Home | History | Annotate | Download | only in Instrumentation
      1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of AddressSanitizer, an address sanity checker.
     11 // Details of the algorithm:
     12 //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "asan"
     17 
     18 #include "llvm/Transforms/Instrumentation.h"
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/DepthFirstIterator.h"
     22 #include "llvm/ADT/OwningPtr.h"
     23 #include "llvm/ADT/SmallSet.h"
     24 #include "llvm/ADT/SmallString.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/StringExtras.h"
     27 #include "llvm/ADT/Triple.h"
     28 #include "llvm/DIBuilder.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/IRBuilder.h"
     32 #include "llvm/IR/InlineAsm.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/LLVMContext.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Type.h"
     37 #include "llvm/InstVisitor.h"
     38 #include "llvm/Support/CallSite.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/DataTypes.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Support/system_error.h"
     44 #include "llvm/Target/TargetMachine.h"
     45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     46 #include "llvm/Transforms/Utils/BlackList.h"
     47 #include "llvm/Transforms/Utils/Local.h"
     48 #include "llvm/Transforms/Utils/ModuleUtils.h"
     49 #include <algorithm>
     50 #include <string>
     51 
     52 using namespace llvm;
     53 
     54 static const uint64_t kDefaultShadowScale = 3;
     55 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
     56 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
     57 static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000;  // < 2G.
     58 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
     59 
     60 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
     61 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
     62 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
     63 
     64 static const char *kAsanModuleCtorName = "asan.module_ctor";
     65 static const char *kAsanModuleDtorName = "asan.module_dtor";
     66 static const int   kAsanCtorAndCtorPriority = 1;
     67 static const char *kAsanReportErrorTemplate = "__asan_report_";
     68 static const char *kAsanReportLoadN = "__asan_report_load_n";
     69 static const char *kAsanReportStoreN = "__asan_report_store_n";
     70 static const char *kAsanRegisterGlobalsName = "__asan_register_globals";
     71 static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals";
     72 static const char *kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
     73 static const char *kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
     74 static const char *kAsanInitName = "__asan_init_v2";
     75 static const char *kAsanHandleNoReturnName = "__asan_handle_no_return";
     76 static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
     77 static const char *kAsanMappingScaleName = "__asan_mapping_scale";
     78 static const char *kAsanStackMallocName = "__asan_stack_malloc";
     79 static const char *kAsanStackFreeName = "__asan_stack_free";
     80 static const char *kAsanGenPrefix = "__asan_gen_";
     81 static const char *kAsanPoisonStackMemoryName = "__asan_poison_stack_memory";
     82 static const char *kAsanUnpoisonStackMemoryName =
     83     "__asan_unpoison_stack_memory";
     84 
     85 static const int kAsanStackLeftRedzoneMagic = 0xf1;
     86 static const int kAsanStackMidRedzoneMagic = 0xf2;
     87 static const int kAsanStackRightRedzoneMagic = 0xf3;
     88 static const int kAsanStackPartialRedzoneMagic = 0xf4;
     89 
     90 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
     91 static const size_t kNumberOfAccessSizes = 5;
     92 
     93 // Command-line flags.
     94 
     95 // This flag may need to be replaced with -f[no-]asan-reads.
     96 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
     97        cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
     98 static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
     99        cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
    100 static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
    101        cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
    102        cl::Hidden, cl::init(true));
    103 static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
    104        cl::desc("use instrumentation with slow path for all accesses"),
    105        cl::Hidden, cl::init(false));
    106 // This flag limits the number of instructions to be instrumented
    107 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
    108 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
    109 // set it to 10000.
    110 static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
    111        cl::init(10000),
    112        cl::desc("maximal number of instructions to instrument in any given BB"),
    113        cl::Hidden);
    114 // This flag may need to be replaced with -f[no]asan-stack.
    115 static cl::opt<bool> ClStack("asan-stack",
    116        cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
    117 // This flag may need to be replaced with -f[no]asan-use-after-return.
    118 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
    119        cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
    120 // This flag may need to be replaced with -f[no]asan-globals.
    121 static cl::opt<bool> ClGlobals("asan-globals",
    122        cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
    123 static cl::opt<bool> ClInitializers("asan-initialization-order",
    124        cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false));
    125 static cl::opt<bool> ClMemIntrin("asan-memintrin",
    126        cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
    127 static cl::opt<bool> ClRealignStack("asan-realign-stack",
    128        cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true));
    129 static cl::opt<std::string> ClBlacklistFile("asan-blacklist",
    130        cl::desc("File containing the list of objects to ignore "
    131                 "during instrumentation"), cl::Hidden);
    132 
    133 // These flags allow to change the shadow mapping.
    134 // The shadow mapping looks like
    135 //    Shadow = (Mem >> scale) + (1 << offset_log)
    136 static cl::opt<int> ClMappingScale("asan-mapping-scale",
    137        cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
    138 static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
    139        cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
    140 static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset",
    141        cl::desc("Use short immediate constant as the mapping offset for 64bit"),
    142        cl::Hidden, cl::init(true));
    143 
    144 // Optimization flags. Not user visible, used mostly for testing
    145 // and benchmarking the tool.
    146 static cl::opt<bool> ClOpt("asan-opt",
    147        cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
    148 static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
    149        cl::desc("Instrument the same temp just once"), cl::Hidden,
    150        cl::init(true));
    151 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
    152        cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
    153 
    154 static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
    155        cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
    156        cl::Hidden, cl::init(false));
    157 
    158 // Debug flags.
    159 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
    160                             cl::init(0));
    161 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
    162                                  cl::Hidden, cl::init(0));
    163 static cl::opt<std::string> ClDebugFunc("asan-debug-func",
    164                                         cl::Hidden, cl::desc("Debug func"));
    165 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
    166                                cl::Hidden, cl::init(-1));
    167 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
    168                                cl::Hidden, cl::init(-1));
    169 
    170 namespace {
    171 /// A set of dynamically initialized globals extracted from metadata.
    172 class SetOfDynamicallyInitializedGlobals {
    173  public:
    174   void Init(Module& M) {
    175     // Clang generates metadata identifying all dynamically initialized globals.
    176     NamedMDNode *DynamicGlobals =
    177         M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
    178     if (!DynamicGlobals)
    179       return;
    180     for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
    181       MDNode *MDN = DynamicGlobals->getOperand(i);
    182       assert(MDN->getNumOperands() == 1);
    183       Value *VG = MDN->getOperand(0);
    184       // The optimizer may optimize away a global entirely, in which case we
    185       // cannot instrument access to it.
    186       if (!VG)
    187         continue;
    188       DynInitGlobals.insert(cast<GlobalVariable>(VG));
    189     }
    190   }
    191   bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; }
    192  private:
    193   SmallSet<GlobalValue*, 32> DynInitGlobals;
    194 };
    195 
    196 /// This struct defines the shadow mapping using the rule:
    197 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
    198 struct ShadowMapping {
    199   int Scale;
    200   uint64_t Offset;
    201   bool OrShadowOffset;
    202 };
    203 
    204 static ShadowMapping getShadowMapping(const Module &M, int LongSize,
    205                                       bool ZeroBaseShadow) {
    206   llvm::Triple TargetTriple(M.getTargetTriple());
    207   bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
    208   bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX;
    209   bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64;
    210   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
    211 
    212   ShadowMapping Mapping;
    213 
    214   // OR-ing shadow offset if more efficient (at least on x86),
    215   // but on ppc64 we have to use add since the shadow offset is not neccesary
    216   // 1/8-th of the address space.
    217   Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset;
    218 
    219   Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 :
    220       (LongSize == 32 ? kDefaultShadowOffset32 :
    221        IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64);
    222   if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) {
    223     assert(LongSize == 64);
    224     Mapping.Offset = kDefaultShort64bitShadowOffset;
    225   }
    226   if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) {
    227     // Zero offset log is the special case.
    228     Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog;
    229   }
    230 
    231   Mapping.Scale = kDefaultShadowScale;
    232   if (ClMappingScale) {
    233     Mapping.Scale = ClMappingScale;
    234   }
    235 
    236   return Mapping;
    237 }
    238 
    239 static size_t RedzoneSizeForScale(int MappingScale) {
    240   // Redzone used for stack and globals is at least 32 bytes.
    241   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
    242   return std::max(32U, 1U << MappingScale);
    243 }
    244 
    245 /// AddressSanitizer: instrument the code in module to find memory bugs.
    246 struct AddressSanitizer : public FunctionPass {
    247   AddressSanitizer(bool CheckInitOrder = true,
    248                    bool CheckUseAfterReturn = false,
    249                    bool CheckLifetime = false,
    250                    StringRef BlacklistFile = StringRef(),
    251                    bool ZeroBaseShadow = false)
    252       : FunctionPass(ID),
    253         CheckInitOrder(CheckInitOrder || ClInitializers),
    254         CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn),
    255         CheckLifetime(CheckLifetime || ClCheckLifetime),
    256         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
    257                                             : BlacklistFile),
    258         ZeroBaseShadow(ZeroBaseShadow) {}
    259   virtual const char *getPassName() const {
    260     return "AddressSanitizerFunctionPass";
    261   }
    262   void instrumentMop(Instruction *I);
    263   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
    264                          Value *Addr, uint32_t TypeSize, bool IsWrite,
    265                          Value *SizeArgument);
    266   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
    267                            Value *ShadowValue, uint32_t TypeSize);
    268   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
    269                                  bool IsWrite, size_t AccessSizeIndex,
    270                                  Value *SizeArgument);
    271   bool instrumentMemIntrinsic(MemIntrinsic *MI);
    272   void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
    273                                    Value *Size,
    274                                    Instruction *InsertBefore, bool IsWrite);
    275   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
    276   bool runOnFunction(Function &F);
    277   void createInitializerPoisonCalls(Module &M,
    278                                     Value *FirstAddr, Value *LastAddr);
    279   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
    280   void emitShadowMapping(Module &M, IRBuilder<> &IRB) const;
    281   virtual bool doInitialization(Module &M);
    282   static char ID;  // Pass identification, replacement for typeid
    283 
    284  private:
    285   void initializeCallbacks(Module &M);
    286 
    287   bool ShouldInstrumentGlobal(GlobalVariable *G);
    288   bool LooksLikeCodeInBug11395(Instruction *I);
    289   void FindDynamicInitializers(Module &M);
    290 
    291   bool CheckInitOrder;
    292   bool CheckUseAfterReturn;
    293   bool CheckLifetime;
    294   SmallString<64> BlacklistFile;
    295   bool ZeroBaseShadow;
    296 
    297   LLVMContext *C;
    298   DataLayout *TD;
    299   int LongSize;
    300   Type *IntptrTy;
    301   ShadowMapping Mapping;
    302   Function *AsanCtorFunction;
    303   Function *AsanInitFunction;
    304   Function *AsanHandleNoReturnFunc;
    305   OwningPtr<BlackList> BL;
    306   // This array is indexed by AccessIsWrite and log2(AccessSize).
    307   Function *AsanErrorCallback[2][kNumberOfAccessSizes];
    308   // This array is indexed by AccessIsWrite.
    309   Function *AsanErrorCallbackSized[2];
    310   InlineAsm *EmptyAsm;
    311   SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
    312 
    313   friend struct FunctionStackPoisoner;
    314 };
    315 
    316 class AddressSanitizerModule : public ModulePass {
    317  public:
    318   AddressSanitizerModule(bool CheckInitOrder = true,
    319                          StringRef BlacklistFile = StringRef(),
    320                          bool ZeroBaseShadow = false)
    321       : ModulePass(ID),
    322         CheckInitOrder(CheckInitOrder || ClInitializers),
    323         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
    324                                             : BlacklistFile),
    325         ZeroBaseShadow(ZeroBaseShadow) {}
    326   bool runOnModule(Module &M);
    327   static char ID;  // Pass identification, replacement for typeid
    328   virtual const char *getPassName() const {
    329     return "AddressSanitizerModule";
    330   }
    331 
    332  private:
    333   void initializeCallbacks(Module &M);
    334 
    335   bool ShouldInstrumentGlobal(GlobalVariable *G);
    336   void createInitializerPoisonCalls(Module &M, Value *FirstAddr,
    337                                     Value *LastAddr);
    338   size_t RedzoneSize() const {
    339     return RedzoneSizeForScale(Mapping.Scale);
    340   }
    341 
    342   bool CheckInitOrder;
    343   SmallString<64> BlacklistFile;
    344   bool ZeroBaseShadow;
    345 
    346   OwningPtr<BlackList> BL;
    347   SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
    348   Type *IntptrTy;
    349   LLVMContext *C;
    350   DataLayout *TD;
    351   ShadowMapping Mapping;
    352   Function *AsanPoisonGlobals;
    353   Function *AsanUnpoisonGlobals;
    354   Function *AsanRegisterGlobals;
    355   Function *AsanUnregisterGlobals;
    356 };
    357 
    358 // Stack poisoning does not play well with exception handling.
    359 // When an exception is thrown, we essentially bypass the code
    360 // that unpoisones the stack. This is why the run-time library has
    361 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
    362 // stack in the interceptor. This however does not work inside the
    363 // actual function which catches the exception. Most likely because the
    364 // compiler hoists the load of the shadow value somewhere too high.
    365 // This causes asan to report a non-existing bug on 453.povray.
    366 // It sounds like an LLVM bug.
    367 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
    368   Function &F;
    369   AddressSanitizer &ASan;
    370   DIBuilder DIB;
    371   LLVMContext *C;
    372   Type *IntptrTy;
    373   Type *IntptrPtrTy;
    374   ShadowMapping Mapping;
    375 
    376   SmallVector<AllocaInst*, 16> AllocaVec;
    377   SmallVector<Instruction*, 8> RetVec;
    378   uint64_t TotalStackSize;
    379   unsigned StackAlignment;
    380 
    381   Function *AsanStackMallocFunc, *AsanStackFreeFunc;
    382   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
    383 
    384   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
    385   struct AllocaPoisonCall {
    386     IntrinsicInst *InsBefore;
    387     uint64_t Size;
    388     bool DoPoison;
    389   };
    390   SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
    391 
    392   // Maps Value to an AllocaInst from which the Value is originated.
    393   typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
    394   AllocaForValueMapTy AllocaForValue;
    395 
    396   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
    397       : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
    398         IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
    399         Mapping(ASan.Mapping),
    400         TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {}
    401 
    402   bool runOnFunction() {
    403     if (!ClStack) return false;
    404     // Collect alloca, ret, lifetime instructions etc.
    405     for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
    406          DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
    407       BasicBlock *BB = *DI;
    408       visit(*BB);
    409     }
    410     if (AllocaVec.empty()) return false;
    411 
    412     initializeCallbacks(*F.getParent());
    413 
    414     poisonStack();
    415 
    416     if (ClDebugStack) {
    417       DEBUG(dbgs() << F);
    418     }
    419     return true;
    420   }
    421 
    422   // Finds all static Alloca instructions and puts
    423   // poisoned red zones around all of them.
    424   // Then unpoison everything back before the function returns.
    425   void poisonStack();
    426 
    427   // ----------------------- Visitors.
    428   /// \brief Collect all Ret instructions.
    429   void visitReturnInst(ReturnInst &RI) {
    430     RetVec.push_back(&RI);
    431   }
    432 
    433   /// \brief Collect Alloca instructions we want (and can) handle.
    434   void visitAllocaInst(AllocaInst &AI) {
    435     if (!isInterestingAlloca(AI)) return;
    436 
    437     StackAlignment = std::max(StackAlignment, AI.getAlignment());
    438     AllocaVec.push_back(&AI);
    439     uint64_t AlignedSize =  getAlignedAllocaSize(&AI);
    440     TotalStackSize += AlignedSize;
    441   }
    442 
    443   /// \brief Collect lifetime intrinsic calls to check for use-after-scope
    444   /// errors.
    445   void visitIntrinsicInst(IntrinsicInst &II) {
    446     if (!ASan.CheckLifetime) return;
    447     Intrinsic::ID ID = II.getIntrinsicID();
    448     if (ID != Intrinsic::lifetime_start &&
    449         ID != Intrinsic::lifetime_end)
    450       return;
    451     // Found lifetime intrinsic, add ASan instrumentation if necessary.
    452     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
    453     // If size argument is undefined, don't do anything.
    454     if (Size->isMinusOne()) return;
    455     // Check that size doesn't saturate uint64_t and can
    456     // be stored in IntptrTy.
    457     const uint64_t SizeValue = Size->getValue().getLimitedValue();
    458     if (SizeValue == ~0ULL ||
    459         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
    460       return;
    461     // Find alloca instruction that corresponds to llvm.lifetime argument.
    462     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
    463     if (!AI) return;
    464     bool DoPoison = (ID == Intrinsic::lifetime_end);
    465     AllocaPoisonCall APC = {&II, SizeValue, DoPoison};
    466     AllocaPoisonCallVec.push_back(APC);
    467   }
    468 
    469   // ---------------------- Helpers.
    470   void initializeCallbacks(Module &M);
    471 
    472   // Check if we want (and can) handle this alloca.
    473   bool isInterestingAlloca(AllocaInst &AI) {
    474     return (!AI.isArrayAllocation() &&
    475             AI.isStaticAlloca() &&
    476             AI.getAllocatedType()->isSized());
    477   }
    478 
    479   size_t RedzoneSize() const {
    480     return RedzoneSizeForScale(Mapping.Scale);
    481   }
    482   uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
    483     Type *Ty = AI->getAllocatedType();
    484     uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
    485     return SizeInBytes;
    486   }
    487   uint64_t getAlignedSize(uint64_t SizeInBytes) {
    488     size_t RZ = RedzoneSize();
    489     return ((SizeInBytes + RZ - 1) / RZ) * RZ;
    490   }
    491   uint64_t getAlignedAllocaSize(AllocaInst *AI) {
    492     uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
    493     return getAlignedSize(SizeInBytes);
    494   }
    495   /// Finds alloca where the value comes from.
    496   AllocaInst *findAllocaForValue(Value *V);
    497   void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
    498                       Value *ShadowBase, bool DoPoison);
    499   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison);
    500 };
    501 
    502 }  // namespace
    503 
    504 char AddressSanitizer::ID = 0;
    505 INITIALIZE_PASS(AddressSanitizer, "asan",
    506     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
    507     false, false)
    508 FunctionPass *llvm::createAddressSanitizerFunctionPass(
    509     bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime,
    510     StringRef BlacklistFile, bool ZeroBaseShadow) {
    511   return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn,
    512                               CheckLifetime, BlacklistFile, ZeroBaseShadow);
    513 }
    514 
    515 char AddressSanitizerModule::ID = 0;
    516 INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
    517     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
    518     "ModulePass", false, false)
    519 ModulePass *llvm::createAddressSanitizerModulePass(
    520     bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) {
    521   return new AddressSanitizerModule(CheckInitOrder, BlacklistFile,
    522                                     ZeroBaseShadow);
    523 }
    524 
    525 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
    526   size_t Res = CountTrailingZeros_32(TypeSize / 8);
    527   assert(Res < kNumberOfAccessSizes);
    528   return Res;
    529 }
    530 
    531 // Create a constant for Str so that we can pass it to the run-time lib.
    532 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
    533   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
    534   GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true,
    535                             GlobalValue::PrivateLinkage, StrConst,
    536                             kAsanGenPrefix);
    537   GV->setUnnamedAddr(true);  // Ok to merge these.
    538   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
    539   return GV;
    540 }
    541 
    542 static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
    543   return G->getName().find(kAsanGenPrefix) == 0;
    544 }
    545 
    546 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
    547   // Shadow >> scale
    548   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
    549   if (Mapping.Offset == 0)
    550     return Shadow;
    551   // (Shadow >> scale) | offset
    552   if (Mapping.OrShadowOffset)
    553     return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    554   else
    555     return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    556 }
    557 
    558 void AddressSanitizer::instrumentMemIntrinsicParam(
    559     Instruction *OrigIns,
    560     Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
    561   IRBuilder<> IRB(InsertBefore);
    562   if (Size->getType() != IntptrTy)
    563     Size = IRB.CreateIntCast(Size, IntptrTy, false);
    564   // Check the first byte.
    565   instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size);
    566   // Check the last byte.
    567   IRB.SetInsertPoint(InsertBefore);
    568   Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
    569   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
    570   Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne);
    571   instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size);
    572 }
    573 
    574 // Instrument memset/memmove/memcpy
    575 bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
    576   Value *Dst = MI->getDest();
    577   MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
    578   Value *Src = MemTran ? MemTran->getSource() : 0;
    579   Value *Length = MI->getLength();
    580 
    581   Constant *ConstLength = dyn_cast<Constant>(Length);
    582   Instruction *InsertBefore = MI;
    583   if (ConstLength) {
    584     if (ConstLength->isNullValue()) return false;
    585   } else {
    586     // The size is not a constant so it could be zero -- check at run-time.
    587     IRBuilder<> IRB(InsertBefore);
    588 
    589     Value *Cmp = IRB.CreateICmpNE(Length,
    590                                   Constant::getNullValue(Length->getType()));
    591     InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
    592   }
    593 
    594   instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
    595   if (Src)
    596     instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
    597   return true;
    598 }
    599 
    600 // If I is an interesting memory access, return the PointerOperand
    601 // and set IsWrite. Otherwise return NULL.
    602 static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
    603   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    604     if (!ClInstrumentReads) return NULL;
    605     *IsWrite = false;
    606     return LI->getPointerOperand();
    607   }
    608   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    609     if (!ClInstrumentWrites) return NULL;
    610     *IsWrite = true;
    611     return SI->getPointerOperand();
    612   }
    613   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    614     if (!ClInstrumentAtomics) return NULL;
    615     *IsWrite = true;
    616     return RMW->getPointerOperand();
    617   }
    618   if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    619     if (!ClInstrumentAtomics) return NULL;
    620     *IsWrite = true;
    621     return XCHG->getPointerOperand();
    622   }
    623   return NULL;
    624 }
    625 
    626 void AddressSanitizer::instrumentMop(Instruction *I) {
    627   bool IsWrite = false;
    628   Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
    629   assert(Addr);
    630   if (ClOpt && ClOptGlobals) {
    631     if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
    632       // If initialization order checking is disabled, a simple access to a
    633       // dynamically initialized global is always valid.
    634       if (!CheckInitOrder)
    635         return;
    636       // If a global variable does not have dynamic initialization we don't
    637       // have to instrument it.  However, if a global does not have initailizer
    638       // at all, we assume it has dynamic initializer (in other TU).
    639       if (G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G))
    640         return;
    641     }
    642   }
    643 
    644   Type *OrigPtrTy = Addr->getType();
    645   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
    646 
    647   assert(OrigTy->isSized());
    648   uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
    649 
    650   assert((TypeSize % 8) == 0);
    651 
    652   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check.
    653   if (TypeSize == 8  || TypeSize == 16 ||
    654       TypeSize == 32 || TypeSize == 64 || TypeSize == 128)
    655     return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0);
    656   // Instrument unusual size (but still multiple of 8).
    657   // We can not do it with a single check, so we do 1-byte check for the first
    658   // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
    659   // to report the actual access size.
    660   IRBuilder<> IRB(I);
    661   Value *LastByte =  IRB.CreateIntToPtr(
    662       IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy),
    663                     ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
    664       OrigPtrTy);
    665   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
    666   instrumentAddress(I, I, Addr, 8, IsWrite, Size);
    667   instrumentAddress(I, I, LastByte, 8, IsWrite, Size);
    668 }
    669 
    670 // Validate the result of Module::getOrInsertFunction called for an interface
    671 // function of AddressSanitizer. If the instrumented module defines a function
    672 // with the same name, their prototypes must match, otherwise
    673 // getOrInsertFunction returns a bitcast.
    674 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
    675   if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
    676   FuncOrBitcast->dump();
    677   report_fatal_error("trying to redefine an AddressSanitizer "
    678                      "interface function");
    679 }
    680 
    681 Instruction *AddressSanitizer::generateCrashCode(
    682     Instruction *InsertBefore, Value *Addr,
    683     bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
    684   IRBuilder<> IRB(InsertBefore);
    685   CallInst *Call = SizeArgument
    686     ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
    687     : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
    688 
    689   // We don't do Call->setDoesNotReturn() because the BB already has
    690   // UnreachableInst at the end.
    691   // This EmptyAsm is required to avoid callback merge.
    692   IRB.CreateCall(EmptyAsm);
    693   return Call;
    694 }
    695 
    696 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
    697                                             Value *ShadowValue,
    698                                             uint32_t TypeSize) {
    699   size_t Granularity = 1 << Mapping.Scale;
    700   // Addr & (Granularity - 1)
    701   Value *LastAccessedByte = IRB.CreateAnd(
    702       AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
    703   // (Addr & (Granularity - 1)) + size - 1
    704   if (TypeSize / 8 > 1)
    705     LastAccessedByte = IRB.CreateAdd(
    706         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
    707   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
    708   LastAccessedByte = IRB.CreateIntCast(
    709       LastAccessedByte, ShadowValue->getType(), false);
    710   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
    711   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
    712 }
    713 
    714 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
    715                                          Instruction *InsertBefore,
    716                                          Value *Addr, uint32_t TypeSize,
    717                                          bool IsWrite, Value *SizeArgument) {
    718   IRBuilder<> IRB(InsertBefore);
    719   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
    720 
    721   Type *ShadowTy  = IntegerType::get(
    722       *C, std::max(8U, TypeSize >> Mapping.Scale));
    723   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
    724   Value *ShadowPtr = memToShadow(AddrLong, IRB);
    725   Value *CmpVal = Constant::getNullValue(ShadowTy);
    726   Value *ShadowValue = IRB.CreateLoad(
    727       IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
    728 
    729   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
    730   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
    731   size_t Granularity = 1 << Mapping.Scale;
    732   TerminatorInst *CrashTerm = 0;
    733 
    734   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
    735     TerminatorInst *CheckTerm =
    736         SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
    737     assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
    738     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
    739     IRB.SetInsertPoint(CheckTerm);
    740     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
    741     BasicBlock *CrashBlock =
    742         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
    743     CrashTerm = new UnreachableInst(*C, CrashBlock);
    744     BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
    745     ReplaceInstWithInst(CheckTerm, NewTerm);
    746   } else {
    747     CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true);
    748   }
    749 
    750   Instruction *Crash = generateCrashCode(
    751       CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
    752   Crash->setDebugLoc(OrigIns->getDebugLoc());
    753 }
    754 
    755 void AddressSanitizerModule::createInitializerPoisonCalls(
    756     Module &M, Value *FirstAddr, Value *LastAddr) {
    757   // We do all of our poisoning and unpoisoning within _GLOBAL__I_a.
    758   Function *GlobalInit = M.getFunction("_GLOBAL__I_a");
    759   // If that function is not present, this TU contains no globals, or they have
    760   // all been optimized away
    761   if (!GlobalInit)
    762     return;
    763 
    764   // Set up the arguments to our poison/unpoison functions.
    765   IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
    766 
    767   // Add a call to poison all external globals before the given function starts.
    768   IRB.CreateCall2(AsanPoisonGlobals, FirstAddr, LastAddr);
    769 
    770   // Add calls to unpoison all globals before each return instruction.
    771   for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end();
    772       I != E; ++I) {
    773     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) {
    774       CallInst::Create(AsanUnpoisonGlobals, "", RI);
    775     }
    776   }
    777 }
    778 
    779 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
    780   Type *Ty = cast<PointerType>(G->getType())->getElementType();
    781   DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
    782 
    783   if (BL->isIn(*G)) return false;
    784   if (!Ty->isSized()) return false;
    785   if (!G->hasInitializer()) return false;
    786   if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
    787   // Touch only those globals that will not be defined in other modules.
    788   // Don't handle ODR type linkages since other modules may be built w/o asan.
    789   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
    790       G->getLinkage() != GlobalVariable::PrivateLinkage &&
    791       G->getLinkage() != GlobalVariable::InternalLinkage)
    792     return false;
    793   // Two problems with thread-locals:
    794   //   - The address of the main thread's copy can't be computed at link-time.
    795   //   - Need to poison all copies, not just the main thread's one.
    796   if (G->isThreadLocal())
    797     return false;
    798   // For now, just ignore this Alloca if the alignment is large.
    799   if (G->getAlignment() > RedzoneSize()) return false;
    800 
    801   // Ignore all the globals with the names starting with "\01L_OBJC_".
    802   // Many of those are put into the .cstring section. The linker compresses
    803   // that section by removing the spare \0s after the string terminator, so
    804   // our redzones get broken.
    805   if ((G->getName().find("\01L_OBJC_") == 0) ||
    806       (G->getName().find("\01l_OBJC_") == 0)) {
    807     DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
    808     return false;
    809   }
    810 
    811   if (G->hasSection()) {
    812     StringRef Section(G->getSection());
    813     // Ignore the globals from the __OBJC section. The ObjC runtime assumes
    814     // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
    815     // them.
    816     if ((Section.find("__OBJC,") == 0) ||
    817         (Section.find("__DATA, __objc_") == 0)) {
    818       DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
    819       return false;
    820     }
    821     // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
    822     // Constant CFString instances are compiled in the following way:
    823     //  -- the string buffer is emitted into
    824     //     __TEXT,__cstring,cstring_literals
    825     //  -- the constant NSConstantString structure referencing that buffer
    826     //     is placed into __DATA,__cfstring
    827     // Therefore there's no point in placing redzones into __DATA,__cfstring.
    828     // Moreover, it causes the linker to crash on OS X 10.7
    829     if (Section.find("__DATA,__cfstring") == 0) {
    830       DEBUG(dbgs() << "Ignoring CFString: " << *G);
    831       return false;
    832     }
    833   }
    834 
    835   return true;
    836 }
    837 
    838 void AddressSanitizerModule::initializeCallbacks(Module &M) {
    839   IRBuilder<> IRB(*C);
    840   // Declare our poisoning and unpoisoning functions.
    841   AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
    842       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
    843   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
    844   AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
    845       kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
    846   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
    847   // Declare functions that register/unregister globals.
    848   AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
    849       kAsanRegisterGlobalsName, IRB.getVoidTy(),
    850       IntptrTy, IntptrTy, NULL));
    851   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
    852   AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
    853       kAsanUnregisterGlobalsName,
    854       IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
    855   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
    856 }
    857 
    858 // This function replaces all global variables with new variables that have
    859 // trailing redzones. It also creates a function that poisons
    860 // redzones and inserts this function into llvm.global_ctors.
    861 bool AddressSanitizerModule::runOnModule(Module &M) {
    862   if (!ClGlobals) return false;
    863   TD = getAnalysisIfAvailable<DataLayout>();
    864   if (!TD)
    865     return false;
    866   BL.reset(new BlackList(BlacklistFile));
    867   if (BL->isIn(M)) return false;
    868   C = &(M.getContext());
    869   int LongSize = TD->getPointerSizeInBits();
    870   IntptrTy = Type::getIntNTy(*C, LongSize);
    871   Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
    872   initializeCallbacks(M);
    873   DynamicallyInitializedGlobals.Init(M);
    874 
    875   SmallVector<GlobalVariable *, 16> GlobalsToChange;
    876 
    877   for (Module::GlobalListType::iterator G = M.global_begin(),
    878        E = M.global_end(); G != E; ++G) {
    879     if (ShouldInstrumentGlobal(G))
    880       GlobalsToChange.push_back(G);
    881   }
    882 
    883   size_t n = GlobalsToChange.size();
    884   if (n == 0) return false;
    885 
    886   // A global is described by a structure
    887   //   size_t beg;
    888   //   size_t size;
    889   //   size_t size_with_redzone;
    890   //   const char *name;
    891   //   const char *module_name;
    892   //   size_t has_dynamic_init;
    893   // We initialize an array of such structures and pass it to a run-time call.
    894   StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
    895                                                IntptrTy, IntptrTy,
    896                                                IntptrTy, IntptrTy, NULL);
    897   SmallVector<Constant *, 16> Initializers(n), DynamicInit;
    898 
    899 
    900   Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
    901   assert(CtorFunc);
    902   IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
    903 
    904   // The addresses of the first and last dynamically initialized globals in
    905   // this TU.  Used in initialization order checking.
    906   Value *FirstDynamic = 0, *LastDynamic = 0;
    907 
    908   GlobalVariable *ModuleName = createPrivateGlobalForString(
    909       M, M.getModuleIdentifier());
    910 
    911   for (size_t i = 0; i < n; i++) {
    912     static const uint64_t kMaxGlobalRedzone = 1 << 18;
    913     GlobalVariable *G = GlobalsToChange[i];
    914     PointerType *PtrTy = cast<PointerType>(G->getType());
    915     Type *Ty = PtrTy->getElementType();
    916     uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
    917     uint64_t MinRZ = RedzoneSize();
    918     // MinRZ <= RZ <= kMaxGlobalRedzone
    919     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
    920     uint64_t RZ = std::max(MinRZ,
    921                          std::min(kMaxGlobalRedzone,
    922                                   (SizeInBytes / MinRZ / 4) * MinRZ));
    923     uint64_t RightRedzoneSize = RZ;
    924     // Round up to MinRZ
    925     if (SizeInBytes % MinRZ)
    926       RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
    927     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
    928     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
    929     // Determine whether this global should be poisoned in initialization.
    930     bool GlobalHasDynamicInitializer =
    931         DynamicallyInitializedGlobals.Contains(G);
    932     // Don't check initialization order if this global is blacklisted.
    933     GlobalHasDynamicInitializer &= !BL->isInInit(*G);
    934 
    935     StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
    936     Constant *NewInitializer = ConstantStruct::get(
    937         NewTy, G->getInitializer(),
    938         Constant::getNullValue(RightRedZoneTy), NULL);
    939 
    940     GlobalVariable *Name = createPrivateGlobalForString(M, G->getName());
    941 
    942     // Create a new global variable with enough space for a redzone.
    943     GlobalVariable *NewGlobal = new GlobalVariable(
    944         M, NewTy, G->isConstant(), G->getLinkage(),
    945         NewInitializer, "", G, G->getThreadLocalMode());
    946     NewGlobal->copyAttributesFrom(G);
    947     NewGlobal->setAlignment(MinRZ);
    948 
    949     Value *Indices2[2];
    950     Indices2[0] = IRB.getInt32(0);
    951     Indices2[1] = IRB.getInt32(0);
    952 
    953     G->replaceAllUsesWith(
    954         ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
    955     NewGlobal->takeName(G);
    956     G->eraseFromParent();
    957 
    958     Initializers[i] = ConstantStruct::get(
    959         GlobalStructTy,
    960         ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
    961         ConstantInt::get(IntptrTy, SizeInBytes),
    962         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
    963         ConstantExpr::getPointerCast(Name, IntptrTy),
    964         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
    965         ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
    966         NULL);
    967 
    968     // Populate the first and last globals declared in this TU.
    969     if (CheckInitOrder && GlobalHasDynamicInitializer) {
    970       LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy);
    971       if (FirstDynamic == 0)
    972         FirstDynamic = LastDynamic;
    973     }
    974 
    975     DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
    976   }
    977 
    978   ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
    979   GlobalVariable *AllGlobals = new GlobalVariable(
    980       M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
    981       ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
    982 
    983   // Create calls for poisoning before initializers run and unpoisoning after.
    984   if (CheckInitOrder && FirstDynamic && LastDynamic)
    985     createInitializerPoisonCalls(M, FirstDynamic, LastDynamic);
    986   IRB.CreateCall2(AsanRegisterGlobals,
    987                   IRB.CreatePointerCast(AllGlobals, IntptrTy),
    988                   ConstantInt::get(IntptrTy, n));
    989 
    990   // We also need to unregister globals at the end, e.g. when a shared library
    991   // gets closed.
    992   Function *AsanDtorFunction = Function::Create(
    993       FunctionType::get(Type::getVoidTy(*C), false),
    994       GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
    995   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
    996   IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
    997   IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
    998                        IRB.CreatePointerCast(AllGlobals, IntptrTy),
    999                        ConstantInt::get(IntptrTy, n));
   1000   appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);
   1001 
   1002   DEBUG(dbgs() << M);
   1003   return true;
   1004 }
   1005 
   1006 void AddressSanitizer::initializeCallbacks(Module &M) {
   1007   IRBuilder<> IRB(*C);
   1008   // Create __asan_report* callbacks.
   1009   for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
   1010     for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
   1011          AccessSizeIndex++) {
   1012       // IsWrite and TypeSize are encoded in the function name.
   1013       std::string FunctionName = std::string(kAsanReportErrorTemplate) +
   1014           (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
   1015       // If we are merging crash callbacks, they have two parameters.
   1016       AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
   1017           checkInterfaceFunction(M.getOrInsertFunction(
   1018               FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
   1019     }
   1020   }
   1021   AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
   1022               kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1023   AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
   1024               kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1025 
   1026   AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1027       kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
   1028   // We insert an empty inline asm after __asan_report* to avoid callback merge.
   1029   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
   1030                             StringRef(""), StringRef(""),
   1031                             /*hasSideEffects=*/true);
   1032 }
   1033 
   1034 void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const {
   1035   // Tell the values of mapping offset and scale to the run-time.
   1036   GlobalValue *asan_mapping_offset =
   1037       new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
   1038                      ConstantInt::get(IntptrTy, Mapping.Offset),
   1039                      kAsanMappingOffsetName);
   1040   // Read the global, otherwise it may be optimized away.
   1041   IRB.CreateLoad(asan_mapping_offset, true);
   1042 
   1043   GlobalValue *asan_mapping_scale =
   1044       new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
   1045                          ConstantInt::get(IntptrTy, Mapping.Scale),
   1046                          kAsanMappingScaleName);
   1047   // Read the global, otherwise it may be optimized away.
   1048   IRB.CreateLoad(asan_mapping_scale, true);
   1049 }
   1050 
   1051 // virtual
   1052 bool AddressSanitizer::doInitialization(Module &M) {
   1053   // Initialize the private fields. No one has accessed them before.
   1054   TD = getAnalysisIfAvailable<DataLayout>();
   1055 
   1056   if (!TD)
   1057     return false;
   1058   BL.reset(new BlackList(BlacklistFile));
   1059   DynamicallyInitializedGlobals.Init(M);
   1060 
   1061   C = &(M.getContext());
   1062   LongSize = TD->getPointerSizeInBits();
   1063   IntptrTy = Type::getIntNTy(*C, LongSize);
   1064 
   1065   AsanCtorFunction = Function::Create(
   1066       FunctionType::get(Type::getVoidTy(*C), false),
   1067       GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
   1068   BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
   1069   // call __asan_init in the module ctor.
   1070   IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
   1071   AsanInitFunction = checkInterfaceFunction(
   1072       M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
   1073   AsanInitFunction->setLinkage(Function::ExternalLinkage);
   1074   IRB.CreateCall(AsanInitFunction);
   1075 
   1076   Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
   1077   emitShadowMapping(M, IRB);
   1078 
   1079   appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
   1080   return true;
   1081 }
   1082 
   1083 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
   1084   // For each NSObject descendant having a +load method, this method is invoked
   1085   // by the ObjC runtime before any of the static constructors is called.
   1086   // Therefore we need to instrument such methods with a call to __asan_init
   1087   // at the beginning in order to initialize our runtime before any access to
   1088   // the shadow memory.
   1089   // We cannot just ignore these methods, because they may call other
   1090   // instrumented functions.
   1091   if (F.getName().find(" load]") != std::string::npos) {
   1092     IRBuilder<> IRB(F.begin()->begin());
   1093     IRB.CreateCall(AsanInitFunction);
   1094     return true;
   1095   }
   1096   return false;
   1097 }
   1098 
   1099 bool AddressSanitizer::runOnFunction(Function &F) {
   1100   if (BL->isIn(F)) return false;
   1101   if (&F == AsanCtorFunction) return false;
   1102   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
   1103   DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
   1104   initializeCallbacks(*F.getParent());
   1105 
   1106   // If needed, insert __asan_init before checking for SanitizeAddress attr.
   1107   maybeInsertAsanInitAtFunctionEntry(F);
   1108 
   1109   if (!F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1110                                       Attribute::SanitizeAddress))
   1111     return false;
   1112 
   1113   if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
   1114     return false;
   1115 
   1116   // We want to instrument every address only once per basic block (unless there
   1117   // are calls between uses).
   1118   SmallSet<Value*, 16> TempsToInstrument;
   1119   SmallVector<Instruction*, 16> ToInstrument;
   1120   SmallVector<Instruction*, 8> NoReturnCalls;
   1121   bool IsWrite;
   1122 
   1123   // Fill the set of memory operations to instrument.
   1124   for (Function::iterator FI = F.begin(), FE = F.end();
   1125        FI != FE; ++FI) {
   1126     TempsToInstrument.clear();
   1127     int NumInsnsPerBB = 0;
   1128     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
   1129          BI != BE; ++BI) {
   1130       if (LooksLikeCodeInBug11395(BI)) return false;
   1131       if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) {
   1132         if (ClOpt && ClOptSameTemp) {
   1133           if (!TempsToInstrument.insert(Addr))
   1134             continue;  // We've seen this temp in the current BB.
   1135         }
   1136       } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
   1137         // ok, take it.
   1138       } else {
   1139         CallSite CS(BI);
   1140         if (CS) {
   1141           // A call inside BB.
   1142           TempsToInstrument.clear();
   1143           if (CS.doesNotReturn())
   1144             NoReturnCalls.push_back(CS.getInstruction());
   1145         }
   1146         continue;
   1147       }
   1148       ToInstrument.push_back(BI);
   1149       NumInsnsPerBB++;
   1150       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
   1151         break;
   1152     }
   1153   }
   1154 
   1155   // Instrument.
   1156   int NumInstrumented = 0;
   1157   for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
   1158     Instruction *Inst = ToInstrument[i];
   1159     if (ClDebugMin < 0 || ClDebugMax < 0 ||
   1160         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
   1161       if (isInterestingMemoryAccess(Inst, &IsWrite))
   1162         instrumentMop(Inst);
   1163       else
   1164         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
   1165     }
   1166     NumInstrumented++;
   1167   }
   1168 
   1169   FunctionStackPoisoner FSP(F, *this);
   1170   bool ChangedStack = FSP.runOnFunction();
   1171 
   1172   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
   1173   // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
   1174   for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) {
   1175     Instruction *CI = NoReturnCalls[i];
   1176     IRBuilder<> IRB(CI);
   1177     IRB.CreateCall(AsanHandleNoReturnFunc);
   1178   }
   1179   DEBUG(dbgs() << "ASAN done instrumenting:\n" << F << "\n");
   1180 
   1181   return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
   1182 }
   1183 
   1184 static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
   1185   if (ShadowRedzoneSize == 1) return PoisonByte;
   1186   if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
   1187   if (ShadowRedzoneSize == 4)
   1188     return (PoisonByte << 24) + (PoisonByte << 16) +
   1189         (PoisonByte << 8) + (PoisonByte);
   1190   llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4");
   1191 }
   1192 
   1193 static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
   1194                                             size_t Size,
   1195                                             size_t RZSize,
   1196                                             size_t ShadowGranularity,
   1197                                             uint8_t Magic) {
   1198   for (size_t i = 0; i < RZSize;
   1199        i+= ShadowGranularity, Shadow++) {
   1200     if (i + ShadowGranularity <= Size) {
   1201       *Shadow = 0;  // fully addressable
   1202     } else if (i >= Size) {
   1203       *Shadow = Magic;  // unaddressable
   1204     } else {
   1205       *Shadow = Size - i;  // first Size-i bytes are addressable
   1206     }
   1207   }
   1208 }
   1209 
   1210 // Workaround for bug 11395: we don't want to instrument stack in functions
   1211 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
   1212 // FIXME: remove once the bug 11395 is fixed.
   1213 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
   1214   if (LongSize != 32) return false;
   1215   CallInst *CI = dyn_cast<CallInst>(I);
   1216   if (!CI || !CI->isInlineAsm()) return false;
   1217   if (CI->getNumArgOperands() <= 5) return false;
   1218   // We have inline assembly with quite a few arguments.
   1219   return true;
   1220 }
   1221 
   1222 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
   1223   IRBuilder<> IRB(*C);
   1224   AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1225       kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
   1226   AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1227       kAsanStackFreeName, IRB.getVoidTy(),
   1228       IntptrTy, IntptrTy, IntptrTy, NULL));
   1229   AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1230       kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1231   AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1232       kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1233 }
   1234 
   1235 void FunctionStackPoisoner::poisonRedZones(
   1236   const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase,
   1237   bool DoPoison) {
   1238   size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale;
   1239   assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
   1240   Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
   1241   Type *RZPtrTy = PointerType::get(RZTy, 0);
   1242 
   1243   Value *PoisonLeft  = ConstantInt::get(RZTy,
   1244     ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
   1245   Value *PoisonMid   = ConstantInt::get(RZTy,
   1246     ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
   1247   Value *PoisonRight = ConstantInt::get(RZTy,
   1248     ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
   1249 
   1250   // poison the first red zone.
   1251   IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
   1252 
   1253   // poison all other red zones.
   1254   uint64_t Pos = RedzoneSize();
   1255   for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
   1256     AllocaInst *AI = AllocaVec[i];
   1257     uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
   1258     uint64_t AlignedSize = getAlignedAllocaSize(AI);
   1259     assert(AlignedSize - SizeInBytes < RedzoneSize());
   1260     Value *Ptr = NULL;
   1261 
   1262     Pos += AlignedSize;
   1263 
   1264     assert(ShadowBase->getType() == IntptrTy);
   1265     if (SizeInBytes < AlignedSize) {
   1266       // Poison the partial redzone at right
   1267       Ptr = IRB.CreateAdd(
   1268           ShadowBase, ConstantInt::get(IntptrTy,
   1269                                        (Pos >> Mapping.Scale) - ShadowRZSize));
   1270       size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes);
   1271       uint32_t Poison = 0;
   1272       if (DoPoison) {
   1273         PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
   1274                                         RedzoneSize(),
   1275                                         1ULL << Mapping.Scale,
   1276                                         kAsanStackPartialRedzoneMagic);
   1277       }
   1278       Value *PartialPoison = ConstantInt::get(RZTy, Poison);
   1279       IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
   1280     }
   1281 
   1282     // Poison the full redzone at right.
   1283     Ptr = IRB.CreateAdd(ShadowBase,
   1284                         ConstantInt::get(IntptrTy, Pos >> Mapping.Scale));
   1285     bool LastAlloca = (i == AllocaVec.size() - 1);
   1286     Value *Poison = LastAlloca ? PoisonRight : PoisonMid;
   1287     IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
   1288 
   1289     Pos += RedzoneSize();
   1290   }
   1291 }
   1292 
   1293 void FunctionStackPoisoner::poisonStack() {
   1294   uint64_t LocalStackSize = TotalStackSize +
   1295                             (AllocaVec.size() + 1) * RedzoneSize();
   1296 
   1297   bool DoStackMalloc = ASan.CheckUseAfterReturn
   1298       && LocalStackSize <= kMaxStackMallocSize;
   1299 
   1300   assert(AllocaVec.size() > 0);
   1301   Instruction *InsBefore = AllocaVec[0];
   1302   IRBuilder<> IRB(InsBefore);
   1303 
   1304 
   1305   Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
   1306   AllocaInst *MyAlloca =
   1307       new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
   1308   if (ClRealignStack && StackAlignment < RedzoneSize())
   1309     StackAlignment = RedzoneSize();
   1310   MyAlloca->setAlignment(StackAlignment);
   1311   assert(MyAlloca->isStaticAlloca());
   1312   Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
   1313   Value *LocalStackBase = OrigStackBase;
   1314 
   1315   if (DoStackMalloc) {
   1316     LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
   1317         ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
   1318   }
   1319 
   1320   // This string will be parsed by the run-time (DescribeStackAddress).
   1321   SmallString<2048> StackDescriptionStorage;
   1322   raw_svector_ostream StackDescription(StackDescriptionStorage);
   1323   StackDescription << F.getName() << " " << AllocaVec.size() << " ";
   1324 
   1325   // Insert poison calls for lifetime intrinsics for alloca.
   1326   bool HavePoisonedAllocas = false;
   1327   for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) {
   1328     const AllocaPoisonCall &APC = AllocaPoisonCallVec[i];
   1329     IntrinsicInst *II = APC.InsBefore;
   1330     AllocaInst *AI = findAllocaForValue(II->getArgOperand(1));
   1331     assert(AI);
   1332     IRBuilder<> IRB(II);
   1333     poisonAlloca(AI, APC.Size, IRB, APC.DoPoison);
   1334     HavePoisonedAllocas |= APC.DoPoison;
   1335   }
   1336 
   1337   uint64_t Pos = RedzoneSize();
   1338   // Replace Alloca instructions with base+offset.
   1339   for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
   1340     AllocaInst *AI = AllocaVec[i];
   1341     uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
   1342     StringRef Name = AI->getName();
   1343     StackDescription << Pos << " " << SizeInBytes << " "
   1344                      << Name.size() << " " << Name << " ";
   1345     uint64_t AlignedSize = getAlignedAllocaSize(AI);
   1346     assert((AlignedSize % RedzoneSize()) == 0);
   1347     Value *NewAllocaPtr = IRB.CreateIntToPtr(
   1348             IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
   1349             AI->getType());
   1350     replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
   1351     AI->replaceAllUsesWith(NewAllocaPtr);
   1352     Pos += AlignedSize + RedzoneSize();
   1353   }
   1354   assert(Pos == LocalStackSize);
   1355 
   1356   // Write the Magic value and the frame description constant to the redzone.
   1357   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
   1358   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
   1359                   BasePlus0);
   1360   Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
   1361                                    ConstantInt::get(IntptrTy,
   1362                                                     ASan.LongSize/8));
   1363   BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
   1364   GlobalVariable *StackDescriptionGlobal =
   1365       createPrivateGlobalForString(*F.getParent(), StackDescription.str());
   1366   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
   1367                                              IntptrTy);
   1368   IRB.CreateStore(Description, BasePlus1);
   1369 
   1370   // Poison the stack redzones at the entry.
   1371   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
   1372   poisonRedZones(AllocaVec, IRB, ShadowBase, true);
   1373 
   1374   // Unpoison the stack before all ret instructions.
   1375   for (size_t i = 0, n = RetVec.size(); i < n; i++) {
   1376     Instruction *Ret = RetVec[i];
   1377     IRBuilder<> IRBRet(Ret);
   1378     // Mark the current frame as retired.
   1379     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
   1380                        BasePlus0);
   1381     // Unpoison the stack.
   1382     poisonRedZones(AllocaVec, IRBRet, ShadowBase, false);
   1383     if (DoStackMalloc) {
   1384       // In use-after-return mode, mark the whole stack frame unaddressable.
   1385       IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
   1386                          ConstantInt::get(IntptrTy, LocalStackSize),
   1387                          OrigStackBase);
   1388     } else if (HavePoisonedAllocas) {
   1389       // If we poisoned some allocas in llvm.lifetime analysis,
   1390       // unpoison whole stack frame now.
   1391       assert(LocalStackBase == OrigStackBase);
   1392       poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
   1393     }
   1394   }
   1395 
   1396   // We are done. Remove the old unused alloca instructions.
   1397   for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
   1398     AllocaVec[i]->eraseFromParent();
   1399 }
   1400 
   1401 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
   1402                                          IRBuilder<> IRB, bool DoPoison) {
   1403   // For now just insert the call to ASan runtime.
   1404   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
   1405   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
   1406   IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
   1407                            : AsanUnpoisonStackMemoryFunc,
   1408                   AddrArg, SizeArg);
   1409 }
   1410 
   1411 // Handling llvm.lifetime intrinsics for a given %alloca:
   1412 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
   1413 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
   1414 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
   1415 //     could be poisoned by previous llvm.lifetime.end instruction, as the
   1416 //     variable may go in and out of scope several times, e.g. in loops).
   1417 // (3) if we poisoned at least one %alloca in a function,
   1418 //     unpoison the whole stack frame at function exit.
   1419 
   1420 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
   1421   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
   1422     // We're intested only in allocas we can handle.
   1423     return isInterestingAlloca(*AI) ? AI : 0;
   1424   // See if we've already calculated (or started to calculate) alloca for a
   1425   // given value.
   1426   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
   1427   if (I != AllocaForValue.end())
   1428     return I->second;
   1429   // Store 0 while we're calculating alloca for value V to avoid
   1430   // infinite recursion if the value references itself.
   1431   AllocaForValue[V] = 0;
   1432   AllocaInst *Res = 0;
   1433   if (CastInst *CI = dyn_cast<CastInst>(V))
   1434     Res = findAllocaForValue(CI->getOperand(0));
   1435   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1436     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1437       Value *IncValue = PN->getIncomingValue(i);
   1438       // Allow self-referencing phi-nodes.
   1439       if (IncValue == PN) continue;
   1440       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
   1441       // AI for incoming values should exist and should all be equal.
   1442       if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res))
   1443         return 0;
   1444       Res = IncValueAI;
   1445     }
   1446   }
   1447   if (Res != 0)
   1448     AllocaForValue[V] = Res;
   1449   return Res;
   1450 }
   1451