" declares, that the comparison is true only
    399 /// if (A & B) == A, or all bits of A are set in B.
    400 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
    401 /// The part "AllZeroes" declares, that the comparison is true only
    402 /// if (A & B) == 0, or all bits of A are cleared in B.
    403 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
    404 /// The part "Mixed" declares, that (A & B) == C and C might or might not
    405 /// contain any number of one bits and zero bits.
    406 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
    407 /// The Part "Not" means, that in above descriptions "==" should be replaced
    408 /// by "!=".
    409 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
    410 /// If the mask A contains a single bit, then the following is equivalent:
    411 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    412 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    413 enum MaskedICmpType {
    414   FoldMskICmp_AMask_AllOnes           =     1,
    415   FoldMskICmp_AMask_NotAllOnes        =     2,
    416   FoldMskICmp_BMask_AllOnes           =     4,
    417   FoldMskICmp_BMask_NotAllOnes        =     8,
    418   FoldMskICmp_Mask_AllZeroes          =    16,
    419   FoldMskICmp_Mask_NotAllZeroes       =    32,
    420   FoldMskICmp_AMask_Mixed             =    64,
    421   FoldMskICmp_AMask_NotMixed          =   128,
    422   FoldMskICmp_BMask_Mixed             =   256,
    423   FoldMskICmp_BMask_NotMixed          =   512
    424 };
    425 
    426 /// return the set of pattern classes (from MaskedICmpType)
    427 /// that (icmp SCC (A & B), C) satisfies
    428 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
    429                                     ICmpInst::Predicate SCC)
    430 {
    431   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    432   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    433   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    434   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
    435   bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
    436                     ACst->getValue().isPowerOf2());
    437   bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
    438                     BCst->getValue().isPowerOf2());
    439   unsigned result = 0;
    440   if (CCst != 0 && CCst->isZero()) {
    441     // if C is zero, then both A and B qualify as mask
    442     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
    443                           FoldMskICmp_Mask_AllZeroes |
    444                           FoldMskICmp_AMask_Mixed |
    445                           FoldMskICmp_BMask_Mixed)
    446                        : (FoldMskICmp_Mask_NotAllZeroes |
    447                           FoldMskICmp_Mask_NotAllZeroes |
    448                           FoldMskICmp_AMask_NotMixed |
    449                           FoldMskICmp_BMask_NotMixed));
    450     if (icmp_abit)
    451       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
    452                             FoldMskICmp_AMask_NotMixed)
    453                          : (FoldMskICmp_AMask_AllOnes |
    454                             FoldMskICmp_AMask_Mixed));
    455     if (icmp_bbit)
    456       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
    457                             FoldMskICmp_BMask_NotMixed)
    458                          : (FoldMskICmp_BMask_AllOnes |
    459                             FoldMskICmp_BMask_Mixed));
    460     return result;
    461   }
    462   if (A == C) {
    463     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
    464                           FoldMskICmp_AMask_Mixed)
    465                        : (FoldMskICmp_AMask_NotAllOnes |
    466                           FoldMskICmp_AMask_NotMixed));
    467     if (icmp_abit)
    468       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    469                             FoldMskICmp_AMask_NotMixed)
    470                          : (FoldMskICmp_Mask_AllZeroes |
    471                             FoldMskICmp_AMask_Mixed));
    472   } else if (ACst != 0 && CCst != 0 &&
    473              ConstantExpr::getAnd(ACst, CCst) == CCst) {
    474     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
    475                        : FoldMskICmp_AMask_NotMixed);
    476   }
    477   if (B == C) {
    478     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
    479                           FoldMskICmp_BMask_Mixed)
    480                        : (FoldMskICmp_BMask_NotAllOnes |
    481                           FoldMskICmp_BMask_NotMixed));
    482     if (icmp_bbit)
    483       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    484                             FoldMskICmp_BMask_NotMixed)
    485                          : (FoldMskICmp_Mask_AllZeroes |
    486                             FoldMskICmp_BMask_Mixed));
    487   } else if (BCst != 0 && CCst != 0 &&
    488              ConstantExpr::getAnd(BCst, CCst) == CCst) {
    489     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
    490                        : FoldMskICmp_BMask_NotMixed);
    491   }
    492   return result;
    493 }
    494 
    495 /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
    496 /// if possible. The returned predicate is either == or !=. Returns false if
    497 /// decomposition fails.
    498 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
    499                                  Value *&X, Value *&Y, Value *&Z) {
    500   // X < 0 is equivalent to (X & SignBit) != 0.
    501   if (I->getPredicate() == ICmpInst::ICMP_SLT)
    502     if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
    503       if (C->isZero()) {
    504         X = I->getOperand(0);
    505         Y = ConstantInt::get(I->getContext(),
    506                              APInt::getSignBit(C->getBitWidth()));
    507         Pred = ICmpInst::ICMP_NE;
    508         Z = C;
    509         return true;
    510       }
    511 
    512   // X > -1 is equivalent to (X & SignBit) == 0.
    513   if (I->getPredicate() == ICmpInst::ICMP_SGT)
    514     if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
    515       if (C->isAllOnesValue()) {
    516         X = I->getOperand(0);
    517         Y = ConstantInt::get(I->getContext(),
    518                              APInt::getSignBit(C->getBitWidth()));
    519         Pred = ICmpInst::ICMP_EQ;
    520         Z = ConstantInt::getNullValue(C->getType());
    521         return true;
    522       }
    523 
    524   return false;
    525 }
    526 
    527 /// foldLogOpOfMaskedICmpsHelper:
    528 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    529 /// return the set of pattern classes (from MaskedICmpType)
    530 /// that both LHS and RHS satisfy
    531 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
    532                                              Value*& B, Value*& C,
    533                                              Value*& D, Value*& E,
    534                                              ICmpInst *LHS, ICmpInst *RHS,
    535                                              ICmpInst::Predicate &LHSCC,
    536                                              ICmpInst::Predicate &RHSCC) {
    537   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
    538   // vectors are not (yet?) supported
    539   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
    540 
    541   // Here comes the tricky part:
    542   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    543   // and L11 & L12 == L21 & L22. The same goes for RHS.
    544   // Now we must find those components L** and R**, that are equal, so
    545   // that we can extract the parameters A, B, C, D, and E for the canonical
    546   // above.
    547   Value *L1 = LHS->getOperand(0);
    548   Value *L2 = LHS->getOperand(1);
    549   Value *L11,*L12,*L21,*L22;
    550   // Check whether the icmp can be decomposed into a bit test.
    551   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
    552     L21 = L22 = L1 = 0;
    553   } else {
    554     // Look for ANDs in the LHS icmp.
    555     if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    556       if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
    557         L21 = L22 = 0;
    558     } else {
    559       if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
    560         return 0;
    561       std::swap(L1, L2);
    562       L21 = L22 = 0;
    563     }
    564   }
    565 
    566   // Bail if LHS was a icmp that can't be decomposed into an equality.
    567   if (!ICmpInst::isEquality(LHSCC))
    568     return 0;
    569 
    570   Value *R1 = RHS->getOperand(0);
    571   Value *R2 = RHS->getOperand(1);
    572   Value *R11,*R12;
    573   bool ok = false;
    574   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
    575     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    576       A = R11; D = R12;
    577     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    578       A = R12; D = R11;
    579     } else {
    580       return 0;
    581     }
    582     E = R2; R1 = 0; ok = true;
    583   } else if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    584     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    585       A = R11; D = R12; E = R2; ok = true;
    586     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    587       A = R12; D = R11; E = R2; ok = true;
    588     }
    589   }
    590 
    591   // Bail if RHS was a icmp that can't be decomposed into an equality.
    592   if (!ICmpInst::isEquality(RHSCC))
    593     return 0;
    594 
    595   // Look for ANDs in on the right side of the RHS icmp.
    596   if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    597     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    598       A = R11; D = R12; E = R1; ok = true;
    599     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    600       A = R12; D = R11; E = R1; ok = true;
    601     } else {
    602       return 0;
    603     }
    604   }
    605   if (!ok)
    606     return 0;
    607 
    608   if (L11 == A) {
    609     B = L12; C = L2;
    610   } else if (L12 == A) {
    611     B = L11; C = L2;
    612   } else if (L21 == A) {
    613     B = L22; C = L1;
    614   } else if (L22 == A) {
    615     B = L21; C = L1;
    616   }
    617 
    618   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
    619   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
    620   return left_type & right_type;
    621 }
    622 /// foldLogOpOfMaskedICmps:
    623 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    624 /// into a single (icmp(A & X) ==/!= Y)
    625 static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
    626                                      ICmpInst::Predicate NEWCC,
    627                                      llvm::InstCombiner::BuilderTy* Builder) {
    628   Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
    629   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    630   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
    631                                                LHSCC, RHSCC);
    632   if (mask == 0) return 0;
    633   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
    634          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
    635 
    636   if (NEWCC == ICmpInst::ICMP_NE)
    637     mask >>= 1; // treat "Not"-states as normal states
    638 
    639   if (mask & FoldMskICmp_Mask_AllZeroes) {
    640     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    641     // -> (icmp eq (A & (B|D)), 0)
    642     Value* newOr = Builder->CreateOr(B, D);
    643     Value* newAnd = Builder->CreateAnd(A, newOr);
    644     // we can't use C as zero, because we might actually handle
    645     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    646     // with B and D, having a single bit set
    647     Value* zero = Constant::getNullValue(A->getType());
    648     return Builder->CreateICmp(NEWCC, newAnd, zero);
    649   }
    650   if (mask & FoldMskICmp_BMask_AllOnes) {
    651     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    652     // -> (icmp eq (A & (B|D)), (B|D))
    653     Value* newOr = Builder->CreateOr(B, D);
    654     Value* newAnd = Builder->CreateAnd(A, newOr);
    655     return Builder->CreateICmp(NEWCC, newAnd, newOr);
    656   }
    657   if (mask & FoldMskICmp_AMask_AllOnes) {
    658     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    659     // -> (icmp eq (A & (B&D)), A)
    660     Value* newAnd1 = Builder->CreateAnd(B, D);
    661     Value* newAnd = Builder->CreateAnd(A, newAnd1);
    662     return Builder->CreateICmp(NEWCC, newAnd, A);
    663   }
    664   if (mask & FoldMskICmp_BMask_Mixed) {
    665     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    666     // We already know that B & C == C && D & E == E.
    667     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    668     // C and E, which are shared by both the mask B and the mask D, don't
    669     // contradict, then we can transform to
    670     // -> (icmp eq (A & (B|D)), (C|E))
    671     // Currently, we only handle the case of B, C, D, and E being constant.
    672     ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    673     if (BCst == 0) return 0;
    674     ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    675     if (DCst == 0) return 0;
    676     // we can't simply use C and E, because we might actually handle
    677     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    678     // with B and D, having a single bit set
    679 
    680     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    681     if (CCst == 0) return 0;
    682     if (LHSCC != NEWCC)
    683       CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
    684     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    685     if (ECst == 0) return 0;
    686     if (RHSCC != NEWCC)
    687       ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
    688     ConstantInt* MCst = dyn_cast<ConstantInt>(
    689       ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
    690                            ConstantExpr::getXor(CCst, ECst)) );
    691     // if there is a conflict we should actually return a false for the
    692     // whole construct
    693     if (!MCst->isZero())
    694       return 0;
    695     Value *newOr1 = Builder->CreateOr(B, D);
    696     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
    697     Value *newAnd = Builder->CreateAnd(A, newOr1);
    698     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
    699   }
    700   return 0;
    701 }
    702 
    703 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
    704 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
    705   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    706 
    707   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    708   if (PredicatesFoldable(LHSCC, RHSCC)) {
    709     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    710         LHS->getOperand(1) == RHS->getOperand(0))
    711       LHS->swapOperands();
    712     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    713         LHS->getOperand(1) == RHS->getOperand(1)) {
    714       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    715       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    716       bool isSigned = LHS->isSigned() || RHS->isSigned();
    717       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
    718     }
    719   }
    720 
    721   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    722   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
    723     return V;
    724 
    725   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    726   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
    727   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
    728   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
    729   if (LHSCst == 0 || RHSCst == 0) return 0;
    730 
    731   if (LHSCst == RHSCst && LHSCC == RHSCC) {
    732     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    733     // where C is a power of 2
    734     if (LHSCC == ICmpInst::ICMP_ULT &&
    735         LHSCst->getValue().isPowerOf2()) {
    736       Value *NewOr = Builder->CreateOr(Val, Val2);
    737       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    738     }
    739 
    740     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    741     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
    742       Value *NewOr = Builder->CreateOr(Val, Val2);
    743       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    744     }
    745   }
    746 
    747   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    748   // where CMAX is the all ones value for the truncated type,
    749   // iff the lower bits of C2 and CA are zero.
    750   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
    751       LHS->hasOneUse() && RHS->hasOneUse()) {
    752     Value *V;
    753     ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
    754 
    755     // (trunc x) == C1 & (and x, CA) == C2
    756     // (and x, CA) == C2 & (trunc x) == C1
    757     if (match(Val2, m_Trunc(m_Value(V))) &&
    758         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    759       SmallCst = RHSCst;
    760       BigCst = LHSCst;
    761     } else if (match(Val, m_Trunc(m_Value(V))) &&
    762                match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    763       SmallCst = LHSCst;
    764       BigCst = RHSCst;
    765     }
    766 
    767     if (SmallCst && BigCst) {
    768       unsigned BigBitSize = BigCst->getType()->getBitWidth();
    769       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
    770 
    771       // Check that the low bits are zero.
    772       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    773       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
    774         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
    775         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
    776         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
    777         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
    778       }
    779     }
    780   }
    781 
    782   // From here on, we only handle:
    783   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    784   if (Val != Val2) return 0;
    785 
    786   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
    787   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
    788       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
    789       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
    790       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
    791     return 0;
    792 
    793   // Make a constant range that's the intersection of the two icmp ranges.
    794   // If the intersection is empty, we know that the result is false.
    795   ConstantRange LHSRange =
    796     ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
    797   ConstantRange RHSRange =
    798     ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
    799 
    800   if (LHSRange.intersectWith(RHSRange).isEmptySet())
    801     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    802 
    803   // We can't fold (ugt x, C) & (sgt x, C2).
    804   if (!PredicatesFoldable(LHSCC, RHSCC))
    805     return 0;
    806 
    807   // Ensure that the larger constant is on the RHS.
    808   bool ShouldSwap;
    809   if (CmpInst::isSigned(LHSCC) ||
    810       (ICmpInst::isEquality(LHSCC) &&
    811        CmpInst::isSigned(RHSCC)))
    812     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
    813   else
    814     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
    815 
    816   if (ShouldSwap) {
    817     std::swap(LHS, RHS);
    818     std::swap(LHSCst, RHSCst);
    819     std::swap(LHSCC, RHSCC);
    820   }
    821 
    822   // At this point, we know we have two icmp instructions
    823   // comparing a value against two constants and and'ing the result
    824   // together.  Because of the above check, we know that we only have
    825   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
    826   // (from the icmp folding check above), that the two constants
    827   // are not equal and that the larger constant is on the RHS
    828   assert(LHSCst != RHSCst && "Compares not folded above?");
    829 
    830   switch (LHSCC) {
    831   default: llvm_unreachable("Unknown integer condition code!");
    832   case ICmpInst::ICMP_EQ:
    833     switch (RHSCC) {
    834     default: llvm_unreachable("Unknown integer condition code!");
    835     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
    836     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
    837     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
    838       return LHS;
    839     }
    840   case ICmpInst::ICMP_NE:
    841     switch (RHSCC) {
    842     default: llvm_unreachable("Unknown integer condition code!");
    843     case ICmpInst::ICMP_ULT:
    844       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
    845         return Builder->CreateICmpULT(Val, LHSCst);
    846       break;                        // (X != 13 & X u< 15) -> no change
    847     case ICmpInst::ICMP_SLT:
    848       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
    849         return Builder->CreateICmpSLT(Val, LHSCst);
    850       break;                        // (X != 13 & X s< 15) -> no change
    851     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
    852     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
    853     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
    854       return RHS;
    855     case ICmpInst::ICMP_NE:
    856       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
    857         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
    858         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
    859         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
    860       }
    861       break;                        // (X != 13 & X != 15) -> no change
    862     }
    863     break;
    864   case ICmpInst::ICMP_ULT:
    865     switch (RHSCC) {
    866     default: llvm_unreachable("Unknown integer condition code!");
    867     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
    868     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
    869       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    870     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
    871       break;
    872     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
    873     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
    874       return LHS;
    875     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
    876       break;
    877     }
    878     break;
    879   case ICmpInst::ICMP_SLT:
    880     switch (RHSCC) {
    881     default: llvm_unreachable("Unknown integer condition code!");
    882     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
    883       break;
    884     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
    885     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
    886       return LHS;
    887     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
    888       break;
    889     }
    890     break;
    891   case ICmpInst::ICMP_UGT:
    892     switch (RHSCC) {
    893     default: llvm_unreachable("Unknown integer condition code!");
    894     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
    895     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
    896       return RHS;
    897     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
    898       break;
    899     case ICmpInst::ICMP_NE:
    900       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
    901         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    902       break;                        // (X u> 13 & X != 15) -> no change
    903     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
    904       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
    905     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
    906       break;
    907     }
    908     break;
    909   case ICmpInst::ICMP_SGT:
    910     switch (RHSCC) {
    911     default: llvm_unreachable("Unknown integer condition code!");
    912     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
    913     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
    914       return RHS;
    915     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
    916       break;
    917     case ICmpInst::ICMP_NE:
    918       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
    919         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    920       break;                        // (X s> 13 & X != 15) -> no change
    921     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
    922       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
    923     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
    924       break;
    925     }
    926     break;
    927   }
    928 
    929   return 0;
    930 }
    931 
    932 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
    933 /// instcombine, this returns a Value which should already be inserted into the
    934 /// function.
    935 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
    936   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
    937       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
    938     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
    939     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
    940       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
    941         // If either of the constants are nans, then the whole thing returns
    942         // false.
    943         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
    944           return ConstantInt::getFalse(LHS->getContext());
    945         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    946       }
    947 
    948     // Handle vector zeros.  This occurs because the canonical form of
    949     // "fcmp ord x,x" is "fcmp ord x, 0".
    950     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
    951         isa<ConstantAggregateZero>(RHS->getOperand(1)))
    952       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    953     return 0;
    954   }
    955 
    956   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
    957   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
    958   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
    959 
    960 
    961   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
    962     // Swap RHS operands to match LHS.
    963     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
    964     std::swap(Op1LHS, Op1RHS);
    965   }
    966 
    967   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
    968     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
    969     if (Op0CC == Op1CC)
    970       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
    971     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
    972       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    973     if (Op0CC == FCmpInst::FCMP_TRUE)
    974       return RHS;
    975     if (Op1CC == FCmpInst::FCMP_TRUE)
    976       return LHS;
    977 
    978     bool Op0Ordered;
    979     bool Op1Ordered;
    980     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
    981     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
    982     // uno && ord -> false
    983     if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
    984         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    985     if (Op1Pred == 0) {
    986       std::swap(LHS, RHS);
    987       std::swap(Op0Pred, Op1Pred);
    988       std::swap(Op0Ordered, Op1Ordered);
    989     }
    990     if (Op0Pred == 0) {
    991       // uno && ueq -> uno && (uno || eq) -> uno
    992       // ord && olt -> ord && (ord && lt) -> olt
    993       if (!Op0Ordered && (Op0Ordered == Op1Ordered))
    994         return LHS;
    995       if (Op0Ordered && (Op0Ordered == Op1Ordered))
    996         return RHS;
    997 
    998       // uno && oeq -> uno && (ord && eq) -> false
    999       if (!Op0Ordered)
   1000         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1001       // ord && ueq -> ord && (uno || eq) -> oeq
   1002       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
   1003     }
   1004   }
   1005 
   1006   return 0;
   1007 }
   1008 
   1009 
   1010 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1011   bool Changed = SimplifyAssociativeOrCommutative(I);
   1012   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1013 
   1014   if (Value *V = SimplifyAndInst(Op0, Op1, TD))
   1015     return ReplaceInstUsesWith(I, V);
   1016 
   1017   // (A|B)&(A|C) -> A|(B&C) etc
   1018   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1019     return ReplaceInstUsesWith(I, V);
   1020 
   1021   // See if we can simplify any instructions used by the instruction whose sole
   1022   // purpose is to compute bits we don't care about.
   1023   if (SimplifyDemandedInstructionBits(I))
   1024     return &I;
   1025 
   1026   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1027     const APInt &AndRHSMask = AndRHS->getValue();
   1028 
   1029     // Optimize a variety of ((val OP C1) & C2) combinations...
   1030     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1031       Value *Op0LHS = Op0I->getOperand(0);
   1032       Value *Op0RHS = Op0I->getOperand(1);
   1033       switch (Op0I->getOpcode()) {
   1034       default: break;
   1035       case Instruction::Xor:
   1036       case Instruction::Or: {
   1037         // If the mask is only needed on one incoming arm, push it up.
   1038         if (!Op0I->hasOneUse()) break;
   1039 
   1040         APInt NotAndRHS(~AndRHSMask);
   1041         if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
   1042           // Not masking anything out for the LHS, move to RHS.
   1043           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
   1044                                              Op0RHS->getName()+".masked");
   1045           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
   1046         }
   1047         if (!isa<Constant>(Op0RHS) &&
   1048             MaskedValueIsZero(Op0RHS, NotAndRHS)) {
   1049           // Not masking anything out for the RHS, move to LHS.
   1050           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
   1051                                              Op0LHS->getName()+".masked");
   1052           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
   1053         }
   1054 
   1055         break;
   1056       }
   1057       case Instruction::Add:
   1058         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
   1059         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1060         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1061         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
   1062           return BinaryOperator::CreateAnd(V, AndRHS);
   1063         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
   1064           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
   1065         break;
   1066 
   1067       case Instruction::Sub:
   1068         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
   1069         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1070         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1071         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
   1072           return BinaryOperator::CreateAnd(V, AndRHS);
   1073 
   1074         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
   1075         // has 1's for all bits that the subtraction with A might affect.
   1076         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
   1077           uint32_t BitWidth = AndRHSMask.getBitWidth();
   1078           uint32_t Zeros = AndRHSMask.countLeadingZeros();
   1079           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
   1080 
   1081           if (MaskedValueIsZero(Op0LHS, Mask)) {
   1082             Value *NewNeg = Builder->CreateNeg(Op0RHS);
   1083             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
   1084           }
   1085         }
   1086         break;
   1087 
   1088       case Instruction::Shl:
   1089       case Instruction::LShr:
   1090         // (1 << x) & 1 --> zext(x == 0)
   1091         // (1 >> x) & 1 --> zext(x == 0)
   1092         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
   1093           Value *NewICmp =
   1094             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
   1095           return new ZExtInst(NewICmp, I.getType());
   1096         }
   1097         break;
   1098       }
   1099 
   1100       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1101         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1102           return Res;
   1103     }
   1104 
   1105     // If this is an integer truncation, and if the source is an 'and' with
   1106     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1107     {
   1108       Value *X = 0; ConstantInt *YC = 0;
   1109       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1110         // Change: and (trunc (and X, YC) to T), C2
   1111         // into  : and (trunc X to T), trunc(YC) & C2
   1112         // This will fold the two constants together, which may allow
   1113         // other simplifications.
   1114         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
   1115         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1116         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1117         return BinaryOperator::CreateAnd(NewCast, C3);
   1118       }
   1119     }
   1120 
   1121     // Try to fold constant and into select arguments.
   1122     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1123       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1124         return R;
   1125     if (isa<PHINode>(Op0))
   1126       if (Instruction *NV = FoldOpIntoPhi(I))
   1127         return NV;
   1128   }
   1129 
   1130 
   1131   // (~A & ~B) == (~(A | B)) - De Morgan's Law
   1132   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1133     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1134       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1135         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
   1136                                       I.getName()+".demorgan");
   1137         return BinaryOperator::CreateNot(Or);
   1138       }
   1139 
   1140   {
   1141     Value *A = 0, *B = 0, *C = 0, *D = 0;
   1142     // (A|B) & ~(A&B) -> A^B
   1143     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1144         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1145         ((A == C && B == D) || (A == D && B == C)))
   1146       return BinaryOperator::CreateXor(A, B);
   1147 
   1148     // ~(A&B) & (A|B) -> A^B
   1149     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1150         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1151         ((A == C && B == D) || (A == D && B == C)))
   1152       return BinaryOperator::CreateXor(A, B);
   1153 
   1154     // A&(A^B) => A & ~B
   1155     {
   1156       Value *tmpOp0 = Op0;
   1157       Value *tmpOp1 = Op1;
   1158       if (Op0->hasOneUse() &&
   1159           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   1160         if (A == Op1 || B == Op1 ) {
   1161           tmpOp1 = Op0;
   1162           tmpOp0 = Op1;
   1163           // Simplify below
   1164         }
   1165       }
   1166 
   1167       if (tmpOp1->hasOneUse() &&
   1168           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
   1169         if (B == tmpOp0) {
   1170           std::swap(A, B);
   1171         }
   1172         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
   1173         // A is originally -1 (or a vector of -1 and undefs), then we enter
   1174         // an endless loop. By checking that A is non-constant we ensure that
   1175         // we will never get to the loop.
   1176         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
   1177           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
   1178       }
   1179     }
   1180 
   1181     // (A&((~A)|B)) -> A&B
   1182     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
   1183         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
   1184       return BinaryOperator::CreateAnd(A, Op1);
   1185     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
   1186         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
   1187       return BinaryOperator::CreateAnd(A, Op0);
   1188   }
   1189 
   1190   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
   1191     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
   1192       if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1193         return ReplaceInstUsesWith(I, Res);
   1194 
   1195   // If and'ing two fcmp, try combine them into one.
   1196   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1197     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1198       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1199         return ReplaceInstUsesWith(I, Res);
   1200 
   1201 
   1202   // fold (and (cast A), (cast B)) -> (cast (and A, B))
   1203   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
   1204     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
   1205       Type *SrcTy = Op0C->getOperand(0)->getType();
   1206       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
   1207           SrcTy == Op1C->getOperand(0)->getType() &&
   1208           SrcTy->isIntOrIntVectorTy()) {
   1209         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1210 
   1211         // Only do this if the casts both really cause code to be generated.
   1212         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1213             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1214           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
   1215           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1216         }
   1217 
   1218         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
   1219         // cast is otherwise not optimizable.  This happens for vector sexts.
   1220         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1221           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1222             if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1223               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1224 
   1225         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
   1226         // cast is otherwise not optimizable.  This happens for vector sexts.
   1227         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   1228           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   1229             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1230               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1231       }
   1232     }
   1233 
   1234   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
   1235   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1236     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1237       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1238           SI0->getOperand(1) == SI1->getOperand(1) &&
   1239           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1240         Value *NewOp =
   1241           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
   1242                              SI0->getName());
   1243         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1244                                       SI1->getOperand(1));
   1245       }
   1246   }
   1247 
   1248   {
   1249     Value *X = 0;
   1250     bool OpsSwapped = false;
   1251     // Canonicalize SExt or Not to the LHS
   1252     if (match(Op1, m_SExt(m_Value())) ||
   1253         match(Op1, m_Not(m_Value()))) {
   1254       std::swap(Op0, Op1);
   1255       OpsSwapped = true;
   1256     }
   1257 
   1258     // Fold (and (sext bool to A), B) --> (select bool, B, 0)
   1259     if (match(Op0, m_SExt(m_Value(X))) &&
   1260         X->getType()->getScalarType()->isIntegerTy(1)) {
   1261       Value *Zero = Constant::getNullValue(Op1->getType());
   1262       return SelectInst::Create(X, Op1, Zero);
   1263     }
   1264 
   1265     // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
   1266     if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
   1267         X->getType()->getScalarType()->isIntegerTy(1)) {
   1268       Value *Zero = Constant::getNullValue(Op0->getType());
   1269       return SelectInst::Create(X, Zero, Op1);
   1270     }
   1271 
   1272     if (OpsSwapped)
   1273       std::swap(Op0, Op1);
   1274   }
   1275 
   1276   return Changed ? &I : 0;
   1277 }
   1278 
   1279 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
   1280 /// capable of providing pieces of a bswap.  The subexpression provides pieces
   1281 /// of a bswap if it is proven that each of the non-zero bytes in the output of
   1282 /// the expression came from the corresponding "byte swapped" byte in some other
   1283 /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
   1284 /// we know that the expression deposits the low byte of %X into the high byte
   1285 /// of the bswap result and that all other bytes are zero.  This expression is
   1286 /// accepted, the high byte of ByteValues is set to X to indicate a correct
   1287 /// match.
   1288 ///
   1289 /// This function returns true if the match was unsuccessful and false if so.
   1290 /// On entry to the function the "OverallLeftShift" is a signed integer value
   1291 /// indicating the number of bytes that the subexpression is later shifted.  For
   1292 /// example, if the expression is later right shifted by 16 bits, the
   1293 /// OverallLeftShift value would be -2 on entry.  This is used to specify which
   1294 /// byte of ByteValues is actually being set.
   1295 ///
   1296 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
   1297 /// byte is masked to zero by a user.  For example, in (X & 255), X will be
   1298 /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
   1299 /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
   1300 /// always in the local (OverallLeftShift) coordinate space.
   1301 ///
   1302 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
   1303                               SmallVector<Value*, 8> &ByteValues) {
   1304   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1305     // If this is an or instruction, it may be an inner node of the bswap.
   1306     if (I->getOpcode() == Instruction::Or) {
   1307       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1308                                ByteValues) ||
   1309              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
   1310                                ByteValues);
   1311     }
   1312 
   1313     // If this is a logical shift by a constant multiple of 8, recurse with
   1314     // OverallLeftShift and ByteMask adjusted.
   1315     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1316       unsigned ShAmt =
   1317         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1318       // Ensure the shift amount is defined and of a byte value.
   1319       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
   1320         return true;
   1321 
   1322       unsigned ByteShift = ShAmt >> 3;
   1323       if (I->getOpcode() == Instruction::Shl) {
   1324         // X << 2 -> collect(X, +2)
   1325         OverallLeftShift += ByteShift;
   1326         ByteMask >>= ByteShift;
   1327       } else {
   1328         // X >>u 2 -> collect(X, -2)
   1329         OverallLeftShift -= ByteShift;
   1330         ByteMask <<= ByteShift;
   1331         ByteMask &= (~0U >> (32-ByteValues.size()));
   1332       }
   1333 
   1334       if (OverallLeftShift >= (int)ByteValues.size()) return true;
   1335       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
   1336 
   1337       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1338                                ByteValues);
   1339     }
   1340 
   1341     // If this is a logical 'and' with a mask that clears bytes, clear the
   1342     // corresponding bytes in ByteMask.
   1343     if (I->getOpcode() == Instruction::And &&
   1344         isa<ConstantInt>(I->getOperand(1))) {
   1345       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
   1346       unsigned NumBytes = ByteValues.size();
   1347       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
   1348       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1349 
   1350       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
   1351         // If this byte is masked out by a later operation, we don't care what
   1352         // the and mask is.
   1353         if ((ByteMask & (1 << i)) == 0)
   1354           continue;
   1355 
   1356         // If the AndMask is all zeros for this byte, clear the bit.
   1357         APInt MaskB = AndMask & Byte;
   1358         if (MaskB == 0) {
   1359           ByteMask &= ~(1U << i);
   1360           continue;
   1361         }
   1362 
   1363         // If the AndMask is not all ones for this byte, it's not a bytezap.
   1364         if (MaskB != Byte)
   1365           return true;
   1366 
   1367         // Otherwise, this byte is kept.
   1368       }
   1369 
   1370       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1371                                ByteValues);
   1372     }
   1373   }
   1374 
   1375   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1376   // the input value to the bswap.  Some observations: 1) if more than one byte
   1377   // is demanded from this input, then it could not be successfully assembled
   1378   // into a byteswap.  At least one of the two bytes would not be aligned with
   1379   // their ultimate destination.
   1380   if (!isPowerOf2_32(ByteMask)) return true;
   1381   unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
   1382 
   1383   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
   1384   // is demanded, it needs to go into byte 0 of the result.  This means that the
   1385   // byte needs to be shifted until it lands in the right byte bucket.  The
   1386   // shift amount depends on the position: if the byte is coming from the high
   1387   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
   1388   // low part, it must be shifted left.
   1389   unsigned DestByteNo = InputByteNo + OverallLeftShift;
   1390   if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1391     return true;
   1392 
   1393   // If the destination byte value is already defined, the values are or'd
   1394   // together, which isn't a bswap (unless it's an or of the same bits).
   1395   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
   1396     return true;
   1397   ByteValues[DestByteNo] = V;
   1398   return false;
   1399 }
   1400 
   1401 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
   1402 /// If so, insert the new bswap intrinsic and return it.
   1403 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
   1404   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
   1405   if (!ITy || ITy->getBitWidth() % 16 ||
   1406       // ByteMask only allows up to 32-byte values.
   1407       ITy->getBitWidth() > 32*8)
   1408     return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
   1409 
   1410   /// ByteValues - For each byte of the result, we keep track of which value
   1411   /// defines each byte.
   1412   SmallVector<Value*, 8> ByteValues;
   1413   ByteValues.resize(ITy->getBitWidth()/8);
   1414 
   1415   // Try to find all the pieces corresponding to the bswap.
   1416   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
   1417   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
   1418     return 0;
   1419 
   1420   // Check to see if all of the bytes come from the same value.
   1421   Value *V = ByteValues[0];
   1422   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
   1423 
   1424   // Check to make sure that all of the bytes come from the same value.
   1425   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
   1426     if (ByteValues[i] != V)
   1427       return 0;
   1428   Module *M = I.getParent()->getParent()->getParent();
   1429   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
   1430   return CallInst::Create(F, V);
   1431 }
   1432 
   1433 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
   1434 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
   1435 /// we can simplify this expression to "cond ? C : D or B".
   1436 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
   1437                                          Value *C, Value *D) {
   1438   // If A is not a select of -1/0, this cannot match.
   1439   Value *Cond = 0;
   1440   if (!match(A, m_SExt(m_Value(Cond))) ||
   1441       !Cond->getType()->isIntegerTy(1))
   1442     return 0;
   1443 
   1444   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
   1445   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
   1446     return SelectInst::Create(Cond, C, B);
   1447   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
   1448     return SelectInst::Create(Cond, C, B);
   1449 
   1450   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
   1451   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
   1452     return SelectInst::Create(Cond, C, D);
   1453   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
   1454     return SelectInst::Create(Cond, C, D);
   1455   return 0;
   1456 }
   1457 
   1458 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
   1459 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
   1460   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
   1461 
   1462   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1463   if (PredicatesFoldable(LHSCC, RHSCC)) {
   1464     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1465         LHS->getOperand(1) == RHS->getOperand(0))
   1466       LHS->swapOperands();
   1467     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1468         LHS->getOperand(1) == RHS->getOperand(1)) {
   1469       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1470       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1471       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1472       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
   1473     }
   1474   }
   1475 
   1476   // handle (roughly):
   1477   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1478   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
   1479     return V;
   1480 
   1481   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1482   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
   1483   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1484   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1485   if (LHSCst == 0 || RHSCst == 0) return 0;
   1486 
   1487   if (LHSCst == RHSCst && LHSCC == RHSCC) {
   1488     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1489     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
   1490       Value *NewOr = Builder->CreateOr(Val, Val2);
   1491       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1492     }
   1493   }
   1494 
   1495   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1496   //   iff C2 + CA == C1.
   1497   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
   1498     ConstantInt *AddCst;
   1499     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
   1500       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
   1501         return Builder->CreateICmpULE(Val, LHSCst);
   1502   }
   1503 
   1504   // From here on, we only handle:
   1505   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1506   if (Val != Val2) return 0;
   1507 
   1508   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
   1509   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
   1510       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
   1511       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
   1512       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
   1513     return 0;
   1514 
   1515   // We can't fold (ugt x, C) | (sgt x, C2).
   1516   if (!PredicatesFoldable(LHSCC, RHSCC))
   1517     return 0;
   1518 
   1519   // Ensure that the larger constant is on the RHS.
   1520   bool ShouldSwap;
   1521   if (CmpInst::isSigned(LHSCC) ||
   1522       (ICmpInst::isEquality(LHSCC) &&
   1523        CmpInst::isSigned(RHSCC)))
   1524     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
   1525   else
   1526     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1527 
   1528   if (ShouldSwap) {
   1529     std::swap(LHS, RHS);
   1530     std::swap(LHSCst, RHSCst);
   1531     std::swap(LHSCC, RHSCC);
   1532   }
   1533 
   1534   // At this point, we know we have two icmp instructions
   1535   // comparing a value against two constants and or'ing the result
   1536   // together.  Because of the above check, we know that we only have
   1537   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1538   // icmp folding check above), that the two constants are not
   1539   // equal.
   1540   assert(LHSCst != RHSCst && "Compares not folded above?");
   1541 
   1542   switch (LHSCC) {
   1543   default: llvm_unreachable("Unknown integer condition code!");
   1544   case ICmpInst::ICMP_EQ:
   1545     switch (RHSCC) {
   1546     default: llvm_unreachable("Unknown integer condition code!");
   1547     case ICmpInst::ICMP_EQ:
   1548       if (LHSCst == SubOne(RHSCst)) {
   1549         // (X == 13 | X == 14) -> X-13 <u 2
   1550         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1551         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1552         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
   1553         return Builder->CreateICmpULT(Add, AddCST);
   1554       }
   1555 
   1556       if (LHS->getOperand(0) == RHS->getOperand(0)) {
   1557         // if LHSCst and RHSCst differ only by one bit:
   1558         // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
   1559         assert(LHSCst->getValue().ule(LHSCst->getValue()));
   1560 
   1561         APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
   1562         if (Xor.isPowerOf2()) {
   1563           Value *NegCst = Builder->getInt(~Xor);
   1564           Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
   1565           return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
   1566         }
   1567       }
   1568 
   1569       break;                         // (X == 13 | X == 15) -> no change
   1570     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
   1571     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
   1572       break;
   1573     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
   1574     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
   1575     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
   1576       return RHS;
   1577     }
   1578     break;
   1579   case ICmpInst::ICMP_NE:
   1580     switch (RHSCC) {
   1581     default: llvm_unreachable("Unknown integer condition code!");
   1582     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
   1583     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
   1584     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
   1585       return LHS;
   1586     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
   1587     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
   1588     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
   1589       return ConstantInt::getTrue(LHS->getContext());
   1590     }
   1591   case ICmpInst::ICMP_ULT:
   1592     switch (RHSCC) {
   1593     default: llvm_unreachable("Unknown integer condition code!");
   1594     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
   1595       break;
   1596     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
   1597       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1598       // this can cause overflow.
   1599       if (RHSCst->isMaxValue(false))
   1600         return LHS;
   1601       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
   1602     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
   1603       break;
   1604     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
   1605     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
   1606       return RHS;
   1607     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
   1608       break;
   1609     }
   1610     break;
   1611   case ICmpInst::ICMP_SLT:
   1612     switch (RHSCC) {
   1613     default: llvm_unreachable("Unknown integer condition code!");
   1614     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
   1615       break;
   1616     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
   1617       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1618       // this can cause overflow.
   1619       if (RHSCst->isMaxValue(true))
   1620         return LHS;
   1621       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
   1622     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
   1623       break;
   1624     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
   1625     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
   1626       return RHS;
   1627     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
   1628       break;
   1629     }
   1630     break;
   1631   case ICmpInst::ICMP_UGT:
   1632     switch (RHSCC) {
   1633     default: llvm_unreachable("Unknown integer condition code!");
   1634     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
   1635     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
   1636       return LHS;
   1637     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
   1638       break;
   1639     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
   1640     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
   1641       return ConstantInt::getTrue(LHS->getContext());
   1642     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
   1643       break;
   1644     }
   1645     break;
   1646   case ICmpInst::ICMP_SGT:
   1647     switch (RHSCC) {
   1648     default: llvm_unreachable("Unknown integer condition code!");
   1649     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
   1650     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
   1651       return LHS;
   1652     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
   1653       break;
   1654     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
   1655     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
   1656       return ConstantInt::getTrue(LHS->getContext());
   1657     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
   1658       break;
   1659     }
   1660     break;
   1661   }
   1662   return 0;
   1663 }
   1664 
   1665 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
   1666 /// instcombine, this returns a Value which should already be inserted into the
   1667 /// function.
   1668 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   1669   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1670       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1671       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
   1672     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   1673       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   1674         // If either of the constants are nans, then the whole thing returns
   1675         // true.
   1676         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   1677           return ConstantInt::getTrue(LHS->getContext());
   1678 
   1679         // Otherwise, no need to compare the two constants, compare the
   1680         // rest.
   1681         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1682       }
   1683 
   1684     // Handle vector zeros.  This occurs because the canonical form of
   1685     // "fcmp uno x,x" is "fcmp uno x, 0".
   1686     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   1687         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   1688       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1689 
   1690     return 0;
   1691   }
   1692 
   1693   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   1694   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   1695   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   1696 
   1697   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   1698     // Swap RHS operands to match LHS.
   1699     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   1700     std::swap(Op1LHS, Op1RHS);
   1701   }
   1702   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   1703     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
   1704     if (Op0CC == Op1CC)
   1705       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   1706     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
   1707       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
   1708     if (Op0CC == FCmpInst::FCMP_FALSE)
   1709       return RHS;
   1710     if (Op1CC == FCmpInst::FCMP_FALSE)
   1711       return LHS;
   1712     bool Op0Ordered;
   1713     bool Op1Ordered;
   1714     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1715     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1716     if (Op0Ordered == Op1Ordered) {
   1717       // If both are ordered or unordered, return a new fcmp with
   1718       // or'ed predicates.
   1719       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
   1720     }
   1721   }
   1722   return 0;
   1723 }
   1724 
   1725 /// FoldOrWithConstants - This helper function folds:
   1726 ///
   1727 ///     ((A | B) & C1) | (B & C2)
   1728 ///
   1729 /// into:
   1730 ///
   1731 ///     (A & C1) | B
   1732 ///
   1733 /// when the XOR of the two constants is "all ones" (-1).
   1734 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
   1735                                                Value *A, Value *B, Value *C) {
   1736   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   1737   if (!CI1) return 0;
   1738 
   1739   Value *V1 = 0;
   1740   ConstantInt *CI2 = 0;
   1741   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
   1742 
   1743   APInt Xor = CI1->getValue() ^ CI2->getValue();
   1744   if (!Xor.isAllOnesValue()) return 0;
   1745 
   1746   if (V1 == A || V1 == B) {
   1747     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
   1748     return BinaryOperator::CreateOr(NewOp, V1);
   1749   }
   1750 
   1751   return 0;
   1752 }
   1753 
   1754 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   1755   bool Changed = SimplifyAssociativeOrCommutative(I);
   1756   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1757 
   1758   if (Value *V = SimplifyOrInst(Op0, Op1, TD))
   1759     return ReplaceInstUsesWith(I, V);
   1760 
   1761   // (A&B)|(A&C) -> A&(B|C) etc
   1762   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1763     return ReplaceInstUsesWith(I, V);
   1764 
   1765   // See if we can simplify any instructions used by the instruction whose sole
   1766   // purpose is to compute bits we don't care about.
   1767   if (SimplifyDemandedInstructionBits(I))
   1768     return &I;
   1769 
   1770   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   1771     ConstantInt *C1 = 0; Value *X = 0;
   1772     // (X & C1) | C2 --> (X | C2) & (C1|C2)
   1773     // iff (C1 & C2) == 0.
   1774     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
   1775         (RHS->getValue() & C1->getValue()) != 0 &&
   1776         Op0->hasOneUse()) {
   1777       Value *Or = Builder->CreateOr(X, RHS);
   1778       Or->takeName(Op0);
   1779       return BinaryOperator::CreateAnd(Or,
   1780                          ConstantInt::get(I.getContext(),
   1781                                           RHS->getValue() | C1->getValue()));
   1782     }
   1783 
   1784     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
   1785     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
   1786         Op0->hasOneUse()) {
   1787       Value *Or = Builder->CreateOr(X, RHS);
   1788       Or->takeName(Op0);
   1789       return BinaryOperator::CreateXor(Or,
   1790                  ConstantInt::get(I.getContext(),
   1791                                   C1->getValue() & ~RHS->getValue()));
   1792     }
   1793 
   1794     // Try to fold constant and into select arguments.
   1795     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1796       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1797         return R;
   1798 
   1799     if (isa<PHINode>(Op0))
   1800       if (Instruction *NV = FoldOpIntoPhi(I))
   1801         return NV;
   1802   }
   1803 
   1804   Value *A = 0, *B = 0;
   1805   ConstantInt *C1 = 0, *C2 = 0;
   1806 
   1807   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   1808   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   1809   if (match(Op0, m_Or(m_Value(), m_Value())) ||
   1810       match(Op1, m_Or(m_Value(), m_Value())) ||
   1811       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   1812        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
   1813     if (Instruction *BSwap = MatchBSwap(I))
   1814       return BSwap;
   1815   }
   1816 
   1817   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   1818   if (Op0->hasOneUse() &&
   1819       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1820       MaskedValueIsZero(Op1, C1->getValue())) {
   1821     Value *NOr = Builder->CreateOr(A, Op1);
   1822     NOr->takeName(Op0);
   1823     return BinaryOperator::CreateXor(NOr, C1);
   1824   }
   1825 
   1826   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   1827   if (Op1->hasOneUse() &&
   1828       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1829       MaskedValueIsZero(Op0, C1->getValue())) {
   1830     Value *NOr = Builder->CreateOr(A, Op0);
   1831     NOr->takeName(Op0);
   1832     return BinaryOperator::CreateXor(NOr, C1);
   1833   }
   1834 
   1835   // (A & C)|(B & D)
   1836   Value *C = 0, *D = 0;
   1837   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1838       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1839     Value *V1 = 0, *V2 = 0;
   1840     C1 = dyn_cast<ConstantInt>(C);
   1841     C2 = dyn_cast<ConstantInt>(D);
   1842     if (C1 && C2) {  // (A & C1)|(B & C2)
   1843       // If we have: ((V + N) & C1) | (V & C2)
   1844       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1845       // replace with V+N.
   1846       if (C1->getValue() == ~C2->getValue()) {
   1847         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
   1848             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1849           // Add commutes, try both ways.
   1850           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
   1851             return ReplaceInstUsesWith(I, A);
   1852           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
   1853             return ReplaceInstUsesWith(I, A);
   1854         }
   1855         // Or commutes, try both ways.
   1856         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
   1857             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1858           // Add commutes, try both ways.
   1859           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
   1860             return ReplaceInstUsesWith(I, B);
   1861           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
   1862             return ReplaceInstUsesWith(I, B);
   1863         }
   1864       }
   1865 
   1866       if ((C1->getValue() & C2->getValue()) == 0) {
   1867         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   1868         // iff (C1&C2) == 0 and (N&~C1) == 0
   1869         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   1870             ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
   1871              (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
   1872           return BinaryOperator::CreateAnd(A,
   1873                                ConstantInt::get(A->getContext(),
   1874                                                 C1->getValue()|C2->getValue()));
   1875         // Or commutes, try both ways.
   1876         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   1877             ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
   1878              (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
   1879           return BinaryOperator::CreateAnd(B,
   1880                                ConstantInt::get(B->getContext(),
   1881                                                 C1->getValue()|C2->getValue()));
   1882 
   1883         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   1884         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   1885         ConstantInt *C3 = 0, *C4 = 0;
   1886         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   1887             (C3->getValue() & ~C1->getValue()) == 0 &&
   1888             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   1889             (C4->getValue() & ~C2->getValue()) == 0) {
   1890           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   1891           return BinaryOperator::CreateAnd(V2,
   1892                                ConstantInt::get(B->getContext(),
   1893                                                 C1->getValue()|C2->getValue()));
   1894         }
   1895       }
   1896     }
   1897 
   1898     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
   1899     // Don't do this for vector select idioms, the code generator doesn't handle
   1900     // them well yet.
   1901     if (!I.getType()->isVectorTy()) {
   1902       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
   1903         return Match;
   1904       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
   1905         return Match;
   1906       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
   1907         return Match;
   1908       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
   1909         return Match;
   1910     }
   1911 
   1912     // ((A&~B)|(~A&B)) -> A^B
   1913     if ((match(C, m_Not(m_Specific(D))) &&
   1914          match(B, m_Not(m_Specific(A)))))
   1915       return BinaryOperator::CreateXor(A, D);
   1916     // ((~B&A)|(~A&B)) -> A^B
   1917     if ((match(A, m_Not(m_Specific(D))) &&
   1918          match(B, m_Not(m_Specific(C)))))
   1919       return BinaryOperator::CreateXor(C, D);
   1920     // ((A&~B)|(B&~A)) -> A^B
   1921     if ((match(C, m_Not(m_Specific(B))) &&
   1922          match(D, m_Not(m_Specific(A)))))
   1923       return BinaryOperator::CreateXor(A, B);
   1924     // ((~B&A)|(B&~A)) -> A^B
   1925     if ((match(A, m_Not(m_Specific(B))) &&
   1926          match(D, m_Not(m_Specific(C)))))
   1927       return BinaryOperator::CreateXor(C, B);
   1928 
   1929     // ((A|B)&1)|(B&-2) -> (A&1) | B
   1930     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
   1931         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
   1932       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
   1933       if (Ret) return Ret;
   1934     }
   1935     // (B&-2)|((A|B)&1) -> (A&1) | B
   1936     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
   1937         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
   1938       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
   1939       if (Ret) return Ret;
   1940     }
   1941   }
   1942 
   1943   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
   1944   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1945     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1946       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1947           SI0->getOperand(1) == SI1->getOperand(1) &&
   1948           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1949         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
   1950                                          SI0->getName());
   1951         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1952                                       SI1->getOperand(1));
   1953       }
   1954   }
   1955 
   1956   // (~A | ~B) == (~(A & B)) - De Morgan's Law
   1957   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1958     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1959       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1960         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
   1961                                         I.getName()+".demorgan");
   1962         return BinaryOperator::CreateNot(And);
   1963       }
   1964 
   1965   // Canonicalize xor to the RHS.
   1966   bool SwappedForXor = false;
   1967   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
   1968     std::swap(Op0, Op1);
   1969     SwappedForXor = true;
   1970   }
   1971 
   1972   // A | ( A ^ B) -> A |  B
   1973   // A | (~A ^ B) -> A | ~B
   1974   // (A & B) | (A ^ B)
   1975   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   1976     if (Op0 == A || Op0 == B)
   1977       return BinaryOperator::CreateOr(A, B);
   1978 
   1979     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
   1980         match(Op0, m_And(m_Specific(B), m_Specific(A))))
   1981       return BinaryOperator::CreateOr(A, B);
   1982 
   1983     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   1984       Value *Not = Builder->CreateNot(B, B->getName()+".not");
   1985       return BinaryOperator::CreateOr(Not, Op0);
   1986     }
   1987     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   1988       Value *Not = Builder->CreateNot(A, A->getName()+".not");
   1989       return BinaryOperator::CreateOr(Not, Op0);
   1990     }
   1991   }
   1992 
   1993   // A | ~(A | B) -> A | ~B
   1994   // A | ~(A ^ B) -> A | ~B
   1995   if (match(Op1, m_Not(m_Value(A))))
   1996     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   1997       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   1998           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   1999                                B->getOpcode() == Instruction::Xor)) {
   2000         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   2001                                                  B->getOperand(0);
   2002         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
   2003         return BinaryOperator::CreateOr(Not, Op0);
   2004       }
   2005 
   2006   if (SwappedForXor)
   2007     std::swap(Op0, Op1);
   2008 
   2009   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2010     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2011       if (Value *Res = FoldOrOfICmps(LHS, RHS))
   2012         return ReplaceInstUsesWith(I, Res);
   2013 
   2014   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
   2015   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   2016     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   2017       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2018         return ReplaceInstUsesWith(I, Res);
   2019 
   2020   // fold (or (cast A), (cast B)) -> (cast (or A, B))
   2021   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2022     CastInst *Op1C = dyn_cast<CastInst>(Op1);
   2023     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
   2024       Type *SrcTy = Op0C->getOperand(0)->getType();
   2025       if (SrcTy == Op1C->getOperand(0)->getType() &&
   2026           SrcTy->isIntOrIntVectorTy()) {
   2027         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   2028 
   2029         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
   2030             // Only do this if the casts both really cause code to be
   2031             // generated.
   2032             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   2033             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   2034           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
   2035           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2036         }
   2037 
   2038         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
   2039         // cast is otherwise not optimizable.  This happens for vector sexts.
   2040         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   2041           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   2042             if (Value *Res = FoldOrOfICmps(LHS, RHS))
   2043               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2044 
   2045         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
   2046         // cast is otherwise not optimizable.  This happens for vector sexts.
   2047         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   2048           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   2049             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2050               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2051       }
   2052     }
   2053   }
   2054 
   2055   // or(sext(A), B) -> A ? -1 : B where A is an i1
   2056   // or(A, sext(B)) -> B ? -1 : A where B is an i1
   2057   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2058     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2059   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2060     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2061 
   2062   // Note: If we've gotten to the point of visiting the outer OR, then the
   2063   // inner one couldn't be simplified.  If it was a constant, then it won't
   2064   // be simplified by a later pass either, so we try swapping the inner/outer
   2065   // ORs in the hopes that we'll be able to simplify it this way.
   2066   // (X|C) | V --> (X|V) | C
   2067   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2068       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2069     Value *Inner = Builder->CreateOr(A, Op1);
   2070     Inner->takeName(Op0);
   2071     return BinaryOperator::CreateOr(Inner, C1);
   2072   }
   2073 
   2074   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
   2075   // Since this OR statement hasn't been optimized further yet, we hope
   2076   // that this transformation will allow the new ORs to be optimized.
   2077   {
   2078     Value *X = 0, *Y = 0;
   2079     if (Op0->hasOneUse() && Op1->hasOneUse() &&
   2080         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
   2081         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
   2082       Value *orTrue = Builder->CreateOr(A, C);
   2083       Value *orFalse = Builder->CreateOr(B, D);
   2084       return SelectInst::Create(X, orTrue, orFalse);
   2085     }
   2086   }
   2087 
   2088   return Changed ? &I : 0;
   2089 }
   2090 
   2091 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2092   bool Changed = SimplifyAssociativeOrCommutative(I);
   2093   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2094 
   2095   if (Value *V = SimplifyXorInst(Op0, Op1, TD))
   2096     return ReplaceInstUsesWith(I, V);
   2097 
   2098   // (A&B)^(A&C) -> A&(B^C) etc
   2099   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2100     return ReplaceInstUsesWith(I, V);
   2101 
   2102   // See if we can simplify any instructions used by the instruction whose sole
   2103   // purpose is to compute bits we don't care about.
   2104   if (SimplifyDemandedInstructionBits(I))
   2105     return &I;
   2106 
   2107   // Is this a ~ operation?
   2108   if (Value *NotOp = dyn_castNotVal(&I)) {
   2109     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
   2110       if (Op0I->getOpcode() == Instruction::And ||
   2111           Op0I->getOpcode() == Instruction::Or) {
   2112         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
   2113         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
   2114         if (dyn_castNotVal(Op0I->getOperand(1)))
   2115           Op0I->swapOperands();
   2116         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
   2117           Value *NotY =
   2118             Builder->CreateNot(Op0I->getOperand(1),
   2119                                Op0I->getOperand(1)->getName()+".not");
   2120           if (Op0I->getOpcode() == Instruction::And)
   2121             return BinaryOperator::CreateOr(Op0NotVal, NotY);
   2122           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
   2123         }
   2124 
   2125         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
   2126         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
   2127         if (isFreeToInvert(Op0I->getOperand(0)) &&
   2128             isFreeToInvert(Op0I->getOperand(1))) {
   2129           Value *NotX =
   2130             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
   2131           Value *NotY =
   2132             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
   2133           if (Op0I->getOpcode() == Instruction::And)
   2134             return BinaryOperator::CreateOr(NotX, NotY);
   2135           return BinaryOperator::CreateAnd(NotX, NotY);
   2136         }
   2137 
   2138       } else if (Op0I->getOpcode() == Instruction::AShr) {
   2139         // ~(~X >>s Y) --> (X >>s Y)
   2140         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
   2141           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
   2142       }
   2143     }
   2144   }
   2145 
   2146 
   2147   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2148     if (RHS->isOne() && Op0->hasOneUse())
   2149       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
   2150       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
   2151         return CmpInst::Create(CI->getOpcode(),
   2152                                CI->getInversePredicate(),
   2153                                CI->getOperand(0), CI->getOperand(1));
   2154 
   2155     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
   2156     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2157       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
   2158         if (CI->hasOneUse() && Op0C->hasOneUse()) {
   2159           Instruction::CastOps Opcode = Op0C->getOpcode();
   2160           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
   2161               (RHS == ConstantExpr::getCast(Opcode,
   2162                                            ConstantInt::getTrue(I.getContext()),
   2163                                             Op0C->getDestTy()))) {
   2164             CI->setPredicate(CI->getInversePredicate());
   2165             return CastInst::Create(Opcode, CI, Op0C->getType());
   2166           }
   2167         }
   2168       }
   2169     }
   2170 
   2171     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2172       // ~(c-X) == X-c-1 == X+(-c-1)
   2173       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
   2174         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
   2175           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
   2176           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
   2177                                       ConstantInt::get(I.getType(), 1));
   2178           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
   2179         }
   2180 
   2181       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2182         if (Op0I->getOpcode() == Instruction::Add) {
   2183           // ~(X-c) --> (-c-1)-X
   2184           if (RHS->isAllOnesValue()) {
   2185             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
   2186             return BinaryOperator::CreateSub(
   2187                            ConstantExpr::getSub(NegOp0CI,
   2188                                       ConstantInt::get(I.getType(), 1)),
   2189                                       Op0I->getOperand(0));
   2190           } else if (RHS->getValue().isSignBit()) {
   2191             // (X + C) ^ signbit -> (X + C + signbit)
   2192             Constant *C = ConstantInt::get(I.getContext(),
   2193                                            RHS->getValue() + Op0CI->getValue());
   2194             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
   2195 
   2196           }
   2197         } else if (Op0I->getOpcode() == Instruction::Or) {
   2198           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
   2199           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
   2200             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
   2201             // Anything in both C1 and C2 is known to be zero, remove it from
   2202             // NewRHS.
   2203             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
   2204             NewRHS = ConstantExpr::getAnd(NewRHS,
   2205                                        ConstantExpr::getNot(CommonBits));
   2206             Worklist.Add(Op0I);
   2207             I.setOperand(0, Op0I->getOperand(0));
   2208             I.setOperand(1, NewRHS);
   2209             return &I;
   2210           }
   2211         } else if (Op0I->getOpcode() == Instruction::LShr) {
   2212           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
   2213           // E1 = "X ^ C1"
   2214           BinaryOperator *E1;
   2215           ConstantInt *C1;
   2216           if (Op0I->hasOneUse() &&
   2217               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
   2218               E1->getOpcode() == Instruction::Xor &&
   2219               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
   2220             // fold (C1 >> C2) ^ C3
   2221             ConstantInt *C2 = Op0CI, *C3 = RHS;
   2222             APInt FoldConst = C1->getValue().lshr(C2->getValue());
   2223             FoldConst ^= C3->getValue();
   2224             // Prepare the two operands.
   2225             Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
   2226             Opnd0->takeName(Op0I);
   2227             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
   2228             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
   2229 
   2230             return BinaryOperator::CreateXor(Opnd0, FoldVal);
   2231           }
   2232         }
   2233       }
   2234     }
   2235 
   2236     // Try to fold constant and into select arguments.
   2237     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2238       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2239         return R;
   2240     if (isa<PHINode>(Op0))
   2241       if (Instruction *NV = FoldOpIntoPhi(I))
   2242         return NV;
   2243   }
   2244 
   2245   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
   2246   if (Op1I) {
   2247     Value *A, *B;
   2248     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2249       if (A == Op0) {              // B^(B|A) == (A|B)^B
   2250         Op1I->swapOperands();
   2251         I.swapOperands();
   2252         std::swap(Op0, Op1);
   2253       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
   2254         I.swapOperands();     // Simplified below.
   2255         std::swap(Op0, Op1);
   2256       }
   2257     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
   2258                Op1I->hasOneUse()){
   2259       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2260         Op1I->swapOperands();
   2261         std::swap(A, B);
   2262       }
   2263       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2264         I.swapOperands();     // Simplified below.
   2265         std::swap(Op0, Op1);
   2266       }
   2267     }
   2268   }
   2269 
   2270   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
   2271   if (Op0I) {
   2272     Value *A, *B;
   2273     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2274         Op0I->hasOneUse()) {
   2275       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2276         std::swap(A, B);
   2277       if (B == Op1)                                  // (A|B)^B == A & ~B
   2278         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
   2279     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2280                Op0I->hasOneUse()){
   2281       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2282         std::swap(A, B);
   2283       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2284           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
   2285         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
   2286       }
   2287     }
   2288   }
   2289 
   2290   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
   2291   if (Op0I && Op1I && Op0I->isShift() &&
   2292       Op0I->getOpcode() == Op1I->getOpcode() &&
   2293       Op0I->getOperand(1) == Op1I->getOperand(1) &&
   2294       (Op0I->hasOneUse() || Op1I->hasOneUse())) {
   2295     Value *NewOp =
   2296       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
   2297                          Op0I->getName());
   2298     return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
   2299                                   Op1I->getOperand(1));
   2300   }
   2301 
   2302   if (Op0I && Op1I) {
   2303     Value *A, *B, *C, *D;
   2304     // (A & B)^(A | B) -> A ^ B
   2305     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2306         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
   2307       if ((A == C && B == D) || (A == D && B == C))
   2308         return BinaryOperator::CreateXor(A, B);
   2309     }
   2310     // (A | B)^(A & B) -> A ^ B
   2311     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2312         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
   2313       if ((A == C && B == D) || (A == D && B == C))
   2314         return BinaryOperator::CreateXor(A, B);
   2315     }
   2316   }
   2317 
   2318   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2319   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2320     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2321       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2322         if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2323             LHS->getOperand(1) == RHS->getOperand(0))
   2324           LHS->swapOperands();
   2325         if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2326             LHS->getOperand(1) == RHS->getOperand(1)) {
   2327           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2328           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2329           bool isSigned = LHS->isSigned() || RHS->isSigned();
   2330           return ReplaceInstUsesWith(I,
   2331                                getNewICmpValue(isSigned, Code, Op0, Op1,
   2332                                                Builder));
   2333         }
   2334       }
   2335 
   2336   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
   2337   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2338     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
   2339       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
   2340         Type *SrcTy = Op0C->getOperand(0)->getType();
   2341         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
   2342             // Only do this if the casts both really cause code to be generated.
   2343             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
   2344                                I.getType()) &&
   2345             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
   2346                                I.getType())) {
   2347           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
   2348                                             Op1C->getOperand(0), I.getName());
   2349           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2350         }
   2351       }
   2352   }
   2353 
   2354   return Changed ? &I : 0;
   2355 }
   2356