Home | History | Annotate | Download | only in Scalar
      1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global value numbering to eliminate fully redundant
     11 // instructions.  It also performs simple dead load elimination.
     12 //
     13 // Note that this pass does the value numbering itself; it does not use the
     14 // ValueNumbering analysis passes.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "gvn"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/DepthFirstIterator.h"
     22 #include "llvm/ADT/Hashing.h"
     23 #include "llvm/ADT/SmallPtrSet.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/Analysis/AliasAnalysis.h"
     26 #include "llvm/Analysis/ConstantFolding.h"
     27 #include "llvm/Analysis/Dominators.h"
     28 #include "llvm/Analysis/InstructionSimplify.h"
     29 #include "llvm/Analysis/Loads.h"
     30 #include "llvm/Analysis/MemoryBuiltins.h"
     31 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     32 #include "llvm/Analysis/PHITransAddr.h"
     33 #include "llvm/Analysis/ValueTracking.h"
     34 #include "llvm/Assembly/Writer.h"
     35 #include "llvm/IR/DataLayout.h"
     36 #include "llvm/IR/GlobalVariable.h"
     37 #include "llvm/IR/IRBuilder.h"
     38 #include "llvm/IR/IntrinsicInst.h"
     39 #include "llvm/IR/LLVMContext.h"
     40 #include "llvm/IR/Metadata.h"
     41 #include "llvm/Support/Allocator.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/PatternMatch.h"
     45 #include "llvm/Target/TargetLibraryInfo.h"
     46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     47 #include "llvm/Transforms/Utils/SSAUpdater.h"
     48 using namespace llvm;
     49 using namespace PatternMatch;
     50 
     51 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
     52 STATISTIC(NumGVNLoad,   "Number of loads deleted");
     53 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
     54 STATISTIC(NumGVNBlocks, "Number of blocks merged");
     55 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
     56 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
     57 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
     58 
     59 static cl::opt<bool> EnablePRE("enable-pre",
     60                                cl::init(true), cl::Hidden);
     61 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
     62 
     63 // Maximum allowed recursion depth.
     64 static cl::opt<uint32_t>
     65 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
     66                 cl::desc("Max recurse depth (default = 1000)"));
     67 
     68 //===----------------------------------------------------------------------===//
     69 //                         ValueTable Class
     70 //===----------------------------------------------------------------------===//
     71 
     72 /// This class holds the mapping between values and value numbers.  It is used
     73 /// as an efficient mechanism to determine the expression-wise equivalence of
     74 /// two values.
     75 namespace {
     76   struct Expression {
     77     uint32_t opcode;
     78     Type *type;
     79     SmallVector<uint32_t, 4> varargs;
     80 
     81     Expression(uint32_t o = ~2U) : opcode(o) { }
     82 
     83     bool operator==(const Expression &other) const {
     84       if (opcode != other.opcode)
     85         return false;
     86       if (opcode == ~0U || opcode == ~1U)
     87         return true;
     88       if (type != other.type)
     89         return false;
     90       if (varargs != other.varargs)
     91         return false;
     92       return true;
     93     }
     94 
     95     friend hash_code hash_value(const Expression &Value) {
     96       return hash_combine(Value.opcode, Value.type,
     97                           hash_combine_range(Value.varargs.begin(),
     98                                              Value.varargs.end()));
     99     }
    100   };
    101 
    102   class ValueTable {
    103     DenseMap<Value*, uint32_t> valueNumbering;
    104     DenseMap<Expression, uint32_t> expressionNumbering;
    105     AliasAnalysis *AA;
    106     MemoryDependenceAnalysis *MD;
    107     DominatorTree *DT;
    108 
    109     uint32_t nextValueNumber;
    110 
    111     Expression create_expression(Instruction* I);
    112     Expression create_cmp_expression(unsigned Opcode,
    113                                      CmpInst::Predicate Predicate,
    114                                      Value *LHS, Value *RHS);
    115     Expression create_extractvalue_expression(ExtractValueInst* EI);
    116     uint32_t lookup_or_add_call(CallInst* C);
    117   public:
    118     ValueTable() : nextValueNumber(1) { }
    119     uint32_t lookup_or_add(Value *V);
    120     uint32_t lookup(Value *V) const;
    121     uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
    122                                Value *LHS, Value *RHS);
    123     void add(Value *V, uint32_t num);
    124     void clear();
    125     void erase(Value *v);
    126     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
    127     AliasAnalysis *getAliasAnalysis() const { return AA; }
    128     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
    129     void setDomTree(DominatorTree* D) { DT = D; }
    130     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
    131     void verifyRemoved(const Value *) const;
    132   };
    133 }
    134 
    135 namespace llvm {
    136 template <> struct DenseMapInfo<Expression> {
    137   static inline Expression getEmptyKey() {
    138     return ~0U;
    139   }
    140 
    141   static inline Expression getTombstoneKey() {
    142     return ~1U;
    143   }
    144 
    145   static unsigned getHashValue(const Expression e) {
    146     using llvm::hash_value;
    147     return static_cast<unsigned>(hash_value(e));
    148   }
    149   static bool isEqual(const Expression &LHS, const Expression &RHS) {
    150     return LHS == RHS;
    151   }
    152 };
    153 
    154 }
    155 
    156 //===----------------------------------------------------------------------===//
    157 //                     ValueTable Internal Functions
    158 //===----------------------------------------------------------------------===//
    159 
    160 Expression ValueTable::create_expression(Instruction *I) {
    161   Expression e;
    162   e.type = I->getType();
    163   e.opcode = I->getOpcode();
    164   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
    165        OI != OE; ++OI)
    166     e.varargs.push_back(lookup_or_add(*OI));
    167   if (I->isCommutative()) {
    168     // Ensure that commutative instructions that only differ by a permutation
    169     // of their operands get the same value number by sorting the operand value
    170     // numbers.  Since all commutative instructions have two operands it is more
    171     // efficient to sort by hand rather than using, say, std::sort.
    172     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    173     if (e.varargs[0] > e.varargs[1])
    174       std::swap(e.varargs[0], e.varargs[1]);
    175   }
    176 
    177   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    178     // Sort the operand value numbers so x<y and y>x get the same value number.
    179     CmpInst::Predicate Predicate = C->getPredicate();
    180     if (e.varargs[0] > e.varargs[1]) {
    181       std::swap(e.varargs[0], e.varargs[1]);
    182       Predicate = CmpInst::getSwappedPredicate(Predicate);
    183     }
    184     e.opcode = (C->getOpcode() << 8) | Predicate;
    185   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    186     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
    187          II != IE; ++II)
    188       e.varargs.push_back(*II);
    189   }
    190 
    191   return e;
    192 }
    193 
    194 Expression ValueTable::create_cmp_expression(unsigned Opcode,
    195                                              CmpInst::Predicate Predicate,
    196                                              Value *LHS, Value *RHS) {
    197   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
    198          "Not a comparison!");
    199   Expression e;
    200   e.type = CmpInst::makeCmpResultType(LHS->getType());
    201   e.varargs.push_back(lookup_or_add(LHS));
    202   e.varargs.push_back(lookup_or_add(RHS));
    203 
    204   // Sort the operand value numbers so x<y and y>x get the same value number.
    205   if (e.varargs[0] > e.varargs[1]) {
    206     std::swap(e.varargs[0], e.varargs[1]);
    207     Predicate = CmpInst::getSwappedPredicate(Predicate);
    208   }
    209   e.opcode = (Opcode << 8) | Predicate;
    210   return e;
    211 }
    212 
    213 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
    214   assert(EI != 0 && "Not an ExtractValueInst?");
    215   Expression e;
    216   e.type = EI->getType();
    217   e.opcode = 0;
    218 
    219   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    220   if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
    221     // EI might be an extract from one of our recognised intrinsics. If it
    222     // is we'll synthesize a semantically equivalent expression instead on
    223     // an extract value expression.
    224     switch (I->getIntrinsicID()) {
    225       case Intrinsic::sadd_with_overflow:
    226       case Intrinsic::uadd_with_overflow:
    227         e.opcode = Instruction::Add;
    228         break;
    229       case Intrinsic::ssub_with_overflow:
    230       case Intrinsic::usub_with_overflow:
    231         e.opcode = Instruction::Sub;
    232         break;
    233       case Intrinsic::smul_with_overflow:
    234       case Intrinsic::umul_with_overflow:
    235         e.opcode = Instruction::Mul;
    236         break;
    237       default:
    238         break;
    239     }
    240 
    241     if (e.opcode != 0) {
    242       // Intrinsic recognized. Grab its args to finish building the expression.
    243       assert(I->getNumArgOperands() == 2 &&
    244              "Expect two args for recognised intrinsics.");
    245       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
    246       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
    247       return e;
    248     }
    249   }
    250 
    251   // Not a recognised intrinsic. Fall back to producing an extract value
    252   // expression.
    253   e.opcode = EI->getOpcode();
    254   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
    255        OI != OE; ++OI)
    256     e.varargs.push_back(lookup_or_add(*OI));
    257 
    258   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
    259          II != IE; ++II)
    260     e.varargs.push_back(*II);
    261 
    262   return e;
    263 }
    264 
    265 //===----------------------------------------------------------------------===//
    266 //                     ValueTable External Functions
    267 //===----------------------------------------------------------------------===//
    268 
    269 /// add - Insert a value into the table with a specified value number.
    270 void ValueTable::add(Value *V, uint32_t num) {
    271   valueNumbering.insert(std::make_pair(V, num));
    272 }
    273 
    274 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
    275   if (AA->doesNotAccessMemory(C)) {
    276     Expression exp = create_expression(C);
    277     uint32_t &e = expressionNumbering[exp];
    278     if (!e) e = nextValueNumber++;
    279     valueNumbering[C] = e;
    280     return e;
    281   } else if (AA->onlyReadsMemory(C)) {
    282     Expression exp = create_expression(C);
    283     uint32_t &e = expressionNumbering[exp];
    284     if (!e) {
    285       e = nextValueNumber++;
    286       valueNumbering[C] = e;
    287       return e;
    288     }
    289     if (!MD) {
    290       e = nextValueNumber++;
    291       valueNumbering[C] = e;
    292       return e;
    293     }
    294 
    295     MemDepResult local_dep = MD->getDependency(C);
    296 
    297     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
    298       valueNumbering[C] =  nextValueNumber;
    299       return nextValueNumber++;
    300     }
    301 
    302     if (local_dep.isDef()) {
    303       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
    304 
    305       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
    306         valueNumbering[C] = nextValueNumber;
    307         return nextValueNumber++;
    308       }
    309 
    310       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    311         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    312         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
    313         if (c_vn != cd_vn) {
    314           valueNumbering[C] = nextValueNumber;
    315           return nextValueNumber++;
    316         }
    317       }
    318 
    319       uint32_t v = lookup_or_add(local_cdep);
    320       valueNumbering[C] = v;
    321       return v;
    322     }
    323 
    324     // Non-local case.
    325     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
    326       MD->getNonLocalCallDependency(CallSite(C));
    327     // FIXME: Move the checking logic to MemDep!
    328     CallInst* cdep = 0;
    329 
    330     // Check to see if we have a single dominating call instruction that is
    331     // identical to C.
    332     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
    333       const NonLocalDepEntry *I = &deps[i];
    334       if (I->getResult().isNonLocal())
    335         continue;
    336 
    337       // We don't handle non-definitions.  If we already have a call, reject
    338       // instruction dependencies.
    339       if (!I->getResult().isDef() || cdep != 0) {
    340         cdep = 0;
    341         break;
    342       }
    343 
    344       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
    345       // FIXME: All duplicated with non-local case.
    346       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
    347         cdep = NonLocalDepCall;
    348         continue;
    349       }
    350 
    351       cdep = 0;
    352       break;
    353     }
    354 
    355     if (!cdep) {
    356       valueNumbering[C] = nextValueNumber;
    357       return nextValueNumber++;
    358     }
    359 
    360     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
    361       valueNumbering[C] = nextValueNumber;
    362       return nextValueNumber++;
    363     }
    364     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    365       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    366       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
    367       if (c_vn != cd_vn) {
    368         valueNumbering[C] = nextValueNumber;
    369         return nextValueNumber++;
    370       }
    371     }
    372 
    373     uint32_t v = lookup_or_add(cdep);
    374     valueNumbering[C] = v;
    375     return v;
    376 
    377   } else {
    378     valueNumbering[C] = nextValueNumber;
    379     return nextValueNumber++;
    380   }
    381 }
    382 
    383 /// lookup_or_add - Returns the value number for the specified value, assigning
    384 /// it a new number if it did not have one before.
    385 uint32_t ValueTable::lookup_or_add(Value *V) {
    386   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
    387   if (VI != valueNumbering.end())
    388     return VI->second;
    389 
    390   if (!isa<Instruction>(V)) {
    391     valueNumbering[V] = nextValueNumber;
    392     return nextValueNumber++;
    393   }
    394 
    395   Instruction* I = cast<Instruction>(V);
    396   Expression exp;
    397   switch (I->getOpcode()) {
    398     case Instruction::Call:
    399       return lookup_or_add_call(cast<CallInst>(I));
    400     case Instruction::Add:
    401     case Instruction::FAdd:
    402     case Instruction::Sub:
    403     case Instruction::FSub:
    404     case Instruction::Mul:
    405     case Instruction::FMul:
    406     case Instruction::UDiv:
    407     case Instruction::SDiv:
    408     case Instruction::FDiv:
    409     case Instruction::URem:
    410     case Instruction::SRem:
    411     case Instruction::FRem:
    412     case Instruction::Shl:
    413     case Instruction::LShr:
    414     case Instruction::AShr:
    415     case Instruction::And:
    416     case Instruction::Or:
    417     case Instruction::Xor:
    418     case Instruction::ICmp:
    419     case Instruction::FCmp:
    420     case Instruction::Trunc:
    421     case Instruction::ZExt:
    422     case Instruction::SExt:
    423     case Instruction::FPToUI:
    424     case Instruction::FPToSI:
    425     case Instruction::UIToFP:
    426     case Instruction::SIToFP:
    427     case Instruction::FPTrunc:
    428     case Instruction::FPExt:
    429     case Instruction::PtrToInt:
    430     case Instruction::IntToPtr:
    431     case Instruction::BitCast:
    432     case Instruction::Select:
    433     case Instruction::ExtractElement:
    434     case Instruction::InsertElement:
    435     case Instruction::ShuffleVector:
    436     case Instruction::InsertValue:
    437     case Instruction::GetElementPtr:
    438       exp = create_expression(I);
    439       break;
    440     case Instruction::ExtractValue:
    441       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
    442       break;
    443     default:
    444       valueNumbering[V] = nextValueNumber;
    445       return nextValueNumber++;
    446   }
    447 
    448   uint32_t& e = expressionNumbering[exp];
    449   if (!e) e = nextValueNumber++;
    450   valueNumbering[V] = e;
    451   return e;
    452 }
    453 
    454 /// lookup - Returns the value number of the specified value. Fails if
    455 /// the value has not yet been numbered.
    456 uint32_t ValueTable::lookup(Value *V) const {
    457   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
    458   assert(VI != valueNumbering.end() && "Value not numbered?");
    459   return VI->second;
    460 }
    461 
    462 /// lookup_or_add_cmp - Returns the value number of the given comparison,
    463 /// assigning it a new number if it did not have one before.  Useful when
    464 /// we deduced the result of a comparison, but don't immediately have an
    465 /// instruction realizing that comparison to hand.
    466 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
    467                                        CmpInst::Predicate Predicate,
    468                                        Value *LHS, Value *RHS) {
    469   Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
    470   uint32_t& e = expressionNumbering[exp];
    471   if (!e) e = nextValueNumber++;
    472   return e;
    473 }
    474 
    475 /// clear - Remove all entries from the ValueTable.
    476 void ValueTable::clear() {
    477   valueNumbering.clear();
    478   expressionNumbering.clear();
    479   nextValueNumber = 1;
    480 }
    481 
    482 /// erase - Remove a value from the value numbering.
    483 void ValueTable::erase(Value *V) {
    484   valueNumbering.erase(V);
    485 }
    486 
    487 /// verifyRemoved - Verify that the value is removed from all internal data
    488 /// structures.
    489 void ValueTable::verifyRemoved(const Value *V) const {
    490   for (DenseMap<Value*, uint32_t>::const_iterator
    491          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    492     assert(I->first != V && "Inst still occurs in value numbering map!");
    493   }
    494 }
    495 
    496 //===----------------------------------------------------------------------===//
    497 //                                GVN Pass
    498 //===----------------------------------------------------------------------===//
    499 
    500 namespace {
    501 
    502   class GVN : public FunctionPass {
    503     bool NoLoads;
    504     MemoryDependenceAnalysis *MD;
    505     DominatorTree *DT;
    506     const DataLayout *TD;
    507     const TargetLibraryInfo *TLI;
    508 
    509     ValueTable VN;
    510 
    511     /// LeaderTable - A mapping from value numbers to lists of Value*'s that
    512     /// have that value number.  Use findLeader to query it.
    513     struct LeaderTableEntry {
    514       Value *Val;
    515       const BasicBlock *BB;
    516       LeaderTableEntry *Next;
    517     };
    518     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
    519     BumpPtrAllocator TableAllocator;
    520 
    521     SmallVector<Instruction*, 8> InstrsToErase;
    522   public:
    523     static char ID; // Pass identification, replacement for typeid
    524     explicit GVN(bool noloads = false)
    525         : FunctionPass(ID), NoLoads(noloads), MD(0) {
    526       initializeGVNPass(*PassRegistry::getPassRegistry());
    527     }
    528 
    529     bool runOnFunction(Function &F);
    530 
    531     /// markInstructionForDeletion - This removes the specified instruction from
    532     /// our various maps and marks it for deletion.
    533     void markInstructionForDeletion(Instruction *I) {
    534       VN.erase(I);
    535       InstrsToErase.push_back(I);
    536     }
    537 
    538     const DataLayout *getDataLayout() const { return TD; }
    539     DominatorTree &getDominatorTree() const { return *DT; }
    540     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
    541     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
    542   private:
    543     /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
    544     /// its value number.
    545     void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
    546       LeaderTableEntry &Curr = LeaderTable[N];
    547       if (!Curr.Val) {
    548         Curr.Val = V;
    549         Curr.BB = BB;
    550         return;
    551       }
    552 
    553       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
    554       Node->Val = V;
    555       Node->BB = BB;
    556       Node->Next = Curr.Next;
    557       Curr.Next = Node;
    558     }
    559 
    560     /// removeFromLeaderTable - Scan the list of values corresponding to a given
    561     /// value number, and remove the given instruction if encountered.
    562     void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
    563       LeaderTableEntry* Prev = 0;
    564       LeaderTableEntry* Curr = &LeaderTable[N];
    565 
    566       while (Curr->Val != I || Curr->BB != BB) {
    567         Prev = Curr;
    568         Curr = Curr->Next;
    569       }
    570 
    571       if (Prev) {
    572         Prev->Next = Curr->Next;
    573       } else {
    574         if (!Curr->Next) {
    575           Curr->Val = 0;
    576           Curr->BB = 0;
    577         } else {
    578           LeaderTableEntry* Next = Curr->Next;
    579           Curr->Val = Next->Val;
    580           Curr->BB = Next->BB;
    581           Curr->Next = Next->Next;
    582         }
    583       }
    584     }
    585 
    586     // List of critical edges to be split between iterations.
    587     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
    588 
    589     // This transformation requires dominator postdominator info
    590     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    591       AU.addRequired<DominatorTree>();
    592       AU.addRequired<TargetLibraryInfo>();
    593       if (!NoLoads)
    594         AU.addRequired<MemoryDependenceAnalysis>();
    595       AU.addRequired<AliasAnalysis>();
    596 
    597       AU.addPreserved<DominatorTree>();
    598       AU.addPreserved<AliasAnalysis>();
    599     }
    600 
    601 
    602     // Helper fuctions
    603     // FIXME: eliminate or document these better
    604     bool processLoad(LoadInst *L);
    605     bool processInstruction(Instruction *I);
    606     bool processNonLocalLoad(LoadInst *L);
    607     bool processBlock(BasicBlock *BB);
    608     void dump(DenseMap<uint32_t, Value*> &d);
    609     bool iterateOnFunction(Function &F);
    610     bool performPRE(Function &F);
    611     Value *findLeader(const BasicBlock *BB, uint32_t num);
    612     void cleanupGlobalSets();
    613     void verifyRemoved(const Instruction *I) const;
    614     bool splitCriticalEdges();
    615     unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
    616                                          const BasicBlockEdge &Root);
    617     bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
    618   };
    619 
    620   char GVN::ID = 0;
    621 }
    622 
    623 // createGVNPass - The public interface to this file...
    624 FunctionPass *llvm::createGVNPass(bool NoLoads) {
    625   return new GVN(NoLoads);
    626 }
    627 
    628 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
    629 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    630 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    631 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    632 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    633 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
    634 
    635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    636 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
    637   errs() << "{\n";
    638   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
    639        E = d.end(); I != E; ++I) {
    640       errs() << I->first << "\n";
    641       I->second->dump();
    642   }
    643   errs() << "}\n";
    644 }
    645 #endif
    646 
    647 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
    648 /// we're analyzing is fully available in the specified block.  As we go, keep
    649 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
    650 /// map is actually a tri-state map with the following values:
    651 ///   0) we know the block *is not* fully available.
    652 ///   1) we know the block *is* fully available.
    653 ///   2) we do not know whether the block is fully available or not, but we are
    654 ///      currently speculating that it will be.
    655 ///   3) we are speculating for this block and have used that to speculate for
    656 ///      other blocks.
    657 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
    658                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
    659                             uint32_t RecurseDepth) {
    660   if (RecurseDepth > MaxRecurseDepth)
    661     return false;
    662 
    663   // Optimistically assume that the block is fully available and check to see
    664   // if we already know about this block in one lookup.
    665   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
    666     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
    667 
    668   // If the entry already existed for this block, return the precomputed value.
    669   if (!IV.second) {
    670     // If this is a speculative "available" value, mark it as being used for
    671     // speculation of other blocks.
    672     if (IV.first->second == 2)
    673       IV.first->second = 3;
    674     return IV.first->second != 0;
    675   }
    676 
    677   // Otherwise, see if it is fully available in all predecessors.
    678   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    679 
    680   // If this block has no predecessors, it isn't live-in here.
    681   if (PI == PE)
    682     goto SpeculationFailure;
    683 
    684   for (; PI != PE; ++PI)
    685     // If the value isn't fully available in one of our predecessors, then it
    686     // isn't fully available in this block either.  Undo our previous
    687     // optimistic assumption and bail out.
    688     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
    689       goto SpeculationFailure;
    690 
    691   return true;
    692 
    693 // SpeculationFailure - If we get here, we found out that this is not, after
    694 // all, a fully-available block.  We have a problem if we speculated on this and
    695 // used the speculation to mark other blocks as available.
    696 SpeculationFailure:
    697   char &BBVal = FullyAvailableBlocks[BB];
    698 
    699   // If we didn't speculate on this, just return with it set to false.
    700   if (BBVal == 2) {
    701     BBVal = 0;
    702     return false;
    703   }
    704 
    705   // If we did speculate on this value, we could have blocks set to 1 that are
    706   // incorrect.  Walk the (transitive) successors of this block and mark them as
    707   // 0 if set to one.
    708   SmallVector<BasicBlock*, 32> BBWorklist;
    709   BBWorklist.push_back(BB);
    710 
    711   do {
    712     BasicBlock *Entry = BBWorklist.pop_back_val();
    713     // Note that this sets blocks to 0 (unavailable) if they happen to not
    714     // already be in FullyAvailableBlocks.  This is safe.
    715     char &EntryVal = FullyAvailableBlocks[Entry];
    716     if (EntryVal == 0) continue;  // Already unavailable.
    717 
    718     // Mark as unavailable.
    719     EntryVal = 0;
    720 
    721     for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
    722       BBWorklist.push_back(*I);
    723   } while (!BBWorklist.empty());
    724 
    725   return false;
    726 }
    727 
    728 
    729 /// CanCoerceMustAliasedValueToLoad - Return true if
    730 /// CoerceAvailableValueToLoadType will succeed.
    731 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
    732                                             Type *LoadTy,
    733                                             const DataLayout &TD) {
    734   // If the loaded or stored value is an first class array or struct, don't try
    735   // to transform them.  We need to be able to bitcast to integer.
    736   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
    737       StoredVal->getType()->isStructTy() ||
    738       StoredVal->getType()->isArrayTy())
    739     return false;
    740 
    741   // The store has to be at least as big as the load.
    742   if (TD.getTypeSizeInBits(StoredVal->getType()) <
    743         TD.getTypeSizeInBits(LoadTy))
    744     return false;
    745 
    746   return true;
    747 }
    748 
    749 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
    750 /// then a load from a must-aliased pointer of a different type, try to coerce
    751 /// the stored value.  LoadedTy is the type of the load we want to replace and
    752 /// InsertPt is the place to insert new instructions.
    753 ///
    754 /// If we can't do it, return null.
    755 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
    756                                              Type *LoadedTy,
    757                                              Instruction *InsertPt,
    758                                              const DataLayout &TD) {
    759   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
    760     return 0;
    761 
    762   // If this is already the right type, just return it.
    763   Type *StoredValTy = StoredVal->getType();
    764 
    765   uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
    766   uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
    767 
    768   // If the store and reload are the same size, we can always reuse it.
    769   if (StoreSize == LoadSize) {
    770     // Pointer to Pointer -> use bitcast.
    771     if (StoredValTy->getScalarType()->isPointerTy() &&
    772         LoadedTy->getScalarType()->isPointerTy())
    773       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
    774 
    775     // Convert source pointers to integers, which can be bitcast.
    776     if (StoredValTy->getScalarType()->isPointerTy()) {
    777       StoredValTy = TD.getIntPtrType(StoredValTy);
    778       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    779     }
    780 
    781     Type *TypeToCastTo = LoadedTy;
    782     if (TypeToCastTo->getScalarType()->isPointerTy())
    783       TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
    784 
    785     if (StoredValTy != TypeToCastTo)
    786       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
    787 
    788     // Cast to pointer if the load needs a pointer type.
    789     if (LoadedTy->getScalarType()->isPointerTy())
    790       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
    791 
    792     return StoredVal;
    793   }
    794 
    795   // If the loaded value is smaller than the available value, then we can
    796   // extract out a piece from it.  If the available value is too small, then we
    797   // can't do anything.
    798   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
    799 
    800   // Convert source pointers to integers, which can be manipulated.
    801   if (StoredValTy->getScalarType()->isPointerTy()) {
    802     StoredValTy = TD.getIntPtrType(StoredValTy);
    803     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    804   }
    805 
    806   // Convert vectors and fp to integer, which can be manipulated.
    807   if (!StoredValTy->isIntegerTy()) {
    808     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
    809     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
    810   }
    811 
    812   // If this is a big-endian system, we need to shift the value down to the low
    813   // bits so that a truncate will work.
    814   if (TD.isBigEndian()) {
    815     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
    816     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
    817   }
    818 
    819   // Truncate the integer to the right size now.
    820   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
    821   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
    822 
    823   if (LoadedTy == NewIntTy)
    824     return StoredVal;
    825 
    826   // If the result is a pointer, inttoptr.
    827   if (LoadedTy->getScalarType()->isPointerTy())
    828     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
    829 
    830   // Otherwise, bitcast.
    831   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
    832 }
    833 
    834 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
    835 /// memdep query of a load that ends up being a clobbering memory write (store,
    836 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
    837 /// by the load but we can't be sure because the pointers don't mustalias.
    838 ///
    839 /// Check this case to see if there is anything more we can do before we give
    840 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    841 /// value of the piece that feeds the load.
    842 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    843                                           Value *WritePtr,
    844                                           uint64_t WriteSizeInBits,
    845                                           const DataLayout &TD) {
    846   // If the loaded or stored value is a first class array or struct, don't try
    847   // to transform them.  We need to be able to bitcast to integer.
    848   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    849     return -1;
    850 
    851   int64_t StoreOffset = 0, LoadOffset = 0;
    852   Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
    853   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
    854   if (StoreBase != LoadBase)
    855     return -1;
    856 
    857   // If the load and store are to the exact same address, they should have been
    858   // a must alias.  AA must have gotten confused.
    859   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    860   // to a load from the base of the memset.
    861 #if 0
    862   if (LoadOffset == StoreOffset) {
    863     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
    864     << "Base       = " << *StoreBase << "\n"
    865     << "Store Ptr  = " << *WritePtr << "\n"
    866     << "Store Offs = " << StoreOffset << "\n"
    867     << "Load Ptr   = " << *LoadPtr << "\n";
    868     abort();
    869   }
    870 #endif
    871 
    872   // If the load and store don't overlap at all, the store doesn't provide
    873   // anything to the load.  In this case, they really don't alias at all, AA
    874   // must have gotten confused.
    875   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
    876 
    877   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    878     return -1;
    879   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
    880   LoadSize >>= 3;
    881 
    882 
    883   bool isAAFailure = false;
    884   if (StoreOffset < LoadOffset)
    885     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
    886   else
    887     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
    888 
    889   if (isAAFailure) {
    890 #if 0
    891     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
    892     << "Base       = " << *StoreBase << "\n"
    893     << "Store Ptr  = " << *WritePtr << "\n"
    894     << "Store Offs = " << StoreOffset << "\n"
    895     << "Load Ptr   = " << *LoadPtr << "\n";
    896     abort();
    897 #endif
    898     return -1;
    899   }
    900 
    901   // If the Load isn't completely contained within the stored bits, we don't
    902   // have all the bits to feed it.  We could do something crazy in the future
    903   // (issue a smaller load then merge the bits in) but this seems unlikely to be
    904   // valuable.
    905   if (StoreOffset > LoadOffset ||
    906       StoreOffset+StoreSize < LoadOffset+LoadSize)
    907     return -1;
    908 
    909   // Okay, we can do this transformation.  Return the number of bytes into the
    910   // store that the load is.
    911   return LoadOffset-StoreOffset;
    912 }
    913 
    914 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
    915 /// memdep query of a load that ends up being a clobbering store.
    916 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
    917                                           StoreInst *DepSI,
    918                                           const DataLayout &TD) {
    919   // Cannot handle reading from store of first-class aggregate yet.
    920   if (DepSI->getValueOperand()->getType()->isStructTy() ||
    921       DepSI->getValueOperand()->getType()->isArrayTy())
    922     return -1;
    923 
    924   Value *StorePtr = DepSI->getPointerOperand();
    925   uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
    926   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    927                                         StorePtr, StoreSize, TD);
    928 }
    929 
    930 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
    931 /// memdep query of a load that ends up being clobbered by another load.  See if
    932 /// the other load can feed into the second load.
    933 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
    934                                          LoadInst *DepLI, const DataLayout &TD){
    935   // Cannot handle reading from store of first-class aggregate yet.
    936   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
    937     return -1;
    938 
    939   Value *DepPtr = DepLI->getPointerOperand();
    940   uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
    941   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
    942   if (R != -1) return R;
    943 
    944   // If we have a load/load clobber an DepLI can be widened to cover this load,
    945   // then we should widen it!
    946   int64_t LoadOffs = 0;
    947   const Value *LoadBase =
    948     GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
    949   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
    950 
    951   unsigned Size = MemoryDependenceAnalysis::
    952     getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
    953   if (Size == 0) return -1;
    954 
    955   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
    956 }
    957 
    958 
    959 
    960 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
    961                                             MemIntrinsic *MI,
    962                                             const DataLayout &TD) {
    963   // If the mem operation is a non-constant size, we can't handle it.
    964   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
    965   if (SizeCst == 0) return -1;
    966   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
    967 
    968   // If this is memset, we just need to see if the offset is valid in the size
    969   // of the memset..
    970   if (MI->getIntrinsicID() == Intrinsic::memset)
    971     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
    972                                           MemSizeInBits, TD);
    973 
    974   // If we have a memcpy/memmove, the only case we can handle is if this is a
    975   // copy from constant memory.  In that case, we can read directly from the
    976   // constant memory.
    977   MemTransferInst *MTI = cast<MemTransferInst>(MI);
    978 
    979   Constant *Src = dyn_cast<Constant>(MTI->getSource());
    980   if (Src == 0) return -1;
    981 
    982   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
    983   if (GV == 0 || !GV->isConstant()) return -1;
    984 
    985   // See if the access is within the bounds of the transfer.
    986   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    987                                               MI->getDest(), MemSizeInBits, TD);
    988   if (Offset == -1)
    989     return Offset;
    990 
    991   // Otherwise, see if we can constant fold a load from the constant with the
    992   // offset applied as appropriate.
    993   Src = ConstantExpr::getBitCast(Src,
    994                                  llvm::Type::getInt8PtrTy(Src->getContext()));
    995   Constant *OffsetCst =
    996     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
    997   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
    998   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
    999   if (ConstantFoldLoadFromConstPtr(Src, &TD))
   1000     return Offset;
   1001   return -1;
   1002 }
   1003 
   1004 
   1005 /// GetStoreValueForLoad - This function is called when we have a
   1006 /// memdep query of a load that ends up being a clobbering store.  This means
   1007 /// that the store provides bits used by the load but we the pointers don't
   1008 /// mustalias.  Check this case to see if there is anything more we can do
   1009 /// before we give up.
   1010 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
   1011                                    Type *LoadTy,
   1012                                    Instruction *InsertPt, const DataLayout &TD){
   1013   LLVMContext &Ctx = SrcVal->getType()->getContext();
   1014 
   1015   uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
   1016   uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
   1017 
   1018   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1019 
   1020   // Compute which bits of the stored value are being used by the load.  Convert
   1021   // to an integer type to start with.
   1022   if (SrcVal->getType()->getScalarType()->isPointerTy())
   1023     SrcVal = Builder.CreatePtrToInt(SrcVal,
   1024         TD.getIntPtrType(SrcVal->getType()));
   1025   if (!SrcVal->getType()->isIntegerTy())
   1026     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
   1027 
   1028   // Shift the bits to the least significant depending on endianness.
   1029   unsigned ShiftAmt;
   1030   if (TD.isLittleEndian())
   1031     ShiftAmt = Offset*8;
   1032   else
   1033     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
   1034 
   1035   if (ShiftAmt)
   1036     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
   1037 
   1038   if (LoadSize != StoreSize)
   1039     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
   1040 
   1041   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
   1042 }
   1043 
   1044 /// GetLoadValueForLoad - This function is called when we have a
   1045 /// memdep query of a load that ends up being a clobbering load.  This means
   1046 /// that the load *may* provide bits used by the load but we can't be sure
   1047 /// because the pointers don't mustalias.  Check this case to see if there is
   1048 /// anything more we can do before we give up.
   1049 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
   1050                                   Type *LoadTy, Instruction *InsertPt,
   1051                                   GVN &gvn) {
   1052   const DataLayout &TD = *gvn.getDataLayout();
   1053   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
   1054   // widen SrcVal out to a larger load.
   1055   unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
   1056   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
   1057   if (Offset+LoadSize > SrcValSize) {
   1058     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
   1059     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
   1060     // If we have a load/load clobber an DepLI can be widened to cover this
   1061     // load, then we should widen it to the next power of 2 size big enough!
   1062     unsigned NewLoadSize = Offset+LoadSize;
   1063     if (!isPowerOf2_32(NewLoadSize))
   1064       NewLoadSize = NextPowerOf2(NewLoadSize);
   1065 
   1066     Value *PtrVal = SrcVal->getPointerOperand();
   1067 
   1068     // Insert the new load after the old load.  This ensures that subsequent
   1069     // memdep queries will find the new load.  We can't easily remove the old
   1070     // load completely because it is already in the value numbering table.
   1071     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
   1072     Type *DestPTy =
   1073       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
   1074     DestPTy = PointerType::get(DestPTy,
   1075                        cast<PointerType>(PtrVal->getType())->getAddressSpace());
   1076     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
   1077     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
   1078     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
   1079     NewLoad->takeName(SrcVal);
   1080     NewLoad->setAlignment(SrcVal->getAlignment());
   1081 
   1082     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
   1083     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
   1084 
   1085     // Replace uses of the original load with the wider load.  On a big endian
   1086     // system, we need to shift down to get the relevant bits.
   1087     Value *RV = NewLoad;
   1088     if (TD.isBigEndian())
   1089       RV = Builder.CreateLShr(RV,
   1090                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
   1091     RV = Builder.CreateTrunc(RV, SrcVal->getType());
   1092     SrcVal->replaceAllUsesWith(RV);
   1093 
   1094     // We would like to use gvn.markInstructionForDeletion here, but we can't
   1095     // because the load is already memoized into the leader map table that GVN
   1096     // tracks.  It is potentially possible to remove the load from the table,
   1097     // but then there all of the operations based on it would need to be
   1098     // rehashed.  Just leave the dead load around.
   1099     gvn.getMemDep().removeInstruction(SrcVal);
   1100     SrcVal = NewLoad;
   1101   }
   1102 
   1103   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
   1104 }
   1105 
   1106 
   1107 /// GetMemInstValueForLoad - This function is called when we have a
   1108 /// memdep query of a load that ends up being a clobbering mem intrinsic.
   1109 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
   1110                                      Type *LoadTy, Instruction *InsertPt,
   1111                                      const DataLayout &TD){
   1112   LLVMContext &Ctx = LoadTy->getContext();
   1113   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
   1114 
   1115   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1116 
   1117   // We know that this method is only called when the mem transfer fully
   1118   // provides the bits for the load.
   1119   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
   1120     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
   1121     // independently of what the offset is.
   1122     Value *Val = MSI->getValue();
   1123     if (LoadSize != 1)
   1124       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
   1125 
   1126     Value *OneElt = Val;
   1127 
   1128     // Splat the value out to the right number of bits.
   1129     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
   1130       // If we can double the number of bytes set, do it.
   1131       if (NumBytesSet*2 <= LoadSize) {
   1132         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
   1133         Val = Builder.CreateOr(Val, ShVal);
   1134         NumBytesSet <<= 1;
   1135         continue;
   1136       }
   1137 
   1138       // Otherwise insert one byte at a time.
   1139       Value *ShVal = Builder.CreateShl(Val, 1*8);
   1140       Val = Builder.CreateOr(OneElt, ShVal);
   1141       ++NumBytesSet;
   1142     }
   1143 
   1144     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
   1145   }
   1146 
   1147   // Otherwise, this is a memcpy/memmove from a constant global.
   1148   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
   1149   Constant *Src = cast<Constant>(MTI->getSource());
   1150 
   1151   // Otherwise, see if we can constant fold a load from the constant with the
   1152   // offset applied as appropriate.
   1153   Src = ConstantExpr::getBitCast(Src,
   1154                                  llvm::Type::getInt8PtrTy(Src->getContext()));
   1155   Constant *OffsetCst =
   1156   ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1157   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
   1158   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
   1159   return ConstantFoldLoadFromConstPtr(Src, &TD);
   1160 }
   1161 
   1162 namespace {
   1163 
   1164 struct AvailableValueInBlock {
   1165   /// BB - The basic block in question.
   1166   BasicBlock *BB;
   1167   enum ValType {
   1168     SimpleVal,  // A simple offsetted value that is accessed.
   1169     LoadVal,    // A value produced by a load.
   1170     MemIntrin   // A memory intrinsic which is loaded from.
   1171   };
   1172 
   1173   /// V - The value that is live out of the block.
   1174   PointerIntPair<Value *, 2, ValType> Val;
   1175 
   1176   /// Offset - The byte offset in Val that is interesting for the load query.
   1177   unsigned Offset;
   1178 
   1179   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
   1180                                    unsigned Offset = 0) {
   1181     AvailableValueInBlock Res;
   1182     Res.BB = BB;
   1183     Res.Val.setPointer(V);
   1184     Res.Val.setInt(SimpleVal);
   1185     Res.Offset = Offset;
   1186     return Res;
   1187   }
   1188 
   1189   static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
   1190                                      unsigned Offset = 0) {
   1191     AvailableValueInBlock Res;
   1192     Res.BB = BB;
   1193     Res.Val.setPointer(MI);
   1194     Res.Val.setInt(MemIntrin);
   1195     Res.Offset = Offset;
   1196     return Res;
   1197   }
   1198 
   1199   static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
   1200                                        unsigned Offset = 0) {
   1201     AvailableValueInBlock Res;
   1202     Res.BB = BB;
   1203     Res.Val.setPointer(LI);
   1204     Res.Val.setInt(LoadVal);
   1205     Res.Offset = Offset;
   1206     return Res;
   1207   }
   1208 
   1209   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
   1210   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
   1211   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
   1212 
   1213   Value *getSimpleValue() const {
   1214     assert(isSimpleValue() && "Wrong accessor");
   1215     return Val.getPointer();
   1216   }
   1217 
   1218   LoadInst *getCoercedLoadValue() const {
   1219     assert(isCoercedLoadValue() && "Wrong accessor");
   1220     return cast<LoadInst>(Val.getPointer());
   1221   }
   1222 
   1223   MemIntrinsic *getMemIntrinValue() const {
   1224     assert(isMemIntrinValue() && "Wrong accessor");
   1225     return cast<MemIntrinsic>(Val.getPointer());
   1226   }
   1227 
   1228   /// MaterializeAdjustedValue - Emit code into this block to adjust the value
   1229   /// defined here to the specified type.  This handles various coercion cases.
   1230   Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
   1231     Value *Res;
   1232     if (isSimpleValue()) {
   1233       Res = getSimpleValue();
   1234       if (Res->getType() != LoadTy) {
   1235         const DataLayout *TD = gvn.getDataLayout();
   1236         assert(TD && "Need target data to handle type mismatch case");
   1237         Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
   1238                                    *TD);
   1239 
   1240         DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
   1241                      << *getSimpleValue() << '\n'
   1242                      << *Res << '\n' << "\n\n\n");
   1243       }
   1244     } else if (isCoercedLoadValue()) {
   1245       LoadInst *Load = getCoercedLoadValue();
   1246       if (Load->getType() == LoadTy && Offset == 0) {
   1247         Res = Load;
   1248       } else {
   1249         Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
   1250                                   gvn);
   1251 
   1252         DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
   1253                      << *getCoercedLoadValue() << '\n'
   1254                      << *Res << '\n' << "\n\n\n");
   1255       }
   1256     } else {
   1257       const DataLayout *TD = gvn.getDataLayout();
   1258       assert(TD && "Need target data to handle type mismatch case");
   1259       Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
   1260                                    LoadTy, BB->getTerminator(), *TD);
   1261       DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
   1262                    << "  " << *getMemIntrinValue() << '\n'
   1263                    << *Res << '\n' << "\n\n\n");
   1264     }
   1265     return Res;
   1266   }
   1267 };
   1268 
   1269 } // end anonymous namespace
   1270 
   1271 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
   1272 /// construct SSA form, allowing us to eliminate LI.  This returns the value
   1273 /// that should be used at LI's definition site.
   1274 static Value *ConstructSSAForLoadSet(LoadInst *LI,
   1275                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
   1276                                      GVN &gvn) {
   1277   // Check for the fully redundant, dominating load case.  In this case, we can
   1278   // just use the dominating value directly.
   1279   if (ValuesPerBlock.size() == 1 &&
   1280       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
   1281                                                LI->getParent()))
   1282     return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
   1283 
   1284   // Otherwise, we have to construct SSA form.
   1285   SmallVector<PHINode*, 8> NewPHIs;
   1286   SSAUpdater SSAUpdate(&NewPHIs);
   1287   SSAUpdate.Initialize(LI->getType(), LI->getName());
   1288 
   1289   Type *LoadTy = LI->getType();
   1290 
   1291   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1292     const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1293     BasicBlock *BB = AV.BB;
   1294 
   1295     if (SSAUpdate.HasValueForBlock(BB))
   1296       continue;
   1297 
   1298     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
   1299   }
   1300 
   1301   // Perform PHI construction.
   1302   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
   1303 
   1304   // If new PHI nodes were created, notify alias analysis.
   1305   if (V->getType()->getScalarType()->isPointerTy()) {
   1306     AliasAnalysis *AA = gvn.getAliasAnalysis();
   1307 
   1308     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
   1309       AA->copyValue(LI, NewPHIs[i]);
   1310 
   1311     // Now that we've copied information to the new PHIs, scan through
   1312     // them again and inform alias analysis that we've added potentially
   1313     // escaping uses to any values that are operands to these PHIs.
   1314     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
   1315       PHINode *P = NewPHIs[i];
   1316       for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
   1317         unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   1318         AA->addEscapingUse(P->getOperandUse(jj));
   1319       }
   1320     }
   1321   }
   1322 
   1323   return V;
   1324 }
   1325 
   1326 static bool isLifetimeStart(const Instruction *Inst) {
   1327   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
   1328     return II->getIntrinsicID() == Intrinsic::lifetime_start;
   1329   return false;
   1330 }
   1331 
   1332 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
   1333 /// non-local by performing PHI construction.
   1334 bool GVN::processNonLocalLoad(LoadInst *LI) {
   1335   // Find the non-local dependencies of the load.
   1336   SmallVector<NonLocalDepResult, 64> Deps;
   1337   AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
   1338   MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
   1339   //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
   1340   //             << Deps.size() << *LI << '\n');
   1341 
   1342   // If we had to process more than one hundred blocks to find the
   1343   // dependencies, this load isn't worth worrying about.  Optimizing
   1344   // it will be too expensive.
   1345   unsigned NumDeps = Deps.size();
   1346   if (NumDeps > 100)
   1347     return false;
   1348 
   1349   // If we had a phi translation failure, we'll have a single entry which is a
   1350   // clobber in the current block.  Reject this early.
   1351   if (NumDeps == 1 &&
   1352       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
   1353     DEBUG(
   1354       dbgs() << "GVN: non-local load ";
   1355       WriteAsOperand(dbgs(), LI);
   1356       dbgs() << " has unknown dependencies\n";
   1357     );
   1358     return false;
   1359   }
   1360 
   1361   // Filter out useless results (non-locals, etc).  Keep track of the blocks
   1362   // where we have a value available in repl, also keep track of whether we see
   1363   // dependencies that produce an unknown value for the load (such as a call
   1364   // that could potentially clobber the load).
   1365   SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
   1366   SmallVector<BasicBlock*, 64> UnavailableBlocks;
   1367 
   1368   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
   1369     BasicBlock *DepBB = Deps[i].getBB();
   1370     MemDepResult DepInfo = Deps[i].getResult();
   1371 
   1372     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
   1373       UnavailableBlocks.push_back(DepBB);
   1374       continue;
   1375     }
   1376 
   1377     if (DepInfo.isClobber()) {
   1378       // The address being loaded in this non-local block may not be the same as
   1379       // the pointer operand of the load if PHI translation occurs.  Make sure
   1380       // to consider the right address.
   1381       Value *Address = Deps[i].getAddress();
   1382 
   1383       // If the dependence is to a store that writes to a superset of the bits
   1384       // read by the load, we can extract the bits we need for the load from the
   1385       // stored value.
   1386       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
   1387         if (TD && Address) {
   1388           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
   1389                                                       DepSI, *TD);
   1390           if (Offset != -1) {
   1391             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1392                                                        DepSI->getValueOperand(),
   1393                                                                 Offset));
   1394             continue;
   1395           }
   1396         }
   1397       }
   1398 
   1399       // Check to see if we have something like this:
   1400       //    load i32* P
   1401       //    load i8* (P+1)
   1402       // if we have this, replace the later with an extraction from the former.
   1403       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
   1404         // If this is a clobber and L is the first instruction in its block, then
   1405         // we have the first instruction in the entry block.
   1406         if (DepLI != LI && Address && TD) {
   1407           int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
   1408                                                      LI->getPointerOperand(),
   1409                                                      DepLI, *TD);
   1410 
   1411           if (Offset != -1) {
   1412             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
   1413                                                                     Offset));
   1414             continue;
   1415           }
   1416         }
   1417       }
   1418 
   1419       // If the clobbering value is a memset/memcpy/memmove, see if we can
   1420       // forward a value on from it.
   1421       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
   1422         if (TD && Address) {
   1423           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
   1424                                                         DepMI, *TD);
   1425           if (Offset != -1) {
   1426             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
   1427                                                                   Offset));
   1428             continue;
   1429           }
   1430         }
   1431       }
   1432 
   1433       UnavailableBlocks.push_back(DepBB);
   1434       continue;
   1435     }
   1436 
   1437     // DepInfo.isDef() here
   1438 
   1439     Instruction *DepInst = DepInfo.getInst();
   1440 
   1441     // Loading the allocation -> undef.
   1442     if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
   1443         // Loading immediately after lifetime begin -> undef.
   1444         isLifetimeStart(DepInst)) {
   1445       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1446                                              UndefValue::get(LI->getType())));
   1447       continue;
   1448     }
   1449 
   1450     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
   1451       // Reject loads and stores that are to the same address but are of
   1452       // different types if we have to.
   1453       if (S->getValueOperand()->getType() != LI->getType()) {
   1454         // If the stored value is larger or equal to the loaded value, we can
   1455         // reuse it.
   1456         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
   1457                                                         LI->getType(), *TD)) {
   1458           UnavailableBlocks.push_back(DepBB);
   1459           continue;
   1460         }
   1461       }
   1462 
   1463       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1464                                                          S->getValueOperand()));
   1465       continue;
   1466     }
   1467 
   1468     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
   1469       // If the types mismatch and we can't handle it, reject reuse of the load.
   1470       if (LD->getType() != LI->getType()) {
   1471         // If the stored value is larger or equal to the loaded value, we can
   1472         // reuse it.
   1473         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
   1474           UnavailableBlocks.push_back(DepBB);
   1475           continue;
   1476         }
   1477       }
   1478       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
   1479       continue;
   1480     }
   1481 
   1482     UnavailableBlocks.push_back(DepBB);
   1483     continue;
   1484   }
   1485 
   1486   // If we have no predecessors that produce a known value for this load, exit
   1487   // early.
   1488   if (ValuesPerBlock.empty()) return false;
   1489 
   1490   // If all of the instructions we depend on produce a known value for this
   1491   // load, then it is fully redundant and we can use PHI insertion to compute
   1492   // its value.  Insert PHIs and remove the fully redundant value now.
   1493   if (UnavailableBlocks.empty()) {
   1494     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
   1495 
   1496     // Perform PHI construction.
   1497     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1498     LI->replaceAllUsesWith(V);
   1499 
   1500     if (isa<PHINode>(V))
   1501       V->takeName(LI);
   1502     if (V->getType()->getScalarType()->isPointerTy())
   1503       MD->invalidateCachedPointerInfo(V);
   1504     markInstructionForDeletion(LI);
   1505     ++NumGVNLoad;
   1506     return true;
   1507   }
   1508 
   1509   if (!EnablePRE || !EnableLoadPRE)
   1510     return false;
   1511 
   1512   // Okay, we have *some* definitions of the value.  This means that the value
   1513   // is available in some of our (transitive) predecessors.  Lets think about
   1514   // doing PRE of this load.  This will involve inserting a new load into the
   1515   // predecessor when it's not available.  We could do this in general, but
   1516   // prefer to not increase code size.  As such, we only do this when we know
   1517   // that we only have to insert *one* load (which means we're basically moving
   1518   // the load, not inserting a new one).
   1519 
   1520   SmallPtrSet<BasicBlock *, 4> Blockers;
   1521   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1522     Blockers.insert(UnavailableBlocks[i]);
   1523 
   1524   // Let's find the first basic block with more than one predecessor.  Walk
   1525   // backwards through predecessors if needed.
   1526   BasicBlock *LoadBB = LI->getParent();
   1527   BasicBlock *TmpBB = LoadBB;
   1528 
   1529   bool allSingleSucc = true;
   1530   while (TmpBB->getSinglePredecessor()) {
   1531     TmpBB = TmpBB->getSinglePredecessor();
   1532     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
   1533       return false;
   1534     if (Blockers.count(TmpBB))
   1535       return false;
   1536 
   1537     // If any of these blocks has more than one successor (i.e. if the edge we
   1538     // just traversed was critical), then there are other paths through this
   1539     // block along which the load may not be anticipated.  Hoisting the load
   1540     // above this block would be adding the load to execution paths along
   1541     // which it was not previously executed.
   1542     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
   1543       return false;
   1544   }
   1545 
   1546   assert(TmpBB);
   1547   LoadBB = TmpBB;
   1548 
   1549   // Check to see how many predecessors have the loaded value fully
   1550   // available.
   1551   DenseMap<BasicBlock*, Value*> PredLoads;
   1552   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
   1553   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
   1554     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
   1555   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1556     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
   1557 
   1558   SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
   1559   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
   1560        PI != E; ++PI) {
   1561     BasicBlock *Pred = *PI;
   1562     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
   1563       continue;
   1564     }
   1565     PredLoads[Pred] = 0;
   1566 
   1567     if (Pred->getTerminator()->getNumSuccessors() != 1) {
   1568       if (isa<IndirectBrInst>(Pred->getTerminator())) {
   1569         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
   1570               << Pred->getName() << "': " << *LI << '\n');
   1571         return false;
   1572       }
   1573 
   1574       if (LoadBB->isLandingPad()) {
   1575         DEBUG(dbgs()
   1576               << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
   1577               << Pred->getName() << "': " << *LI << '\n');
   1578         return false;
   1579       }
   1580 
   1581       unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
   1582       NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
   1583     }
   1584   }
   1585 
   1586   if (!NeedToSplit.empty()) {
   1587     toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
   1588     return false;
   1589   }
   1590 
   1591   // Decide whether PRE is profitable for this load.
   1592   unsigned NumUnavailablePreds = PredLoads.size();
   1593   assert(NumUnavailablePreds != 0 &&
   1594          "Fully available value should be eliminated above!");
   1595 
   1596   // If this load is unavailable in multiple predecessors, reject it.
   1597   // FIXME: If we could restructure the CFG, we could make a common pred with
   1598   // all the preds that don't have an available LI and insert a new load into
   1599   // that one block.
   1600   if (NumUnavailablePreds != 1)
   1601       return false;
   1602 
   1603   // Check if the load can safely be moved to all the unavailable predecessors.
   1604   bool CanDoPRE = true;
   1605   SmallVector<Instruction*, 8> NewInsts;
   1606   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1607          E = PredLoads.end(); I != E; ++I) {
   1608     BasicBlock *UnavailablePred = I->first;
   1609 
   1610     // Do PHI translation to get its value in the predecessor if necessary.  The
   1611     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
   1612 
   1613     // If all preds have a single successor, then we know it is safe to insert
   1614     // the load on the pred (?!?), so we can insert code to materialize the
   1615     // pointer if it is not available.
   1616     PHITransAddr Address(LI->getPointerOperand(), TD);
   1617     Value *LoadPtr = 0;
   1618     if (allSingleSucc) {
   1619       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
   1620                                                   *DT, NewInsts);
   1621     } else {
   1622       Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
   1623       LoadPtr = Address.getAddr();
   1624     }
   1625 
   1626     // If we couldn't find or insert a computation of this phi translated value,
   1627     // we fail PRE.
   1628     if (LoadPtr == 0) {
   1629       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
   1630             << *LI->getPointerOperand() << "\n");
   1631       CanDoPRE = false;
   1632       break;
   1633     }
   1634 
   1635     // Make sure it is valid to move this load here.  We have to watch out for:
   1636     //  @1 = getelementptr (i8* p, ...
   1637     //  test p and branch if == 0
   1638     //  load @1
   1639     // It is valid to have the getelementptr before the test, even if p can
   1640     // be 0, as getelementptr only does address arithmetic.
   1641     // If we are not pushing the value through any multiple-successor blocks
   1642     // we do not have this case.  Otherwise, check that the load is safe to
   1643     // put anywhere; this can be improved, but should be conservatively safe.
   1644     if (!allSingleSucc &&
   1645         // FIXME: REEVALUTE THIS.
   1646         !isSafeToLoadUnconditionally(LoadPtr,
   1647                                      UnavailablePred->getTerminator(),
   1648                                      LI->getAlignment(), TD)) {
   1649       CanDoPRE = false;
   1650       break;
   1651     }
   1652 
   1653     I->second = LoadPtr;
   1654   }
   1655 
   1656   if (!CanDoPRE) {
   1657     while (!NewInsts.empty()) {
   1658       Instruction *I = NewInsts.pop_back_val();
   1659       if (MD) MD->removeInstruction(I);
   1660       I->eraseFromParent();
   1661     }
   1662     return false;
   1663   }
   1664 
   1665   // Okay, we can eliminate this load by inserting a reload in the predecessor
   1666   // and using PHI construction to get the value in the other predecessors, do
   1667   // it.
   1668   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
   1669   DEBUG(if (!NewInsts.empty())
   1670           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
   1671                  << *NewInsts.back() << '\n');
   1672 
   1673   // Assign value numbers to the new instructions.
   1674   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
   1675     // FIXME: We really _ought_ to insert these value numbers into their
   1676     // parent's availability map.  However, in doing so, we risk getting into
   1677     // ordering issues.  If a block hasn't been processed yet, we would be
   1678     // marking a value as AVAIL-IN, which isn't what we intend.
   1679     VN.lookup_or_add(NewInsts[i]);
   1680   }
   1681 
   1682   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1683          E = PredLoads.end(); I != E; ++I) {
   1684     BasicBlock *UnavailablePred = I->first;
   1685     Value *LoadPtr = I->second;
   1686 
   1687     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
   1688                                         LI->getAlignment(),
   1689                                         UnavailablePred->getTerminator());
   1690 
   1691     // Transfer the old load's TBAA tag to the new load.
   1692     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
   1693       NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1694 
   1695     // Transfer DebugLoc.
   1696     NewLoad->setDebugLoc(LI->getDebugLoc());
   1697 
   1698     // Add the newly created load.
   1699     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
   1700                                                         NewLoad));
   1701     MD->invalidateCachedPointerInfo(LoadPtr);
   1702     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
   1703   }
   1704 
   1705   // Perform PHI construction.
   1706   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1707   LI->replaceAllUsesWith(V);
   1708   if (isa<PHINode>(V))
   1709     V->takeName(LI);
   1710   if (V->getType()->getScalarType()->isPointerTy())
   1711     MD->invalidateCachedPointerInfo(V);
   1712   markInstructionForDeletion(LI);
   1713   ++NumPRELoad;
   1714   return true;
   1715 }
   1716 
   1717 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
   1718   // Patch the replacement so that it is not more restrictive than the value
   1719   // being replaced.
   1720   BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
   1721   BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
   1722   if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
   1723       isa<OverflowingBinaryOperator>(ReplOp)) {
   1724     if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
   1725       ReplOp->setHasNoSignedWrap(false);
   1726     if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
   1727       ReplOp->setHasNoUnsignedWrap(false);
   1728   }
   1729   if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
   1730     SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
   1731     ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
   1732     for (int i = 0, n = Metadata.size(); i < n; ++i) {
   1733       unsigned Kind = Metadata[i].first;
   1734       MDNode *IMD = I->getMetadata(Kind);
   1735       MDNode *ReplMD = Metadata[i].second;
   1736       switch(Kind) {
   1737       default:
   1738         ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
   1739         break;
   1740       case LLVMContext::MD_dbg:
   1741         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
   1742       case LLVMContext::MD_tbaa:
   1743         ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
   1744         break;
   1745       case LLVMContext::MD_range:
   1746         ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
   1747         break;
   1748       case LLVMContext::MD_prof:
   1749         llvm_unreachable("MD_prof in a non terminator instruction");
   1750         break;
   1751       case LLVMContext::MD_fpmath:
   1752         ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
   1753         break;
   1754       }
   1755     }
   1756   }
   1757 }
   1758 
   1759 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
   1760   patchReplacementInstruction(I, Repl);
   1761   I->replaceAllUsesWith(Repl);
   1762 }
   1763 
   1764 /// processLoad - Attempt to eliminate a load, first by eliminating it
   1765 /// locally, and then attempting non-local elimination if that fails.
   1766 bool GVN::processLoad(LoadInst *L) {
   1767   if (!MD)
   1768     return false;
   1769 
   1770   if (!L->isSimple())
   1771     return false;
   1772 
   1773   if (L->use_empty()) {
   1774     markInstructionForDeletion(L);
   1775     return true;
   1776   }
   1777 
   1778   // ... to a pointer that has been loaded from before...
   1779   MemDepResult Dep = MD->getDependency(L);
   1780 
   1781   // If we have a clobber and target data is around, see if this is a clobber
   1782   // that we can fix up through code synthesis.
   1783   if (Dep.isClobber() && TD) {
   1784     // Check to see if we have something like this:
   1785     //   store i32 123, i32* %P
   1786     //   %A = bitcast i32* %P to i8*
   1787     //   %B = gep i8* %A, i32 1
   1788     //   %C = load i8* %B
   1789     //
   1790     // We could do that by recognizing if the clobber instructions are obviously
   1791     // a common base + constant offset, and if the previous store (or memset)
   1792     // completely covers this load.  This sort of thing can happen in bitfield
   1793     // access code.
   1794     Value *AvailVal = 0;
   1795     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
   1796       int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
   1797                                                   L->getPointerOperand(),
   1798                                                   DepSI, *TD);
   1799       if (Offset != -1)
   1800         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
   1801                                         L->getType(), L, *TD);
   1802     }
   1803 
   1804     // Check to see if we have something like this:
   1805     //    load i32* P
   1806     //    load i8* (P+1)
   1807     // if we have this, replace the later with an extraction from the former.
   1808     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
   1809       // If this is a clobber and L is the first instruction in its block, then
   1810       // we have the first instruction in the entry block.
   1811       if (DepLI == L)
   1812         return false;
   1813 
   1814       int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
   1815                                                  L->getPointerOperand(),
   1816                                                  DepLI, *TD);
   1817       if (Offset != -1)
   1818         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
   1819     }
   1820 
   1821     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
   1822     // a value on from it.
   1823     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
   1824       int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
   1825                                                     L->getPointerOperand(),
   1826                                                     DepMI, *TD);
   1827       if (Offset != -1)
   1828         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
   1829     }
   1830 
   1831     if (AvailVal) {
   1832       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
   1833             << *AvailVal << '\n' << *L << "\n\n\n");
   1834 
   1835       // Replace the load!
   1836       L->replaceAllUsesWith(AvailVal);
   1837       if (AvailVal->getType()->getScalarType()->isPointerTy())
   1838         MD->invalidateCachedPointerInfo(AvailVal);
   1839       markInstructionForDeletion(L);
   1840       ++NumGVNLoad;
   1841       return true;
   1842     }
   1843   }
   1844 
   1845   // If the value isn't available, don't do anything!
   1846   if (Dep.isClobber()) {
   1847     DEBUG(
   1848       // fast print dep, using operator<< on instruction is too slow.
   1849       dbgs() << "GVN: load ";
   1850       WriteAsOperand(dbgs(), L);
   1851       Instruction *I = Dep.getInst();
   1852       dbgs() << " is clobbered by " << *I << '\n';
   1853     );
   1854     return false;
   1855   }
   1856 
   1857   // If it is defined in another block, try harder.
   1858   if (Dep.isNonLocal())
   1859     return processNonLocalLoad(L);
   1860 
   1861   if (!Dep.isDef()) {
   1862     DEBUG(
   1863       // fast print dep, using operator<< on instruction is too slow.
   1864       dbgs() << "GVN: load ";
   1865       WriteAsOperand(dbgs(), L);
   1866       dbgs() << " has unknown dependence\n";
   1867     );
   1868     return false;
   1869   }
   1870 
   1871   Instruction *DepInst = Dep.getInst();
   1872   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
   1873     Value *StoredVal = DepSI->getValueOperand();
   1874 
   1875     // The store and load are to a must-aliased pointer, but they may not
   1876     // actually have the same type.  See if we know how to reuse the stored
   1877     // value (depending on its type).
   1878     if (StoredVal->getType() != L->getType()) {
   1879       if (TD) {
   1880         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
   1881                                                    L, *TD);
   1882         if (StoredVal == 0)
   1883           return false;
   1884 
   1885         DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
   1886                      << '\n' << *L << "\n\n\n");
   1887       }
   1888       else
   1889         return false;
   1890     }
   1891 
   1892     // Remove it!
   1893     L->replaceAllUsesWith(StoredVal);
   1894     if (StoredVal->getType()->getScalarType()->isPointerTy())
   1895       MD->invalidateCachedPointerInfo(StoredVal);
   1896     markInstructionForDeletion(L);
   1897     ++NumGVNLoad;
   1898     return true;
   1899   }
   1900 
   1901   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
   1902     Value *AvailableVal = DepLI;
   1903 
   1904     // The loads are of a must-aliased pointer, but they may not actually have
   1905     // the same type.  See if we know how to reuse the previously loaded value
   1906     // (depending on its type).
   1907     if (DepLI->getType() != L->getType()) {
   1908       if (TD) {
   1909         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
   1910                                                       L, *TD);
   1911         if (AvailableVal == 0)
   1912           return false;
   1913 
   1914         DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
   1915                      << "\n" << *L << "\n\n\n");
   1916       }
   1917       else
   1918         return false;
   1919     }
   1920 
   1921     // Remove it!
   1922     patchAndReplaceAllUsesWith(L, AvailableVal);
   1923     if (DepLI->getType()->getScalarType()->isPointerTy())
   1924       MD->invalidateCachedPointerInfo(DepLI);
   1925     markInstructionForDeletion(L);
   1926     ++NumGVNLoad;
   1927     return true;
   1928   }
   1929 
   1930   // If this load really doesn't depend on anything, then we must be loading an
   1931   // undef value.  This can happen when loading for a fresh allocation with no
   1932   // intervening stores, for example.
   1933   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
   1934     L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1935     markInstructionForDeletion(L);
   1936     ++NumGVNLoad;
   1937     return true;
   1938   }
   1939 
   1940   // If this load occurs either right after a lifetime begin,
   1941   // then the loaded value is undefined.
   1942   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
   1943     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
   1944       L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1945       markInstructionForDeletion(L);
   1946       ++NumGVNLoad;
   1947       return true;
   1948     }
   1949   }
   1950 
   1951   return false;
   1952 }
   1953 
   1954 // findLeader - In order to find a leader for a given value number at a
   1955 // specific basic block, we first obtain the list of all Values for that number,
   1956 // and then scan the list to find one whose block dominates the block in
   1957 // question.  This is fast because dominator tree queries consist of only
   1958 // a few comparisons of DFS numbers.
   1959 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
   1960   LeaderTableEntry Vals = LeaderTable[num];
   1961   if (!Vals.Val) return 0;
   1962 
   1963   Value *Val = 0;
   1964   if (DT->dominates(Vals.BB, BB)) {
   1965     Val = Vals.Val;
   1966     if (isa<Constant>(Val)) return Val;
   1967   }
   1968 
   1969   LeaderTableEntry* Next = Vals.Next;
   1970   while (Next) {
   1971     if (DT->dominates(Next->BB, BB)) {
   1972       if (isa<Constant>(Next->Val)) return Next->Val;
   1973       if (!Val) Val = Next->Val;
   1974     }
   1975 
   1976     Next = Next->Next;
   1977   }
   1978 
   1979   return Val;
   1980 }
   1981 
   1982 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
   1983 /// use is dominated by the given basic block.  Returns the number of uses that
   1984 /// were replaced.
   1985 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
   1986                                           const BasicBlockEdge &Root) {
   1987   unsigned Count = 0;
   1988   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
   1989        UI != UE; ) {
   1990     Use &U = (UI++).getUse();
   1991 
   1992     if (DT->dominates(Root, U)) {
   1993       U.set(To);
   1994       ++Count;
   1995     }
   1996   }
   1997   return Count;
   1998 }
   1999 
   2000 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
   2001 /// true if every path from the entry block to 'Dst' passes via this edge.  In
   2002 /// particular 'Dst' must not be reachable via another edge from 'Src'.
   2003 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
   2004                                        DominatorTree *DT) {
   2005   // While in theory it is interesting to consider the case in which Dst has
   2006   // more than one predecessor, because Dst might be part of a loop which is
   2007   // only reachable from Src, in practice it is pointless since at the time
   2008   // GVN runs all such loops have preheaders, which means that Dst will have
   2009   // been changed to have only one predecessor, namely Src.
   2010   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
   2011   const BasicBlock *Src = E.getStart();
   2012   assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
   2013   (void)Src;
   2014   return Pred != 0;
   2015 }
   2016 
   2017 /// propagateEquality - The given values are known to be equal in every block
   2018 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
   2019 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
   2020 bool GVN::propagateEquality(Value *LHS, Value *RHS,
   2021                             const BasicBlockEdge &Root) {
   2022   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
   2023   Worklist.push_back(std::make_pair(LHS, RHS));
   2024   bool Changed = false;
   2025   // For speed, compute a conservative fast approximation to
   2026   // DT->dominates(Root, Root.getEnd());
   2027   bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
   2028 
   2029   while (!Worklist.empty()) {
   2030     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
   2031     LHS = Item.first; RHS = Item.second;
   2032 
   2033     if (LHS == RHS) continue;
   2034     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
   2035 
   2036     // Don't try to propagate equalities between constants.
   2037     if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
   2038 
   2039     // Prefer a constant on the right-hand side, or an Argument if no constants.
   2040     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
   2041       std::swap(LHS, RHS);
   2042     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
   2043 
   2044     // If there is no obvious reason to prefer the left-hand side over the right-
   2045     // hand side, ensure the longest lived term is on the right-hand side, so the
   2046     // shortest lived term will be replaced by the longest lived.  This tends to
   2047     // expose more simplifications.
   2048     uint32_t LVN = VN.lookup_or_add(LHS);
   2049     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
   2050         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
   2051       // Move the 'oldest' value to the right-hand side, using the value number as
   2052       // a proxy for age.
   2053       uint32_t RVN = VN.lookup_or_add(RHS);
   2054       if (LVN < RVN) {
   2055         std::swap(LHS, RHS);
   2056         LVN = RVN;
   2057       }
   2058     }
   2059 
   2060     // If value numbering later sees that an instruction in the scope is equal
   2061     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
   2062     // the invariant that instructions only occur in the leader table for their
   2063     // own value number (this is used by removeFromLeaderTable), do not do this
   2064     // if RHS is an instruction (if an instruction in the scope is morphed into
   2065     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
   2066     // using the leader table is about compiling faster, not optimizing better).
   2067     // The leader table only tracks basic blocks, not edges. Only add to if we
   2068     // have the simple case where the edge dominates the end.
   2069     if (RootDominatesEnd && !isa<Instruction>(RHS))
   2070       addToLeaderTable(LVN, RHS, Root.getEnd());
   2071 
   2072     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
   2073     // LHS always has at least one use that is not dominated by Root, this will
   2074     // never do anything if LHS has only one use.
   2075     if (!LHS->hasOneUse()) {
   2076       unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
   2077       Changed |= NumReplacements > 0;
   2078       NumGVNEqProp += NumReplacements;
   2079     }
   2080 
   2081     // Now try to deduce additional equalities from this one.  For example, if the
   2082     // known equality was "(A != B)" == "false" then it follows that A and B are
   2083     // equal in the scope.  Only boolean equalities with an explicit true or false
   2084     // RHS are currently supported.
   2085     if (!RHS->getType()->isIntegerTy(1))
   2086       // Not a boolean equality - bail out.
   2087       continue;
   2088     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
   2089     if (!CI)
   2090       // RHS neither 'true' nor 'false' - bail out.
   2091       continue;
   2092     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
   2093     bool isKnownTrue = CI->isAllOnesValue();
   2094     bool isKnownFalse = !isKnownTrue;
   2095 
   2096     // If "A && B" is known true then both A and B are known true.  If "A || B"
   2097     // is known false then both A and B are known false.
   2098     Value *A, *B;
   2099     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
   2100         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
   2101       Worklist.push_back(std::make_pair(A, RHS));
   2102       Worklist.push_back(std::make_pair(B, RHS));
   2103       continue;
   2104     }
   2105 
   2106     // If we are propagating an equality like "(A == B)" == "true" then also
   2107     // propagate the equality A == B.  When propagating a comparison such as
   2108     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
   2109     if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
   2110       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
   2111 
   2112       // If "A == B" is known true, or "A != B" is known false, then replace
   2113       // A with B everywhere in the scope.
   2114       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
   2115           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
   2116         Worklist.push_back(std::make_pair(Op0, Op1));
   2117 
   2118       // If "A >= B" is known true, replace "A < B" with false everywhere.
   2119       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
   2120       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
   2121       // Since we don't have the instruction "A < B" immediately to hand, work out
   2122       // the value number that it would have and use that to find an appropriate
   2123       // instruction (if any).
   2124       uint32_t NextNum = VN.getNextUnusedValueNumber();
   2125       uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
   2126       // If the number we were assigned was brand new then there is no point in
   2127       // looking for an instruction realizing it: there cannot be one!
   2128       if (Num < NextNum) {
   2129         Value *NotCmp = findLeader(Root.getEnd(), Num);
   2130         if (NotCmp && isa<Instruction>(NotCmp)) {
   2131           unsigned NumReplacements =
   2132             replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
   2133           Changed |= NumReplacements > 0;
   2134           NumGVNEqProp += NumReplacements;
   2135         }
   2136       }
   2137       // Ensure that any instruction in scope that gets the "A < B" value number
   2138       // is replaced with false.
   2139       // The leader table only tracks basic blocks, not edges. Only add to if we
   2140       // have the simple case where the edge dominates the end.
   2141       if (RootDominatesEnd)
   2142         addToLeaderTable(Num, NotVal, Root.getEnd());
   2143 
   2144       continue;
   2145     }
   2146   }
   2147 
   2148   return Changed;
   2149 }
   2150 
   2151 /// processInstruction - When calculating availability, handle an instruction
   2152 /// by inserting it into the appropriate sets
   2153 bool GVN::processInstruction(Instruction *I) {
   2154   // Ignore dbg info intrinsics.
   2155   if (isa<DbgInfoIntrinsic>(I))
   2156     return false;
   2157 
   2158   // If the instruction can be easily simplified then do so now in preference
   2159   // to value numbering it.  Value numbering often exposes redundancies, for
   2160   // example if it determines that %y is equal to %x then the instruction
   2161   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
   2162   if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
   2163     I->replaceAllUsesWith(V);
   2164     if (MD && V->getType()->getScalarType()->isPointerTy())
   2165       MD->invalidateCachedPointerInfo(V);
   2166     markInstructionForDeletion(I);
   2167     ++NumGVNSimpl;
   2168     return true;
   2169   }
   2170 
   2171   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   2172     if (processLoad(LI))
   2173       return true;
   2174 
   2175     unsigned Num = VN.lookup_or_add(LI);
   2176     addToLeaderTable(Num, LI, LI->getParent());
   2177     return false;
   2178   }
   2179 
   2180   // For conditional branches, we can perform simple conditional propagation on
   2181   // the condition value itself.
   2182   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   2183     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
   2184       return false;
   2185 
   2186     Value *BranchCond = BI->getCondition();
   2187 
   2188     BasicBlock *TrueSucc = BI->getSuccessor(0);
   2189     BasicBlock *FalseSucc = BI->getSuccessor(1);
   2190     // Avoid multiple edges early.
   2191     if (TrueSucc == FalseSucc)
   2192       return false;
   2193 
   2194     BasicBlock *Parent = BI->getParent();
   2195     bool Changed = false;
   2196 
   2197     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
   2198     BasicBlockEdge TrueE(Parent, TrueSucc);
   2199     Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
   2200 
   2201     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
   2202     BasicBlockEdge FalseE(Parent, FalseSucc);
   2203     Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
   2204 
   2205     return Changed;
   2206   }
   2207 
   2208   // For switches, propagate the case values into the case destinations.
   2209   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   2210     Value *SwitchCond = SI->getCondition();
   2211     BasicBlock *Parent = SI->getParent();
   2212     bool Changed = false;
   2213 
   2214     // Remember how many outgoing edges there are to every successor.
   2215     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
   2216     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
   2217       ++SwitchEdges[SI->getSuccessor(i)];
   2218 
   2219     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2220          i != e; ++i) {
   2221       BasicBlock *Dst = i.getCaseSuccessor();
   2222       // If there is only a single edge, propagate the case value into it.
   2223       if (SwitchEdges.lookup(Dst) == 1) {
   2224         BasicBlockEdge E(Parent, Dst);
   2225         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
   2226       }
   2227     }
   2228     return Changed;
   2229   }
   2230 
   2231   // Instructions with void type don't return a value, so there's
   2232   // no point in trying to find redundancies in them.
   2233   if (I->getType()->isVoidTy()) return false;
   2234 
   2235   uint32_t NextNum = VN.getNextUnusedValueNumber();
   2236   unsigned Num = VN.lookup_or_add(I);
   2237 
   2238   // Allocations are always uniquely numbered, so we can save time and memory
   2239   // by fast failing them.
   2240   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
   2241     addToLeaderTable(Num, I, I->getParent());
   2242     return false;
   2243   }
   2244 
   2245   // If the number we were assigned was a brand new VN, then we don't
   2246   // need to do a lookup to see if the number already exists
   2247   // somewhere in the domtree: it can't!
   2248   if (Num >= NextNum) {
   2249     addToLeaderTable(Num, I, I->getParent());
   2250     return false;
   2251   }
   2252 
   2253   // Perform fast-path value-number based elimination of values inherited from
   2254   // dominators.
   2255   Value *repl = findLeader(I->getParent(), Num);
   2256   if (repl == 0) {
   2257     // Failure, just remember this instance for future use.
   2258     addToLeaderTable(Num, I, I->getParent());
   2259     return false;
   2260   }
   2261 
   2262   // Remove it!
   2263   patchAndReplaceAllUsesWith(I, repl);
   2264   if (MD && repl->getType()->getScalarType()->isPointerTy())
   2265     MD->invalidateCachedPointerInfo(repl);
   2266   markInstructionForDeletion(I);
   2267   return true;
   2268 }
   2269 
   2270 /// runOnFunction - This is the main transformation entry point for a function.
   2271 bool GVN::runOnFunction(Function& F) {
   2272   if (!NoLoads)
   2273     MD = &getAnalysis<MemoryDependenceAnalysis>();
   2274   DT = &getAnalysis<DominatorTree>();
   2275   TD = getAnalysisIfAvailable<DataLayout>();
   2276   TLI = &getAnalysis<TargetLibraryInfo>();
   2277   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
   2278   VN.setMemDep(MD);
   2279   VN.setDomTree(DT);
   2280 
   2281   bool Changed = false;
   2282   bool ShouldContinue = true;
   2283 
   2284   // Merge unconditional branches, allowing PRE to catch more
   2285   // optimization opportunities.
   2286   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
   2287     BasicBlock *BB = FI++;
   2288 
   2289     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
   2290     if (removedBlock) ++NumGVNBlocks;
   2291 
   2292     Changed |= removedBlock;
   2293   }
   2294 
   2295   unsigned Iteration = 0;
   2296   while (ShouldContinue) {
   2297     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
   2298     ShouldContinue = iterateOnFunction(F);
   2299     if (splitCriticalEdges())
   2300       ShouldContinue = true;
   2301     Changed |= ShouldContinue;
   2302     ++Iteration;
   2303   }
   2304 
   2305   if (EnablePRE) {
   2306     bool PREChanged = true;
   2307     while (PREChanged) {
   2308       PREChanged = performPRE(F);
   2309       Changed |= PREChanged;
   2310     }
   2311   }
   2312   // FIXME: Should perform GVN again after PRE does something.  PRE can move
   2313   // computations into blocks where they become fully redundant.  Note that
   2314   // we can't do this until PRE's critical edge splitting updates memdep.
   2315   // Actually, when this happens, we should just fully integrate PRE into GVN.
   2316 
   2317   cleanupGlobalSets();
   2318 
   2319   return Changed;
   2320 }
   2321 
   2322 
   2323 bool GVN::processBlock(BasicBlock *BB) {
   2324   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
   2325   // (and incrementing BI before processing an instruction).
   2326   assert(InstrsToErase.empty() &&
   2327          "We expect InstrsToErase to be empty across iterations");
   2328   bool ChangedFunction = false;
   2329 
   2330   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
   2331        BI != BE;) {
   2332     ChangedFunction |= processInstruction(BI);
   2333     if (InstrsToErase.empty()) {
   2334       ++BI;
   2335       continue;
   2336     }
   2337 
   2338     // If we need some instructions deleted, do it now.
   2339     NumGVNInstr += InstrsToErase.size();
   2340 
   2341     // Avoid iterator invalidation.
   2342     bool AtStart = BI == BB->begin();
   2343     if (!AtStart)
   2344       --BI;
   2345 
   2346     for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
   2347          E = InstrsToErase.end(); I != E; ++I) {
   2348       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
   2349       if (MD) MD->removeInstruction(*I);
   2350       DEBUG(verifyRemoved(*I));
   2351       (*I)->eraseFromParent();
   2352     }
   2353     InstrsToErase.clear();
   2354 
   2355     if (AtStart)
   2356       BI = BB->begin();
   2357     else
   2358       ++BI;
   2359   }
   2360 
   2361   return ChangedFunction;
   2362 }
   2363 
   2364 /// performPRE - Perform a purely local form of PRE that looks for diamond
   2365 /// control flow patterns and attempts to perform simple PRE at the join point.
   2366 bool GVN::performPRE(Function &F) {
   2367   bool Changed = false;
   2368   SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
   2369   for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
   2370        DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
   2371     BasicBlock *CurrentBlock = *DI;
   2372 
   2373     // Nothing to PRE in the entry block.
   2374     if (CurrentBlock == &F.getEntryBlock()) continue;
   2375 
   2376     // Don't perform PRE on a landing pad.
   2377     if (CurrentBlock->isLandingPad()) continue;
   2378 
   2379     for (BasicBlock::iterator BI = CurrentBlock->begin(),
   2380          BE = CurrentBlock->end(); BI != BE; ) {
   2381       Instruction *CurInst = BI++;
   2382 
   2383       if (isa<AllocaInst>(CurInst) ||
   2384           isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
   2385           CurInst->getType()->isVoidTy() ||
   2386           CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
   2387           isa<DbgInfoIntrinsic>(CurInst))
   2388         continue;
   2389 
   2390       // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
   2391       // sinking the compare again, and it would force the code generator to
   2392       // move the i1 from processor flags or predicate registers into a general
   2393       // purpose register.
   2394       if (isa<CmpInst>(CurInst))
   2395         continue;
   2396 
   2397       // We don't currently value number ANY inline asm calls.
   2398       if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
   2399         if (CallI->isInlineAsm())
   2400           continue;
   2401 
   2402       uint32_t ValNo = VN.lookup(CurInst);
   2403 
   2404       // Look for the predecessors for PRE opportunities.  We're
   2405       // only trying to solve the basic diamond case, where
   2406       // a value is computed in the successor and one predecessor,
   2407       // but not the other.  We also explicitly disallow cases
   2408       // where the successor is its own predecessor, because they're
   2409       // more complicated to get right.
   2410       unsigned NumWith = 0;
   2411       unsigned NumWithout = 0;
   2412       BasicBlock *PREPred = 0;
   2413       predMap.clear();
   2414 
   2415       for (pred_iterator PI = pred_begin(CurrentBlock),
   2416            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
   2417         BasicBlock *P = *PI;
   2418         // We're not interested in PRE where the block is its
   2419         // own predecessor, or in blocks with predecessors
   2420         // that are not reachable.
   2421         if (P == CurrentBlock) {
   2422           NumWithout = 2;
   2423           break;
   2424         } else if (!DT->isReachableFromEntry(P))  {
   2425           NumWithout = 2;
   2426           break;
   2427         }
   2428 
   2429         Value* predV = findLeader(P, ValNo);
   2430         if (predV == 0) {
   2431           predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
   2432           PREPred = P;
   2433           ++NumWithout;
   2434         } else if (predV == CurInst) {
   2435           /* CurInst dominates this predecessor. */
   2436           NumWithout = 2;
   2437           break;
   2438         } else {
   2439           predMap.push_back(std::make_pair(predV, P));
   2440           ++NumWith;
   2441         }
   2442       }
   2443 
   2444       // Don't do PRE when it might increase code size, i.e. when
   2445       // we would need to insert instructions in more than one pred.
   2446       if (NumWithout != 1 || NumWith == 0)
   2447         continue;
   2448 
   2449       // Don't do PRE across indirect branch.
   2450       if (isa<IndirectBrInst>(PREPred->getTerminator()))
   2451         continue;
   2452 
   2453       // We can't do PRE safely on a critical edge, so instead we schedule
   2454       // the edge to be split and perform the PRE the next time we iterate
   2455       // on the function.
   2456       unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
   2457       if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
   2458         toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
   2459         continue;
   2460       }
   2461 
   2462       // Instantiate the expression in the predecessor that lacked it.
   2463       // Because we are going top-down through the block, all value numbers
   2464       // will be available in the predecessor by the time we need them.  Any
   2465       // that weren't originally present will have been instantiated earlier
   2466       // in this loop.
   2467       Instruction *PREInstr = CurInst->clone();
   2468       bool success = true;
   2469       for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
   2470         Value *Op = PREInstr->getOperand(i);
   2471         if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
   2472           continue;
   2473 
   2474         if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
   2475           PREInstr->setOperand(i, V);
   2476         } else {
   2477           success = false;
   2478           break;
   2479         }
   2480       }
   2481 
   2482       // Fail out if we encounter an operand that is not available in
   2483       // the PRE predecessor.  This is typically because of loads which
   2484       // are not value numbered precisely.
   2485       if (!success) {
   2486         DEBUG(verifyRemoved(PREInstr));
   2487         delete PREInstr;
   2488         continue;
   2489       }
   2490 
   2491       PREInstr->insertBefore(PREPred->getTerminator());
   2492       PREInstr->setName(CurInst->getName() + ".pre");
   2493       PREInstr->setDebugLoc(CurInst->getDebugLoc());
   2494       VN.add(PREInstr, ValNo);
   2495       ++NumGVNPRE;
   2496 
   2497       // Update the availability map to include the new instruction.
   2498       addToLeaderTable(ValNo, PREInstr, PREPred);
   2499 
   2500       // Create a PHI to make the value available in this block.
   2501       PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
   2502                                      CurInst->getName() + ".pre-phi",
   2503                                      CurrentBlock->begin());
   2504       for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
   2505         if (Value *V = predMap[i].first)
   2506           Phi->addIncoming(V, predMap[i].second);
   2507         else
   2508           Phi->addIncoming(PREInstr, PREPred);
   2509       }
   2510 
   2511       VN.add(Phi, ValNo);
   2512       addToLeaderTable(ValNo, Phi, CurrentBlock);
   2513       Phi->setDebugLoc(CurInst->getDebugLoc());
   2514       CurInst->replaceAllUsesWith(Phi);
   2515       if (Phi->getType()->getScalarType()->isPointerTy()) {
   2516         // Because we have added a PHI-use of the pointer value, it has now
   2517         // "escaped" from alias analysis' perspective.  We need to inform
   2518         // AA of this.
   2519         for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
   2520              ++ii) {
   2521           unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   2522           VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
   2523         }
   2524 
   2525         if (MD)
   2526           MD->invalidateCachedPointerInfo(Phi);
   2527       }
   2528       VN.erase(CurInst);
   2529       removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
   2530 
   2531       DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
   2532       if (MD) MD->removeInstruction(CurInst);
   2533       DEBUG(verifyRemoved(CurInst));
   2534       CurInst->eraseFromParent();
   2535       Changed = true;
   2536     }
   2537   }
   2538 
   2539   if (splitCriticalEdges())
   2540     Changed = true;
   2541 
   2542   return Changed;
   2543 }
   2544 
   2545 /// splitCriticalEdges - Split critical edges found during the previous
   2546 /// iteration that may enable further optimization.
   2547 bool GVN::splitCriticalEdges() {
   2548   if (toSplit.empty())
   2549     return false;
   2550   do {
   2551     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
   2552     SplitCriticalEdge(Edge.first, Edge.second, this);
   2553   } while (!toSplit.empty());
   2554   if (MD) MD->invalidateCachedPredecessors();
   2555   return true;
   2556 }
   2557 
   2558 /// iterateOnFunction - Executes one iteration of GVN
   2559 bool GVN::iterateOnFunction(Function &F) {
   2560   cleanupGlobalSets();
   2561 
   2562   // Top-down walk of the dominator tree
   2563   bool Changed = false;
   2564 #if 0
   2565   // Needed for value numbering with phi construction to work.
   2566   ReversePostOrderTraversal<Function*> RPOT(&F);
   2567   for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
   2568        RE = RPOT.end(); RI != RE; ++RI)
   2569     Changed |= processBlock(*RI);
   2570 #else
   2571   for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
   2572        DE = df_end(DT->getRootNode()); DI != DE; ++DI)
   2573     Changed |= processBlock(DI->getBlock());
   2574 #endif
   2575 
   2576   return Changed;
   2577 }
   2578 
   2579 void GVN::cleanupGlobalSets() {
   2580   VN.clear();
   2581   LeaderTable.clear();
   2582   TableAllocator.Reset();
   2583 }
   2584 
   2585 /// verifyRemoved - Verify that the specified instruction does not occur in our
   2586 /// internal data structures.
   2587 void GVN::verifyRemoved(const Instruction *Inst) const {
   2588   VN.verifyRemoved(Inst);
   2589 
   2590   // Walk through the value number scope to make sure the instruction isn't
   2591   // ferreted away in it.
   2592   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
   2593        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
   2594     const LeaderTableEntry *Node = &I->second;
   2595     assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2596 
   2597     while (Node->Next) {
   2598       Node = Node->Next;
   2599       assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2600     }
   2601   }
   2602 }
   2603