Home | History | Annotate | Download | only in Utils
      1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms loops by placing phi nodes at the end of the loops for
     11 // all values that are live across the loop boundary.  For example, it turns
     12 // the left into the right code:
     13 //
     14 // for (...)                for (...)
     15 //   if (c)                   if (c)
     16 //     X1 = ...                 X1 = ...
     17 //   else                     else
     18 //     X2 = ...                 X2 = ...
     19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
     20 // ... = X3 + 4             X4 = phi(X3)
     21 //                          ... = X4 + 4
     22 //
     23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
     24 // be trivially eliminated by InstCombine.  The major benefit of this
     25 // transformation is that it makes many other loop optimizations, such as
     26 // LoopUnswitching, simpler.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #define DEBUG_TYPE "lcssa"
     31 #include "llvm/Transforms/Scalar.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/Analysis/Dominators.h"
     35 #include "llvm/Analysis/LoopPass.h"
     36 #include "llvm/Analysis/ScalarEvolution.h"
     37 #include "llvm/IR/Constants.h"
     38 #include "llvm/IR/Function.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/Pass.h"
     41 #include "llvm/Support/PredIteratorCache.h"
     42 #include "llvm/Transforms/Utils/SSAUpdater.h"
     43 using namespace llvm;
     44 
     45 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
     46 
     47 namespace {
     48   struct LCSSA : public LoopPass {
     49     static char ID; // Pass identification, replacement for typeid
     50     LCSSA() : LoopPass(ID) {
     51       initializeLCSSAPass(*PassRegistry::getPassRegistry());
     52     }
     53 
     54     // Cached analysis information for the current function.
     55     DominatorTree *DT;
     56     LoopInfo *LI;
     57     ScalarEvolution *SE;
     58     std::vector<BasicBlock*> LoopBlocks;
     59     PredIteratorCache PredCache;
     60     Loop *L;
     61 
     62     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     63 
     64     /// This transformation requires natural loop information & requires that
     65     /// loop preheaders be inserted into the CFG.  It maintains both of these,
     66     /// as well as the CFG.  It also requires dominator information.
     67     ///
     68     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     69       AU.setPreservesCFG();
     70 
     71       AU.addRequired<DominatorTree>();
     72       AU.addRequired<LoopInfo>();
     73       AU.addPreservedID(LoopSimplifyID);
     74       AU.addPreserved<ScalarEvolution>();
     75     }
     76   private:
     77     bool ProcessInstruction(Instruction *Inst,
     78                             const SmallVectorImpl<BasicBlock*> &ExitBlocks);
     79 
     80     /// verifyAnalysis() - Verify loop nest.
     81     virtual void verifyAnalysis() const {
     82       // Check the special guarantees that LCSSA makes.
     83       assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!");
     84     }
     85 
     86     /// inLoop - returns true if the given block is within the current loop
     87     bool inLoop(BasicBlock *B) const {
     88       return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
     89     }
     90   };
     91 }
     92 
     93 char LCSSA::ID = 0;
     94 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
     95 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     96 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     97 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
     98 
     99 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
    100 char &llvm::LCSSAID = LCSSA::ID;
    101 
    102 
    103 /// BlockDominatesAnExit - Return true if the specified block dominates at least
    104 /// one of the blocks in the specified list.
    105 static bool BlockDominatesAnExit(BasicBlock *BB,
    106                                  const SmallVectorImpl<BasicBlock*> &ExitBlocks,
    107                                  DominatorTree *DT) {
    108   DomTreeNode *DomNode = DT->getNode(BB);
    109   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    110     if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
    111       return true;
    112 
    113   return false;
    114 }
    115 
    116 
    117 /// runOnFunction - Process all loops in the function, inner-most out.
    118 bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
    119   L = TheLoop;
    120 
    121   DT = &getAnalysis<DominatorTree>();
    122   LI = &getAnalysis<LoopInfo>();
    123   SE = getAnalysisIfAvailable<ScalarEvolution>();
    124 
    125   // Get the set of exiting blocks.
    126   SmallVector<BasicBlock*, 8> ExitBlocks;
    127   L->getExitBlocks(ExitBlocks);
    128 
    129   if (ExitBlocks.empty())
    130     return false;
    131 
    132   // Speed up queries by creating a sorted vector of blocks.
    133   LoopBlocks.clear();
    134   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
    135   array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
    136 
    137   // Look at all the instructions in the loop, checking to see if they have uses
    138   // outside the loop.  If so, rewrite those uses.
    139   bool MadeChange = false;
    140 
    141   for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
    142        BBI != E; ++BBI) {
    143     BasicBlock *BB = *BBI;
    144 
    145     // For large loops, avoid use-scanning by using dominance information:  In
    146     // particular, if a block does not dominate any of the loop exits, then none
    147     // of the values defined in the block could be used outside the loop.
    148     if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
    149       continue;
    150 
    151     for (BasicBlock::iterator I = BB->begin(), E = BB->end();
    152          I != E; ++I) {
    153       // Reject two common cases fast: instructions with no uses (like stores)
    154       // and instructions with one use that is in the same block as this.
    155       if (I->use_empty() ||
    156           (I->hasOneUse() && I->use_back()->getParent() == BB &&
    157            !isa<PHINode>(I->use_back())))
    158         continue;
    159 
    160       MadeChange |= ProcessInstruction(I, ExitBlocks);
    161     }
    162   }
    163 
    164   // If we modified the code, remove any caches about the loop from SCEV to
    165   // avoid dangling entries.
    166   // FIXME: This is a big hammer, can we clear the cache more selectively?
    167   if (SE && MadeChange)
    168     SE->forgetLoop(L);
    169 
    170   assert(L->isLCSSAForm(*DT));
    171   PredCache.clear();
    172 
    173   return MadeChange;
    174 }
    175 
    176 /// isExitBlock - Return true if the specified block is in the list.
    177 static bool isExitBlock(BasicBlock *BB,
    178                         const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
    179   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    180     if (ExitBlocks[i] == BB)
    181       return true;
    182   return false;
    183 }
    184 
    185 /// ProcessInstruction - Given an instruction in the loop, check to see if it
    186 /// has any uses that are outside the current loop.  If so, insert LCSSA PHI
    187 /// nodes and rewrite the uses.
    188 bool LCSSA::ProcessInstruction(Instruction *Inst,
    189                                const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
    190   SmallVector<Use*, 16> UsesToRewrite;
    191 
    192   BasicBlock *InstBB = Inst->getParent();
    193 
    194   for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
    195        UI != E; ++UI) {
    196     User *U = *UI;
    197     BasicBlock *UserBB = cast<Instruction>(U)->getParent();
    198     if (PHINode *PN = dyn_cast<PHINode>(U))
    199       UserBB = PN->getIncomingBlock(UI);
    200 
    201     if (InstBB != UserBB && !inLoop(UserBB))
    202       UsesToRewrite.push_back(&UI.getUse());
    203   }
    204 
    205   // If there are no uses outside the loop, exit with no change.
    206   if (UsesToRewrite.empty()) return false;
    207 
    208   ++NumLCSSA; // We are applying the transformation
    209 
    210   // Invoke instructions are special in that their result value is not available
    211   // along their unwind edge. The code below tests to see whether DomBB dominates
    212   // the value, so adjust DomBB to the normal destination block, which is
    213   // effectively where the value is first usable.
    214   BasicBlock *DomBB = Inst->getParent();
    215   if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
    216     DomBB = Inv->getNormalDest();
    217 
    218   DomTreeNode *DomNode = DT->getNode(DomBB);
    219 
    220   SmallVector<PHINode*, 16> AddedPHIs;
    221 
    222   SSAUpdater SSAUpdate;
    223   SSAUpdate.Initialize(Inst->getType(), Inst->getName());
    224 
    225   // Insert the LCSSA phi's into all of the exit blocks dominated by the
    226   // value, and add them to the Phi's map.
    227   for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
    228       BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
    229     BasicBlock *ExitBB = *BBI;
    230     if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
    231 
    232     // If we already inserted something for this BB, don't reprocess it.
    233     if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
    234 
    235     PHINode *PN = PHINode::Create(Inst->getType(),
    236                                   PredCache.GetNumPreds(ExitBB),
    237                                   Inst->getName()+".lcssa",
    238                                   ExitBB->begin());
    239 
    240     // Add inputs from inside the loop for this PHI.
    241     for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
    242       PN->addIncoming(Inst, *PI);
    243 
    244       // If the exit block has a predecessor not within the loop, arrange for
    245       // the incoming value use corresponding to that predecessor to be
    246       // rewritten in terms of a different LCSSA PHI.
    247       if (!inLoop(*PI))
    248         UsesToRewrite.push_back(
    249           &PN->getOperandUse(
    250             PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1)));
    251     }
    252 
    253     AddedPHIs.push_back(PN);
    254 
    255     // Remember that this phi makes the value alive in this block.
    256     SSAUpdate.AddAvailableValue(ExitBB, PN);
    257   }
    258 
    259   // Rewrite all uses outside the loop in terms of the new PHIs we just
    260   // inserted.
    261   for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
    262     // If this use is in an exit block, rewrite to use the newly inserted PHI.
    263     // This is required for correctness because SSAUpdate doesn't handle uses in
    264     // the same block.  It assumes the PHI we inserted is at the end of the
    265     // block.
    266     Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
    267     BasicBlock *UserBB = User->getParent();
    268     if (PHINode *PN = dyn_cast<PHINode>(User))
    269       UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
    270 
    271     if (isa<PHINode>(UserBB->begin()) &&
    272         isExitBlock(UserBB, ExitBlocks)) {
    273       // Tell the VHs that the uses changed. This updates SCEV's caches.
    274       if (UsesToRewrite[i]->get()->hasValueHandle())
    275         ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin());
    276       UsesToRewrite[i]->set(UserBB->begin());
    277       continue;
    278     }
    279 
    280     // Otherwise, do full PHI insertion.
    281     SSAUpdate.RewriteUse(*UsesToRewrite[i]);
    282   }
    283 
    284   // Remove PHI nodes that did not have any uses rewritten.
    285   for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
    286     if (AddedPHIs[i]->use_empty())
    287       AddedPHIs[i]->eraseFromParent();
    288   }
    289 
    290   return true;
    291 }
    292 
    293