1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/Dominators.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/Type.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 /// DeleteDeadBlock - Delete the specified block, which must have no 34 /// predecessors. 35 void llvm::DeleteDeadBlock(BasicBlock *BB) { 36 assert((pred_begin(BB) == pred_end(BB) || 37 // Can delete self loop. 38 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 39 TerminatorInst *BBTerm = BB->getTerminator(); 40 41 // Loop through all of our successors and make sure they know that one 42 // of their predecessors is going away. 43 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 44 BBTerm->getSuccessor(i)->removePredecessor(BB); 45 46 // Zap all the instructions in the block. 47 while (!BB->empty()) { 48 Instruction &I = BB->back(); 49 // If this instruction is used, replace uses with an arbitrary value. 50 // Because control flow can't get here, we don't care what we replace the 51 // value with. Note that since this block is unreachable, and all values 52 // contained within it must dominate their uses, that all uses will 53 // eventually be removed (they are themselves dead). 54 if (!I.use_empty()) 55 I.replaceAllUsesWith(UndefValue::get(I.getType())); 56 BB->getInstList().pop_back(); 57 } 58 59 // Zap the block! 60 BB->eraseFromParent(); 61 } 62 63 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 64 /// any single-entry PHI nodes in it, fold them away. This handles the case 65 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 66 /// when the block has exactly one predecessor. 67 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) { 68 if (!isa<PHINode>(BB->begin())) return; 69 70 AliasAnalysis *AA = 0; 71 MemoryDependenceAnalysis *MemDep = 0; 72 if (P) { 73 AA = P->getAnalysisIfAvailable<AliasAnalysis>(); 74 MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>(); 75 } 76 77 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 78 if (PN->getIncomingValue(0) != PN) 79 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 80 else 81 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 82 83 if (MemDep) 84 MemDep->removeInstruction(PN); // Memdep updates AA itself. 85 else if (AA && isa<PointerType>(PN->getType())) 86 AA->deleteValue(PN); 87 88 PN->eraseFromParent(); 89 } 90 } 91 92 93 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 94 /// is dead. Also recursively delete any operands that become dead as 95 /// a result. This includes tracing the def-use list from the PHI to see if 96 /// it is ultimately unused or if it reaches an unused cycle. 97 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 98 // Recursively deleting a PHI may cause multiple PHIs to be deleted 99 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 100 SmallVector<WeakVH, 8> PHIs; 101 for (BasicBlock::iterator I = BB->begin(); 102 PHINode *PN = dyn_cast<PHINode>(I); ++I) 103 PHIs.push_back(PN); 104 105 bool Changed = false; 106 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 107 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 108 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 109 110 return Changed; 111 } 112 113 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 114 /// if possible. The return value indicates success or failure. 115 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { 116 // Don't merge away blocks who have their address taken. 117 if (BB->hasAddressTaken()) return false; 118 119 // Can't merge if there are multiple predecessors, or no predecessors. 120 BasicBlock *PredBB = BB->getUniquePredecessor(); 121 if (!PredBB) return false; 122 123 // Don't break self-loops. 124 if (PredBB == BB) return false; 125 // Don't break invokes. 126 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 127 128 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 129 BasicBlock *OnlySucc = BB; 130 for (; SI != SE; ++SI) 131 if (*SI != OnlySucc) { 132 OnlySucc = 0; // There are multiple distinct successors! 133 break; 134 } 135 136 // Can't merge if there are multiple successors. 137 if (!OnlySucc) return false; 138 139 // Can't merge if there is PHI loop. 140 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 141 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 142 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 143 if (PN->getIncomingValue(i) == PN) 144 return false; 145 } else 146 break; 147 } 148 149 // Begin by getting rid of unneeded PHIs. 150 if (isa<PHINode>(BB->front())) 151 FoldSingleEntryPHINodes(BB, P); 152 153 // Delete the unconditional branch from the predecessor... 154 PredBB->getInstList().pop_back(); 155 156 // Make all PHI nodes that referred to BB now refer to Pred as their 157 // source... 158 BB->replaceAllUsesWith(PredBB); 159 160 // Move all definitions in the successor to the predecessor... 161 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 162 163 // Inherit predecessors name if it exists. 164 if (!PredBB->hasName()) 165 PredBB->takeName(BB); 166 167 // Finally, erase the old block and update dominator info. 168 if (P) { 169 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { 170 if (DomTreeNode *DTN = DT->getNode(BB)) { 171 DomTreeNode *PredDTN = DT->getNode(PredBB); 172 SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); 173 for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(), 174 DE = Children.end(); DI != DE; ++DI) 175 DT->changeImmediateDominator(*DI, PredDTN); 176 177 DT->eraseNode(BB); 178 } 179 180 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 181 LI->removeBlock(BB); 182 183 if (MemoryDependenceAnalysis *MD = 184 P->getAnalysisIfAvailable<MemoryDependenceAnalysis>()) 185 MD->invalidateCachedPredecessors(); 186 } 187 } 188 189 BB->eraseFromParent(); 190 return true; 191 } 192 193 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 194 /// with a value, then remove and delete the original instruction. 195 /// 196 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 197 BasicBlock::iterator &BI, Value *V) { 198 Instruction &I = *BI; 199 // Replaces all of the uses of the instruction with uses of the value 200 I.replaceAllUsesWith(V); 201 202 // Make sure to propagate a name if there is one already. 203 if (I.hasName() && !V->hasName()) 204 V->takeName(&I); 205 206 // Delete the unnecessary instruction now... 207 BI = BIL.erase(BI); 208 } 209 210 211 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 212 /// instruction specified by I. The original instruction is deleted and BI is 213 /// updated to point to the new instruction. 214 /// 215 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 216 BasicBlock::iterator &BI, Instruction *I) { 217 assert(I->getParent() == 0 && 218 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 219 220 // Insert the new instruction into the basic block... 221 BasicBlock::iterator New = BIL.insert(BI, I); 222 223 // Replace all uses of the old instruction, and delete it. 224 ReplaceInstWithValue(BIL, BI, I); 225 226 // Move BI back to point to the newly inserted instruction 227 BI = New; 228 } 229 230 /// ReplaceInstWithInst - Replace the instruction specified by From with the 231 /// instruction specified by To. 232 /// 233 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 234 BasicBlock::iterator BI(From); 235 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 236 } 237 238 /// GetSuccessorNumber - Search for the specified successor of basic block BB 239 /// and return its position in the terminator instruction's list of 240 /// successors. It is an error to call this with a block that is not a 241 /// successor. 242 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { 243 TerminatorInst *Term = BB->getTerminator(); 244 #ifndef NDEBUG 245 unsigned e = Term->getNumSuccessors(); 246 #endif 247 for (unsigned i = 0; ; ++i) { 248 assert(i != e && "Didn't find edge?"); 249 if (Term->getSuccessor(i) == Succ) 250 return i; 251 } 252 } 253 254 /// SplitEdge - Split the edge connecting specified block. Pass P must 255 /// not be NULL. 256 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { 257 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 258 259 // If this is a critical edge, let SplitCriticalEdge do it. 260 TerminatorInst *LatchTerm = BB->getTerminator(); 261 if (SplitCriticalEdge(LatchTerm, SuccNum, P)) 262 return LatchTerm->getSuccessor(SuccNum); 263 264 // If the edge isn't critical, then BB has a single successor or Succ has a 265 // single pred. Split the block. 266 BasicBlock::iterator SplitPoint; 267 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 268 // If the successor only has a single pred, split the top of the successor 269 // block. 270 assert(SP == BB && "CFG broken"); 271 SP = NULL; 272 return SplitBlock(Succ, Succ->begin(), P); 273 } 274 275 // Otherwise, if BB has a single successor, split it at the bottom of the 276 // block. 277 assert(BB->getTerminator()->getNumSuccessors() == 1 && 278 "Should have a single succ!"); 279 return SplitBlock(BB, BB->getTerminator(), P); 280 } 281 282 /// SplitBlock - Split the specified block at the specified instruction - every 283 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 284 /// to a new block. The two blocks are joined by an unconditional branch and 285 /// the loop info is updated. 286 /// 287 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { 288 BasicBlock::iterator SplitIt = SplitPt; 289 while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt)) 290 ++SplitIt; 291 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 292 293 // The new block lives in whichever loop the old one did. This preserves 294 // LCSSA as well, because we force the split point to be after any PHI nodes. 295 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 296 if (Loop *L = LI->getLoopFor(Old)) 297 L->addBasicBlockToLoop(New, LI->getBase()); 298 299 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { 300 // Old dominates New. New node dominates all other nodes dominated by Old. 301 if (DomTreeNode *OldNode = DT->getNode(Old)) { 302 std::vector<DomTreeNode *> Children; 303 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 304 I != E; ++I) 305 Children.push_back(*I); 306 307 DomTreeNode *NewNode = DT->addNewBlock(New,Old); 308 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 309 E = Children.end(); I != E; ++I) 310 DT->changeImmediateDominator(*I, NewNode); 311 } 312 } 313 314 return New; 315 } 316 317 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA 318 /// analysis information. 319 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 320 ArrayRef<BasicBlock *> Preds, 321 Pass *P, bool &HasLoopExit) { 322 if (!P) return; 323 324 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); 325 Loop *L = LI ? LI->getLoopFor(OldBB) : 0; 326 327 // If we need to preserve loop analyses, collect some information about how 328 // this split will affect loops. 329 bool IsLoopEntry = !!L; 330 bool SplitMakesNewLoopHeader = false; 331 if (LI) { 332 bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); 333 for (ArrayRef<BasicBlock*>::iterator 334 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 335 BasicBlock *Pred = *i; 336 337 // If we need to preserve LCSSA, determine if any of the preds is a loop 338 // exit. 339 if (PreserveLCSSA) 340 if (Loop *PL = LI->getLoopFor(Pred)) 341 if (!PL->contains(OldBB)) 342 HasLoopExit = true; 343 344 // If we need to preserve LoopInfo, note whether any of the preds crosses 345 // an interesting loop boundary. 346 if (!L) continue; 347 if (L->contains(Pred)) 348 IsLoopEntry = false; 349 else 350 SplitMakesNewLoopHeader = true; 351 } 352 } 353 354 // Update dominator tree if available. 355 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 356 if (DT) 357 DT->splitBlock(NewBB); 358 359 if (!L) return; 360 361 if (IsLoopEntry) { 362 // Add the new block to the nearest enclosing loop (and not an adjacent 363 // loop). To find this, examine each of the predecessors and determine which 364 // loops enclose them, and select the most-nested loop which contains the 365 // loop containing the block being split. 366 Loop *InnermostPredLoop = 0; 367 for (ArrayRef<BasicBlock*>::iterator 368 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 369 BasicBlock *Pred = *i; 370 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 371 // Seek a loop which actually contains the block being split (to avoid 372 // adjacent loops). 373 while (PredLoop && !PredLoop->contains(OldBB)) 374 PredLoop = PredLoop->getParentLoop(); 375 376 // Select the most-nested of these loops which contains the block. 377 if (PredLoop && PredLoop->contains(OldBB) && 378 (!InnermostPredLoop || 379 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 380 InnermostPredLoop = PredLoop; 381 } 382 } 383 384 if (InnermostPredLoop) 385 InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 386 } else { 387 L->addBasicBlockToLoop(NewBB, LI->getBase()); 388 if (SplitMakesNewLoopHeader) 389 L->moveToHeader(NewBB); 390 } 391 } 392 393 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming 394 /// from NewBB. This also updates AliasAnalysis, if available. 395 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 396 ArrayRef<BasicBlock*> Preds, BranchInst *BI, 397 Pass *P, bool HasLoopExit) { 398 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 399 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0; 400 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 401 PHINode *PN = cast<PHINode>(I++); 402 403 // Check to see if all of the values coming in are the same. If so, we 404 // don't need to create a new PHI node, unless it's needed for LCSSA. 405 Value *InVal = 0; 406 if (!HasLoopExit) { 407 InVal = PN->getIncomingValueForBlock(Preds[0]); 408 for (unsigned i = 1, e = Preds.size(); i != e; ++i) 409 if (InVal != PN->getIncomingValueForBlock(Preds[i])) { 410 InVal = 0; 411 break; 412 } 413 } 414 415 if (InVal) { 416 // If all incoming values for the new PHI would be the same, just don't 417 // make a new PHI. Instead, just remove the incoming values from the old 418 // PHI. 419 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 420 PN->removeIncomingValue(Preds[i], false); 421 } else { 422 // If the values coming into the block are not the same, we need a PHI. 423 // Create the new PHI node, insert it into NewBB at the end of the block 424 PHINode *NewPHI = 425 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 426 if (AA) AA->copyValue(PN, NewPHI); 427 428 // Move all of the PHI values for 'Preds' to the new PHI. 429 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 430 Value *V = PN->removeIncomingValue(Preds[i], false); 431 NewPHI->addIncoming(V, Preds[i]); 432 } 433 434 InVal = NewPHI; 435 } 436 437 // Add an incoming value to the PHI node in the loop for the preheader 438 // edge. 439 PN->addIncoming(InVal, NewBB); 440 } 441 } 442 443 /// SplitBlockPredecessors - This method transforms BB by introducing a new 444 /// basic block into the function, and moving some of the predecessors of BB to 445 /// be predecessors of the new block. The new predecessors are indicated by the 446 /// Preds array, which has NumPreds elements in it. The new block is given a 447 /// suffix of 'Suffix'. 448 /// 449 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 450 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not 451 /// preserve LoopSimplify (because it's complicated to handle the case where one 452 /// of the edges being split is an exit of a loop with other exits). 453 /// 454 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 455 ArrayRef<BasicBlock*> Preds, 456 const char *Suffix, Pass *P) { 457 // Create new basic block, insert right before the original block. 458 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, 459 BB->getParent(), BB); 460 461 // The new block unconditionally branches to the old block. 462 BranchInst *BI = BranchInst::Create(BB, NewBB); 463 464 // Move the edges from Preds to point to NewBB instead of BB. 465 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 466 // This is slightly more strict than necessary; the minimum requirement 467 // is that there be no more than one indirectbr branching to BB. And 468 // all BlockAddress uses would need to be updated. 469 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 470 "Cannot split an edge from an IndirectBrInst"); 471 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 472 } 473 474 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 475 // node becomes an incoming value for BB's phi node. However, if the Preds 476 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 477 // account for the newly created predecessor. 478 if (Preds.size() == 0) { 479 // Insert dummy values as the incoming value. 480 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 481 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 482 return NewBB; 483 } 484 485 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 486 bool HasLoopExit = false; 487 UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit); 488 489 // Update the PHI nodes in BB with the values coming from NewBB. 490 UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit); 491 return NewBB; 492 } 493 494 /// SplitLandingPadPredecessors - This method transforms the landing pad, 495 /// OrigBB, by introducing two new basic blocks into the function. One of those 496 /// new basic blocks gets the predecessors listed in Preds. The other basic 497 /// block gets the remaining predecessors of OrigBB. The landingpad instruction 498 /// OrigBB is clone into both of the new basic blocks. The new blocks are given 499 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector. 500 /// 501 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 502 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular, 503 /// it does not preserve LoopSimplify (because it's complicated to handle the 504 /// case where one of the edges being split is an exit of a loop with other 505 /// exits). 506 /// 507 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 508 ArrayRef<BasicBlock*> Preds, 509 const char *Suffix1, const char *Suffix2, 510 Pass *P, 511 SmallVectorImpl<BasicBlock*> &NewBBs) { 512 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 513 514 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 515 // it right before the original block. 516 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 517 OrigBB->getName() + Suffix1, 518 OrigBB->getParent(), OrigBB); 519 NewBBs.push_back(NewBB1); 520 521 // The new block unconditionally branches to the old block. 522 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 523 524 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 525 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 526 // This is slightly more strict than necessary; the minimum requirement 527 // is that there be no more than one indirectbr branching to BB. And 528 // all BlockAddress uses would need to be updated. 529 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 530 "Cannot split an edge from an IndirectBrInst"); 531 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 532 } 533 534 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 535 bool HasLoopExit = false; 536 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit); 537 538 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 539 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit); 540 541 // Move the remaining edges from OrigBB to point to NewBB2. 542 SmallVector<BasicBlock*, 8> NewBB2Preds; 543 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 544 i != e; ) { 545 BasicBlock *Pred = *i++; 546 if (Pred == NewBB1) continue; 547 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 548 "Cannot split an edge from an IndirectBrInst"); 549 NewBB2Preds.push_back(Pred); 550 e = pred_end(OrigBB); 551 } 552 553 BasicBlock *NewBB2 = 0; 554 if (!NewBB2Preds.empty()) { 555 // Create another basic block for the rest of OrigBB's predecessors. 556 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 557 OrigBB->getName() + Suffix2, 558 OrigBB->getParent(), OrigBB); 559 NewBBs.push_back(NewBB2); 560 561 // The new block unconditionally branches to the old block. 562 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 563 564 // Move the remaining edges from OrigBB to point to NewBB2. 565 for (SmallVectorImpl<BasicBlock*>::iterator 566 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) 567 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 568 569 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 570 HasLoopExit = false; 571 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit); 572 573 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 574 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit); 575 } 576 577 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 578 Instruction *Clone1 = LPad->clone(); 579 Clone1->setName(Twine("lpad") + Suffix1); 580 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 581 582 if (NewBB2) { 583 Instruction *Clone2 = LPad->clone(); 584 Clone2->setName(Twine("lpad") + Suffix2); 585 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 586 587 // Create a PHI node for the two cloned landingpad instructions. 588 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 589 PN->addIncoming(Clone1, NewBB1); 590 PN->addIncoming(Clone2, NewBB2); 591 LPad->replaceAllUsesWith(PN); 592 LPad->eraseFromParent(); 593 } else { 594 // There is no second clone. Just replace the landing pad with the first 595 // clone. 596 LPad->replaceAllUsesWith(Clone1); 597 LPad->eraseFromParent(); 598 } 599 } 600 601 /// FindFunctionBackedges - Analyze the specified function to find all of the 602 /// loop backedges in the function and return them. This is a relatively cheap 603 /// (compared to computing dominators and loop info) analysis. 604 /// 605 /// The output is added to Result, as pairs of <from,to> edge info. 606 void llvm::FindFunctionBackedges(const Function &F, 607 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { 608 const BasicBlock *BB = &F.getEntryBlock(); 609 if (succ_begin(BB) == succ_end(BB)) 610 return; 611 612 SmallPtrSet<const BasicBlock*, 8> Visited; 613 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; 614 SmallPtrSet<const BasicBlock*, 8> InStack; 615 616 Visited.insert(BB); 617 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 618 InStack.insert(BB); 619 do { 620 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); 621 const BasicBlock *ParentBB = Top.first; 622 succ_const_iterator &I = Top.second; 623 624 bool FoundNew = false; 625 while (I != succ_end(ParentBB)) { 626 BB = *I++; 627 if (Visited.insert(BB)) { 628 FoundNew = true; 629 break; 630 } 631 // Successor is in VisitStack, it's a back edge. 632 if (InStack.count(BB)) 633 Result.push_back(std::make_pair(ParentBB, BB)); 634 } 635 636 if (FoundNew) { 637 // Go down one level if there is a unvisited successor. 638 InStack.insert(BB); 639 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 640 } else { 641 // Go up one level. 642 InStack.erase(VisitStack.pop_back_val().first); 643 } 644 } while (!VisitStack.empty()); 645 } 646 647 /// FoldReturnIntoUncondBranch - This method duplicates the specified return 648 /// instruction into a predecessor which ends in an unconditional branch. If 649 /// the return instruction returns a value defined by a PHI, propagate the 650 /// right value into the return. It returns the new return instruction in the 651 /// predecessor. 652 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 653 BasicBlock *Pred) { 654 Instruction *UncondBranch = Pred->getTerminator(); 655 // Clone the return and add it to the end of the predecessor. 656 Instruction *NewRet = RI->clone(); 657 Pred->getInstList().push_back(NewRet); 658 659 // If the return instruction returns a value, and if the value was a 660 // PHI node in "BB", propagate the right value into the return. 661 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 662 i != e; ++i) { 663 Value *V = *i; 664 Instruction *NewBC = 0; 665 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 666 // Return value might be bitcasted. Clone and insert it before the 667 // return instruction. 668 V = BCI->getOperand(0); 669 NewBC = BCI->clone(); 670 Pred->getInstList().insert(NewRet, NewBC); 671 *i = NewBC; 672 } 673 if (PHINode *PN = dyn_cast<PHINode>(V)) { 674 if (PN->getParent() == BB) { 675 if (NewBC) 676 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 677 else 678 *i = PN->getIncomingValueForBlock(Pred); 679 } 680 } 681 } 682 683 // Update any PHI nodes in the returning block to realize that we no 684 // longer branch to them. 685 BB->removePredecessor(Pred); 686 UncondBranch->eraseFromParent(); 687 return cast<ReturnInst>(NewRet); 688 } 689 690 /// SplitBlockAndInsertIfThen - Split the containing block at the 691 /// specified instruction - everything before and including Cmp stays 692 /// in the old basic block, and everything after Cmp is moved to a 693 /// new block. The two blocks are connected by a conditional branch 694 /// (with value of Cmp being the condition). 695 /// Before: 696 /// Head 697 /// Cmp 698 /// Tail 699 /// After: 700 /// Head 701 /// Cmp 702 /// if (Cmp) 703 /// ThenBlock 704 /// Tail 705 /// 706 /// If Unreachable is true, then ThenBlock ends with 707 /// UnreachableInst, otherwise it branches to Tail. 708 /// Returns the NewBasicBlock's terminator. 709 710 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp, 711 bool Unreachable, MDNode *BranchWeights) { 712 Instruction *SplitBefore = Cmp->getNextNode(); 713 BasicBlock *Head = SplitBefore->getParent(); 714 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 715 TerminatorInst *HeadOldTerm = Head->getTerminator(); 716 LLVMContext &C = Head->getContext(); 717 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 718 TerminatorInst *CheckTerm; 719 if (Unreachable) 720 CheckTerm = new UnreachableInst(C, ThenBlock); 721 else 722 CheckTerm = BranchInst::Create(Tail, ThenBlock); 723 BranchInst *HeadNewTerm = 724 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp); 725 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 726 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 727 return CheckTerm; 728 } 729