Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if defined(V8_TARGET_ARCH_ARM)
     31 
     32 #include "bootstrapper.h"
     33 #include "code-stubs.h"
     34 #include "regexp-macro-assembler.h"
     35 
     36 namespace v8 {
     37 namespace internal {
     38 
     39 
     40 #define __ ACCESS_MASM(masm)
     41 
     42 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
     43                                           Label* slow,
     44                                           Condition cond,
     45                                           bool never_nan_nan);
     46 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
     47                                     Register lhs,
     48                                     Register rhs,
     49                                     Label* lhs_not_nan,
     50                                     Label* slow,
     51                                     bool strict);
     52 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
     53 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
     54                                            Register lhs,
     55                                            Register rhs);
     56 
     57 
     58 // Check if the operand is a heap number.
     59 static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
     60                                    Register scratch1, Register scratch2,
     61                                    Label* not_a_heap_number) {
     62   __ ldr(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
     63   __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
     64   __ cmp(scratch1, scratch2);
     65   __ b(ne, not_a_heap_number);
     66 }
     67 
     68 
     69 void ToNumberStub::Generate(MacroAssembler* masm) {
     70   // The ToNumber stub takes one argument in eax.
     71   Label check_heap_number, call_builtin;
     72   __ JumpIfNotSmi(r0, &check_heap_number);
     73   __ Ret();
     74 
     75   __ bind(&check_heap_number);
     76   EmitCheckForHeapNumber(masm, r0, r1, ip, &call_builtin);
     77   __ Ret();
     78 
     79   __ bind(&call_builtin);
     80   __ push(r0);
     81   __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
     82 }
     83 
     84 
     85 void FastNewClosureStub::Generate(MacroAssembler* masm) {
     86   // Create a new closure from the given function info in new
     87   // space. Set the context to the current context in cp.
     88   Label gc;
     89 
     90   // Pop the function info from the stack.
     91   __ pop(r3);
     92 
     93   // Attempt to allocate new JSFunction in new space.
     94   __ AllocateInNewSpace(JSFunction::kSize,
     95                         r0,
     96                         r1,
     97                         r2,
     98                         &gc,
     99                         TAG_OBJECT);
    100 
    101   int map_index = (language_mode_ == CLASSIC_MODE)
    102       ? Context::FUNCTION_MAP_INDEX
    103       : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
    104 
    105   // Compute the function map in the current global context and set that
    106   // as the map of the allocated object.
    107   __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
    108   __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
    109   __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index)));
    110   __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
    111 
    112   // Initialize the rest of the function. We don't have to update the
    113   // write barrier because the allocated object is in new space.
    114   __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
    115   __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
    116   __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
    117   __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
    118   __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
    119   __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
    120   __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
    121   __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
    122   __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
    123   __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
    124 
    125   // Initialize the code pointer in the function to be the one
    126   // found in the shared function info object.
    127   __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
    128   __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
    129   __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
    130 
    131   // Return result. The argument function info has been popped already.
    132   __ Ret();
    133 
    134   // Create a new closure through the slower runtime call.
    135   __ bind(&gc);
    136   __ LoadRoot(r4, Heap::kFalseValueRootIndex);
    137   __ Push(cp, r3, r4);
    138   __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
    139 }
    140 
    141 
    142 void FastNewContextStub::Generate(MacroAssembler* masm) {
    143   // Try to allocate the context in new space.
    144   Label gc;
    145   int length = slots_ + Context::MIN_CONTEXT_SLOTS;
    146 
    147   // Attempt to allocate the context in new space.
    148   __ AllocateInNewSpace(FixedArray::SizeFor(length),
    149                         r0,
    150                         r1,
    151                         r2,
    152                         &gc,
    153                         TAG_OBJECT);
    154 
    155   // Load the function from the stack.
    156   __ ldr(r3, MemOperand(sp, 0));
    157 
    158   // Set up the object header.
    159   __ LoadRoot(r1, Heap::kFunctionContextMapRootIndex);
    160   __ mov(r2, Operand(Smi::FromInt(length)));
    161   __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
    162   __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
    163 
    164   // Set up the fixed slots, copy the global object from the previous context.
    165   __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
    166   __ mov(r1, Operand(Smi::FromInt(0)));
    167   __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
    168   __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
    169   __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
    170   __ str(r2, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
    171 
    172   // Initialize the rest of the slots to undefined.
    173   __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
    174   for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
    175     __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
    176   }
    177 
    178   // Remove the on-stack argument and return.
    179   __ mov(cp, r0);
    180   __ pop();
    181   __ Ret();
    182 
    183   // Need to collect. Call into runtime system.
    184   __ bind(&gc);
    185   __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
    186 }
    187 
    188 
    189 void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
    190   // Stack layout on entry:
    191   //
    192   // [sp]: function.
    193   // [sp + kPointerSize]: serialized scope info
    194 
    195   // Try to allocate the context in new space.
    196   Label gc;
    197   int length = slots_ + Context::MIN_CONTEXT_SLOTS;
    198   __ AllocateInNewSpace(FixedArray::SizeFor(length),
    199                         r0, r1, r2, &gc, TAG_OBJECT);
    200 
    201   // Load the function from the stack.
    202   __ ldr(r3, MemOperand(sp, 0));
    203 
    204   // Load the serialized scope info from the stack.
    205   __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
    206 
    207   // Set up the object header.
    208   __ LoadRoot(r2, Heap::kBlockContextMapRootIndex);
    209   __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
    210   __ mov(r2, Operand(Smi::FromInt(length)));
    211   __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
    212 
    213   // If this block context is nested in the global context we get a smi
    214   // sentinel instead of a function. The block context should get the
    215   // canonical empty function of the global context as its closure which
    216   // we still have to look up.
    217   Label after_sentinel;
    218   __ JumpIfNotSmi(r3, &after_sentinel);
    219   if (FLAG_debug_code) {
    220     const char* message = "Expected 0 as a Smi sentinel";
    221     __ cmp(r3, Operand::Zero());
    222     __ Assert(eq, message);
    223   }
    224   __ ldr(r3, GlobalObjectOperand());
    225   __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalContextOffset));
    226   __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX));
    227   __ bind(&after_sentinel);
    228 
    229   // Set up the fixed slots, copy the global object from the previous context.
    230   __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
    231   __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX));
    232   __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX));
    233   __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX));
    234   __ str(r2, ContextOperand(r0, Context::GLOBAL_INDEX));
    235 
    236   // Initialize the rest of the slots to the hole value.
    237   __ LoadRoot(r1, Heap::kTheHoleValueRootIndex);
    238   for (int i = 0; i < slots_; i++) {
    239     __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS));
    240   }
    241 
    242   // Remove the on-stack argument and return.
    243   __ mov(cp, r0);
    244   __ add(sp, sp, Operand(2 * kPointerSize));
    245   __ Ret();
    246 
    247   // Need to collect. Call into runtime system.
    248   __ bind(&gc);
    249   __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
    250 }
    251 
    252 
    253 static void GenerateFastCloneShallowArrayCommon(
    254     MacroAssembler* masm,
    255     int length,
    256     FastCloneShallowArrayStub::Mode mode,
    257     Label* fail) {
    258   // Registers on entry:
    259   //
    260   // r3: boilerplate literal array.
    261   ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
    262 
    263   // All sizes here are multiples of kPointerSize.
    264   int elements_size = 0;
    265   if (length > 0) {
    266     elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
    267         ? FixedDoubleArray::SizeFor(length)
    268         : FixedArray::SizeFor(length);
    269   }
    270   int size = JSArray::kSize + elements_size;
    271 
    272   // Allocate both the JS array and the elements array in one big
    273   // allocation. This avoids multiple limit checks.
    274   __ AllocateInNewSpace(size,
    275                         r0,
    276                         r1,
    277                         r2,
    278                         fail,
    279                         TAG_OBJECT);
    280 
    281   // Copy the JS array part.
    282   for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
    283     if ((i != JSArray::kElementsOffset) || (length == 0)) {
    284       __ ldr(r1, FieldMemOperand(r3, i));
    285       __ str(r1, FieldMemOperand(r0, i));
    286     }
    287   }
    288 
    289   if (length > 0) {
    290     // Get hold of the elements array of the boilerplate and setup the
    291     // elements pointer in the resulting object.
    292     __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
    293     __ add(r2, r0, Operand(JSArray::kSize));
    294     __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
    295 
    296     // Copy the elements array.
    297     ASSERT((elements_size % kPointerSize) == 0);
    298     __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
    299   }
    300 }
    301 
    302 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
    303   // Stack layout on entry:
    304   //
    305   // [sp]: constant elements.
    306   // [sp + kPointerSize]: literal index.
    307   // [sp + (2 * kPointerSize)]: literals array.
    308 
    309   // Load boilerplate object into r3 and check if we need to create a
    310   // boilerplate.
    311   Label slow_case;
    312   __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
    313   __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
    314   __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    315   __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
    316   __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
    317   __ b(eq, &slow_case);
    318 
    319   FastCloneShallowArrayStub::Mode mode = mode_;
    320   if (mode == CLONE_ANY_ELEMENTS) {
    321     Label double_elements, check_fast_elements;
    322     __ ldr(r0, FieldMemOperand(r3, JSArray::kElementsOffset));
    323     __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
    324     __ CompareRoot(r0, Heap::kFixedCOWArrayMapRootIndex);
    325     __ b(ne, &check_fast_elements);
    326     GenerateFastCloneShallowArrayCommon(masm, 0,
    327                                         COPY_ON_WRITE_ELEMENTS, &slow_case);
    328     // Return and remove the on-stack parameters.
    329     __ add(sp, sp, Operand(3 * kPointerSize));
    330     __ Ret();
    331 
    332     __ bind(&check_fast_elements);
    333     __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
    334     __ b(ne, &double_elements);
    335     GenerateFastCloneShallowArrayCommon(masm, length_,
    336                                         CLONE_ELEMENTS, &slow_case);
    337     // Return and remove the on-stack parameters.
    338     __ add(sp, sp, Operand(3 * kPointerSize));
    339     __ Ret();
    340 
    341     __ bind(&double_elements);
    342     mode = CLONE_DOUBLE_ELEMENTS;
    343     // Fall through to generate the code to handle double elements.
    344   }
    345 
    346   if (FLAG_debug_code) {
    347     const char* message;
    348     Heap::RootListIndex expected_map_index;
    349     if (mode == CLONE_ELEMENTS) {
    350       message = "Expected (writable) fixed array";
    351       expected_map_index = Heap::kFixedArrayMapRootIndex;
    352     } else if (mode == CLONE_DOUBLE_ELEMENTS) {
    353       message = "Expected (writable) fixed double array";
    354       expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
    355     } else {
    356       ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
    357       message = "Expected copy-on-write fixed array";
    358       expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
    359     }
    360     __ push(r3);
    361     __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
    362     __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
    363     __ CompareRoot(r3, expected_map_index);
    364     __ Assert(eq, message);
    365     __ pop(r3);
    366   }
    367 
    368   GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
    369 
    370   // Return and remove the on-stack parameters.
    371   __ add(sp, sp, Operand(3 * kPointerSize));
    372   __ Ret();
    373 
    374   __ bind(&slow_case);
    375   __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
    376 }
    377 
    378 
    379 void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
    380   // Stack layout on entry:
    381   //
    382   // [sp]: object literal flags.
    383   // [sp + kPointerSize]: constant properties.
    384   // [sp + (2 * kPointerSize)]: literal index.
    385   // [sp + (3 * kPointerSize)]: literals array.
    386 
    387   // Load boilerplate object into r3 and check if we need to create a
    388   // boilerplate.
    389   Label slow_case;
    390   __ ldr(r3, MemOperand(sp, 3 * kPointerSize));
    391   __ ldr(r0, MemOperand(sp, 2 * kPointerSize));
    392   __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    393   __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
    394   __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
    395   __ b(eq, &slow_case);
    396 
    397   // Check that the boilerplate contains only fast properties and we can
    398   // statically determine the instance size.
    399   int size = JSObject::kHeaderSize + length_ * kPointerSize;
    400   __ ldr(r0, FieldMemOperand(r3, HeapObject::kMapOffset));
    401   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceSizeOffset));
    402   __ cmp(r0, Operand(size >> kPointerSizeLog2));
    403   __ b(ne, &slow_case);
    404 
    405   // Allocate the JS object and copy header together with all in-object
    406   // properties from the boilerplate.
    407   __ AllocateInNewSpace(size, r0, r1, r2, &slow_case, TAG_OBJECT);
    408   for (int i = 0; i < size; i += kPointerSize) {
    409     __ ldr(r1, FieldMemOperand(r3, i));
    410     __ str(r1, FieldMemOperand(r0, i));
    411   }
    412 
    413   // Return and remove the on-stack parameters.
    414   __ add(sp, sp, Operand(4 * kPointerSize));
    415   __ Ret();
    416 
    417   __ bind(&slow_case);
    418   __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
    419 }
    420 
    421 
    422 // Takes a Smi and converts to an IEEE 64 bit floating point value in two
    423 // registers.  The format is 1 sign bit, 11 exponent bits (biased 1023) and
    424 // 52 fraction bits (20 in the first word, 32 in the second).  Zeros is a
    425 // scratch register.  Destroys the source register.  No GC occurs during this
    426 // stub so you don't have to set up the frame.
    427 class ConvertToDoubleStub : public CodeStub {
    428  public:
    429   ConvertToDoubleStub(Register result_reg_1,
    430                       Register result_reg_2,
    431                       Register source_reg,
    432                       Register scratch_reg)
    433       : result1_(result_reg_1),
    434         result2_(result_reg_2),
    435         source_(source_reg),
    436         zeros_(scratch_reg) { }
    437 
    438  private:
    439   Register result1_;
    440   Register result2_;
    441   Register source_;
    442   Register zeros_;
    443 
    444   // Minor key encoding in 16 bits.
    445   class ModeBits: public BitField<OverwriteMode, 0, 2> {};
    446   class OpBits: public BitField<Token::Value, 2, 14> {};
    447 
    448   Major MajorKey() { return ConvertToDouble; }
    449   int MinorKey() {
    450     // Encode the parameters in a unique 16 bit value.
    451     return  result1_.code() +
    452            (result2_.code() << 4) +
    453            (source_.code() << 8) +
    454            (zeros_.code() << 12);
    455   }
    456 
    457   void Generate(MacroAssembler* masm);
    458 };
    459 
    460 
    461 void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
    462   Register exponent = result1_;
    463   Register mantissa = result2_;
    464 
    465   Label not_special;
    466   // Convert from Smi to integer.
    467   __ mov(source_, Operand(source_, ASR, kSmiTagSize));
    468   // Move sign bit from source to destination.  This works because the sign bit
    469   // in the exponent word of the double has the same position and polarity as
    470   // the 2's complement sign bit in a Smi.
    471   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
    472   __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
    473   // Subtract from 0 if source was negative.
    474   __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
    475 
    476   // We have -1, 0 or 1, which we treat specially. Register source_ contains
    477   // absolute value: it is either equal to 1 (special case of -1 and 1),
    478   // greater than 1 (not a special case) or less than 1 (special case of 0).
    479   __ cmp(source_, Operand(1));
    480   __ b(gt, &not_special);
    481 
    482   // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
    483   const uint32_t exponent_word_for_1 =
    484       HeapNumber::kExponentBias << HeapNumber::kExponentShift;
    485   __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
    486   // 1, 0 and -1 all have 0 for the second word.
    487   __ mov(mantissa, Operand(0, RelocInfo::NONE));
    488   __ Ret();
    489 
    490   __ bind(&not_special);
    491   // Count leading zeros.  Uses mantissa for a scratch register on pre-ARM5.
    492   // Gets the wrong answer for 0, but we already checked for that case above.
    493   __ CountLeadingZeros(zeros_, source_, mantissa);
    494   // Compute exponent and or it into the exponent register.
    495   // We use mantissa as a scratch register here.  Use a fudge factor to
    496   // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
    497   // that fit in the ARM's constant field.
    498   int fudge = 0x400;
    499   __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
    500   __ add(mantissa, mantissa, Operand(fudge));
    501   __ orr(exponent,
    502          exponent,
    503          Operand(mantissa, LSL, HeapNumber::kExponentShift));
    504   // Shift up the source chopping the top bit off.
    505   __ add(zeros_, zeros_, Operand(1));
    506   // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
    507   __ mov(source_, Operand(source_, LSL, zeros_));
    508   // Compute lower part of fraction (last 12 bits).
    509   __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
    510   // And the top (top 20 bits).
    511   __ orr(exponent,
    512          exponent,
    513          Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
    514   __ Ret();
    515 }
    516 
    517 
    518 void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
    519                                    FloatingPointHelper::Destination destination,
    520                                    Register scratch1,
    521                                    Register scratch2) {
    522   if (CpuFeatures::IsSupported(VFP3)) {
    523     CpuFeatures::Scope scope(VFP3);
    524     __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
    525     __ vmov(d7.high(), scratch1);
    526     __ vcvt_f64_s32(d7, d7.high());
    527     __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
    528     __ vmov(d6.high(), scratch1);
    529     __ vcvt_f64_s32(d6, d6.high());
    530     if (destination == kCoreRegisters) {
    531       __ vmov(r2, r3, d7);
    532       __ vmov(r0, r1, d6);
    533     }
    534   } else {
    535     ASSERT(destination == kCoreRegisters);
    536     // Write Smi from r0 to r3 and r2 in double format.
    537     __ mov(scratch1, Operand(r0));
    538     ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
    539     __ push(lr);
    540     __ Call(stub1.GetCode());
    541     // Write Smi from r1 to r1 and r0 in double format.
    542     __ mov(scratch1, Operand(r1));
    543     ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
    544     __ Call(stub2.GetCode());
    545     __ pop(lr);
    546   }
    547 }
    548 
    549 
    550 void FloatingPointHelper::LoadOperands(
    551     MacroAssembler* masm,
    552     FloatingPointHelper::Destination destination,
    553     Register heap_number_map,
    554     Register scratch1,
    555     Register scratch2,
    556     Label* slow) {
    557 
    558   // Load right operand (r0) to d6 or r2/r3.
    559   LoadNumber(masm, destination,
    560              r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow);
    561 
    562   // Load left operand (r1) to d7 or r0/r1.
    563   LoadNumber(masm, destination,
    564              r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow);
    565 }
    566 
    567 
    568 void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
    569                                      Destination destination,
    570                                      Register object,
    571                                      DwVfpRegister dst,
    572                                      Register dst1,
    573                                      Register dst2,
    574                                      Register heap_number_map,
    575                                      Register scratch1,
    576                                      Register scratch2,
    577                                      Label* not_number) {
    578   if (FLAG_debug_code) {
    579     __ AbortIfNotRootValue(heap_number_map,
    580                            Heap::kHeapNumberMapRootIndex,
    581                            "HeapNumberMap register clobbered.");
    582   }
    583 
    584   Label is_smi, done;
    585 
    586   // Smi-check
    587   __ UntagAndJumpIfSmi(scratch1, object, &is_smi);
    588   // Heap number check
    589   __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
    590 
    591   // Handle loading a double from a heap number.
    592   if (CpuFeatures::IsSupported(VFP3) &&
    593       destination == kVFPRegisters) {
    594     CpuFeatures::Scope scope(VFP3);
    595     // Load the double from tagged HeapNumber to double register.
    596     __ sub(scratch1, object, Operand(kHeapObjectTag));
    597     __ vldr(dst, scratch1, HeapNumber::kValueOffset);
    598   } else {
    599     ASSERT(destination == kCoreRegisters);
    600     // Load the double from heap number to dst1 and dst2 in double format.
    601     __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
    602   }
    603   __ jmp(&done);
    604 
    605   // Handle loading a double from a smi.
    606   __ bind(&is_smi);
    607   if (CpuFeatures::IsSupported(VFP3)) {
    608     CpuFeatures::Scope scope(VFP3);
    609     // Convert smi to double using VFP instructions.
    610     __ vmov(dst.high(), scratch1);
    611     __ vcvt_f64_s32(dst, dst.high());
    612     if (destination == kCoreRegisters) {
    613       // Load the converted smi to dst1 and dst2 in double format.
    614       __ vmov(dst1, dst2, dst);
    615     }
    616   } else {
    617     ASSERT(destination == kCoreRegisters);
    618     // Write smi to dst1 and dst2 double format.
    619     __ mov(scratch1, Operand(object));
    620     ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
    621     __ push(lr);
    622     __ Call(stub.GetCode());
    623     __ pop(lr);
    624   }
    625 
    626   __ bind(&done);
    627 }
    628 
    629 
    630 void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
    631                                                Register object,
    632                                                Register dst,
    633                                                Register heap_number_map,
    634                                                Register scratch1,
    635                                                Register scratch2,
    636                                                Register scratch3,
    637                                                DwVfpRegister double_scratch,
    638                                                Label* not_number) {
    639   if (FLAG_debug_code) {
    640     __ AbortIfNotRootValue(heap_number_map,
    641                            Heap::kHeapNumberMapRootIndex,
    642                            "HeapNumberMap register clobbered.");
    643   }
    644   Label done;
    645   Label not_in_int32_range;
    646 
    647   __ UntagAndJumpIfSmi(dst, object, &done);
    648   __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
    649   __ cmp(scratch1, heap_number_map);
    650   __ b(ne, not_number);
    651   __ ConvertToInt32(object,
    652                     dst,
    653                     scratch1,
    654                     scratch2,
    655                     double_scratch,
    656                     &not_in_int32_range);
    657   __ jmp(&done);
    658 
    659   __ bind(&not_in_int32_range);
    660   __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
    661   __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
    662 
    663   __ EmitOutOfInt32RangeTruncate(dst,
    664                                  scratch1,
    665                                  scratch2,
    666                                  scratch3);
    667   __ bind(&done);
    668 }
    669 
    670 
    671 void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
    672                                              Register int_scratch,
    673                                              Destination destination,
    674                                              DwVfpRegister double_dst,
    675                                              Register dst1,
    676                                              Register dst2,
    677                                              Register scratch2,
    678                                              SwVfpRegister single_scratch) {
    679   ASSERT(!int_scratch.is(scratch2));
    680   ASSERT(!int_scratch.is(dst1));
    681   ASSERT(!int_scratch.is(dst2));
    682 
    683   Label done;
    684 
    685   if (CpuFeatures::IsSupported(VFP3)) {
    686     CpuFeatures::Scope scope(VFP3);
    687     __ vmov(single_scratch, int_scratch);
    688     __ vcvt_f64_s32(double_dst, single_scratch);
    689     if (destination == kCoreRegisters) {
    690       __ vmov(dst1, dst2, double_dst);
    691     }
    692   } else {
    693     Label fewer_than_20_useful_bits;
    694     // Expected output:
    695     // |         dst2            |         dst1            |
    696     // | s |   exp   |              mantissa               |
    697 
    698     // Check for zero.
    699     __ cmp(int_scratch, Operand::Zero());
    700     __ mov(dst2, int_scratch);
    701     __ mov(dst1, int_scratch);
    702     __ b(eq, &done);
    703 
    704     // Preload the sign of the value.
    705     __ and_(dst2, int_scratch, Operand(HeapNumber::kSignMask), SetCC);
    706     // Get the absolute value of the object (as an unsigned integer).
    707     __ rsb(int_scratch, int_scratch, Operand::Zero(), SetCC, mi);
    708 
    709     // Get mantissa[51:20].
    710 
    711     // Get the position of the first set bit.
    712     __ CountLeadingZeros(dst1, int_scratch, scratch2);
    713     __ rsb(dst1, dst1, Operand(31));
    714 
    715     // Set the exponent.
    716     __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias));
    717     __ Bfi(dst2, scratch2, scratch2,
    718         HeapNumber::kExponentShift, HeapNumber::kExponentBits);
    719 
    720     // Clear the first non null bit.
    721     __ mov(scratch2, Operand(1));
    722     __ bic(int_scratch, int_scratch, Operand(scratch2, LSL, dst1));
    723 
    724     __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
    725     // Get the number of bits to set in the lower part of the mantissa.
    726     __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
    727     __ b(mi, &fewer_than_20_useful_bits);
    728     // Set the higher 20 bits of the mantissa.
    729     __ orr(dst2, dst2, Operand(int_scratch, LSR, scratch2));
    730     __ rsb(scratch2, scratch2, Operand(32));
    731     __ mov(dst1, Operand(int_scratch, LSL, scratch2));
    732     __ b(&done);
    733 
    734     __ bind(&fewer_than_20_useful_bits);
    735     __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
    736     __ mov(scratch2, Operand(int_scratch, LSL, scratch2));
    737     __ orr(dst2, dst2, scratch2);
    738     // Set dst1 to 0.
    739     __ mov(dst1, Operand::Zero());
    740   }
    741   __ bind(&done);
    742 }
    743 
    744 
    745 void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
    746                                                   Register object,
    747                                                   Destination destination,
    748                                                   DwVfpRegister double_dst,
    749                                                   Register dst1,
    750                                                   Register dst2,
    751                                                   Register heap_number_map,
    752                                                   Register scratch1,
    753                                                   Register scratch2,
    754                                                   SwVfpRegister single_scratch,
    755                                                   Label* not_int32) {
    756   ASSERT(!scratch1.is(object) && !scratch2.is(object));
    757   ASSERT(!scratch1.is(scratch2));
    758   ASSERT(!heap_number_map.is(object) &&
    759          !heap_number_map.is(scratch1) &&
    760          !heap_number_map.is(scratch2));
    761 
    762   Label done, obj_is_not_smi;
    763 
    764   __ JumpIfNotSmi(object, &obj_is_not_smi);
    765   __ SmiUntag(scratch1, object);
    766   ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
    767                      scratch2, single_scratch);
    768   __ b(&done);
    769 
    770   __ bind(&obj_is_not_smi);
    771   if (FLAG_debug_code) {
    772     __ AbortIfNotRootValue(heap_number_map,
    773                            Heap::kHeapNumberMapRootIndex,
    774                            "HeapNumberMap register clobbered.");
    775   }
    776   __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
    777 
    778   // Load the number.
    779   if (CpuFeatures::IsSupported(VFP3)) {
    780     CpuFeatures::Scope scope(VFP3);
    781     // Load the double value.
    782     __ sub(scratch1, object, Operand(kHeapObjectTag));
    783     __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
    784 
    785     __ EmitVFPTruncate(kRoundToZero,
    786                        single_scratch,
    787                        double_dst,
    788                        scratch1,
    789                        scratch2,
    790                        kCheckForInexactConversion);
    791 
    792     // Jump to not_int32 if the operation did not succeed.
    793     __ b(ne, not_int32);
    794 
    795     if (destination == kCoreRegisters) {
    796       __ vmov(dst1, dst2, double_dst);
    797     }
    798 
    799   } else {
    800     ASSERT(!scratch1.is(object) && !scratch2.is(object));
    801     // Load the double value in the destination registers..
    802     __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
    803 
    804     // Check for 0 and -0.
    805     __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask));
    806     __ orr(scratch1, scratch1, Operand(dst2));
    807     __ cmp(scratch1, Operand::Zero());
    808     __ b(eq, &done);
    809 
    810     // Check that the value can be exactly represented by a 32-bit integer.
    811     // Jump to not_int32 if that's not the case.
    812     DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
    813 
    814     // dst1 and dst2 were trashed. Reload the double value.
    815     __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
    816   }
    817 
    818   __ bind(&done);
    819 }
    820 
    821 
    822 void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
    823                                             Register object,
    824                                             Register dst,
    825                                             Register heap_number_map,
    826                                             Register scratch1,
    827                                             Register scratch2,
    828                                             Register scratch3,
    829                                             DwVfpRegister double_scratch,
    830                                             Label* not_int32) {
    831   ASSERT(!dst.is(object));
    832   ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
    833   ASSERT(!scratch1.is(scratch2) &&
    834          !scratch1.is(scratch3) &&
    835          !scratch2.is(scratch3));
    836 
    837   Label done;
    838 
    839   __ UntagAndJumpIfSmi(dst, object, &done);
    840 
    841   if (FLAG_debug_code) {
    842     __ AbortIfNotRootValue(heap_number_map,
    843                            Heap::kHeapNumberMapRootIndex,
    844                            "HeapNumberMap register clobbered.");
    845   }
    846   __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
    847 
    848   // Object is a heap number.
    849   // Convert the floating point value to a 32-bit integer.
    850   if (CpuFeatures::IsSupported(VFP3)) {
    851     CpuFeatures::Scope scope(VFP3);
    852     SwVfpRegister single_scratch = double_scratch.low();
    853     // Load the double value.
    854     __ sub(scratch1, object, Operand(kHeapObjectTag));
    855     __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset);
    856 
    857     __ EmitVFPTruncate(kRoundToZero,
    858                        single_scratch,
    859                        double_scratch,
    860                        scratch1,
    861                        scratch2,
    862                        kCheckForInexactConversion);
    863 
    864     // Jump to not_int32 if the operation did not succeed.
    865     __ b(ne, not_int32);
    866     // Get the result in the destination register.
    867     __ vmov(dst, single_scratch);
    868 
    869   } else {
    870     // Load the double value in the destination registers.
    871     __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
    872     __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
    873 
    874     // Check for 0 and -0.
    875     __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
    876     __ orr(dst, scratch2, Operand(dst));
    877     __ cmp(dst, Operand::Zero());
    878     __ b(eq, &done);
    879 
    880     DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
    881 
    882     // Registers state after DoubleIs32BitInteger.
    883     // dst: mantissa[51:20].
    884     // scratch2: 1
    885 
    886     // Shift back the higher bits of the mantissa.
    887     __ mov(dst, Operand(dst, LSR, scratch3));
    888     // Set the implicit first bit.
    889     __ rsb(scratch3, scratch3, Operand(32));
    890     __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
    891     // Set the sign.
    892     __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
    893     __ tst(scratch1, Operand(HeapNumber::kSignMask));
    894     __ rsb(dst, dst, Operand::Zero(), LeaveCC, mi);
    895   }
    896 
    897   __ bind(&done);
    898 }
    899 
    900 
    901 void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
    902                                                Register src1,
    903                                                Register src2,
    904                                                Register dst,
    905                                                Register scratch,
    906                                                Label* not_int32) {
    907   // Get exponent alone in scratch.
    908   __ Ubfx(scratch,
    909           src1,
    910           HeapNumber::kExponentShift,
    911           HeapNumber::kExponentBits);
    912 
    913   // Substract the bias from the exponent.
    914   __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
    915 
    916   // src1: higher (exponent) part of the double value.
    917   // src2: lower (mantissa) part of the double value.
    918   // scratch: unbiased exponent.
    919 
    920   // Fast cases. Check for obvious non 32-bit integer values.
    921   // Negative exponent cannot yield 32-bit integers.
    922   __ b(mi, not_int32);
    923   // Exponent greater than 31 cannot yield 32-bit integers.
    924   // Also, a positive value with an exponent equal to 31 is outside of the
    925   // signed 32-bit integer range.
    926   // Another way to put it is that if (exponent - signbit) > 30 then the
    927   // number cannot be represented as an int32.
    928   Register tmp = dst;
    929   __ sub(tmp, scratch, Operand(src1, LSR, 31));
    930   __ cmp(tmp, Operand(30));
    931   __ b(gt, not_int32);
    932   // - Bits [21:0] in the mantissa are not null.
    933   __ tst(src2, Operand(0x3fffff));
    934   __ b(ne, not_int32);
    935 
    936   // Otherwise the exponent needs to be big enough to shift left all the
    937   // non zero bits left. So we need the (30 - exponent) last bits of the
    938   // 31 higher bits of the mantissa to be null.
    939   // Because bits [21:0] are null, we can check instead that the
    940   // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.
    941 
    942   // Get the 32 higher bits of the mantissa in dst.
    943   __ Ubfx(dst,
    944           src2,
    945           HeapNumber::kMantissaBitsInTopWord,
    946           32 - HeapNumber::kMantissaBitsInTopWord);
    947   __ orr(dst,
    948          dst,
    949          Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord));
    950 
    951   // Create the mask and test the lower bits (of the higher bits).
    952   __ rsb(scratch, scratch, Operand(32));
    953   __ mov(src2, Operand(1));
    954   __ mov(src1, Operand(src2, LSL, scratch));
    955   __ sub(src1, src1, Operand(1));
    956   __ tst(dst, src1);
    957   __ b(ne, not_int32);
    958 }
    959 
    960 
    961 void FloatingPointHelper::CallCCodeForDoubleOperation(
    962     MacroAssembler* masm,
    963     Token::Value op,
    964     Register heap_number_result,
    965     Register scratch) {
    966   // Using core registers:
    967   // r0: Left value (least significant part of mantissa).
    968   // r1: Left value (sign, exponent, top of mantissa).
    969   // r2: Right value (least significant part of mantissa).
    970   // r3: Right value (sign, exponent, top of mantissa).
    971 
    972   // Assert that heap_number_result is callee-saved.
    973   // We currently always use r5 to pass it.
    974   ASSERT(heap_number_result.is(r5));
    975 
    976   // Push the current return address before the C call. Return will be
    977   // through pop(pc) below.
    978   __ push(lr);
    979   __ PrepareCallCFunction(0, 2, scratch);
    980   if (masm->use_eabi_hardfloat()) {
    981     CpuFeatures::Scope scope(VFP3);
    982     __ vmov(d0, r0, r1);
    983     __ vmov(d1, r2, r3);
    984   }
    985   {
    986     AllowExternalCallThatCantCauseGC scope(masm);
    987     __ CallCFunction(
    988         ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
    989   }
    990   // Store answer in the overwritable heap number. Double returned in
    991   // registers r0 and r1 or in d0.
    992   if (masm->use_eabi_hardfloat()) {
    993     CpuFeatures::Scope scope(VFP3);
    994     __ vstr(d0,
    995             FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
    996   } else {
    997     __ Strd(r0, r1, FieldMemOperand(heap_number_result,
    998                                     HeapNumber::kValueOffset));
    999   }
   1000   // Place heap_number_result in r0 and return to the pushed return address.
   1001   __ mov(r0, Operand(heap_number_result));
   1002   __ pop(pc);
   1003 }
   1004 
   1005 
   1006 bool WriteInt32ToHeapNumberStub::IsPregenerated() {
   1007   // These variants are compiled ahead of time.  See next method.
   1008   if (the_int_.is(r1) && the_heap_number_.is(r0) && scratch_.is(r2)) {
   1009     return true;
   1010   }
   1011   if (the_int_.is(r2) && the_heap_number_.is(r0) && scratch_.is(r3)) {
   1012     return true;
   1013   }
   1014   // Other register combinations are generated as and when they are needed,
   1015   // so it is unsafe to call them from stubs (we can't generate a stub while
   1016   // we are generating a stub).
   1017   return false;
   1018 }
   1019 
   1020 
   1021 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
   1022   WriteInt32ToHeapNumberStub stub1(r1, r0, r2);
   1023   WriteInt32ToHeapNumberStub stub2(r2, r0, r3);
   1024   stub1.GetCode()->set_is_pregenerated(true);
   1025   stub2.GetCode()->set_is_pregenerated(true);
   1026 }
   1027 
   1028 
   1029 // See comment for class.
   1030 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
   1031   Label max_negative_int;
   1032   // the_int_ has the answer which is a signed int32 but not a Smi.
   1033   // We test for the special value that has a different exponent.  This test
   1034   // has the neat side effect of setting the flags according to the sign.
   1035   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
   1036   __ cmp(the_int_, Operand(0x80000000u));
   1037   __ b(eq, &max_negative_int);
   1038   // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
   1039   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
   1040   uint32_t non_smi_exponent =
   1041       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
   1042   __ mov(scratch_, Operand(non_smi_exponent));
   1043   // Set the sign bit in scratch_ if the value was negative.
   1044   __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
   1045   // Subtract from 0 if the value was negative.
   1046   __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs);
   1047   // We should be masking the implict first digit of the mantissa away here,
   1048   // but it just ends up combining harmlessly with the last digit of the
   1049   // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
   1050   // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
   1051   ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
   1052   const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
   1053   __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
   1054   __ str(scratch_, FieldMemOperand(the_heap_number_,
   1055                                    HeapNumber::kExponentOffset));
   1056   __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
   1057   __ str(scratch_, FieldMemOperand(the_heap_number_,
   1058                                    HeapNumber::kMantissaOffset));
   1059   __ Ret();
   1060 
   1061   __ bind(&max_negative_int);
   1062   // The max negative int32 is stored as a positive number in the mantissa of
   1063   // a double because it uses a sign bit instead of using two's complement.
   1064   // The actual mantissa bits stored are all 0 because the implicit most
   1065   // significant 1 bit is not stored.
   1066   non_smi_exponent += 1 << HeapNumber::kExponentShift;
   1067   __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
   1068   __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
   1069   __ mov(ip, Operand(0, RelocInfo::NONE));
   1070   __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
   1071   __ Ret();
   1072 }
   1073 
   1074 
   1075 // Handle the case where the lhs and rhs are the same object.
   1076 // Equality is almost reflexive (everything but NaN), so this is a test
   1077 // for "identity and not NaN".
   1078 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
   1079                                           Label* slow,
   1080                                           Condition cond,
   1081                                           bool never_nan_nan) {
   1082   Label not_identical;
   1083   Label heap_number, return_equal;
   1084   __ cmp(r0, r1);
   1085   __ b(ne, &not_identical);
   1086 
   1087   // The two objects are identical.  If we know that one of them isn't NaN then
   1088   // we now know they test equal.
   1089   if (cond != eq || !never_nan_nan) {
   1090     // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
   1091     // so we do the second best thing - test it ourselves.
   1092     // They are both equal and they are not both Smis so both of them are not
   1093     // Smis.  If it's not a heap number, then return equal.
   1094     if (cond == lt || cond == gt) {
   1095       __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
   1096       __ b(ge, slow);
   1097     } else {
   1098       __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
   1099       __ b(eq, &heap_number);
   1100       // Comparing JS objects with <=, >= is complicated.
   1101       if (cond != eq) {
   1102         __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
   1103         __ b(ge, slow);
   1104         // Normally here we fall through to return_equal, but undefined is
   1105         // special: (undefined == undefined) == true, but
   1106         // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
   1107         if (cond == le || cond == ge) {
   1108           __ cmp(r4, Operand(ODDBALL_TYPE));
   1109           __ b(ne, &return_equal);
   1110           __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
   1111           __ cmp(r0, r2);
   1112           __ b(ne, &return_equal);
   1113           if (cond == le) {
   1114             // undefined <= undefined should fail.
   1115             __ mov(r0, Operand(GREATER));
   1116           } else  {
   1117             // undefined >= undefined should fail.
   1118             __ mov(r0, Operand(LESS));
   1119           }
   1120           __ Ret();
   1121         }
   1122       }
   1123     }
   1124   }
   1125 
   1126   __ bind(&return_equal);
   1127   if (cond == lt) {
   1128     __ mov(r0, Operand(GREATER));  // Things aren't less than themselves.
   1129   } else if (cond == gt) {
   1130     __ mov(r0, Operand(LESS));     // Things aren't greater than themselves.
   1131   } else {
   1132     __ mov(r0, Operand(EQUAL));    // Things are <=, >=, ==, === themselves.
   1133   }
   1134   __ Ret();
   1135 
   1136   if (cond != eq || !never_nan_nan) {
   1137     // For less and greater we don't have to check for NaN since the result of
   1138     // x < x is false regardless.  For the others here is some code to check
   1139     // for NaN.
   1140     if (cond != lt && cond != gt) {
   1141       __ bind(&heap_number);
   1142       // It is a heap number, so return non-equal if it's NaN and equal if it's
   1143       // not NaN.
   1144 
   1145       // The representation of NaN values has all exponent bits (52..62) set,
   1146       // and not all mantissa bits (0..51) clear.
   1147       // Read top bits of double representation (second word of value).
   1148       __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
   1149       // Test that exponent bits are all set.
   1150       __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
   1151       // NaNs have all-one exponents so they sign extend to -1.
   1152       __ cmp(r3, Operand(-1));
   1153       __ b(ne, &return_equal);
   1154 
   1155       // Shift out flag and all exponent bits, retaining only mantissa.
   1156       __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
   1157       // Or with all low-bits of mantissa.
   1158       __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
   1159       __ orr(r0, r3, Operand(r2), SetCC);
   1160       // For equal we already have the right value in r0:  Return zero (equal)
   1161       // if all bits in mantissa are zero (it's an Infinity) and non-zero if
   1162       // not (it's a NaN).  For <= and >= we need to load r0 with the failing
   1163       // value if it's a NaN.
   1164       if (cond != eq) {
   1165         // All-zero means Infinity means equal.
   1166         __ Ret(eq);
   1167         if (cond == le) {
   1168           __ mov(r0, Operand(GREATER));  // NaN <= NaN should fail.
   1169         } else {
   1170           __ mov(r0, Operand(LESS));     // NaN >= NaN should fail.
   1171         }
   1172       }
   1173       __ Ret();
   1174     }
   1175     // No fall through here.
   1176   }
   1177 
   1178   __ bind(&not_identical);
   1179 }
   1180 
   1181 
   1182 // See comment at call site.
   1183 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
   1184                                     Register lhs,
   1185                                     Register rhs,
   1186                                     Label* lhs_not_nan,
   1187                                     Label* slow,
   1188                                     bool strict) {
   1189   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
   1190          (lhs.is(r1) && rhs.is(r0)));
   1191 
   1192   Label rhs_is_smi;
   1193   __ JumpIfSmi(rhs, &rhs_is_smi);
   1194 
   1195   // Lhs is a Smi.  Check whether the rhs is a heap number.
   1196   __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
   1197   if (strict) {
   1198     // If rhs is not a number and lhs is a Smi then strict equality cannot
   1199     // succeed.  Return non-equal
   1200     // If rhs is r0 then there is already a non zero value in it.
   1201     if (!rhs.is(r0)) {
   1202       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
   1203     }
   1204     __ Ret(ne);
   1205   } else {
   1206     // Smi compared non-strictly with a non-Smi non-heap-number.  Call
   1207     // the runtime.
   1208     __ b(ne, slow);
   1209   }
   1210 
   1211   // Lhs is a smi, rhs is a number.
   1212   if (CpuFeatures::IsSupported(VFP3)) {
   1213     // Convert lhs to a double in d7.
   1214     CpuFeatures::Scope scope(VFP3);
   1215     __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
   1216     // Load the double from rhs, tagged HeapNumber r0, to d6.
   1217     __ sub(r7, rhs, Operand(kHeapObjectTag));
   1218     __ vldr(d6, r7, HeapNumber::kValueOffset);
   1219   } else {
   1220     __ push(lr);
   1221     // Convert lhs to a double in r2, r3.
   1222     __ mov(r7, Operand(lhs));
   1223     ConvertToDoubleStub stub1(r3, r2, r7, r6);
   1224     __ Call(stub1.GetCode());
   1225     // Load rhs to a double in r0, r1.
   1226     __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
   1227     __ pop(lr);
   1228   }
   1229 
   1230   // We now have both loaded as doubles but we can skip the lhs nan check
   1231   // since it's a smi.
   1232   __ jmp(lhs_not_nan);
   1233 
   1234   __ bind(&rhs_is_smi);
   1235   // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
   1236   __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
   1237   if (strict) {
   1238     // If lhs is not a number and rhs is a smi then strict equality cannot
   1239     // succeed.  Return non-equal.
   1240     // If lhs is r0 then there is already a non zero value in it.
   1241     if (!lhs.is(r0)) {
   1242       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
   1243     }
   1244     __ Ret(ne);
   1245   } else {
   1246     // Smi compared non-strictly with a non-smi non-heap-number.  Call
   1247     // the runtime.
   1248     __ b(ne, slow);
   1249   }
   1250 
   1251   // Rhs is a smi, lhs is a heap number.
   1252   if (CpuFeatures::IsSupported(VFP3)) {
   1253     CpuFeatures::Scope scope(VFP3);
   1254     // Load the double from lhs, tagged HeapNumber r1, to d7.
   1255     __ sub(r7, lhs, Operand(kHeapObjectTag));
   1256     __ vldr(d7, r7, HeapNumber::kValueOffset);
   1257     // Convert rhs to a double in d6              .
   1258     __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
   1259   } else {
   1260     __ push(lr);
   1261     // Load lhs to a double in r2, r3.
   1262     __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
   1263     // Convert rhs to a double in r0, r1.
   1264     __ mov(r7, Operand(rhs));
   1265     ConvertToDoubleStub stub2(r1, r0, r7, r6);
   1266     __ Call(stub2.GetCode());
   1267     __ pop(lr);
   1268   }
   1269   // Fall through to both_loaded_as_doubles.
   1270 }
   1271 
   1272 
   1273 void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
   1274   bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
   1275   Register rhs_exponent = exp_first ? r0 : r1;
   1276   Register lhs_exponent = exp_first ? r2 : r3;
   1277   Register rhs_mantissa = exp_first ? r1 : r0;
   1278   Register lhs_mantissa = exp_first ? r3 : r2;
   1279   Label one_is_nan, neither_is_nan;
   1280 
   1281   __ Sbfx(r4,
   1282           lhs_exponent,
   1283           HeapNumber::kExponentShift,
   1284           HeapNumber::kExponentBits);
   1285   // NaNs have all-one exponents so they sign extend to -1.
   1286   __ cmp(r4, Operand(-1));
   1287   __ b(ne, lhs_not_nan);
   1288   __ mov(r4,
   1289          Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
   1290          SetCC);
   1291   __ b(ne, &one_is_nan);
   1292   __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE));
   1293   __ b(ne, &one_is_nan);
   1294 
   1295   __ bind(lhs_not_nan);
   1296   __ Sbfx(r4,
   1297           rhs_exponent,
   1298           HeapNumber::kExponentShift,
   1299           HeapNumber::kExponentBits);
   1300   // NaNs have all-one exponents so they sign extend to -1.
   1301   __ cmp(r4, Operand(-1));
   1302   __ b(ne, &neither_is_nan);
   1303   __ mov(r4,
   1304          Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
   1305          SetCC);
   1306   __ b(ne, &one_is_nan);
   1307   __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE));
   1308   __ b(eq, &neither_is_nan);
   1309 
   1310   __ bind(&one_is_nan);
   1311   // NaN comparisons always fail.
   1312   // Load whatever we need in r0 to make the comparison fail.
   1313   if (cond == lt || cond == le) {
   1314     __ mov(r0, Operand(GREATER));
   1315   } else {
   1316     __ mov(r0, Operand(LESS));
   1317   }
   1318   __ Ret();
   1319 
   1320   __ bind(&neither_is_nan);
   1321 }
   1322 
   1323 
   1324 // See comment at call site.
   1325 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
   1326                                           Condition cond) {
   1327   bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
   1328   Register rhs_exponent = exp_first ? r0 : r1;
   1329   Register lhs_exponent = exp_first ? r2 : r3;
   1330   Register rhs_mantissa = exp_first ? r1 : r0;
   1331   Register lhs_mantissa = exp_first ? r3 : r2;
   1332 
   1333   // r0, r1, r2, r3 have the two doubles.  Neither is a NaN.
   1334   if (cond == eq) {
   1335     // Doubles are not equal unless they have the same bit pattern.
   1336     // Exception: 0 and -0.
   1337     __ cmp(rhs_mantissa, Operand(lhs_mantissa));
   1338     __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
   1339     // Return non-zero if the numbers are unequal.
   1340     __ Ret(ne);
   1341 
   1342     __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
   1343     // If exponents are equal then return 0.
   1344     __ Ret(eq);
   1345 
   1346     // Exponents are unequal.  The only way we can return that the numbers
   1347     // are equal is if one is -0 and the other is 0.  We already dealt
   1348     // with the case where both are -0 or both are 0.
   1349     // We start by seeing if the mantissas (that are equal) or the bottom
   1350     // 31 bits of the rhs exponent are non-zero.  If so we return not
   1351     // equal.
   1352     __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
   1353     __ mov(r0, Operand(r4), LeaveCC, ne);
   1354     __ Ret(ne);
   1355     // Now they are equal if and only if the lhs exponent is zero in its
   1356     // low 31 bits.
   1357     __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
   1358     __ Ret();
   1359   } else {
   1360     // Call a native function to do a comparison between two non-NaNs.
   1361     // Call C routine that may not cause GC or other trouble.
   1362     __ push(lr);
   1363     __ PrepareCallCFunction(0, 2, r5);
   1364     if (masm->use_eabi_hardfloat()) {
   1365       CpuFeatures::Scope scope(VFP3);
   1366       __ vmov(d0, r0, r1);
   1367       __ vmov(d1, r2, r3);
   1368     }
   1369 
   1370     AllowExternalCallThatCantCauseGC scope(masm);
   1371     __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
   1372                      0, 2);
   1373     __ pop(pc);  // Return.
   1374   }
   1375 }
   1376 
   1377 
   1378 // See comment at call site.
   1379 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
   1380                                            Register lhs,
   1381                                            Register rhs) {
   1382     ASSERT((lhs.is(r0) && rhs.is(r1)) ||
   1383            (lhs.is(r1) && rhs.is(r0)));
   1384 
   1385     // If either operand is a JS object or an oddball value, then they are
   1386     // not equal since their pointers are different.
   1387     // There is no test for undetectability in strict equality.
   1388     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
   1389     Label first_non_object;
   1390     // Get the type of the first operand into r2 and compare it with
   1391     // FIRST_SPEC_OBJECT_TYPE.
   1392     __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
   1393     __ b(lt, &first_non_object);
   1394 
   1395     // Return non-zero (r0 is not zero)
   1396     Label return_not_equal;
   1397     __ bind(&return_not_equal);
   1398     __ Ret();
   1399 
   1400     __ bind(&first_non_object);
   1401     // Check for oddballs: true, false, null, undefined.
   1402     __ cmp(r2, Operand(ODDBALL_TYPE));
   1403     __ b(eq, &return_not_equal);
   1404 
   1405     __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
   1406     __ b(ge, &return_not_equal);
   1407 
   1408     // Check for oddballs: true, false, null, undefined.
   1409     __ cmp(r3, Operand(ODDBALL_TYPE));
   1410     __ b(eq, &return_not_equal);
   1411 
   1412     // Now that we have the types we might as well check for symbol-symbol.
   1413     // Ensure that no non-strings have the symbol bit set.
   1414     STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
   1415     STATIC_ASSERT(kSymbolTag != 0);
   1416     __ and_(r2, r2, Operand(r3));
   1417     __ tst(r2, Operand(kIsSymbolMask));
   1418     __ b(ne, &return_not_equal);
   1419 }
   1420 
   1421 
   1422 // See comment at call site.
   1423 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
   1424                                        Register lhs,
   1425                                        Register rhs,
   1426                                        Label* both_loaded_as_doubles,
   1427                                        Label* not_heap_numbers,
   1428                                        Label* slow) {
   1429   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
   1430          (lhs.is(r1) && rhs.is(r0)));
   1431 
   1432   __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
   1433   __ b(ne, not_heap_numbers);
   1434   __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
   1435   __ cmp(r2, r3);
   1436   __ b(ne, slow);  // First was a heap number, second wasn't.  Go slow case.
   1437 
   1438   // Both are heap numbers.  Load them up then jump to the code we have
   1439   // for that.
   1440   if (CpuFeatures::IsSupported(VFP3)) {
   1441     CpuFeatures::Scope scope(VFP3);
   1442     __ sub(r7, rhs, Operand(kHeapObjectTag));
   1443     __ vldr(d6, r7, HeapNumber::kValueOffset);
   1444     __ sub(r7, lhs, Operand(kHeapObjectTag));
   1445     __ vldr(d7, r7, HeapNumber::kValueOffset);
   1446   } else {
   1447     __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
   1448     __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
   1449   }
   1450   __ jmp(both_loaded_as_doubles);
   1451 }
   1452 
   1453 
   1454 // Fast negative check for symbol-to-symbol equality.
   1455 static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
   1456                                          Register lhs,
   1457                                          Register rhs,
   1458                                          Label* possible_strings,
   1459                                          Label* not_both_strings) {
   1460   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
   1461          (lhs.is(r1) && rhs.is(r0)));
   1462 
   1463   // r2 is object type of rhs.
   1464   // Ensure that no non-strings have the symbol bit set.
   1465   Label object_test;
   1466   STATIC_ASSERT(kSymbolTag != 0);
   1467   __ tst(r2, Operand(kIsNotStringMask));
   1468   __ b(ne, &object_test);
   1469   __ tst(r2, Operand(kIsSymbolMask));
   1470   __ b(eq, possible_strings);
   1471   __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
   1472   __ b(ge, not_both_strings);
   1473   __ tst(r3, Operand(kIsSymbolMask));
   1474   __ b(eq, possible_strings);
   1475 
   1476   // Both are symbols.  We already checked they weren't the same pointer
   1477   // so they are not equal.
   1478   __ mov(r0, Operand(NOT_EQUAL));
   1479   __ Ret();
   1480 
   1481   __ bind(&object_test);
   1482   __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
   1483   __ b(lt, not_both_strings);
   1484   __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
   1485   __ b(lt, not_both_strings);
   1486   // If both objects are undetectable, they are equal. Otherwise, they
   1487   // are not equal, since they are different objects and an object is not
   1488   // equal to undefined.
   1489   __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
   1490   __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
   1491   __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
   1492   __ and_(r0, r2, Operand(r3));
   1493   __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
   1494   __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
   1495   __ Ret();
   1496 }
   1497 
   1498 
   1499 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
   1500                                                          Register object,
   1501                                                          Register result,
   1502                                                          Register scratch1,
   1503                                                          Register scratch2,
   1504                                                          Register scratch3,
   1505                                                          bool object_is_smi,
   1506                                                          Label* not_found) {
   1507   // Use of registers. Register result is used as a temporary.
   1508   Register number_string_cache = result;
   1509   Register mask = scratch3;
   1510 
   1511   // Load the number string cache.
   1512   __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
   1513 
   1514   // Make the hash mask from the length of the number string cache. It
   1515   // contains two elements (number and string) for each cache entry.
   1516   __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
   1517   // Divide length by two (length is a smi).
   1518   __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
   1519   __ sub(mask, mask, Operand(1));  // Make mask.
   1520 
   1521   // Calculate the entry in the number string cache. The hash value in the
   1522   // number string cache for smis is just the smi value, and the hash for
   1523   // doubles is the xor of the upper and lower words. See
   1524   // Heap::GetNumberStringCache.
   1525   Isolate* isolate = masm->isolate();
   1526   Label is_smi;
   1527   Label load_result_from_cache;
   1528   if (!object_is_smi) {
   1529     __ JumpIfSmi(object, &is_smi);
   1530     if (CpuFeatures::IsSupported(VFP3)) {
   1531       CpuFeatures::Scope scope(VFP3);
   1532       __ CheckMap(object,
   1533                   scratch1,
   1534                   Heap::kHeapNumberMapRootIndex,
   1535                   not_found,
   1536                   DONT_DO_SMI_CHECK);
   1537 
   1538       STATIC_ASSERT(8 == kDoubleSize);
   1539       __ add(scratch1,
   1540              object,
   1541              Operand(HeapNumber::kValueOffset - kHeapObjectTag));
   1542       __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
   1543       __ eor(scratch1, scratch1, Operand(scratch2));
   1544       __ and_(scratch1, scratch1, Operand(mask));
   1545 
   1546       // Calculate address of entry in string cache: each entry consists
   1547       // of two pointer sized fields.
   1548       __ add(scratch1,
   1549              number_string_cache,
   1550              Operand(scratch1, LSL, kPointerSizeLog2 + 1));
   1551 
   1552       Register probe = mask;
   1553       __ ldr(probe,
   1554              FieldMemOperand(scratch1, FixedArray::kHeaderSize));
   1555       __ JumpIfSmi(probe, not_found);
   1556       __ sub(scratch2, object, Operand(kHeapObjectTag));
   1557       __ vldr(d0, scratch2, HeapNumber::kValueOffset);
   1558       __ sub(probe, probe, Operand(kHeapObjectTag));
   1559       __ vldr(d1, probe, HeapNumber::kValueOffset);
   1560       __ VFPCompareAndSetFlags(d0, d1);
   1561       __ b(ne, not_found);  // The cache did not contain this value.
   1562       __ b(&load_result_from_cache);
   1563     } else {
   1564       __ b(not_found);
   1565     }
   1566   }
   1567 
   1568   __ bind(&is_smi);
   1569   Register scratch = scratch1;
   1570   __ and_(scratch, mask, Operand(object, ASR, 1));
   1571   // Calculate address of entry in string cache: each entry consists
   1572   // of two pointer sized fields.
   1573   __ add(scratch,
   1574          number_string_cache,
   1575          Operand(scratch, LSL, kPointerSizeLog2 + 1));
   1576 
   1577   // Check if the entry is the smi we are looking for.
   1578   Register probe = mask;
   1579   __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
   1580   __ cmp(object, probe);
   1581   __ b(ne, not_found);
   1582 
   1583   // Get the result from the cache.
   1584   __ bind(&load_result_from_cache);
   1585   __ ldr(result,
   1586          FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
   1587   __ IncrementCounter(isolate->counters()->number_to_string_native(),
   1588                       1,
   1589                       scratch1,
   1590                       scratch2);
   1591 }
   1592 
   1593 
   1594 void NumberToStringStub::Generate(MacroAssembler* masm) {
   1595   Label runtime;
   1596 
   1597   __ ldr(r1, MemOperand(sp, 0));
   1598 
   1599   // Generate code to lookup number in the number string cache.
   1600   GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
   1601   __ add(sp, sp, Operand(1 * kPointerSize));
   1602   __ Ret();
   1603 
   1604   __ bind(&runtime);
   1605   // Handle number to string in the runtime system if not found in the cache.
   1606   __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
   1607 }
   1608 
   1609 
   1610 // On entry lhs_ and rhs_ are the values to be compared.
   1611 // On exit r0 is 0, positive or negative to indicate the result of
   1612 // the comparison.
   1613 void CompareStub::Generate(MacroAssembler* masm) {
   1614   ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
   1615          (lhs_.is(r1) && rhs_.is(r0)));
   1616 
   1617   Label slow;  // Call builtin.
   1618   Label not_smis, both_loaded_as_doubles, lhs_not_nan;
   1619 
   1620   if (include_smi_compare_) {
   1621     Label not_two_smis, smi_done;
   1622     __ orr(r2, r1, r0);
   1623     __ JumpIfNotSmi(r2, &not_two_smis);
   1624     __ mov(r1, Operand(r1, ASR, 1));
   1625     __ sub(r0, r1, Operand(r0, ASR, 1));
   1626     __ Ret();
   1627     __ bind(&not_two_smis);
   1628   } else if (FLAG_debug_code) {
   1629     __ orr(r2, r1, r0);
   1630     __ tst(r2, Operand(kSmiTagMask));
   1631     __ Assert(ne, "CompareStub: unexpected smi operands.");
   1632   }
   1633 
   1634   // NOTICE! This code is only reached after a smi-fast-case check, so
   1635   // it is certain that at least one operand isn't a smi.
   1636 
   1637   // Handle the case where the objects are identical.  Either returns the answer
   1638   // or goes to slow.  Only falls through if the objects were not identical.
   1639   EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
   1640 
   1641   // If either is a Smi (we know that not both are), then they can only
   1642   // be strictly equal if the other is a HeapNumber.
   1643   STATIC_ASSERT(kSmiTag == 0);
   1644   ASSERT_EQ(0, Smi::FromInt(0));
   1645   __ and_(r2, lhs_, Operand(rhs_));
   1646   __ JumpIfNotSmi(r2, &not_smis);
   1647   // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
   1648   // 1) Return the answer.
   1649   // 2) Go to slow.
   1650   // 3) Fall through to both_loaded_as_doubles.
   1651   // 4) Jump to lhs_not_nan.
   1652   // In cases 3 and 4 we have found out we were dealing with a number-number
   1653   // comparison.  If VFP3 is supported the double values of the numbers have
   1654   // been loaded into d7 and d6.  Otherwise, the double values have been loaded
   1655   // into r0, r1, r2, and r3.
   1656   EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
   1657 
   1658   __ bind(&both_loaded_as_doubles);
   1659   // The arguments have been converted to doubles and stored in d6 and d7, if
   1660   // VFP3 is supported, or in r0, r1, r2, and r3.
   1661   Isolate* isolate = masm->isolate();
   1662   if (CpuFeatures::IsSupported(VFP3)) {
   1663     __ bind(&lhs_not_nan);
   1664     CpuFeatures::Scope scope(VFP3);
   1665     Label no_nan;
   1666     // ARMv7 VFP3 instructions to implement double precision comparison.
   1667     __ VFPCompareAndSetFlags(d7, d6);
   1668     Label nan;
   1669     __ b(vs, &nan);
   1670     __ mov(r0, Operand(EQUAL), LeaveCC, eq);
   1671     __ mov(r0, Operand(LESS), LeaveCC, lt);
   1672     __ mov(r0, Operand(GREATER), LeaveCC, gt);
   1673     __ Ret();
   1674 
   1675     __ bind(&nan);
   1676     // If one of the sides was a NaN then the v flag is set.  Load r0 with
   1677     // whatever it takes to make the comparison fail, since comparisons with NaN
   1678     // always fail.
   1679     if (cc_ == lt || cc_ == le) {
   1680       __ mov(r0, Operand(GREATER));
   1681     } else {
   1682       __ mov(r0, Operand(LESS));
   1683     }
   1684     __ Ret();
   1685   } else {
   1686     // Checks for NaN in the doubles we have loaded.  Can return the answer or
   1687     // fall through if neither is a NaN.  Also binds lhs_not_nan.
   1688     EmitNanCheck(masm, &lhs_not_nan, cc_);
   1689     // Compares two doubles in r0, r1, r2, r3 that are not NaNs.  Returns the
   1690     // answer.  Never falls through.
   1691     EmitTwoNonNanDoubleComparison(masm, cc_);
   1692   }
   1693 
   1694   __ bind(&not_smis);
   1695   // At this point we know we are dealing with two different objects,
   1696   // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
   1697   if (strict_) {
   1698     // This returns non-equal for some object types, or falls through if it
   1699     // was not lucky.
   1700     EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
   1701   }
   1702 
   1703   Label check_for_symbols;
   1704   Label flat_string_check;
   1705   // Check for heap-number-heap-number comparison.  Can jump to slow case,
   1706   // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
   1707   // that case.  If the inputs are not doubles then jumps to check_for_symbols.
   1708   // In this case r2 will contain the type of rhs_.  Never falls through.
   1709   EmitCheckForTwoHeapNumbers(masm,
   1710                              lhs_,
   1711                              rhs_,
   1712                              &both_loaded_as_doubles,
   1713                              &check_for_symbols,
   1714                              &flat_string_check);
   1715 
   1716   __ bind(&check_for_symbols);
   1717   // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
   1718   // symbols.
   1719   if (cc_ == eq && !strict_) {
   1720     // Returns an answer for two symbols or two detectable objects.
   1721     // Otherwise jumps to string case or not both strings case.
   1722     // Assumes that r2 is the type of rhs_ on entry.
   1723     EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
   1724   }
   1725 
   1726   // Check for both being sequential ASCII strings, and inline if that is the
   1727   // case.
   1728   __ bind(&flat_string_check);
   1729 
   1730   __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
   1731 
   1732   __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
   1733   if (cc_ == eq) {
   1734     StringCompareStub::GenerateFlatAsciiStringEquals(masm,
   1735                                                      lhs_,
   1736                                                      rhs_,
   1737                                                      r2,
   1738                                                      r3,
   1739                                                      r4);
   1740   } else {
   1741     StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
   1742                                                        lhs_,
   1743                                                        rhs_,
   1744                                                        r2,
   1745                                                        r3,
   1746                                                        r4,
   1747                                                        r5);
   1748   }
   1749   // Never falls through to here.
   1750 
   1751   __ bind(&slow);
   1752 
   1753   __ Push(lhs_, rhs_);
   1754   // Figure out which native to call and setup the arguments.
   1755   Builtins::JavaScript native;
   1756   if (cc_ == eq) {
   1757     native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
   1758   } else {
   1759     native = Builtins::COMPARE;
   1760     int ncr;  // NaN compare result
   1761     if (cc_ == lt || cc_ == le) {
   1762       ncr = GREATER;
   1763     } else {
   1764       ASSERT(cc_ == gt || cc_ == ge);  // remaining cases
   1765       ncr = LESS;
   1766     }
   1767     __ mov(r0, Operand(Smi::FromInt(ncr)));
   1768     __ push(r0);
   1769   }
   1770 
   1771   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
   1772   // tagged as a small integer.
   1773   __ InvokeBuiltin(native, JUMP_FUNCTION);
   1774 }
   1775 
   1776 
   1777 // The stub expects its argument in the tos_ register and returns its result in
   1778 // it, too: zero for false, and a non-zero value for true.
   1779 void ToBooleanStub::Generate(MacroAssembler* masm) {
   1780   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   1781   // we cannot call anything that could cause a GC from this stub.
   1782   // This stub uses VFP3 instructions.
   1783   CpuFeatures::Scope scope(VFP3);
   1784 
   1785   Label patch;
   1786   const Register map = r9.is(tos_) ? r7 : r9;
   1787 
   1788   // undefined -> false.
   1789   CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
   1790 
   1791   // Boolean -> its value.
   1792   CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
   1793   CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
   1794 
   1795   // 'null' -> false.
   1796   CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
   1797 
   1798   if (types_.Contains(SMI)) {
   1799     // Smis: 0 -> false, all other -> true
   1800     __ tst(tos_, Operand(kSmiTagMask));
   1801     // tos_ contains the correct return value already
   1802     __ Ret(eq);
   1803   } else if (types_.NeedsMap()) {
   1804     // If we need a map later and have a Smi -> patch.
   1805     __ JumpIfSmi(tos_, &patch);
   1806   }
   1807 
   1808   if (types_.NeedsMap()) {
   1809     __ ldr(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
   1810 
   1811     if (types_.CanBeUndetectable()) {
   1812       __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
   1813       __ tst(ip, Operand(1 << Map::kIsUndetectable));
   1814       // Undetectable -> false.
   1815       __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
   1816       __ Ret(ne);
   1817     }
   1818   }
   1819 
   1820   if (types_.Contains(SPEC_OBJECT)) {
   1821     // Spec object -> true.
   1822     __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
   1823     // tos_ contains the correct non-zero return value already.
   1824     __ Ret(ge);
   1825   }
   1826 
   1827   if (types_.Contains(STRING)) {
   1828     // String value -> false iff empty.
   1829   __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
   1830   __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset), lt);
   1831   __ Ret(lt);  // the string length is OK as the return value
   1832   }
   1833 
   1834   if (types_.Contains(HEAP_NUMBER)) {
   1835     // Heap number -> false iff +0, -0, or NaN.
   1836     Label not_heap_number;
   1837     __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
   1838     __ b(ne, &not_heap_number);
   1839     __ vldr(d1, FieldMemOperand(tos_, HeapNumber::kValueOffset));
   1840     __ VFPCompareAndSetFlags(d1, 0.0);
   1841     // "tos_" is a register, and contains a non zero value by default.
   1842     // Hence we only need to overwrite "tos_" with zero to return false for
   1843     // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
   1844     __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq);  // for FP_ZERO
   1845     __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs);  // for FP_NAN
   1846     __ Ret();
   1847     __ bind(&not_heap_number);
   1848   }
   1849 
   1850   __ bind(&patch);
   1851   GenerateTypeTransition(masm);
   1852 }
   1853 
   1854 
   1855 void ToBooleanStub::CheckOddball(MacroAssembler* masm,
   1856                                  Type type,
   1857                                  Heap::RootListIndex value,
   1858                                  bool result) {
   1859   if (types_.Contains(type)) {
   1860     // If we see an expected oddball, return its ToBoolean value tos_.
   1861     __ LoadRoot(ip, value);
   1862     __ cmp(tos_, ip);
   1863     // The value of a root is never NULL, so we can avoid loading a non-null
   1864     // value into tos_ when we want to return 'true'.
   1865     if (!result) {
   1866       __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq);
   1867     }
   1868     __ Ret(eq);
   1869   }
   1870 }
   1871 
   1872 
   1873 void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
   1874   if (!tos_.is(r3)) {
   1875     __ mov(r3, Operand(tos_));
   1876   }
   1877   __ mov(r2, Operand(Smi::FromInt(tos_.code())));
   1878   __ mov(r1, Operand(Smi::FromInt(types_.ToByte())));
   1879   __ Push(r3, r2, r1);
   1880   // Patch the caller to an appropriate specialized stub and return the
   1881   // operation result to the caller of the stub.
   1882   __ TailCallExternalReference(
   1883       ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
   1884       3,
   1885       1);
   1886 }
   1887 
   1888 
   1889 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
   1890   // We don't allow a GC during a store buffer overflow so there is no need to
   1891   // store the registers in any particular way, but we do have to store and
   1892   // restore them.
   1893   __ stm(db_w, sp, kCallerSaved | lr.bit());
   1894   if (save_doubles_ == kSaveFPRegs) {
   1895     CpuFeatures::Scope scope(VFP3);
   1896     __ sub(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
   1897     for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
   1898       DwVfpRegister reg = DwVfpRegister::from_code(i);
   1899       __ vstr(reg, MemOperand(sp, i * kDoubleSize));
   1900     }
   1901   }
   1902   const int argument_count = 1;
   1903   const int fp_argument_count = 0;
   1904   const Register scratch = r1;
   1905 
   1906   AllowExternalCallThatCantCauseGC scope(masm);
   1907   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
   1908   __ mov(r0, Operand(ExternalReference::isolate_address()));
   1909   __ CallCFunction(
   1910       ExternalReference::store_buffer_overflow_function(masm->isolate()),
   1911       argument_count);
   1912   if (save_doubles_ == kSaveFPRegs) {
   1913     CpuFeatures::Scope scope(VFP3);
   1914     for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
   1915       DwVfpRegister reg = DwVfpRegister::from_code(i);
   1916       __ vldr(reg, MemOperand(sp, i * kDoubleSize));
   1917     }
   1918     __ add(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
   1919   }
   1920   __ ldm(ia_w, sp, kCallerSaved | pc.bit());  // Also pop pc to get Ret(0).
   1921 }
   1922 
   1923 
   1924 void UnaryOpStub::PrintName(StringStream* stream) {
   1925   const char* op_name = Token::Name(op_);
   1926   const char* overwrite_name = NULL;  // Make g++ happy.
   1927   switch (mode_) {
   1928     case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
   1929     case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
   1930   }
   1931   stream->Add("UnaryOpStub_%s_%s_%s",
   1932               op_name,
   1933               overwrite_name,
   1934               UnaryOpIC::GetName(operand_type_));
   1935 }
   1936 
   1937 
   1938 // TODO(svenpanne): Use virtual functions instead of switch.
   1939 void UnaryOpStub::Generate(MacroAssembler* masm) {
   1940   switch (operand_type_) {
   1941     case UnaryOpIC::UNINITIALIZED:
   1942       GenerateTypeTransition(masm);
   1943       break;
   1944     case UnaryOpIC::SMI:
   1945       GenerateSmiStub(masm);
   1946       break;
   1947     case UnaryOpIC::HEAP_NUMBER:
   1948       GenerateHeapNumberStub(masm);
   1949       break;
   1950     case UnaryOpIC::GENERIC:
   1951       GenerateGenericStub(masm);
   1952       break;
   1953   }
   1954 }
   1955 
   1956 
   1957 void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
   1958   __ mov(r3, Operand(r0));  // the operand
   1959   __ mov(r2, Operand(Smi::FromInt(op_)));
   1960   __ mov(r1, Operand(Smi::FromInt(mode_)));
   1961   __ mov(r0, Operand(Smi::FromInt(operand_type_)));
   1962   __ Push(r3, r2, r1, r0);
   1963 
   1964   __ TailCallExternalReference(
   1965       ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
   1966 }
   1967 
   1968 
   1969 // TODO(svenpanne): Use virtual functions instead of switch.
   1970 void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
   1971   switch (op_) {
   1972     case Token::SUB:
   1973       GenerateSmiStubSub(masm);
   1974       break;
   1975     case Token::BIT_NOT:
   1976       GenerateSmiStubBitNot(masm);
   1977       break;
   1978     default:
   1979       UNREACHABLE();
   1980   }
   1981 }
   1982 
   1983 
   1984 void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
   1985   Label non_smi, slow;
   1986   GenerateSmiCodeSub(masm, &non_smi, &slow);
   1987   __ bind(&non_smi);
   1988   __ bind(&slow);
   1989   GenerateTypeTransition(masm);
   1990 }
   1991 
   1992 
   1993 void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
   1994   Label non_smi;
   1995   GenerateSmiCodeBitNot(masm, &non_smi);
   1996   __ bind(&non_smi);
   1997   GenerateTypeTransition(masm);
   1998 }
   1999 
   2000 
   2001 void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
   2002                                      Label* non_smi,
   2003                                      Label* slow) {
   2004   __ JumpIfNotSmi(r0, non_smi);
   2005 
   2006   // The result of negating zero or the smallest negative smi is not a smi.
   2007   __ bic(ip, r0, Operand(0x80000000), SetCC);
   2008   __ b(eq, slow);
   2009 
   2010   // Return '0 - value'.
   2011   __ rsb(r0, r0, Operand(0, RelocInfo::NONE));
   2012   __ Ret();
   2013 }
   2014 
   2015 
   2016 void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
   2017                                         Label* non_smi) {
   2018   __ JumpIfNotSmi(r0, non_smi);
   2019 
   2020   // Flip bits and revert inverted smi-tag.
   2021   __ mvn(r0, Operand(r0));
   2022   __ bic(r0, r0, Operand(kSmiTagMask));
   2023   __ Ret();
   2024 }
   2025 
   2026 
   2027 // TODO(svenpanne): Use virtual functions instead of switch.
   2028 void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
   2029   switch (op_) {
   2030     case Token::SUB:
   2031       GenerateHeapNumberStubSub(masm);
   2032       break;
   2033     case Token::BIT_NOT:
   2034       GenerateHeapNumberStubBitNot(masm);
   2035       break;
   2036     default:
   2037       UNREACHABLE();
   2038   }
   2039 }
   2040 
   2041 
   2042 void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
   2043   Label non_smi, slow, call_builtin;
   2044   GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
   2045   __ bind(&non_smi);
   2046   GenerateHeapNumberCodeSub(masm, &slow);
   2047   __ bind(&slow);
   2048   GenerateTypeTransition(masm);
   2049   __ bind(&call_builtin);
   2050   GenerateGenericCodeFallback(masm);
   2051 }
   2052 
   2053 
   2054 void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
   2055   Label non_smi, slow;
   2056   GenerateSmiCodeBitNot(masm, &non_smi);
   2057   __ bind(&non_smi);
   2058   GenerateHeapNumberCodeBitNot(masm, &slow);
   2059   __ bind(&slow);
   2060   GenerateTypeTransition(masm);
   2061 }
   2062 
   2063 void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
   2064                                             Label* slow) {
   2065   EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
   2066   // r0 is a heap number.  Get a new heap number in r1.
   2067   if (mode_ == UNARY_OVERWRITE) {
   2068     __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
   2069     __ eor(r2, r2, Operand(HeapNumber::kSignMask));  // Flip sign.
   2070     __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
   2071   } else {
   2072     Label slow_allocate_heapnumber, heapnumber_allocated;
   2073     __ AllocateHeapNumber(r1, r2, r3, r6, &slow_allocate_heapnumber);
   2074     __ jmp(&heapnumber_allocated);
   2075 
   2076     __ bind(&slow_allocate_heapnumber);
   2077     {
   2078       FrameScope scope(masm, StackFrame::INTERNAL);
   2079       __ push(r0);
   2080       __ CallRuntime(Runtime::kNumberAlloc, 0);
   2081       __ mov(r1, Operand(r0));
   2082       __ pop(r0);
   2083     }
   2084 
   2085     __ bind(&heapnumber_allocated);
   2086     __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
   2087     __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
   2088     __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
   2089     __ eor(r2, r2, Operand(HeapNumber::kSignMask));  // Flip sign.
   2090     __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
   2091     __ mov(r0, Operand(r1));
   2092   }
   2093   __ Ret();
   2094 }
   2095 
   2096 
   2097 void UnaryOpStub::GenerateHeapNumberCodeBitNot(
   2098     MacroAssembler* masm, Label* slow) {
   2099   Label impossible;
   2100 
   2101   EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
   2102   // Convert the heap number is r0 to an untagged integer in r1.
   2103   __ ConvertToInt32(r0, r1, r2, r3, d0, slow);
   2104 
   2105   // Do the bitwise operation and check if the result fits in a smi.
   2106   Label try_float;
   2107   __ mvn(r1, Operand(r1));
   2108   __ add(r2, r1, Operand(0x40000000), SetCC);
   2109   __ b(mi, &try_float);
   2110 
   2111   // Tag the result as a smi and we're done.
   2112   __ mov(r0, Operand(r1, LSL, kSmiTagSize));
   2113   __ Ret();
   2114 
   2115   // Try to store the result in a heap number.
   2116   __ bind(&try_float);
   2117   if (mode_ == UNARY_NO_OVERWRITE) {
   2118     Label slow_allocate_heapnumber, heapnumber_allocated;
   2119     // Allocate a new heap number without zapping r0, which we need if it fails.
   2120     __ AllocateHeapNumber(r2, r3, r4, r6, &slow_allocate_heapnumber);
   2121     __ jmp(&heapnumber_allocated);
   2122 
   2123     __ bind(&slow_allocate_heapnumber);
   2124     {
   2125       FrameScope scope(masm, StackFrame::INTERNAL);
   2126       __ push(r0);  // Push the heap number, not the untagged int32.
   2127       __ CallRuntime(Runtime::kNumberAlloc, 0);
   2128       __ mov(r2, r0);  // Move the new heap number into r2.
   2129       // Get the heap number into r0, now that the new heap number is in r2.
   2130       __ pop(r0);
   2131     }
   2132 
   2133     // Convert the heap number in r0 to an untagged integer in r1.
   2134     // This can't go slow-case because it's the same number we already
   2135     // converted once again.
   2136     __ ConvertToInt32(r0, r1, r3, r4, d0, &impossible);
   2137     __ mvn(r1, Operand(r1));
   2138 
   2139     __ bind(&heapnumber_allocated);
   2140     __ mov(r0, r2);  // Move newly allocated heap number to r0.
   2141   }
   2142 
   2143   if (CpuFeatures::IsSupported(VFP3)) {
   2144     // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
   2145     CpuFeatures::Scope scope(VFP3);
   2146     __ vmov(s0, r1);
   2147     __ vcvt_f64_s32(d0, s0);
   2148     __ sub(r2, r0, Operand(kHeapObjectTag));
   2149     __ vstr(d0, r2, HeapNumber::kValueOffset);
   2150     __ Ret();
   2151   } else {
   2152     // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
   2153     // have to set up a frame.
   2154     WriteInt32ToHeapNumberStub stub(r1, r0, r2);
   2155     __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   2156   }
   2157 
   2158   __ bind(&impossible);
   2159   if (FLAG_debug_code) {
   2160     __ stop("Incorrect assumption in bit-not stub");
   2161   }
   2162 }
   2163 
   2164 
   2165 // TODO(svenpanne): Use virtual functions instead of switch.
   2166 void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
   2167   switch (op_) {
   2168     case Token::SUB:
   2169       GenerateGenericStubSub(masm);
   2170       break;
   2171     case Token::BIT_NOT:
   2172       GenerateGenericStubBitNot(masm);
   2173       break;
   2174     default:
   2175       UNREACHABLE();
   2176   }
   2177 }
   2178 
   2179 
   2180 void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
   2181   Label non_smi, slow;
   2182   GenerateSmiCodeSub(masm, &non_smi, &slow);
   2183   __ bind(&non_smi);
   2184   GenerateHeapNumberCodeSub(masm, &slow);
   2185   __ bind(&slow);
   2186   GenerateGenericCodeFallback(masm);
   2187 }
   2188 
   2189 
   2190 void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
   2191   Label non_smi, slow;
   2192   GenerateSmiCodeBitNot(masm, &non_smi);
   2193   __ bind(&non_smi);
   2194   GenerateHeapNumberCodeBitNot(masm, &slow);
   2195   __ bind(&slow);
   2196   GenerateGenericCodeFallback(masm);
   2197 }
   2198 
   2199 
   2200 void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
   2201   // Handle the slow case by jumping to the JavaScript builtin.
   2202   __ push(r0);
   2203   switch (op_) {
   2204     case Token::SUB:
   2205       __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
   2206       break;
   2207     case Token::BIT_NOT:
   2208       __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
   2209       break;
   2210     default:
   2211       UNREACHABLE();
   2212   }
   2213 }
   2214 
   2215 
   2216 void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
   2217   Label get_result;
   2218 
   2219   __ Push(r1, r0);
   2220 
   2221   __ mov(r2, Operand(Smi::FromInt(MinorKey())));
   2222   __ mov(r1, Operand(Smi::FromInt(op_)));
   2223   __ mov(r0, Operand(Smi::FromInt(operands_type_)));
   2224   __ Push(r2, r1, r0);
   2225 
   2226   __ TailCallExternalReference(
   2227       ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
   2228                         masm->isolate()),
   2229       5,
   2230       1);
   2231 }
   2232 
   2233 
   2234 void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
   2235     MacroAssembler* masm) {
   2236   UNIMPLEMENTED();
   2237 }
   2238 
   2239 
   2240 void BinaryOpStub::Generate(MacroAssembler* masm) {
   2241   // Explicitly allow generation of nested stubs. It is safe here because
   2242   // generation code does not use any raw pointers.
   2243   AllowStubCallsScope allow_stub_calls(masm, true);
   2244 
   2245   switch (operands_type_) {
   2246     case BinaryOpIC::UNINITIALIZED:
   2247       GenerateTypeTransition(masm);
   2248       break;
   2249     case BinaryOpIC::SMI:
   2250       GenerateSmiStub(masm);
   2251       break;
   2252     case BinaryOpIC::INT32:
   2253       GenerateInt32Stub(masm);
   2254       break;
   2255     case BinaryOpIC::HEAP_NUMBER:
   2256       GenerateHeapNumberStub(masm);
   2257       break;
   2258     case BinaryOpIC::ODDBALL:
   2259       GenerateOddballStub(masm);
   2260       break;
   2261     case BinaryOpIC::BOTH_STRING:
   2262       GenerateBothStringStub(masm);
   2263       break;
   2264     case BinaryOpIC::STRING:
   2265       GenerateStringStub(masm);
   2266       break;
   2267     case BinaryOpIC::GENERIC:
   2268       GenerateGeneric(masm);
   2269       break;
   2270     default:
   2271       UNREACHABLE();
   2272   }
   2273 }
   2274 
   2275 
   2276 void BinaryOpStub::PrintName(StringStream* stream) {
   2277   const char* op_name = Token::Name(op_);
   2278   const char* overwrite_name;
   2279   switch (mode_) {
   2280     case NO_OVERWRITE: overwrite_name = "Alloc"; break;
   2281     case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
   2282     case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
   2283     default: overwrite_name = "UnknownOverwrite"; break;
   2284   }
   2285   stream->Add("BinaryOpStub_%s_%s_%s",
   2286               op_name,
   2287               overwrite_name,
   2288               BinaryOpIC::GetName(operands_type_));
   2289 }
   2290 
   2291 
   2292 void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
   2293   Register left = r1;
   2294   Register right = r0;
   2295   Register scratch1 = r7;
   2296   Register scratch2 = r9;
   2297 
   2298   ASSERT(right.is(r0));
   2299   STATIC_ASSERT(kSmiTag == 0);
   2300 
   2301   Label not_smi_result;
   2302   switch (op_) {
   2303     case Token::ADD:
   2304       __ add(right, left, Operand(right), SetCC);  // Add optimistically.
   2305       __ Ret(vc);
   2306       __ sub(right, right, Operand(left));  // Revert optimistic add.
   2307       break;
   2308     case Token::SUB:
   2309       __ sub(right, left, Operand(right), SetCC);  // Subtract optimistically.
   2310       __ Ret(vc);
   2311       __ sub(right, left, Operand(right));  // Revert optimistic subtract.
   2312       break;
   2313     case Token::MUL:
   2314       // Remove tag from one of the operands. This way the multiplication result
   2315       // will be a smi if it fits the smi range.
   2316       __ SmiUntag(ip, right);
   2317       // Do multiplication
   2318       // scratch1 = lower 32 bits of ip * left.
   2319       // scratch2 = higher 32 bits of ip * left.
   2320       __ smull(scratch1, scratch2, left, ip);
   2321       // Check for overflowing the smi range - no overflow if higher 33 bits of
   2322       // the result are identical.
   2323       __ mov(ip, Operand(scratch1, ASR, 31));
   2324       __ cmp(ip, Operand(scratch2));
   2325       __ b(ne, &not_smi_result);
   2326       // Go slow on zero result to handle -0.
   2327       __ cmp(scratch1, Operand(0));
   2328       __ mov(right, Operand(scratch1), LeaveCC, ne);
   2329       __ Ret(ne);
   2330       // We need -0 if we were multiplying a negative number with 0 to get 0.
   2331       // We know one of them was zero.
   2332       __ add(scratch2, right, Operand(left), SetCC);
   2333       __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
   2334       __ Ret(pl);  // Return smi 0 if the non-zero one was positive.
   2335       // We fall through here if we multiplied a negative number with 0, because
   2336       // that would mean we should produce -0.
   2337       break;
   2338     case Token::DIV:
   2339       // Check for power of two on the right hand side.
   2340       __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
   2341       // Check for positive and no remainder (scratch1 contains right - 1).
   2342       __ orr(scratch2, scratch1, Operand(0x80000000u));
   2343       __ tst(left, scratch2);
   2344       __ b(ne, &not_smi_result);
   2345 
   2346       // Perform division by shifting.
   2347       __ CountLeadingZeros(scratch1, scratch1, scratch2);
   2348       __ rsb(scratch1, scratch1, Operand(31));
   2349       __ mov(right, Operand(left, LSR, scratch1));
   2350       __ Ret();
   2351       break;
   2352     case Token::MOD:
   2353       // Check for two positive smis.
   2354       __ orr(scratch1, left, Operand(right));
   2355       __ tst(scratch1, Operand(0x80000000u | kSmiTagMask));
   2356       __ b(ne, &not_smi_result);
   2357 
   2358       // Check for power of two on the right hand side.
   2359       __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
   2360 
   2361       // Perform modulus by masking.
   2362       __ and_(right, left, Operand(scratch1));
   2363       __ Ret();
   2364       break;
   2365     case Token::BIT_OR:
   2366       __ orr(right, left, Operand(right));
   2367       __ Ret();
   2368       break;
   2369     case Token::BIT_AND:
   2370       __ and_(right, left, Operand(right));
   2371       __ Ret();
   2372       break;
   2373     case Token::BIT_XOR:
   2374       __ eor(right, left, Operand(right));
   2375       __ Ret();
   2376       break;
   2377     case Token::SAR:
   2378       // Remove tags from right operand.
   2379       __ GetLeastBitsFromSmi(scratch1, right, 5);
   2380       __ mov(right, Operand(left, ASR, scratch1));
   2381       // Smi tag result.
   2382       __ bic(right, right, Operand(kSmiTagMask));
   2383       __ Ret();
   2384       break;
   2385     case Token::SHR:
   2386       // Remove tags from operands. We can't do this on a 31 bit number
   2387       // because then the 0s get shifted into bit 30 instead of bit 31.
   2388       __ SmiUntag(scratch1, left);
   2389       __ GetLeastBitsFromSmi(scratch2, right, 5);
   2390       __ mov(scratch1, Operand(scratch1, LSR, scratch2));
   2391       // Unsigned shift is not allowed to produce a negative number, so
   2392       // check the sign bit and the sign bit after Smi tagging.
   2393       __ tst(scratch1, Operand(0xc0000000));
   2394       __ b(ne, &not_smi_result);
   2395       // Smi tag result.
   2396       __ SmiTag(right, scratch1);
   2397       __ Ret();
   2398       break;
   2399     case Token::SHL:
   2400       // Remove tags from operands.
   2401       __ SmiUntag(scratch1, left);
   2402       __ GetLeastBitsFromSmi(scratch2, right, 5);
   2403       __ mov(scratch1, Operand(scratch1, LSL, scratch2));
   2404       // Check that the signed result fits in a Smi.
   2405       __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
   2406       __ b(mi, &not_smi_result);
   2407       __ SmiTag(right, scratch1);
   2408       __ Ret();
   2409       break;
   2410     default:
   2411       UNREACHABLE();
   2412   }
   2413   __ bind(&not_smi_result);
   2414 }
   2415 
   2416 
   2417 void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
   2418                                        bool smi_operands,
   2419                                        Label* not_numbers,
   2420                                        Label* gc_required) {
   2421   Register left = r1;
   2422   Register right = r0;
   2423   Register scratch1 = r7;
   2424   Register scratch2 = r9;
   2425   Register scratch3 = r4;
   2426 
   2427   ASSERT(smi_operands || (not_numbers != NULL));
   2428   if (smi_operands && FLAG_debug_code) {
   2429     __ AbortIfNotSmi(left);
   2430     __ AbortIfNotSmi(right);
   2431   }
   2432 
   2433   Register heap_number_map = r6;
   2434   __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
   2435 
   2436   switch (op_) {
   2437     case Token::ADD:
   2438     case Token::SUB:
   2439     case Token::MUL:
   2440     case Token::DIV:
   2441     case Token::MOD: {
   2442       // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
   2443       // depending on whether VFP3 is available or not.
   2444       FloatingPointHelper::Destination destination =
   2445           CpuFeatures::IsSupported(VFP3) &&
   2446           op_ != Token::MOD ?
   2447           FloatingPointHelper::kVFPRegisters :
   2448           FloatingPointHelper::kCoreRegisters;
   2449 
   2450       // Allocate new heap number for result.
   2451       Register result = r5;
   2452       GenerateHeapResultAllocation(
   2453           masm, result, heap_number_map, scratch1, scratch2, gc_required);
   2454 
   2455       // Load the operands.
   2456       if (smi_operands) {
   2457         FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
   2458       } else {
   2459         FloatingPointHelper::LoadOperands(masm,
   2460                                           destination,
   2461                                           heap_number_map,
   2462                                           scratch1,
   2463                                           scratch2,
   2464                                           not_numbers);
   2465       }
   2466 
   2467       // Calculate the result.
   2468       if (destination == FloatingPointHelper::kVFPRegisters) {
   2469         // Using VFP registers:
   2470         // d6: Left value
   2471         // d7: Right value
   2472         CpuFeatures::Scope scope(VFP3);
   2473         switch (op_) {
   2474           case Token::ADD:
   2475             __ vadd(d5, d6, d7);
   2476             break;
   2477           case Token::SUB:
   2478             __ vsub(d5, d6, d7);
   2479             break;
   2480           case Token::MUL:
   2481             __ vmul(d5, d6, d7);
   2482             break;
   2483           case Token::DIV:
   2484             __ vdiv(d5, d6, d7);
   2485             break;
   2486           default:
   2487             UNREACHABLE();
   2488         }
   2489 
   2490         __ sub(r0, result, Operand(kHeapObjectTag));
   2491         __ vstr(d5, r0, HeapNumber::kValueOffset);
   2492         __ add(r0, r0, Operand(kHeapObjectTag));
   2493         __ Ret();
   2494       } else {
   2495         // Call the C function to handle the double operation.
   2496         FloatingPointHelper::CallCCodeForDoubleOperation(masm,
   2497                                                          op_,
   2498                                                          result,
   2499                                                          scratch1);
   2500         if (FLAG_debug_code) {
   2501           __ stop("Unreachable code.");
   2502         }
   2503       }
   2504       break;
   2505     }
   2506     case Token::BIT_OR:
   2507     case Token::BIT_XOR:
   2508     case Token::BIT_AND:
   2509     case Token::SAR:
   2510     case Token::SHR:
   2511     case Token::SHL: {
   2512       if (smi_operands) {
   2513         __ SmiUntag(r3, left);
   2514         __ SmiUntag(r2, right);
   2515       } else {
   2516         // Convert operands to 32-bit integers. Right in r2 and left in r3.
   2517         FloatingPointHelper::ConvertNumberToInt32(masm,
   2518                                                   left,
   2519                                                   r3,
   2520                                                   heap_number_map,
   2521                                                   scratch1,
   2522                                                   scratch2,
   2523                                                   scratch3,
   2524                                                   d0,
   2525                                                   not_numbers);
   2526         FloatingPointHelper::ConvertNumberToInt32(masm,
   2527                                                   right,
   2528                                                   r2,
   2529                                                   heap_number_map,
   2530                                                   scratch1,
   2531                                                   scratch2,
   2532                                                   scratch3,
   2533                                                   d0,
   2534                                                   not_numbers);
   2535       }
   2536 
   2537       Label result_not_a_smi;
   2538       switch (op_) {
   2539         case Token::BIT_OR:
   2540           __ orr(r2, r3, Operand(r2));
   2541           break;
   2542         case Token::BIT_XOR:
   2543           __ eor(r2, r3, Operand(r2));
   2544           break;
   2545         case Token::BIT_AND:
   2546           __ and_(r2, r3, Operand(r2));
   2547           break;
   2548         case Token::SAR:
   2549           // Use only the 5 least significant bits of the shift count.
   2550           __ GetLeastBitsFromInt32(r2, r2, 5);
   2551           __ mov(r2, Operand(r3, ASR, r2));
   2552           break;
   2553         case Token::SHR:
   2554           // Use only the 5 least significant bits of the shift count.
   2555           __ GetLeastBitsFromInt32(r2, r2, 5);
   2556           __ mov(r2, Operand(r3, LSR, r2), SetCC);
   2557           // SHR is special because it is required to produce a positive answer.
   2558           // The code below for writing into heap numbers isn't capable of
   2559           // writing the register as an unsigned int so we go to slow case if we
   2560           // hit this case.
   2561           if (CpuFeatures::IsSupported(VFP3)) {
   2562             __ b(mi, &result_not_a_smi);
   2563           } else {
   2564             __ b(mi, not_numbers);
   2565           }
   2566           break;
   2567         case Token::SHL:
   2568           // Use only the 5 least significant bits of the shift count.
   2569           __ GetLeastBitsFromInt32(r2, r2, 5);
   2570           __ mov(r2, Operand(r3, LSL, r2));
   2571           break;
   2572         default:
   2573           UNREACHABLE();
   2574       }
   2575 
   2576       // Check that the *signed* result fits in a smi.
   2577       __ add(r3, r2, Operand(0x40000000), SetCC);
   2578       __ b(mi, &result_not_a_smi);
   2579       __ SmiTag(r0, r2);
   2580       __ Ret();
   2581 
   2582       // Allocate new heap number for result.
   2583       __ bind(&result_not_a_smi);
   2584       Register result = r5;
   2585       if (smi_operands) {
   2586         __ AllocateHeapNumber(
   2587             result, scratch1, scratch2, heap_number_map, gc_required);
   2588       } else {
   2589         GenerateHeapResultAllocation(
   2590             masm, result, heap_number_map, scratch1, scratch2, gc_required);
   2591       }
   2592 
   2593       // r2: Answer as signed int32.
   2594       // r5: Heap number to write answer into.
   2595 
   2596       // Nothing can go wrong now, so move the heap number to r0, which is the
   2597       // result.
   2598       __ mov(r0, Operand(r5));
   2599 
   2600       if (CpuFeatures::IsSupported(VFP3)) {
   2601         // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
   2602         // mentioned above SHR needs to always produce a positive result.
   2603         CpuFeatures::Scope scope(VFP3);
   2604         __ vmov(s0, r2);
   2605         if (op_ == Token::SHR) {
   2606           __ vcvt_f64_u32(d0, s0);
   2607         } else {
   2608           __ vcvt_f64_s32(d0, s0);
   2609         }
   2610         __ sub(r3, r0, Operand(kHeapObjectTag));
   2611         __ vstr(d0, r3, HeapNumber::kValueOffset);
   2612         __ Ret();
   2613       } else {
   2614         // Tail call that writes the int32 in r2 to the heap number in r0, using
   2615         // r3 as scratch. r0 is preserved and returned.
   2616         WriteInt32ToHeapNumberStub stub(r2, r0, r3);
   2617         __ TailCallStub(&stub);
   2618       }
   2619       break;
   2620     }
   2621     default:
   2622       UNREACHABLE();
   2623   }
   2624 }
   2625 
   2626 
   2627 // Generate the smi code. If the operation on smis are successful this return is
   2628 // generated. If the result is not a smi and heap number allocation is not
   2629 // requested the code falls through. If number allocation is requested but a
   2630 // heap number cannot be allocated the code jumps to the lable gc_required.
   2631 void BinaryOpStub::GenerateSmiCode(
   2632     MacroAssembler* masm,
   2633     Label* use_runtime,
   2634     Label* gc_required,
   2635     SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
   2636   Label not_smis;
   2637 
   2638   Register left = r1;
   2639   Register right = r0;
   2640   Register scratch1 = r7;
   2641 
   2642   // Perform combined smi check on both operands.
   2643   __ orr(scratch1, left, Operand(right));
   2644   STATIC_ASSERT(kSmiTag == 0);
   2645   __ JumpIfNotSmi(scratch1, &not_smis);
   2646 
   2647   // If the smi-smi operation results in a smi return is generated.
   2648   GenerateSmiSmiOperation(masm);
   2649 
   2650   // If heap number results are possible generate the result in an allocated
   2651   // heap number.
   2652   if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
   2653     GenerateFPOperation(masm, true, use_runtime, gc_required);
   2654   }
   2655   __ bind(&not_smis);
   2656 }
   2657 
   2658 
   2659 void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
   2660   Label not_smis, call_runtime;
   2661 
   2662   if (result_type_ == BinaryOpIC::UNINITIALIZED ||
   2663       result_type_ == BinaryOpIC::SMI) {
   2664     // Only allow smi results.
   2665     GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
   2666   } else {
   2667     // Allow heap number result and don't make a transition if a heap number
   2668     // cannot be allocated.
   2669     GenerateSmiCode(masm,
   2670                     &call_runtime,
   2671                     &call_runtime,
   2672                     ALLOW_HEAPNUMBER_RESULTS);
   2673   }
   2674 
   2675   // Code falls through if the result is not returned as either a smi or heap
   2676   // number.
   2677   GenerateTypeTransition(masm);
   2678 
   2679   __ bind(&call_runtime);
   2680   GenerateCallRuntime(masm);
   2681 }
   2682 
   2683 
   2684 void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
   2685   ASSERT(operands_type_ == BinaryOpIC::STRING);
   2686   ASSERT(op_ == Token::ADD);
   2687   // Try to add arguments as strings, otherwise, transition to the generic
   2688   // BinaryOpIC type.
   2689   GenerateAddStrings(masm);
   2690   GenerateTypeTransition(masm);
   2691 }
   2692 
   2693 
   2694 void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
   2695   Label call_runtime;
   2696   ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
   2697   ASSERT(op_ == Token::ADD);
   2698   // If both arguments are strings, call the string add stub.
   2699   // Otherwise, do a transition.
   2700 
   2701   // Registers containing left and right operands respectively.
   2702   Register left = r1;
   2703   Register right = r0;
   2704 
   2705   // Test if left operand is a string.
   2706   __ JumpIfSmi(left, &call_runtime);
   2707   __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
   2708   __ b(ge, &call_runtime);
   2709 
   2710   // Test if right operand is a string.
   2711   __ JumpIfSmi(right, &call_runtime);
   2712   __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
   2713   __ b(ge, &call_runtime);
   2714 
   2715   StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
   2716   GenerateRegisterArgsPush(masm);
   2717   __ TailCallStub(&string_add_stub);
   2718 
   2719   __ bind(&call_runtime);
   2720   GenerateTypeTransition(masm);
   2721 }
   2722 
   2723 
   2724 void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
   2725   ASSERT(operands_type_ == BinaryOpIC::INT32);
   2726 
   2727   Register left = r1;
   2728   Register right = r0;
   2729   Register scratch1 = r7;
   2730   Register scratch2 = r9;
   2731   DwVfpRegister double_scratch = d0;
   2732   SwVfpRegister single_scratch = s3;
   2733 
   2734   Register heap_number_result = no_reg;
   2735   Register heap_number_map = r6;
   2736   __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
   2737 
   2738   Label call_runtime;
   2739   // Labels for type transition, used for wrong input or output types.
   2740   // Both label are currently actually bound to the same position. We use two
   2741   // different label to differentiate the cause leading to type transition.
   2742   Label transition;
   2743 
   2744   // Smi-smi fast case.
   2745   Label skip;
   2746   __ orr(scratch1, left, right);
   2747   __ JumpIfNotSmi(scratch1, &skip);
   2748   GenerateSmiSmiOperation(masm);
   2749   // Fall through if the result is not a smi.
   2750   __ bind(&skip);
   2751 
   2752   switch (op_) {
   2753     case Token::ADD:
   2754     case Token::SUB:
   2755     case Token::MUL:
   2756     case Token::DIV:
   2757     case Token::MOD: {
   2758       // Load both operands and check that they are 32-bit integer.
   2759       // Jump to type transition if they are not. The registers r0 and r1 (right
   2760       // and left) are preserved for the runtime call.
   2761       FloatingPointHelper::Destination destination =
   2762           (CpuFeatures::IsSupported(VFP3) && op_ != Token::MOD)
   2763               ? FloatingPointHelper::kVFPRegisters
   2764               : FloatingPointHelper::kCoreRegisters;
   2765 
   2766       FloatingPointHelper::LoadNumberAsInt32Double(masm,
   2767                                                    right,
   2768                                                    destination,
   2769                                                    d7,
   2770                                                    r2,
   2771                                                    r3,
   2772                                                    heap_number_map,
   2773                                                    scratch1,
   2774                                                    scratch2,
   2775                                                    s0,
   2776                                                    &transition);
   2777       FloatingPointHelper::LoadNumberAsInt32Double(masm,
   2778                                                    left,
   2779                                                    destination,
   2780                                                    d6,
   2781                                                    r4,
   2782                                                    r5,
   2783                                                    heap_number_map,
   2784                                                    scratch1,
   2785                                                    scratch2,
   2786                                                    s0,
   2787                                                    &transition);
   2788 
   2789       if (destination == FloatingPointHelper::kVFPRegisters) {
   2790         CpuFeatures::Scope scope(VFP3);
   2791         Label return_heap_number;
   2792         switch (op_) {
   2793           case Token::ADD:
   2794             __ vadd(d5, d6, d7);
   2795             break;
   2796           case Token::SUB:
   2797             __ vsub(d5, d6, d7);
   2798             break;
   2799           case Token::MUL:
   2800             __ vmul(d5, d6, d7);
   2801             break;
   2802           case Token::DIV:
   2803             __ vdiv(d5, d6, d7);
   2804             break;
   2805           default:
   2806             UNREACHABLE();
   2807         }
   2808 
   2809         if (op_ != Token::DIV) {
   2810           // These operations produce an integer result.
   2811           // Try to return a smi if we can.
   2812           // Otherwise return a heap number if allowed, or jump to type
   2813           // transition.
   2814 
   2815           __ EmitVFPTruncate(kRoundToZero,
   2816                              single_scratch,
   2817                              d5,
   2818                              scratch1,
   2819                              scratch2);
   2820 
   2821           if (result_type_ <= BinaryOpIC::INT32) {
   2822             // If the ne condition is set, result does
   2823             // not fit in a 32-bit integer.
   2824             __ b(ne, &transition);
   2825           }
   2826 
   2827           // Check if the result fits in a smi.
   2828           __ vmov(scratch1, single_scratch);
   2829           __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
   2830           // If not try to return a heap number.
   2831           __ b(mi, &return_heap_number);
   2832           // Check for minus zero. Return heap number for minus zero.
   2833           Label not_zero;
   2834           __ cmp(scratch1, Operand::Zero());
   2835           __ b(ne, &not_zero);
   2836           __ vmov(scratch2, d5.high());
   2837           __ tst(scratch2, Operand(HeapNumber::kSignMask));
   2838           __ b(ne, &return_heap_number);
   2839           __ bind(&not_zero);
   2840 
   2841           // Tag the result and return.
   2842           __ SmiTag(r0, scratch1);
   2843           __ Ret();
   2844         } else {
   2845           // DIV just falls through to allocating a heap number.
   2846         }
   2847 
   2848         __ bind(&return_heap_number);
   2849         // Return a heap number, or fall through to type transition or runtime
   2850         // call if we can't.
   2851         if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
   2852                                                  : BinaryOpIC::INT32)) {
   2853           // We are using vfp registers so r5 is available.
   2854           heap_number_result = r5;
   2855           GenerateHeapResultAllocation(masm,
   2856                                        heap_number_result,
   2857                                        heap_number_map,
   2858                                        scratch1,
   2859                                        scratch2,
   2860                                        &call_runtime);
   2861           __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
   2862           __ vstr(d5, r0, HeapNumber::kValueOffset);
   2863           __ mov(r0, heap_number_result);
   2864           __ Ret();
   2865         }
   2866 
   2867         // A DIV operation expecting an integer result falls through
   2868         // to type transition.
   2869 
   2870       } else {
   2871         // We preserved r0 and r1 to be able to call runtime.
   2872         // Save the left value on the stack.
   2873         __ Push(r5, r4);
   2874 
   2875         Label pop_and_call_runtime;
   2876 
   2877         // Allocate a heap number to store the result.
   2878         heap_number_result = r5;
   2879         GenerateHeapResultAllocation(masm,
   2880                                      heap_number_result,
   2881                                      heap_number_map,
   2882                                      scratch1,
   2883                                      scratch2,
   2884                                      &pop_and_call_runtime);
   2885 
   2886         // Load the left value from the value saved on the stack.
   2887         __ Pop(r1, r0);
   2888 
   2889         // Call the C function to handle the double operation.
   2890         FloatingPointHelper::CallCCodeForDoubleOperation(
   2891             masm, op_, heap_number_result, scratch1);
   2892         if (FLAG_debug_code) {
   2893           __ stop("Unreachable code.");
   2894         }
   2895 
   2896         __ bind(&pop_and_call_runtime);
   2897         __ Drop(2);
   2898         __ b(&call_runtime);
   2899       }
   2900 
   2901       break;
   2902     }
   2903 
   2904     case Token::BIT_OR:
   2905     case Token::BIT_XOR:
   2906     case Token::BIT_AND:
   2907     case Token::SAR:
   2908     case Token::SHR:
   2909     case Token::SHL: {
   2910       Label return_heap_number;
   2911       Register scratch3 = r5;
   2912       // Convert operands to 32-bit integers. Right in r2 and left in r3. The
   2913       // registers r0 and r1 (right and left) are preserved for the runtime
   2914       // call.
   2915       FloatingPointHelper::LoadNumberAsInt32(masm,
   2916                                              left,
   2917                                              r3,
   2918                                              heap_number_map,
   2919                                              scratch1,
   2920                                              scratch2,
   2921                                              scratch3,
   2922                                              d0,
   2923                                              &transition);
   2924       FloatingPointHelper::LoadNumberAsInt32(masm,
   2925                                              right,
   2926                                              r2,
   2927                                              heap_number_map,
   2928                                              scratch1,
   2929                                              scratch2,
   2930                                              scratch3,
   2931                                              d0,
   2932                                              &transition);
   2933 
   2934       // The ECMA-262 standard specifies that, for shift operations, only the
   2935       // 5 least significant bits of the shift value should be used.
   2936       switch (op_) {
   2937         case Token::BIT_OR:
   2938           __ orr(r2, r3, Operand(r2));
   2939           break;
   2940         case Token::BIT_XOR:
   2941           __ eor(r2, r3, Operand(r2));
   2942           break;
   2943         case Token::BIT_AND:
   2944           __ and_(r2, r3, Operand(r2));
   2945           break;
   2946         case Token::SAR:
   2947           __ and_(r2, r2, Operand(0x1f));
   2948           __ mov(r2, Operand(r3, ASR, r2));
   2949           break;
   2950         case Token::SHR:
   2951           __ and_(r2, r2, Operand(0x1f));
   2952           __ mov(r2, Operand(r3, LSR, r2), SetCC);
   2953           // SHR is special because it is required to produce a positive answer.
   2954           // We only get a negative result if the shift value (r2) is 0.
   2955           // This result cannot be respresented as a signed 32-bit integer, try
   2956           // to return a heap number if we can.
   2957           // The non vfp3 code does not support this special case, so jump to
   2958           // runtime if we don't support it.
   2959           if (CpuFeatures::IsSupported(VFP3)) {
   2960             __ b(mi, (result_type_ <= BinaryOpIC::INT32)
   2961                       ? &transition
   2962                       : &return_heap_number);
   2963           } else {
   2964             __ b(mi, (result_type_ <= BinaryOpIC::INT32)
   2965                       ? &transition
   2966                       : &call_runtime);
   2967           }
   2968           break;
   2969         case Token::SHL:
   2970           __ and_(r2, r2, Operand(0x1f));
   2971           __ mov(r2, Operand(r3, LSL, r2));
   2972           break;
   2973         default:
   2974           UNREACHABLE();
   2975       }
   2976 
   2977       // Check if the result fits in a smi.
   2978       __ add(scratch1, r2, Operand(0x40000000), SetCC);
   2979       // If not try to return a heap number. (We know the result is an int32.)
   2980       __ b(mi, &return_heap_number);
   2981       // Tag the result and return.
   2982       __ SmiTag(r0, r2);
   2983       __ Ret();
   2984 
   2985       __ bind(&return_heap_number);
   2986       heap_number_result = r5;
   2987       GenerateHeapResultAllocation(masm,
   2988                                    heap_number_result,
   2989                                    heap_number_map,
   2990                                    scratch1,
   2991                                    scratch2,
   2992                                    &call_runtime);
   2993 
   2994       if (CpuFeatures::IsSupported(VFP3)) {
   2995         CpuFeatures::Scope scope(VFP3);
   2996         if (op_ != Token::SHR) {
   2997           // Convert the result to a floating point value.
   2998           __ vmov(double_scratch.low(), r2);
   2999           __ vcvt_f64_s32(double_scratch, double_scratch.low());
   3000         } else {
   3001           // The result must be interpreted as an unsigned 32-bit integer.
   3002           __ vmov(double_scratch.low(), r2);
   3003           __ vcvt_f64_u32(double_scratch, double_scratch.low());
   3004         }
   3005 
   3006         // Store the result.
   3007         __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
   3008         __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
   3009         __ mov(r0, heap_number_result);
   3010         __ Ret();
   3011       } else {
   3012         // Tail call that writes the int32 in r2 to the heap number in r0, using
   3013         // r3 as scratch. r0 is preserved and returned.
   3014         __ mov(r0, r5);
   3015         WriteInt32ToHeapNumberStub stub(r2, r0, r3);
   3016         __ TailCallStub(&stub);
   3017       }
   3018 
   3019       break;
   3020     }
   3021 
   3022     default:
   3023       UNREACHABLE();
   3024   }
   3025 
   3026   // We never expect DIV to yield an integer result, so we always generate
   3027   // type transition code for DIV operations expecting an integer result: the
   3028   // code will fall through to this type transition.
   3029   if (transition.is_linked() ||
   3030       ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
   3031     __ bind(&transition);
   3032     GenerateTypeTransition(masm);
   3033   }
   3034 
   3035   __ bind(&call_runtime);
   3036   GenerateCallRuntime(masm);
   3037 }
   3038 
   3039 
   3040 void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
   3041   Label call_runtime;
   3042 
   3043   if (op_ == Token::ADD) {
   3044     // Handle string addition here, because it is the only operation
   3045     // that does not do a ToNumber conversion on the operands.
   3046     GenerateAddStrings(masm);
   3047   }
   3048 
   3049   // Convert oddball arguments to numbers.
   3050   Label check, done;
   3051   __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
   3052   __ b(ne, &check);
   3053   if (Token::IsBitOp(op_)) {
   3054     __ mov(r1, Operand(Smi::FromInt(0)));
   3055   } else {
   3056     __ LoadRoot(r1, Heap::kNanValueRootIndex);
   3057   }
   3058   __ jmp(&done);
   3059   __ bind(&check);
   3060   __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
   3061   __ b(ne, &done);
   3062   if (Token::IsBitOp(op_)) {
   3063     __ mov(r0, Operand(Smi::FromInt(0)));
   3064   } else {
   3065     __ LoadRoot(r0, Heap::kNanValueRootIndex);
   3066   }
   3067   __ bind(&done);
   3068 
   3069   GenerateHeapNumberStub(masm);
   3070 }
   3071 
   3072 
   3073 void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
   3074   Label call_runtime;
   3075   GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
   3076 
   3077   __ bind(&call_runtime);
   3078   GenerateCallRuntime(masm);
   3079 }
   3080 
   3081 
   3082 void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
   3083   Label call_runtime, call_string_add_or_runtime;
   3084 
   3085   GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
   3086 
   3087   GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
   3088 
   3089   __ bind(&call_string_add_or_runtime);
   3090   if (op_ == Token::ADD) {
   3091     GenerateAddStrings(masm);
   3092   }
   3093 
   3094   __ bind(&call_runtime);
   3095   GenerateCallRuntime(masm);
   3096 }
   3097 
   3098 
   3099 void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
   3100   ASSERT(op_ == Token::ADD);
   3101   Label left_not_string, call_runtime;
   3102 
   3103   Register left = r1;
   3104   Register right = r0;
   3105 
   3106   // Check if left argument is a string.
   3107   __ JumpIfSmi(left, &left_not_string);
   3108   __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
   3109   __ b(ge, &left_not_string);
   3110 
   3111   StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
   3112   GenerateRegisterArgsPush(masm);
   3113   __ TailCallStub(&string_add_left_stub);
   3114 
   3115   // Left operand is not a string, test right.
   3116   __ bind(&left_not_string);
   3117   __ JumpIfSmi(right, &call_runtime);
   3118   __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
   3119   __ b(ge, &call_runtime);
   3120 
   3121   StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
   3122   GenerateRegisterArgsPush(masm);
   3123   __ TailCallStub(&string_add_right_stub);
   3124 
   3125   // At least one argument is not a string.
   3126   __ bind(&call_runtime);
   3127 }
   3128 
   3129 
   3130 void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
   3131   GenerateRegisterArgsPush(masm);
   3132   switch (op_) {
   3133     case Token::ADD:
   3134       __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
   3135       break;
   3136     case Token::SUB:
   3137       __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
   3138       break;
   3139     case Token::MUL:
   3140       __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
   3141       break;
   3142     case Token::DIV:
   3143       __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
   3144       break;
   3145     case Token::MOD:
   3146       __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
   3147       break;
   3148     case Token::BIT_OR:
   3149       __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
   3150       break;
   3151     case Token::BIT_AND:
   3152       __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
   3153       break;
   3154     case Token::BIT_XOR:
   3155       __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
   3156       break;
   3157     case Token::SAR:
   3158       __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
   3159       break;
   3160     case Token::SHR:
   3161       __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
   3162       break;
   3163     case Token::SHL:
   3164       __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
   3165       break;
   3166     default:
   3167       UNREACHABLE();
   3168   }
   3169 }
   3170 
   3171 
   3172 void BinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
   3173                                                 Register result,
   3174                                                 Register heap_number_map,
   3175                                                 Register scratch1,
   3176                                                 Register scratch2,
   3177                                                 Label* gc_required) {
   3178   // Code below will scratch result if allocation fails. To keep both arguments
   3179   // intact for the runtime call result cannot be one of these.
   3180   ASSERT(!result.is(r0) && !result.is(r1));
   3181 
   3182   if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
   3183     Label skip_allocation, allocated;
   3184     Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0;
   3185     // If the overwritable operand is already an object, we skip the
   3186     // allocation of a heap number.
   3187     __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
   3188     // Allocate a heap number for the result.
   3189     __ AllocateHeapNumber(
   3190         result, scratch1, scratch2, heap_number_map, gc_required);
   3191     __ b(&allocated);
   3192     __ bind(&skip_allocation);
   3193     // Use object holding the overwritable operand for result.
   3194     __ mov(result, Operand(overwritable_operand));
   3195     __ bind(&allocated);
   3196   } else {
   3197     ASSERT(mode_ == NO_OVERWRITE);
   3198     __ AllocateHeapNumber(
   3199         result, scratch1, scratch2, heap_number_map, gc_required);
   3200   }
   3201 }
   3202 
   3203 
   3204 void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
   3205   __ Push(r1, r0);
   3206 }
   3207 
   3208 
   3209 void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
   3210   // Untagged case: double input in d2, double result goes
   3211   //   into d2.
   3212   // Tagged case: tagged input on top of stack and in r0,
   3213   //   tagged result (heap number) goes into r0.
   3214 
   3215   Label input_not_smi;
   3216   Label loaded;
   3217   Label calculate;
   3218   Label invalid_cache;
   3219   const Register scratch0 = r9;
   3220   const Register scratch1 = r7;
   3221   const Register cache_entry = r0;
   3222   const bool tagged = (argument_type_ == TAGGED);
   3223 
   3224   if (CpuFeatures::IsSupported(VFP3)) {
   3225     CpuFeatures::Scope scope(VFP3);
   3226     if (tagged) {
   3227       // Argument is a number and is on stack and in r0.
   3228       // Load argument and check if it is a smi.
   3229       __ JumpIfNotSmi(r0, &input_not_smi);
   3230 
   3231       // Input is a smi. Convert to double and load the low and high words
   3232       // of the double into r2, r3.
   3233       __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
   3234       __ b(&loaded);
   3235 
   3236       __ bind(&input_not_smi);
   3237       // Check if input is a HeapNumber.
   3238       __ CheckMap(r0,
   3239                   r1,
   3240                   Heap::kHeapNumberMapRootIndex,
   3241                   &calculate,
   3242                   DONT_DO_SMI_CHECK);
   3243       // Input is a HeapNumber. Load it to a double register and store the
   3244       // low and high words into r2, r3.
   3245       __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
   3246       __ vmov(r2, r3, d0);
   3247     } else {
   3248       // Input is untagged double in d2. Output goes to d2.
   3249       __ vmov(r2, r3, d2);
   3250     }
   3251     __ bind(&loaded);
   3252     // r2 = low 32 bits of double value
   3253     // r3 = high 32 bits of double value
   3254     // Compute hash (the shifts are arithmetic):
   3255     //   h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
   3256     __ eor(r1, r2, Operand(r3));
   3257     __ eor(r1, r1, Operand(r1, ASR, 16));
   3258     __ eor(r1, r1, Operand(r1, ASR, 8));
   3259     ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
   3260     __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
   3261 
   3262     // r2 = low 32 bits of double value.
   3263     // r3 = high 32 bits of double value.
   3264     // r1 = TranscendentalCache::hash(double value).
   3265     Isolate* isolate = masm->isolate();
   3266     ExternalReference cache_array =
   3267         ExternalReference::transcendental_cache_array_address(isolate);
   3268     __ mov(cache_entry, Operand(cache_array));
   3269     // cache_entry points to cache array.
   3270     int cache_array_index
   3271         = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
   3272     __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
   3273     // r0 points to the cache for the type type_.
   3274     // If NULL, the cache hasn't been initialized yet, so go through runtime.
   3275     __ cmp(cache_entry, Operand(0, RelocInfo::NONE));
   3276     __ b(eq, &invalid_cache);
   3277 
   3278 #ifdef DEBUG
   3279     // Check that the layout of cache elements match expectations.
   3280     { TranscendentalCache::SubCache::Element test_elem[2];
   3281       char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
   3282       char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
   3283       char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
   3284       char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
   3285       char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
   3286       CHECK_EQ(12, elem2_start - elem_start);  // Two uint_32's and a pointer.
   3287       CHECK_EQ(0, elem_in0 - elem_start);
   3288       CHECK_EQ(kIntSize, elem_in1 - elem_start);
   3289       CHECK_EQ(2 * kIntSize, elem_out - elem_start);
   3290     }
   3291 #endif
   3292 
   3293     // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
   3294     __ add(r1, r1, Operand(r1, LSL, 1));
   3295     __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
   3296     // Check if cache matches: Double value is stored in uint32_t[2] array.
   3297     __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
   3298     __ cmp(r2, r4);
   3299     __ cmp(r3, r5, eq);
   3300     __ b(ne, &calculate);
   3301     // Cache hit. Load result, cleanup and return.
   3302     Counters* counters = masm->isolate()->counters();
   3303     __ IncrementCounter(
   3304         counters->transcendental_cache_hit(), 1, scratch0, scratch1);
   3305     if (tagged) {
   3306       // Pop input value from stack and load result into r0.
   3307       __ pop();
   3308       __ mov(r0, Operand(r6));
   3309     } else {
   3310       // Load result into d2.
   3311        __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
   3312     }
   3313     __ Ret();
   3314   }  // if (CpuFeatures::IsSupported(VFP3))
   3315 
   3316   __ bind(&calculate);
   3317   Counters* counters = masm->isolate()->counters();
   3318   __ IncrementCounter(
   3319       counters->transcendental_cache_miss(), 1, scratch0, scratch1);
   3320   if (tagged) {
   3321     __ bind(&invalid_cache);
   3322     ExternalReference runtime_function =
   3323         ExternalReference(RuntimeFunction(), masm->isolate());
   3324     __ TailCallExternalReference(runtime_function, 1, 1);
   3325   } else {
   3326     if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE();
   3327     CpuFeatures::Scope scope(VFP3);
   3328 
   3329     Label no_update;
   3330     Label skip_cache;
   3331 
   3332     // Call C function to calculate the result and update the cache.
   3333     // Register r0 holds precalculated cache entry address; preserve
   3334     // it on the stack and pop it into register cache_entry after the
   3335     // call.
   3336     __ push(cache_entry);
   3337     GenerateCallCFunction(masm, scratch0);
   3338     __ GetCFunctionDoubleResult(d2);
   3339 
   3340     // Try to update the cache. If we cannot allocate a
   3341     // heap number, we return the result without updating.
   3342     __ pop(cache_entry);
   3343     __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
   3344     __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
   3345     __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
   3346     __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
   3347     __ Ret();
   3348 
   3349     __ bind(&invalid_cache);
   3350     // The cache is invalid. Call runtime which will recreate the
   3351     // cache.
   3352     __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
   3353     __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
   3354     __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
   3355     {
   3356       FrameScope scope(masm, StackFrame::INTERNAL);
   3357       __ push(r0);
   3358       __ CallRuntime(RuntimeFunction(), 1);
   3359     }
   3360     __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
   3361     __ Ret();
   3362 
   3363     __ bind(&skip_cache);
   3364     // Call C function to calculate the result and answer directly
   3365     // without updating the cache.
   3366     GenerateCallCFunction(masm, scratch0);
   3367     __ GetCFunctionDoubleResult(d2);
   3368     __ bind(&no_update);
   3369 
   3370     // We return the value in d2 without adding it to the cache, but
   3371     // we cause a scavenging GC so that future allocations will succeed.
   3372     {
   3373       FrameScope scope(masm, StackFrame::INTERNAL);
   3374 
   3375       // Allocate an aligned object larger than a HeapNumber.
   3376       ASSERT(4 * kPointerSize >= HeapNumber::kSize);
   3377       __ mov(scratch0, Operand(4 * kPointerSize));
   3378       __ push(scratch0);
   3379       __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
   3380     }
   3381     __ Ret();
   3382   }
   3383 }
   3384 
   3385 
   3386 void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
   3387                                                     Register scratch) {
   3388   Isolate* isolate = masm->isolate();
   3389 
   3390   __ push(lr);
   3391   __ PrepareCallCFunction(0, 1, scratch);
   3392   if (masm->use_eabi_hardfloat()) {
   3393     __ vmov(d0, d2);
   3394   } else {
   3395     __ vmov(r0, r1, d2);
   3396   }
   3397   AllowExternalCallThatCantCauseGC scope(masm);
   3398   switch (type_) {
   3399     case TranscendentalCache::SIN:
   3400       __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
   3401           0, 1);
   3402       break;
   3403     case TranscendentalCache::COS:
   3404       __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
   3405           0, 1);
   3406       break;
   3407     case TranscendentalCache::TAN:
   3408       __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
   3409           0, 1);
   3410       break;
   3411     case TranscendentalCache::LOG:
   3412       __ CallCFunction(ExternalReference::math_log_double_function(isolate),
   3413           0, 1);
   3414       break;
   3415     default:
   3416       UNIMPLEMENTED();
   3417       break;
   3418   }
   3419   __ pop(lr);
   3420 }
   3421 
   3422 
   3423 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
   3424   switch (type_) {
   3425     // Add more cases when necessary.
   3426     case TranscendentalCache::SIN: return Runtime::kMath_sin;
   3427     case TranscendentalCache::COS: return Runtime::kMath_cos;
   3428     case TranscendentalCache::TAN: return Runtime::kMath_tan;
   3429     case TranscendentalCache::LOG: return Runtime::kMath_log;
   3430     default:
   3431       UNIMPLEMENTED();
   3432       return Runtime::kAbort;
   3433   }
   3434 }
   3435 
   3436 
   3437 void StackCheckStub::Generate(MacroAssembler* masm) {
   3438   __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
   3439 }
   3440 
   3441 
   3442 void InterruptStub::Generate(MacroAssembler* masm) {
   3443   __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
   3444 }
   3445 
   3446 
   3447 void MathPowStub::Generate(MacroAssembler* masm) {
   3448   CpuFeatures::Scope vfp3_scope(VFP3);
   3449   const Register base = r1;
   3450   const Register exponent = r2;
   3451   const Register heapnumbermap = r5;
   3452   const Register heapnumber = r0;
   3453   const DoubleRegister double_base = d1;
   3454   const DoubleRegister double_exponent = d2;
   3455   const DoubleRegister double_result = d3;
   3456   const DoubleRegister double_scratch = d0;
   3457   const SwVfpRegister single_scratch = s0;
   3458   const Register scratch = r9;
   3459   const Register scratch2 = r7;
   3460 
   3461   Label call_runtime, done, int_exponent;
   3462   if (exponent_type_ == ON_STACK) {
   3463     Label base_is_smi, unpack_exponent;
   3464     // The exponent and base are supplied as arguments on the stack.
   3465     // This can only happen if the stub is called from non-optimized code.
   3466     // Load input parameters from stack to double registers.
   3467     __ ldr(base, MemOperand(sp, 1 * kPointerSize));
   3468     __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
   3469 
   3470     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
   3471 
   3472     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
   3473     __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
   3474     __ cmp(scratch, heapnumbermap);
   3475     __ b(ne, &call_runtime);
   3476 
   3477     __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
   3478     __ jmp(&unpack_exponent);
   3479 
   3480     __ bind(&base_is_smi);
   3481     __ vmov(single_scratch, scratch);
   3482     __ vcvt_f64_s32(double_base, single_scratch);
   3483     __ bind(&unpack_exponent);
   3484 
   3485     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
   3486 
   3487     __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
   3488     __ cmp(scratch, heapnumbermap);
   3489     __ b(ne, &call_runtime);
   3490     __ vldr(double_exponent,
   3491             FieldMemOperand(exponent, HeapNumber::kValueOffset));
   3492   } else if (exponent_type_ == TAGGED) {
   3493     // Base is already in double_base.
   3494     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
   3495 
   3496     __ vldr(double_exponent,
   3497             FieldMemOperand(exponent, HeapNumber::kValueOffset));
   3498   }
   3499 
   3500   if (exponent_type_ != INTEGER) {
   3501     Label int_exponent_convert;
   3502     // Detect integer exponents stored as double.
   3503     __ vcvt_u32_f64(single_scratch, double_exponent);
   3504     // We do not check for NaN or Infinity here because comparing numbers on
   3505     // ARM correctly distinguishes NaNs.  We end up calling the built-in.
   3506     __ vcvt_f64_u32(double_scratch, single_scratch);
   3507     __ VFPCompareAndSetFlags(double_scratch, double_exponent);
   3508     __ b(eq, &int_exponent_convert);
   3509 
   3510     if (exponent_type_ == ON_STACK) {
   3511       // Detect square root case.  Crankshaft detects constant +/-0.5 at
   3512       // compile time and uses DoMathPowHalf instead.  We then skip this check
   3513       // for non-constant cases of +/-0.5 as these hardly occur.
   3514       Label not_plus_half;
   3515 
   3516       // Test for 0.5.
   3517       __ vmov(double_scratch, 0.5);
   3518       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
   3519       __ b(ne, &not_plus_half);
   3520 
   3521       // Calculates square root of base.  Check for the special case of
   3522       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
   3523       __ vmov(double_scratch, -V8_INFINITY);
   3524       __ VFPCompareAndSetFlags(double_base, double_scratch);
   3525       __ vneg(double_result, double_scratch, eq);
   3526       __ b(eq, &done);
   3527 
   3528       // Add +0 to convert -0 to +0.
   3529       __ vadd(double_scratch, double_base, kDoubleRegZero);
   3530       __ vsqrt(double_result, double_scratch);
   3531       __ jmp(&done);
   3532 
   3533       __ bind(&not_plus_half);
   3534       __ vmov(double_scratch, -0.5);
   3535       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
   3536       __ b(ne, &call_runtime);
   3537 
   3538       // Calculates square root of base.  Check for the special case of
   3539       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
   3540       __ vmov(double_scratch, -V8_INFINITY);
   3541       __ VFPCompareAndSetFlags(double_base, double_scratch);
   3542       __ vmov(double_result, kDoubleRegZero, eq);
   3543       __ b(eq, &done);
   3544 
   3545       // Add +0 to convert -0 to +0.
   3546       __ vadd(double_scratch, double_base, kDoubleRegZero);
   3547       __ vmov(double_result, 1);
   3548       __ vsqrt(double_scratch, double_scratch);
   3549       __ vdiv(double_result, double_result, double_scratch);
   3550       __ jmp(&done);
   3551     }
   3552 
   3553     __ push(lr);
   3554     {
   3555       AllowExternalCallThatCantCauseGC scope(masm);
   3556       __ PrepareCallCFunction(0, 2, scratch);
   3557       __ SetCallCDoubleArguments(double_base, double_exponent);
   3558       __ CallCFunction(
   3559           ExternalReference::power_double_double_function(masm->isolate()),
   3560           0, 2);
   3561     }
   3562     __ pop(lr);
   3563     __ GetCFunctionDoubleResult(double_result);
   3564     __ jmp(&done);
   3565 
   3566     __ bind(&int_exponent_convert);
   3567     __ vcvt_u32_f64(single_scratch, double_exponent);
   3568     __ vmov(scratch, single_scratch);
   3569   }
   3570 
   3571   // Calculate power with integer exponent.
   3572   __ bind(&int_exponent);
   3573 
   3574   // Get two copies of exponent in the registers scratch and exponent.
   3575   if (exponent_type_ == INTEGER) {
   3576     __ mov(scratch, exponent);
   3577   } else {
   3578     // Exponent has previously been stored into scratch as untagged integer.
   3579     __ mov(exponent, scratch);
   3580   }
   3581   __ vmov(double_scratch, double_base);  // Back up base.
   3582   __ vmov(double_result, 1.0);
   3583 
   3584   // Get absolute value of exponent.
   3585   __ cmp(scratch, Operand(0));
   3586   __ mov(scratch2, Operand(0), LeaveCC, mi);
   3587   __ sub(scratch, scratch2, scratch, LeaveCC, mi);
   3588 
   3589   Label while_true;
   3590   __ bind(&while_true);
   3591   __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
   3592   __ vmul(double_result, double_result, double_scratch, cs);
   3593   __ vmul(double_scratch, double_scratch, double_scratch, ne);
   3594   __ b(ne, &while_true);
   3595 
   3596   __ cmp(exponent, Operand(0));
   3597   __ b(ge, &done);
   3598   __ vmov(double_scratch, 1.0);
   3599   __ vdiv(double_result, double_scratch, double_result);
   3600   // Test whether result is zero.  Bail out to check for subnormal result.
   3601   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
   3602   __ VFPCompareAndSetFlags(double_result, 0.0);
   3603   __ b(ne, &done);
   3604   // double_exponent may not containe the exponent value if the input was a
   3605   // smi.  We set it with exponent value before bailing out.
   3606   __ vmov(single_scratch, exponent);
   3607   __ vcvt_f64_s32(double_exponent, single_scratch);
   3608 
   3609   // Returning or bailing out.
   3610   Counters* counters = masm->isolate()->counters();
   3611   if (exponent_type_ == ON_STACK) {
   3612     // The arguments are still on the stack.
   3613     __ bind(&call_runtime);
   3614     __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
   3615 
   3616     // The stub is called from non-optimized code, which expects the result
   3617     // as heap number in exponent.
   3618     __ bind(&done);
   3619     __ AllocateHeapNumber(
   3620         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
   3621     __ vstr(double_result,
   3622             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
   3623     ASSERT(heapnumber.is(r0));
   3624     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
   3625     __ Ret(2);
   3626   } else {
   3627     __ push(lr);
   3628     {
   3629       AllowExternalCallThatCantCauseGC scope(masm);
   3630       __ PrepareCallCFunction(0, 2, scratch);
   3631       __ SetCallCDoubleArguments(double_base, double_exponent);
   3632       __ CallCFunction(
   3633           ExternalReference::power_double_double_function(masm->isolate()),
   3634           0, 2);
   3635     }
   3636     __ pop(lr);
   3637     __ GetCFunctionDoubleResult(double_result);
   3638 
   3639     __ bind(&done);
   3640     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
   3641     __ Ret();
   3642   }
   3643 }
   3644 
   3645 
   3646 bool CEntryStub::NeedsImmovableCode() {
   3647   return true;
   3648 }
   3649 
   3650 
   3651 bool CEntryStub::IsPregenerated() {
   3652   return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
   3653           result_size_ == 1;
   3654 }
   3655 
   3656 
   3657 void CodeStub::GenerateStubsAheadOfTime() {
   3658   CEntryStub::GenerateAheadOfTime();
   3659   WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
   3660   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
   3661   RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
   3662 }
   3663 
   3664 
   3665 void CodeStub::GenerateFPStubs() {
   3666   CEntryStub save_doubles(1, kSaveFPRegs);
   3667   Handle<Code> code = save_doubles.GetCode();
   3668   code->set_is_pregenerated(true);
   3669   StoreBufferOverflowStub stub(kSaveFPRegs);
   3670   stub.GetCode()->set_is_pregenerated(true);
   3671   code->GetIsolate()->set_fp_stubs_generated(true);
   3672 }
   3673 
   3674 
   3675 void CEntryStub::GenerateAheadOfTime() {
   3676   CEntryStub stub(1, kDontSaveFPRegs);
   3677   Handle<Code> code = stub.GetCode();
   3678   code->set_is_pregenerated(true);
   3679 }
   3680 
   3681 
   3682 void CEntryStub::GenerateCore(MacroAssembler* masm,
   3683                               Label* throw_normal_exception,
   3684                               Label* throw_termination_exception,
   3685                               Label* throw_out_of_memory_exception,
   3686                               bool do_gc,
   3687                               bool always_allocate) {
   3688   // r0: result parameter for PerformGC, if any
   3689   // r4: number of arguments including receiver  (C callee-saved)
   3690   // r5: pointer to builtin function  (C callee-saved)
   3691   // r6: pointer to the first argument (C callee-saved)
   3692   Isolate* isolate = masm->isolate();
   3693 
   3694   if (do_gc) {
   3695     // Passing r0.
   3696     __ PrepareCallCFunction(1, 0, r1);
   3697     __ CallCFunction(ExternalReference::perform_gc_function(isolate),
   3698         1, 0);
   3699   }
   3700 
   3701   ExternalReference scope_depth =
   3702       ExternalReference::heap_always_allocate_scope_depth(isolate);
   3703   if (always_allocate) {
   3704     __ mov(r0, Operand(scope_depth));
   3705     __ ldr(r1, MemOperand(r0));
   3706     __ add(r1, r1, Operand(1));
   3707     __ str(r1, MemOperand(r0));
   3708   }
   3709 
   3710   // Call C built-in.
   3711   // r0 = argc, r1 = argv
   3712   __ mov(r0, Operand(r4));
   3713   __ mov(r1, Operand(r6));
   3714 
   3715 #if defined(V8_HOST_ARCH_ARM)
   3716   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
   3717   int frame_alignment_mask = frame_alignment - 1;
   3718   if (FLAG_debug_code) {
   3719     if (frame_alignment > kPointerSize) {
   3720       Label alignment_as_expected;
   3721       ASSERT(IsPowerOf2(frame_alignment));
   3722       __ tst(sp, Operand(frame_alignment_mask));
   3723       __ b(eq, &alignment_as_expected);
   3724       // Don't use Check here, as it will call Runtime_Abort re-entering here.
   3725       __ stop("Unexpected alignment");
   3726       __ bind(&alignment_as_expected);
   3727     }
   3728   }
   3729 #endif
   3730 
   3731   __ mov(r2, Operand(ExternalReference::isolate_address()));
   3732 
   3733   // To let the GC traverse the return address of the exit frames, we need to
   3734   // know where the return address is. The CEntryStub is unmovable, so
   3735   // we can store the address on the stack to be able to find it again and
   3736   // we never have to restore it, because it will not change.
   3737   // Compute the return address in lr to return to after the jump below. Pc is
   3738   // already at '+ 8' from the current instruction but return is after three
   3739   // instructions so add another 4 to pc to get the return address.
   3740   masm->add(lr, pc, Operand(4));
   3741   __ str(lr, MemOperand(sp, 0));
   3742   masm->Jump(r5);
   3743 
   3744   if (always_allocate) {
   3745     // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
   3746     // though (contain the result).
   3747     __ mov(r2, Operand(scope_depth));
   3748     __ ldr(r3, MemOperand(r2));
   3749     __ sub(r3, r3, Operand(1));
   3750     __ str(r3, MemOperand(r2));
   3751   }
   3752 
   3753   // check for failure result
   3754   Label failure_returned;
   3755   STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
   3756   // Lower 2 bits of r2 are 0 iff r0 has failure tag.
   3757   __ add(r2, r0, Operand(1));
   3758   __ tst(r2, Operand(kFailureTagMask));
   3759   __ b(eq, &failure_returned);
   3760 
   3761   // Exit C frame and return.
   3762   // r0:r1: result
   3763   // sp: stack pointer
   3764   // fp: frame pointer
   3765   //  Callee-saved register r4 still holds argc.
   3766   __ LeaveExitFrame(save_doubles_, r4);
   3767   __ mov(pc, lr);
   3768 
   3769   // check if we should retry or throw exception
   3770   Label retry;
   3771   __ bind(&failure_returned);
   3772   STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
   3773   __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
   3774   __ b(eq, &retry);
   3775 
   3776   // Special handling of out of memory exceptions.
   3777   Failure* out_of_memory = Failure::OutOfMemoryException();
   3778   __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
   3779   __ b(eq, throw_out_of_memory_exception);
   3780 
   3781   // Retrieve the pending exception and clear the variable.
   3782   __ mov(r3, Operand(isolate->factory()->the_hole_value()));
   3783   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   3784                                        isolate)));
   3785   __ ldr(r0, MemOperand(ip));
   3786   __ str(r3, MemOperand(ip));
   3787 
   3788   // Special handling of termination exceptions which are uncatchable
   3789   // by javascript code.
   3790   __ cmp(r0, Operand(isolate->factory()->termination_exception()));
   3791   __ b(eq, throw_termination_exception);
   3792 
   3793   // Handle normal exception.
   3794   __ jmp(throw_normal_exception);
   3795 
   3796   __ bind(&retry);  // pass last failure (r0) as parameter (r0) when retrying
   3797 }
   3798 
   3799 
   3800 void CEntryStub::Generate(MacroAssembler* masm) {
   3801   // Called from JavaScript; parameters are on stack as if calling JS function
   3802   // r0: number of arguments including receiver
   3803   // r1: pointer to builtin function
   3804   // fp: frame pointer  (restored after C call)
   3805   // sp: stack pointer  (restored as callee's sp after C call)
   3806   // cp: current context  (C callee-saved)
   3807 
   3808   // Result returned in r0 or r0+r1 by default.
   3809 
   3810   // NOTE: Invocations of builtins may return failure objects
   3811   // instead of a proper result. The builtin entry handles
   3812   // this by performing a garbage collection and retrying the
   3813   // builtin once.
   3814 
   3815   // Compute the argv pointer in a callee-saved register.
   3816   __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
   3817   __ sub(r6, r6, Operand(kPointerSize));
   3818 
   3819   // Enter the exit frame that transitions from JavaScript to C++.
   3820   FrameScope scope(masm, StackFrame::MANUAL);
   3821   __ EnterExitFrame(save_doubles_);
   3822 
   3823   // Set up argc and the builtin function in callee-saved registers.
   3824   __ mov(r4, Operand(r0));
   3825   __ mov(r5, Operand(r1));
   3826 
   3827   // r4: number of arguments (C callee-saved)
   3828   // r5: pointer to builtin function (C callee-saved)
   3829   // r6: pointer to first argument (C callee-saved)
   3830 
   3831   Label throw_normal_exception;
   3832   Label throw_termination_exception;
   3833   Label throw_out_of_memory_exception;
   3834 
   3835   // Call into the runtime system.
   3836   GenerateCore(masm,
   3837                &throw_normal_exception,
   3838                &throw_termination_exception,
   3839                &throw_out_of_memory_exception,
   3840                false,
   3841                false);
   3842 
   3843   // Do space-specific GC and retry runtime call.
   3844   GenerateCore(masm,
   3845                &throw_normal_exception,
   3846                &throw_termination_exception,
   3847                &throw_out_of_memory_exception,
   3848                true,
   3849                false);
   3850 
   3851   // Do full GC and retry runtime call one final time.
   3852   Failure* failure = Failure::InternalError();
   3853   __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
   3854   GenerateCore(masm,
   3855                &throw_normal_exception,
   3856                &throw_termination_exception,
   3857                &throw_out_of_memory_exception,
   3858                true,
   3859                true);
   3860 
   3861   __ bind(&throw_out_of_memory_exception);
   3862   // Set external caught exception to false.
   3863   Isolate* isolate = masm->isolate();
   3864   ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
   3865                                     isolate);
   3866   __ mov(r0, Operand(false, RelocInfo::NONE));
   3867   __ mov(r2, Operand(external_caught));
   3868   __ str(r0, MemOperand(r2));
   3869 
   3870   // Set pending exception and r0 to out of memory exception.
   3871   Failure* out_of_memory = Failure::OutOfMemoryException();
   3872   __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
   3873   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   3874                                        isolate)));
   3875   __ str(r0, MemOperand(r2));
   3876   // Fall through to the next label.
   3877 
   3878   __ bind(&throw_termination_exception);
   3879   __ ThrowUncatchable(r0);
   3880 
   3881   __ bind(&throw_normal_exception);
   3882   __ Throw(r0);
   3883 }
   3884 
   3885 
   3886 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
   3887   // r0: code entry
   3888   // r1: function
   3889   // r2: receiver
   3890   // r3: argc
   3891   // [sp+0]: argv
   3892 
   3893   Label invoke, handler_entry, exit;
   3894 
   3895   // Called from C, so do not pop argc and args on exit (preserve sp)
   3896   // No need to save register-passed args
   3897   // Save callee-saved registers (incl. cp and fp), sp, and lr
   3898   __ stm(db_w, sp, kCalleeSaved | lr.bit());
   3899 
   3900   if (CpuFeatures::IsSupported(VFP3)) {
   3901     CpuFeatures::Scope scope(VFP3);
   3902     // Save callee-saved vfp registers.
   3903     __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
   3904     // Set up the reserved register for 0.0.
   3905     __ vmov(kDoubleRegZero, 0.0);
   3906   }
   3907 
   3908   // Get address of argv, see stm above.
   3909   // r0: code entry
   3910   // r1: function
   3911   // r2: receiver
   3912   // r3: argc
   3913 
   3914   // Set up argv in r4.
   3915   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
   3916   if (CpuFeatures::IsSupported(VFP3)) {
   3917     offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
   3918   }
   3919   __ ldr(r4, MemOperand(sp, offset_to_argv));
   3920 
   3921   // Push a frame with special values setup to mark it as an entry frame.
   3922   // r0: code entry
   3923   // r1: function
   3924   // r2: receiver
   3925   // r3: argc
   3926   // r4: argv
   3927   Isolate* isolate = masm->isolate();
   3928   __ mov(r8, Operand(-1));  // Push a bad frame pointer to fail if it is used.
   3929   int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
   3930   __ mov(r7, Operand(Smi::FromInt(marker)));
   3931   __ mov(r6, Operand(Smi::FromInt(marker)));
   3932   __ mov(r5,
   3933          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
   3934   __ ldr(r5, MemOperand(r5));
   3935   __ Push(r8, r7, r6, r5);
   3936 
   3937   // Set up frame pointer for the frame to be pushed.
   3938   __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
   3939 
   3940   // If this is the outermost JS call, set js_entry_sp value.
   3941   Label non_outermost_js;
   3942   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
   3943   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
   3944   __ ldr(r6, MemOperand(r5));
   3945   __ cmp(r6, Operand::Zero());
   3946   __ b(ne, &non_outermost_js);
   3947   __ str(fp, MemOperand(r5));
   3948   __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   3949   Label cont;
   3950   __ b(&cont);
   3951   __ bind(&non_outermost_js);
   3952   __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   3953   __ bind(&cont);
   3954   __ push(ip);
   3955 
   3956   // Jump to a faked try block that does the invoke, with a faked catch
   3957   // block that sets the pending exception.
   3958   __ jmp(&invoke);
   3959   __ bind(&handler_entry);
   3960   handler_offset_ = handler_entry.pos();
   3961   // Caught exception: Store result (exception) in the pending exception
   3962   // field in the JSEnv and return a failure sentinel.  Coming in here the
   3963   // fp will be invalid because the PushTryHandler below sets it to 0 to
   3964   // signal the existence of the JSEntry frame.
   3965   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   3966                                        isolate)));
   3967   __ str(r0, MemOperand(ip));
   3968   __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
   3969   __ b(&exit);
   3970 
   3971   // Invoke: Link this frame into the handler chain.  There's only one
   3972   // handler block in this code object, so its index is 0.
   3973   __ bind(&invoke);
   3974   // Must preserve r0-r4, r5-r7 are available.
   3975   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
   3976   // If an exception not caught by another handler occurs, this handler
   3977   // returns control to the code after the bl(&invoke) above, which
   3978   // restores all kCalleeSaved registers (including cp and fp) to their
   3979   // saved values before returning a failure to C.
   3980 
   3981   // Clear any pending exceptions.
   3982   __ mov(r5, Operand(isolate->factory()->the_hole_value()));
   3983   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   3984                                        isolate)));
   3985   __ str(r5, MemOperand(ip));
   3986 
   3987   // Invoke the function by calling through JS entry trampoline builtin.
   3988   // Notice that we cannot store a reference to the trampoline code directly in
   3989   // this stub, because runtime stubs are not traversed when doing GC.
   3990 
   3991   // Expected registers by Builtins::JSEntryTrampoline
   3992   // r0: code entry
   3993   // r1: function
   3994   // r2: receiver
   3995   // r3: argc
   3996   // r4: argv
   3997   if (is_construct) {
   3998     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   3999                                       isolate);
   4000     __ mov(ip, Operand(construct_entry));
   4001   } else {
   4002     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
   4003     __ mov(ip, Operand(entry));
   4004   }
   4005   __ ldr(ip, MemOperand(ip));  // deref address
   4006 
   4007   // Branch and link to JSEntryTrampoline.  We don't use the double underscore
   4008   // macro for the add instruction because we don't want the coverage tool
   4009   // inserting instructions here after we read the pc.
   4010   __ mov(lr, Operand(pc));
   4011   masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
   4012 
   4013   // Unlink this frame from the handler chain.
   4014   __ PopTryHandler();
   4015 
   4016   __ bind(&exit);  // r0 holds result
   4017   // Check if the current stack frame is marked as the outermost JS frame.
   4018   Label non_outermost_js_2;
   4019   __ pop(r5);
   4020   __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   4021   __ b(ne, &non_outermost_js_2);
   4022   __ mov(r6, Operand::Zero());
   4023   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
   4024   __ str(r6, MemOperand(r5));
   4025   __ bind(&non_outermost_js_2);
   4026 
   4027   // Restore the top frame descriptors from the stack.
   4028   __ pop(r3);
   4029   __ mov(ip,
   4030          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
   4031   __ str(r3, MemOperand(ip));
   4032 
   4033   // Reset the stack to the callee saved registers.
   4034   __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
   4035 
   4036   // Restore callee-saved registers and return.
   4037 #ifdef DEBUG
   4038   if (FLAG_debug_code) {
   4039     __ mov(lr, Operand(pc));
   4040   }
   4041 #endif
   4042 
   4043   if (CpuFeatures::IsSupported(VFP3)) {
   4044     CpuFeatures::Scope scope(VFP3);
   4045     // Restore callee-saved vfp registers.
   4046     __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
   4047   }
   4048 
   4049   __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
   4050 }
   4051 
   4052 
   4053 // Uses registers r0 to r4.
   4054 // Expected input (depending on whether args are in registers or on the stack):
   4055 // * object: r0 or at sp + 1 * kPointerSize.
   4056 // * function: r1 or at sp.
   4057 //
   4058 // An inlined call site may have been generated before calling this stub.
   4059 // In this case the offset to the inline site to patch is passed on the stack,
   4060 // in the safepoint slot for register r4.
   4061 // (See LCodeGen::DoInstanceOfKnownGlobal)
   4062 void InstanceofStub::Generate(MacroAssembler* masm) {
   4063   // Call site inlining and patching implies arguments in registers.
   4064   ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
   4065   // ReturnTrueFalse is only implemented for inlined call sites.
   4066   ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
   4067 
   4068   // Fixed register usage throughout the stub:
   4069   const Register object = r0;  // Object (lhs).
   4070   Register map = r3;  // Map of the object.
   4071   const Register function = r1;  // Function (rhs).
   4072   const Register prototype = r4;  // Prototype of the function.
   4073   const Register inline_site = r9;
   4074   const Register scratch = r2;
   4075 
   4076   const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
   4077 
   4078   Label slow, loop, is_instance, is_not_instance, not_js_object;
   4079 
   4080   if (!HasArgsInRegisters()) {
   4081     __ ldr(object, MemOperand(sp, 1 * kPointerSize));
   4082     __ ldr(function, MemOperand(sp, 0));
   4083   }
   4084 
   4085   // Check that the left hand is a JS object and load map.
   4086   __ JumpIfSmi(object, &not_js_object);
   4087   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
   4088 
   4089   // If there is a call site cache don't look in the global cache, but do the
   4090   // real lookup and update the call site cache.
   4091   if (!HasCallSiteInlineCheck()) {
   4092     Label miss;
   4093     __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
   4094     __ b(ne, &miss);
   4095     __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
   4096     __ b(ne, &miss);
   4097     __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
   4098     __ Ret(HasArgsInRegisters() ? 0 : 2);
   4099 
   4100     __ bind(&miss);
   4101   }
   4102 
   4103   // Get the prototype of the function.
   4104   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
   4105 
   4106   // Check that the function prototype is a JS object.
   4107   __ JumpIfSmi(prototype, &slow);
   4108   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
   4109 
   4110   // Update the global instanceof or call site inlined cache with the current
   4111   // map and function. The cached answer will be set when it is known below.
   4112   if (!HasCallSiteInlineCheck()) {
   4113     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
   4114     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
   4115   } else {
   4116     ASSERT(HasArgsInRegisters());
   4117     // Patch the (relocated) inlined map check.
   4118 
   4119     // The offset was stored in r4 safepoint slot.
   4120     // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
   4121     __ LoadFromSafepointRegisterSlot(scratch, r4);
   4122     __ sub(inline_site, lr, scratch);
   4123     // Get the map location in scratch and patch it.
   4124     __ GetRelocatedValueLocation(inline_site, scratch);
   4125     __ ldr(scratch, MemOperand(scratch));
   4126     __ str(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
   4127   }
   4128 
   4129   // Register mapping: r3 is object map and r4 is function prototype.
   4130   // Get prototype of object into r2.
   4131   __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
   4132 
   4133   // We don't need map any more. Use it as a scratch register.
   4134   Register scratch2 = map;
   4135   map = no_reg;
   4136 
   4137   // Loop through the prototype chain looking for the function prototype.
   4138   __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
   4139   __ bind(&loop);
   4140   __ cmp(scratch, Operand(prototype));
   4141   __ b(eq, &is_instance);
   4142   __ cmp(scratch, scratch2);
   4143   __ b(eq, &is_not_instance);
   4144   __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
   4145   __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
   4146   __ jmp(&loop);
   4147 
   4148   __ bind(&is_instance);
   4149   if (!HasCallSiteInlineCheck()) {
   4150     __ mov(r0, Operand(Smi::FromInt(0)));
   4151     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
   4152   } else {
   4153     // Patch the call site to return true.
   4154     __ LoadRoot(r0, Heap::kTrueValueRootIndex);
   4155     __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
   4156     // Get the boolean result location in scratch and patch it.
   4157     __ GetRelocatedValueLocation(inline_site, scratch);
   4158     __ str(r0, MemOperand(scratch));
   4159 
   4160     if (!ReturnTrueFalseObject()) {
   4161       __ mov(r0, Operand(Smi::FromInt(0)));
   4162     }
   4163   }
   4164   __ Ret(HasArgsInRegisters() ? 0 : 2);
   4165 
   4166   __ bind(&is_not_instance);
   4167   if (!HasCallSiteInlineCheck()) {
   4168     __ mov(r0, Operand(Smi::FromInt(1)));
   4169     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
   4170   } else {
   4171     // Patch the call site to return false.
   4172     __ LoadRoot(r0, Heap::kFalseValueRootIndex);
   4173     __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
   4174     // Get the boolean result location in scratch and patch it.
   4175     __ GetRelocatedValueLocation(inline_site, scratch);
   4176     __ str(r0, MemOperand(scratch));
   4177 
   4178     if (!ReturnTrueFalseObject()) {
   4179       __ mov(r0, Operand(Smi::FromInt(1)));
   4180     }
   4181   }
   4182   __ Ret(HasArgsInRegisters() ? 0 : 2);
   4183 
   4184   Label object_not_null, object_not_null_or_smi;
   4185   __ bind(&not_js_object);
   4186   // Before null, smi and string value checks, check that the rhs is a function
   4187   // as for a non-function rhs an exception needs to be thrown.
   4188   __ JumpIfSmi(function, &slow);
   4189   __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
   4190   __ b(ne, &slow);
   4191 
   4192   // Null is not instance of anything.
   4193   __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
   4194   __ b(ne, &object_not_null);
   4195   __ mov(r0, Operand(Smi::FromInt(1)));
   4196   __ Ret(HasArgsInRegisters() ? 0 : 2);
   4197 
   4198   __ bind(&object_not_null);
   4199   // Smi values are not instances of anything.
   4200   __ JumpIfNotSmi(object, &object_not_null_or_smi);
   4201   __ mov(r0, Operand(Smi::FromInt(1)));
   4202   __ Ret(HasArgsInRegisters() ? 0 : 2);
   4203 
   4204   __ bind(&object_not_null_or_smi);
   4205   // String values are not instances of anything.
   4206   __ IsObjectJSStringType(object, scratch, &slow);
   4207   __ mov(r0, Operand(Smi::FromInt(1)));
   4208   __ Ret(HasArgsInRegisters() ? 0 : 2);
   4209 
   4210   // Slow-case.  Tail call builtin.
   4211   __ bind(&slow);
   4212   if (!ReturnTrueFalseObject()) {
   4213     if (HasArgsInRegisters()) {
   4214       __ Push(r0, r1);
   4215     }
   4216   __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
   4217   } else {
   4218     {
   4219       FrameScope scope(masm, StackFrame::INTERNAL);
   4220       __ Push(r0, r1);
   4221       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
   4222     }
   4223     __ cmp(r0, Operand::Zero());
   4224     __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
   4225     __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
   4226     __ Ret(HasArgsInRegisters() ? 0 : 2);
   4227   }
   4228 }
   4229 
   4230 
   4231 Register InstanceofStub::left() { return r0; }
   4232 
   4233 
   4234 Register InstanceofStub::right() { return r1; }
   4235 
   4236 
   4237 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
   4238   // The displacement is the offset of the last parameter (if any)
   4239   // relative to the frame pointer.
   4240   const int kDisplacement =
   4241       StandardFrameConstants::kCallerSPOffset - kPointerSize;
   4242 
   4243   // Check that the key is a smi.
   4244   Label slow;
   4245   __ JumpIfNotSmi(r1, &slow);
   4246 
   4247   // Check if the calling frame is an arguments adaptor frame.
   4248   Label adaptor;
   4249   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   4250   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
   4251   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4252   __ b(eq, &adaptor);
   4253 
   4254   // Check index against formal parameters count limit passed in
   4255   // through register r0. Use unsigned comparison to get negative
   4256   // check for free.
   4257   __ cmp(r1, r0);
   4258   __ b(hs, &slow);
   4259 
   4260   // Read the argument from the stack and return it.
   4261   __ sub(r3, r0, r1);
   4262   __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
   4263   __ ldr(r0, MemOperand(r3, kDisplacement));
   4264   __ Jump(lr);
   4265 
   4266   // Arguments adaptor case: Check index against actual arguments
   4267   // limit found in the arguments adaptor frame. Use unsigned
   4268   // comparison to get negative check for free.
   4269   __ bind(&adaptor);
   4270   __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4271   __ cmp(r1, r0);
   4272   __ b(cs, &slow);
   4273 
   4274   // Read the argument from the adaptor frame and return it.
   4275   __ sub(r3, r0, r1);
   4276   __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
   4277   __ ldr(r0, MemOperand(r3, kDisplacement));
   4278   __ Jump(lr);
   4279 
   4280   // Slow-case: Handle non-smi or out-of-bounds access to arguments
   4281   // by calling the runtime system.
   4282   __ bind(&slow);
   4283   __ push(r1);
   4284   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
   4285 }
   4286 
   4287 
   4288 void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
   4289   // sp[0] : number of parameters
   4290   // sp[4] : receiver displacement
   4291   // sp[8] : function
   4292 
   4293   // Check if the calling frame is an arguments adaptor frame.
   4294   Label runtime;
   4295   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   4296   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
   4297   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4298   __ b(ne, &runtime);
   4299 
   4300   // Patch the arguments.length and the parameters pointer in the current frame.
   4301   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4302   __ str(r2, MemOperand(sp, 0 * kPointerSize));
   4303   __ add(r3, r3, Operand(r2, LSL, 1));
   4304   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
   4305   __ str(r3, MemOperand(sp, 1 * kPointerSize));
   4306 
   4307   __ bind(&runtime);
   4308   __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
   4309 }
   4310 
   4311 
   4312 void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
   4313   // Stack layout:
   4314   //  sp[0] : number of parameters (tagged)
   4315   //  sp[4] : address of receiver argument
   4316   //  sp[8] : function
   4317   // Registers used over whole function:
   4318   //  r6 : allocated object (tagged)
   4319   //  r9 : mapped parameter count (tagged)
   4320 
   4321   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
   4322   // r1 = parameter count (tagged)
   4323 
   4324   // Check if the calling frame is an arguments adaptor frame.
   4325   Label runtime;
   4326   Label adaptor_frame, try_allocate;
   4327   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   4328   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
   4329   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4330   __ b(eq, &adaptor_frame);
   4331 
   4332   // No adaptor, parameter count = argument count.
   4333   __ mov(r2, r1);
   4334   __ b(&try_allocate);
   4335 
   4336   // We have an adaptor frame. Patch the parameters pointer.
   4337   __ bind(&adaptor_frame);
   4338   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4339   __ add(r3, r3, Operand(r2, LSL, 1));
   4340   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
   4341   __ str(r3, MemOperand(sp, 1 * kPointerSize));
   4342 
   4343   // r1 = parameter count (tagged)
   4344   // r2 = argument count (tagged)
   4345   // Compute the mapped parameter count = min(r1, r2) in r1.
   4346   __ cmp(r1, Operand(r2));
   4347   __ mov(r1, Operand(r2), LeaveCC, gt);
   4348 
   4349   __ bind(&try_allocate);
   4350 
   4351   // Compute the sizes of backing store, parameter map, and arguments object.
   4352   // 1. Parameter map, has 2 extra words containing context and backing store.
   4353   const int kParameterMapHeaderSize =
   4354       FixedArray::kHeaderSize + 2 * kPointerSize;
   4355   // If there are no mapped parameters, we do not need the parameter_map.
   4356   __ cmp(r1, Operand(Smi::FromInt(0)));
   4357   __ mov(r9, Operand::Zero(), LeaveCC, eq);
   4358   __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
   4359   __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
   4360 
   4361   // 2. Backing store.
   4362   __ add(r9, r9, Operand(r2, LSL, 1));
   4363   __ add(r9, r9, Operand(FixedArray::kHeaderSize));
   4364 
   4365   // 3. Arguments object.
   4366   __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
   4367 
   4368   // Do the allocation of all three objects in one go.
   4369   __ AllocateInNewSpace(r9, r0, r3, r4, &runtime, TAG_OBJECT);
   4370 
   4371   // r0 = address of new object(s) (tagged)
   4372   // r2 = argument count (tagged)
   4373   // Get the arguments boilerplate from the current (global) context into r4.
   4374   const int kNormalOffset =
   4375       Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
   4376   const int kAliasedOffset =
   4377       Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
   4378 
   4379   __ ldr(r4, MemOperand(r8, Context::SlotOffset(Context::GLOBAL_INDEX)));
   4380   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
   4381   __ cmp(r1, Operand::Zero());
   4382   __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
   4383   __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
   4384 
   4385   // r0 = address of new object (tagged)
   4386   // r1 = mapped parameter count (tagged)
   4387   // r2 = argument count (tagged)
   4388   // r4 = address of boilerplate object (tagged)
   4389   // Copy the JS object part.
   4390   for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
   4391     __ ldr(r3, FieldMemOperand(r4, i));
   4392     __ str(r3, FieldMemOperand(r0, i));
   4393   }
   4394 
   4395   // Set up the callee in-object property.
   4396   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
   4397   __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
   4398   const int kCalleeOffset = JSObject::kHeaderSize +
   4399       Heap::kArgumentsCalleeIndex * kPointerSize;
   4400   __ str(r3, FieldMemOperand(r0, kCalleeOffset));
   4401 
   4402   // Use the length (smi tagged) and set that as an in-object property too.
   4403   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   4404   const int kLengthOffset = JSObject::kHeaderSize +
   4405       Heap::kArgumentsLengthIndex * kPointerSize;
   4406   __ str(r2, FieldMemOperand(r0, kLengthOffset));
   4407 
   4408   // Set up the elements pointer in the allocated arguments object.
   4409   // If we allocated a parameter map, r4 will point there, otherwise
   4410   // it will point to the backing store.
   4411   __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
   4412   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
   4413 
   4414   // r0 = address of new object (tagged)
   4415   // r1 = mapped parameter count (tagged)
   4416   // r2 = argument count (tagged)
   4417   // r4 = address of parameter map or backing store (tagged)
   4418   // Initialize parameter map. If there are no mapped arguments, we're done.
   4419   Label skip_parameter_map;
   4420   __ cmp(r1, Operand(Smi::FromInt(0)));
   4421   // Move backing store address to r3, because it is
   4422   // expected there when filling in the unmapped arguments.
   4423   __ mov(r3, r4, LeaveCC, eq);
   4424   __ b(eq, &skip_parameter_map);
   4425 
   4426   __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
   4427   __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
   4428   __ add(r6, r1, Operand(Smi::FromInt(2)));
   4429   __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
   4430   __ str(r8, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
   4431   __ add(r6, r4, Operand(r1, LSL, 1));
   4432   __ add(r6, r6, Operand(kParameterMapHeaderSize));
   4433   __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
   4434 
   4435   // Copy the parameter slots and the holes in the arguments.
   4436   // We need to fill in mapped_parameter_count slots. They index the context,
   4437   // where parameters are stored in reverse order, at
   4438   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
   4439   // The mapped parameter thus need to get indices
   4440   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
   4441   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
   4442   // We loop from right to left.
   4443   Label parameters_loop, parameters_test;
   4444   __ mov(r6, r1);
   4445   __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
   4446   __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
   4447   __ sub(r9, r9, Operand(r1));
   4448   __ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
   4449   __ add(r3, r4, Operand(r6, LSL, 1));
   4450   __ add(r3, r3, Operand(kParameterMapHeaderSize));
   4451 
   4452   // r6 = loop variable (tagged)
   4453   // r1 = mapping index (tagged)
   4454   // r3 = address of backing store (tagged)
   4455   // r4 = address of parameter map (tagged)
   4456   // r5 = temporary scratch (a.o., for address calculation)
   4457   // r7 = the hole value
   4458   __ jmp(&parameters_test);
   4459 
   4460   __ bind(&parameters_loop);
   4461   __ sub(r6, r6, Operand(Smi::FromInt(1)));
   4462   __ mov(r5, Operand(r6, LSL, 1));
   4463   __ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
   4464   __ str(r9, MemOperand(r4, r5));
   4465   __ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
   4466   __ str(r7, MemOperand(r3, r5));
   4467   __ add(r9, r9, Operand(Smi::FromInt(1)));
   4468   __ bind(&parameters_test);
   4469   __ cmp(r6, Operand(Smi::FromInt(0)));
   4470   __ b(ne, &parameters_loop);
   4471 
   4472   __ bind(&skip_parameter_map);
   4473   // r2 = argument count (tagged)
   4474   // r3 = address of backing store (tagged)
   4475   // r5 = scratch
   4476   // Copy arguments header and remaining slots (if there are any).
   4477   __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
   4478   __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
   4479   __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
   4480 
   4481   Label arguments_loop, arguments_test;
   4482   __ mov(r9, r1);
   4483   __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
   4484   __ sub(r4, r4, Operand(r9, LSL, 1));
   4485   __ jmp(&arguments_test);
   4486 
   4487   __ bind(&arguments_loop);
   4488   __ sub(r4, r4, Operand(kPointerSize));
   4489   __ ldr(r6, MemOperand(r4, 0));
   4490   __ add(r5, r3, Operand(r9, LSL, 1));
   4491   __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
   4492   __ add(r9, r9, Operand(Smi::FromInt(1)));
   4493 
   4494   __ bind(&arguments_test);
   4495   __ cmp(r9, Operand(r2));
   4496   __ b(lt, &arguments_loop);
   4497 
   4498   // Return and remove the on-stack parameters.
   4499   __ add(sp, sp, Operand(3 * kPointerSize));
   4500   __ Ret();
   4501 
   4502   // Do the runtime call to allocate the arguments object.
   4503   // r2 = argument count (tagged)
   4504   __ bind(&runtime);
   4505   __ str(r2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
   4506   __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
   4507 }
   4508 
   4509 
   4510 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
   4511   // sp[0] : number of parameters
   4512   // sp[4] : receiver displacement
   4513   // sp[8] : function
   4514   // Check if the calling frame is an arguments adaptor frame.
   4515   Label adaptor_frame, try_allocate, runtime;
   4516   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   4517   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
   4518   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4519   __ b(eq, &adaptor_frame);
   4520 
   4521   // Get the length from the frame.
   4522   __ ldr(r1, MemOperand(sp, 0));
   4523   __ b(&try_allocate);
   4524 
   4525   // Patch the arguments.length and the parameters pointer.
   4526   __ bind(&adaptor_frame);
   4527   __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4528   __ str(r1, MemOperand(sp, 0));
   4529   __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
   4530   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
   4531   __ str(r3, MemOperand(sp, 1 * kPointerSize));
   4532 
   4533   // Try the new space allocation. Start out with computing the size
   4534   // of the arguments object and the elements array in words.
   4535   Label add_arguments_object;
   4536   __ bind(&try_allocate);
   4537   __ cmp(r1, Operand(0, RelocInfo::NONE));
   4538   __ b(eq, &add_arguments_object);
   4539   __ mov(r1, Operand(r1, LSR, kSmiTagSize));
   4540   __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
   4541   __ bind(&add_arguments_object);
   4542   __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
   4543 
   4544   // Do the allocation of both objects in one go.
   4545   __ AllocateInNewSpace(r1,
   4546                         r0,
   4547                         r2,
   4548                         r3,
   4549                         &runtime,
   4550                         static_cast<AllocationFlags>(TAG_OBJECT |
   4551                                                      SIZE_IN_WORDS));
   4552 
   4553   // Get the arguments boilerplate from the current (global) context.
   4554   __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
   4555   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
   4556   __ ldr(r4, MemOperand(r4, Context::SlotOffset(
   4557       Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
   4558 
   4559   // Copy the JS object part.
   4560   __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
   4561 
   4562   // Get the length (smi tagged) and set that as an in-object property too.
   4563   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   4564   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
   4565   __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
   4566       Heap::kArgumentsLengthIndex * kPointerSize));
   4567 
   4568   // If there are no actual arguments, we're done.
   4569   Label done;
   4570   __ cmp(r1, Operand(0, RelocInfo::NONE));
   4571   __ b(eq, &done);
   4572 
   4573   // Get the parameters pointer from the stack.
   4574   __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
   4575 
   4576   // Set up the elements pointer in the allocated arguments object and
   4577   // initialize the header in the elements fixed array.
   4578   __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
   4579   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
   4580   __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
   4581   __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
   4582   __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
   4583   // Untag the length for the loop.
   4584   __ mov(r1, Operand(r1, LSR, kSmiTagSize));
   4585 
   4586   // Copy the fixed array slots.
   4587   Label loop;
   4588   // Set up r4 to point to the first array slot.
   4589   __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   4590   __ bind(&loop);
   4591   // Pre-decrement r2 with kPointerSize on each iteration.
   4592   // Pre-decrement in order to skip receiver.
   4593   __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
   4594   // Post-increment r4 with kPointerSize on each iteration.
   4595   __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
   4596   __ sub(r1, r1, Operand(1));
   4597   __ cmp(r1, Operand(0, RelocInfo::NONE));
   4598   __ b(ne, &loop);
   4599 
   4600   // Return and remove the on-stack parameters.
   4601   __ bind(&done);
   4602   __ add(sp, sp, Operand(3 * kPointerSize));
   4603   __ Ret();
   4604 
   4605   // Do the runtime call to allocate the arguments object.
   4606   __ bind(&runtime);
   4607   __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
   4608 }
   4609 
   4610 
   4611 void RegExpExecStub::Generate(MacroAssembler* masm) {
   4612   // Just jump directly to runtime if native RegExp is not selected at compile
   4613   // time or if regexp entry in generated code is turned off runtime switch or
   4614   // at compilation.
   4615 #ifdef V8_INTERPRETED_REGEXP
   4616   __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
   4617 #else  // V8_INTERPRETED_REGEXP
   4618 
   4619   // Stack frame on entry.
   4620   //  sp[0]: last_match_info (expected JSArray)
   4621   //  sp[4]: previous index
   4622   //  sp[8]: subject string
   4623   //  sp[12]: JSRegExp object
   4624 
   4625   const int kLastMatchInfoOffset = 0 * kPointerSize;
   4626   const int kPreviousIndexOffset = 1 * kPointerSize;
   4627   const int kSubjectOffset = 2 * kPointerSize;
   4628   const int kJSRegExpOffset = 3 * kPointerSize;
   4629 
   4630   Label runtime, invoke_regexp;
   4631 
   4632   // Allocation of registers for this function. These are in callee save
   4633   // registers and will be preserved by the call to the native RegExp code, as
   4634   // this code is called using the normal C calling convention. When calling
   4635   // directly from generated code the native RegExp code will not do a GC and
   4636   // therefore the content of these registers are safe to use after the call.
   4637   Register subject = r4;
   4638   Register regexp_data = r5;
   4639   Register last_match_info_elements = r6;
   4640 
   4641   // Ensure that a RegExp stack is allocated.
   4642   Isolate* isolate = masm->isolate();
   4643   ExternalReference address_of_regexp_stack_memory_address =
   4644       ExternalReference::address_of_regexp_stack_memory_address(isolate);
   4645   ExternalReference address_of_regexp_stack_memory_size =
   4646       ExternalReference::address_of_regexp_stack_memory_size(isolate);
   4647   __ mov(r0, Operand(address_of_regexp_stack_memory_size));
   4648   __ ldr(r0, MemOperand(r0, 0));
   4649   __ cmp(r0, Operand(0));
   4650   __ b(eq, &runtime);
   4651 
   4652   // Check that the first argument is a JSRegExp object.
   4653   __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
   4654   STATIC_ASSERT(kSmiTag == 0);
   4655   __ JumpIfSmi(r0, &runtime);
   4656   __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
   4657   __ b(ne, &runtime);
   4658 
   4659   // Check that the RegExp has been compiled (data contains a fixed array).
   4660   __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
   4661   if (FLAG_debug_code) {
   4662     __ tst(regexp_data, Operand(kSmiTagMask));
   4663     __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
   4664     __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
   4665     __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
   4666   }
   4667 
   4668   // regexp_data: RegExp data (FixedArray)
   4669   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   4670   __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
   4671   __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
   4672   __ b(ne, &runtime);
   4673 
   4674   // regexp_data: RegExp data (FixedArray)
   4675   // Check that the number of captures fit in the static offsets vector buffer.
   4676   __ ldr(r2,
   4677          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   4678   // Calculate number of capture registers (number_of_captures + 1) * 2. This
   4679   // uses the asumption that smis are 2 * their untagged value.
   4680   STATIC_ASSERT(kSmiTag == 0);
   4681   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   4682   __ add(r2, r2, Operand(2));  // r2 was a smi.
   4683   // Check that the static offsets vector buffer is large enough.
   4684   __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
   4685   __ b(hi, &runtime);
   4686 
   4687   // r2: Number of capture registers
   4688   // regexp_data: RegExp data (FixedArray)
   4689   // Check that the second argument is a string.
   4690   __ ldr(subject, MemOperand(sp, kSubjectOffset));
   4691   __ JumpIfSmi(subject, &runtime);
   4692   Condition is_string = masm->IsObjectStringType(subject, r0);
   4693   __ b(NegateCondition(is_string), &runtime);
   4694   // Get the length of the string to r3.
   4695   __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
   4696 
   4697   // r2: Number of capture registers
   4698   // r3: Length of subject string as a smi
   4699   // subject: Subject string
   4700   // regexp_data: RegExp data (FixedArray)
   4701   // Check that the third argument is a positive smi less than the subject
   4702   // string length. A negative value will be greater (unsigned comparison).
   4703   __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
   4704   __ JumpIfNotSmi(r0, &runtime);
   4705   __ cmp(r3, Operand(r0));
   4706   __ b(ls, &runtime);
   4707 
   4708   // r2: Number of capture registers
   4709   // subject: Subject string
   4710   // regexp_data: RegExp data (FixedArray)
   4711   // Check that the fourth object is a JSArray object.
   4712   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
   4713   __ JumpIfSmi(r0, &runtime);
   4714   __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
   4715   __ b(ne, &runtime);
   4716   // Check that the JSArray is in fast case.
   4717   __ ldr(last_match_info_elements,
   4718          FieldMemOperand(r0, JSArray::kElementsOffset));
   4719   __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
   4720   __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
   4721   __ b(ne, &runtime);
   4722   // Check that the last match info has space for the capture registers and the
   4723   // additional information.
   4724   __ ldr(r0,
   4725          FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
   4726   __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
   4727   __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
   4728   __ b(gt, &runtime);
   4729 
   4730   // Reset offset for possibly sliced string.
   4731   __ mov(r9, Operand(0));
   4732   // subject: Subject string
   4733   // regexp_data: RegExp data (FixedArray)
   4734   // Check the representation and encoding of the subject string.
   4735   Label seq_string;
   4736   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
   4737   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
   4738   // First check for flat string.  None of the following string type tests will
   4739   // succeed if subject is not a string or a short external string.
   4740   __ and_(r1,
   4741           r0,
   4742           Operand(kIsNotStringMask |
   4743                   kStringRepresentationMask |
   4744                   kShortExternalStringMask),
   4745           SetCC);
   4746   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
   4747   __ b(eq, &seq_string);
   4748 
   4749   // subject: Subject string
   4750   // regexp_data: RegExp data (FixedArray)
   4751   // r1: whether subject is a string and if yes, its string representation
   4752   // Check for flat cons string or sliced string.
   4753   // A flat cons string is a cons string where the second part is the empty
   4754   // string. In that case the subject string is just the first part of the cons
   4755   // string. Also in this case the first part of the cons string is known to be
   4756   // a sequential string or an external string.
   4757   // In the case of a sliced string its offset has to be taken into account.
   4758   Label cons_string, external_string, check_encoding;
   4759   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   4760   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   4761   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   4762   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   4763   __ cmp(r1, Operand(kExternalStringTag));
   4764   __ b(lt, &cons_string);
   4765   __ b(eq, &external_string);
   4766 
   4767   // Catch non-string subject or short external string.
   4768   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   4769   __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
   4770   __ b(ne, &runtime);
   4771 
   4772   // String is sliced.
   4773   __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
   4774   __ mov(r9, Operand(r9, ASR, kSmiTagSize));
   4775   __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
   4776   // r9: offset of sliced string, smi-tagged.
   4777   __ jmp(&check_encoding);
   4778   // String is a cons string, check whether it is flat.
   4779   __ bind(&cons_string);
   4780   __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
   4781   __ CompareRoot(r0, Heap::kEmptyStringRootIndex);
   4782   __ b(ne, &runtime);
   4783   __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
   4784   // Is first part of cons or parent of slice a flat string?
   4785   __ bind(&check_encoding);
   4786   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
   4787   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
   4788   STATIC_ASSERT(kSeqStringTag == 0);
   4789   __ tst(r0, Operand(kStringRepresentationMask));
   4790   __ b(ne, &external_string);
   4791 
   4792   __ bind(&seq_string);
   4793   // subject: Subject string
   4794   // regexp_data: RegExp data (FixedArray)
   4795   // r0: Instance type of subject string
   4796   STATIC_ASSERT(4 == kAsciiStringTag);
   4797   STATIC_ASSERT(kTwoByteStringTag == 0);
   4798   // Find the code object based on the assumptions above.
   4799   __ and_(r0, r0, Operand(kStringEncodingMask));
   4800   __ mov(r3, Operand(r0, ASR, 2), SetCC);
   4801   __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
   4802   __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
   4803 
   4804   // Check that the irregexp code has been generated for the actual string
   4805   // encoding. If it has, the field contains a code object otherwise it contains
   4806   // a smi (code flushing support).
   4807   __ JumpIfSmi(r7, &runtime);
   4808 
   4809   // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
   4810   // r7: code
   4811   // subject: Subject string
   4812   // regexp_data: RegExp data (FixedArray)
   4813   // Load used arguments before starting to push arguments for call to native
   4814   // RegExp code to avoid handling changing stack height.
   4815   __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
   4816   __ mov(r1, Operand(r1, ASR, kSmiTagSize));
   4817 
   4818   // r1: previous index
   4819   // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
   4820   // r7: code
   4821   // subject: Subject string
   4822   // regexp_data: RegExp data (FixedArray)
   4823   // All checks done. Now push arguments for native regexp code.
   4824   __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
   4825 
   4826   // Isolates: note we add an additional parameter here (isolate pointer).
   4827   const int kRegExpExecuteArguments = 8;
   4828   const int kParameterRegisters = 4;
   4829   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
   4830 
   4831   // Stack pointer now points to cell where return address is to be written.
   4832   // Arguments are before that on the stack or in registers.
   4833 
   4834   // Argument 8 (sp[16]): Pass current isolate address.
   4835   __ mov(r0, Operand(ExternalReference::isolate_address()));
   4836   __ str(r0, MemOperand(sp, 4 * kPointerSize));
   4837 
   4838   // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript.
   4839   __ mov(r0, Operand(1));
   4840   __ str(r0, MemOperand(sp, 3 * kPointerSize));
   4841 
   4842   // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area.
   4843   __ mov(r0, Operand(address_of_regexp_stack_memory_address));
   4844   __ ldr(r0, MemOperand(r0, 0));
   4845   __ mov(r2, Operand(address_of_regexp_stack_memory_size));
   4846   __ ldr(r2, MemOperand(r2, 0));
   4847   __ add(r0, r0, Operand(r2));
   4848   __ str(r0, MemOperand(sp, 2 * kPointerSize));
   4849 
   4850   // Argument 5 (sp[4]): static offsets vector buffer.
   4851   __ mov(r0,
   4852          Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
   4853   __ str(r0, MemOperand(sp, 1 * kPointerSize));
   4854 
   4855   // For arguments 4 and 3 get string length, calculate start of string data and
   4856   // calculate the shift of the index (0 for ASCII and 1 for two byte).
   4857   __ add(r8, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
   4858   __ eor(r3, r3, Operand(1));
   4859   // Load the length from the original subject string from the previous stack
   4860   // frame. Therefore we have to use fp, which points exactly to two pointer
   4861   // sizes below the previous sp. (Because creating a new stack frame pushes
   4862   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
   4863   __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
   4864   // If slice offset is not 0, load the length from the original sliced string.
   4865   // Argument 4, r3: End of string data
   4866   // Argument 3, r2: Start of string data
   4867   // Prepare start and end index of the input.
   4868   __ add(r9, r8, Operand(r9, LSL, r3));
   4869   __ add(r2, r9, Operand(r1, LSL, r3));
   4870 
   4871   __ ldr(r8, FieldMemOperand(subject, String::kLengthOffset));
   4872   __ mov(r8, Operand(r8, ASR, kSmiTagSize));
   4873   __ add(r3, r9, Operand(r8, LSL, r3));
   4874 
   4875   // Argument 2 (r1): Previous index.
   4876   // Already there
   4877 
   4878   // Argument 1 (r0): Subject string.
   4879   __ mov(r0, subject);
   4880 
   4881   // Locate the code entry and call it.
   4882   __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
   4883   DirectCEntryStub stub;
   4884   stub.GenerateCall(masm, r7);
   4885 
   4886   __ LeaveExitFrame(false, no_reg);
   4887 
   4888   // r0: result
   4889   // subject: subject string (callee saved)
   4890   // regexp_data: RegExp data (callee saved)
   4891   // last_match_info_elements: Last match info elements (callee saved)
   4892 
   4893   // Check the result.
   4894   Label success;
   4895 
   4896   __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
   4897   __ b(eq, &success);
   4898   Label failure;
   4899   __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
   4900   __ b(eq, &failure);
   4901   __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
   4902   // If not exception it can only be retry. Handle that in the runtime system.
   4903   __ b(ne, &runtime);
   4904   // Result must now be exception. If there is no pending exception already a
   4905   // stack overflow (on the backtrack stack) was detected in RegExp code but
   4906   // haven't created the exception yet. Handle that in the runtime system.
   4907   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   4908   __ mov(r1, Operand(isolate->factory()->the_hole_value()));
   4909   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   4910                                        isolate)));
   4911   __ ldr(r0, MemOperand(r2, 0));
   4912   __ cmp(r0, r1);
   4913   __ b(eq, &runtime);
   4914 
   4915   __ str(r1, MemOperand(r2, 0));  // Clear pending exception.
   4916 
   4917   // Check if the exception is a termination. If so, throw as uncatchable.
   4918   __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
   4919 
   4920   Label termination_exception;
   4921   __ b(eq, &termination_exception);
   4922 
   4923   __ Throw(r0);
   4924 
   4925   __ bind(&termination_exception);
   4926   __ ThrowUncatchable(r0);
   4927 
   4928   __ bind(&failure);
   4929   // For failure and exception return null.
   4930   __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
   4931   __ add(sp, sp, Operand(4 * kPointerSize));
   4932   __ Ret();
   4933 
   4934   // Process the result from the native regexp code.
   4935   __ bind(&success);
   4936   __ ldr(r1,
   4937          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   4938   // Calculate number of capture registers (number_of_captures + 1) * 2.
   4939   STATIC_ASSERT(kSmiTag == 0);
   4940   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   4941   __ add(r1, r1, Operand(2));  // r1 was a smi.
   4942 
   4943   // r1: number of capture registers
   4944   // r4: subject string
   4945   // Store the capture count.
   4946   __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize));  // To smi.
   4947   __ str(r2, FieldMemOperand(last_match_info_elements,
   4948                              RegExpImpl::kLastCaptureCountOffset));
   4949   // Store last subject and last input.
   4950   __ str(subject,
   4951          FieldMemOperand(last_match_info_elements,
   4952                          RegExpImpl::kLastSubjectOffset));
   4953   __ mov(r2, subject);
   4954   __ RecordWriteField(last_match_info_elements,
   4955                       RegExpImpl::kLastSubjectOffset,
   4956                       r2,
   4957                       r7,
   4958                       kLRHasNotBeenSaved,
   4959                       kDontSaveFPRegs);
   4960   __ str(subject,
   4961          FieldMemOperand(last_match_info_elements,
   4962                          RegExpImpl::kLastInputOffset));
   4963   __ RecordWriteField(last_match_info_elements,
   4964                       RegExpImpl::kLastInputOffset,
   4965                       subject,
   4966                       r7,
   4967                       kLRHasNotBeenSaved,
   4968                       kDontSaveFPRegs);
   4969 
   4970   // Get the static offsets vector filled by the native regexp code.
   4971   ExternalReference address_of_static_offsets_vector =
   4972       ExternalReference::address_of_static_offsets_vector(isolate);
   4973   __ mov(r2, Operand(address_of_static_offsets_vector));
   4974 
   4975   // r1: number of capture registers
   4976   // r2: offsets vector
   4977   Label next_capture, done;
   4978   // Capture register counter starts from number of capture registers and
   4979   // counts down until wraping after zero.
   4980   __ add(r0,
   4981          last_match_info_elements,
   4982          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
   4983   __ bind(&next_capture);
   4984   __ sub(r1, r1, Operand(1), SetCC);
   4985   __ b(mi, &done);
   4986   // Read the value from the static offsets vector buffer.
   4987   __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
   4988   // Store the smi value in the last match info.
   4989   __ mov(r3, Operand(r3, LSL, kSmiTagSize));
   4990   __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
   4991   __ jmp(&next_capture);
   4992   __ bind(&done);
   4993 
   4994   // Return last match info.
   4995   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
   4996   __ add(sp, sp, Operand(4 * kPointerSize));
   4997   __ Ret();
   4998 
   4999   // External string.  Short external strings have already been ruled out.
   5000   // r0: scratch
   5001   __ bind(&external_string);
   5002   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
   5003   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
   5004   if (FLAG_debug_code) {
   5005     // Assert that we do not have a cons or slice (indirect strings) here.
   5006     // Sequential strings have already been ruled out.
   5007     __ tst(r0, Operand(kIsIndirectStringMask));
   5008     __ Assert(eq, "external string expected, but not found");
   5009   }
   5010   __ ldr(subject,
   5011          FieldMemOperand(subject, ExternalString::kResourceDataOffset));
   5012   // Move the pointer so that offset-wise, it looks like a sequential string.
   5013   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
   5014   __ sub(subject,
   5015          subject,
   5016          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   5017   __ jmp(&seq_string);
   5018 
   5019   // Do the runtime call to execute the regexp.
   5020   __ bind(&runtime);
   5021   __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
   5022 #endif  // V8_INTERPRETED_REGEXP
   5023 }
   5024 
   5025 
   5026 void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
   5027   const int kMaxInlineLength = 100;
   5028   Label slowcase;
   5029   Label done;
   5030   Factory* factory = masm->isolate()->factory();
   5031 
   5032   __ ldr(r1, MemOperand(sp, kPointerSize * 2));
   5033   STATIC_ASSERT(kSmiTag == 0);
   5034   STATIC_ASSERT(kSmiTagSize == 1);
   5035   __ JumpIfNotSmi(r1, &slowcase);
   5036   __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
   5037   __ b(hi, &slowcase);
   5038   // Smi-tagging is equivalent to multiplying by 2.
   5039   // Allocate RegExpResult followed by FixedArray with size in ebx.
   5040   // JSArray:   [Map][empty properties][Elements][Length-smi][index][input]
   5041   // Elements:  [Map][Length][..elements..]
   5042   // Size of JSArray with two in-object properties and the header of a
   5043   // FixedArray.
   5044   int objects_size =
   5045       (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
   5046   __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
   5047   __ add(r2, r5, Operand(objects_size));
   5048   __ AllocateInNewSpace(
   5049       r2,  // In: Size, in words.
   5050       r0,  // Out: Start of allocation (tagged).
   5051       r3,  // Scratch register.
   5052       r4,  // Scratch register.
   5053       &slowcase,
   5054       static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
   5055   // r0: Start of allocated area, object-tagged.
   5056   // r1: Number of elements in array, as smi.
   5057   // r5: Number of elements, untagged.
   5058 
   5059   // Set JSArray map to global.regexp_result_map().
   5060   // Set empty properties FixedArray.
   5061   // Set elements to point to FixedArray allocated right after the JSArray.
   5062   // Interleave operations for better latency.
   5063   __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
   5064   __ add(r3, r0, Operand(JSRegExpResult::kSize));
   5065   __ mov(r4, Operand(factory->empty_fixed_array()));
   5066   __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
   5067   __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
   5068   __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
   5069   __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
   5070   __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
   5071 
   5072   // Set input, index and length fields from arguments.
   5073   __ ldr(r1, MemOperand(sp, kPointerSize * 0));
   5074   __ ldr(r2, MemOperand(sp, kPointerSize * 1));
   5075   __ ldr(r6, MemOperand(sp, kPointerSize * 2));
   5076   __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
   5077   __ str(r2, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
   5078   __ str(r6, FieldMemOperand(r0, JSArray::kLengthOffset));
   5079 
   5080   // Fill out the elements FixedArray.
   5081   // r0: JSArray, tagged.
   5082   // r3: FixedArray, tagged.
   5083   // r5: Number of elements in array, untagged.
   5084 
   5085   // Set map.
   5086   __ mov(r2, Operand(factory->fixed_array_map()));
   5087   __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
   5088   // Set FixedArray length.
   5089   __ mov(r6, Operand(r5, LSL, kSmiTagSize));
   5090   __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
   5091   // Fill contents of fixed-array with the-hole.
   5092   __ mov(r2, Operand(factory->the_hole_value()));
   5093   __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   5094   // Fill fixed array elements with hole.
   5095   // r0: JSArray, tagged.
   5096   // r2: the hole.
   5097   // r3: Start of elements in FixedArray.
   5098   // r5: Number of elements to fill.
   5099   Label loop;
   5100   __ cmp(r5, Operand(0));
   5101   __ bind(&loop);
   5102   __ b(le, &done);  // Jump if r5 is negative or zero.
   5103   __ sub(r5, r5, Operand(1), SetCC);
   5104   __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
   5105   __ jmp(&loop);
   5106 
   5107   __ bind(&done);
   5108   __ add(sp, sp, Operand(3 * kPointerSize));
   5109   __ Ret();
   5110 
   5111   __ bind(&slowcase);
   5112   __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
   5113 }
   5114 
   5115 
   5116 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   5117   // Cache the called function in a global property cell.  Cache states
   5118   // are uninitialized, monomorphic (indicated by a JSFunction), and
   5119   // megamorphic.
   5120   // r1 : the function to call
   5121   // r2 : cache cell for call target
   5122   Label done;
   5123 
   5124   ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
   5125             masm->isolate()->heap()->undefined_value());
   5126   ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
   5127             masm->isolate()->heap()->the_hole_value());
   5128 
   5129   // Load the cache state into r3.
   5130   __ ldr(r3, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
   5131 
   5132   // A monomorphic cache hit or an already megamorphic state: invoke the
   5133   // function without changing the state.
   5134   __ cmp(r3, r1);
   5135   __ b(eq, &done);
   5136   __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
   5137   __ b(eq, &done);
   5138 
   5139   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   5140   // megamorphic.
   5141   __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
   5142   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   5143   // write-barrier is needed.
   5144   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex, ne);
   5145   __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), ne);
   5146 
   5147   // An uninitialized cache is patched with the function.
   5148   __ str(r1, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), eq);
   5149   // No need for a write barrier here - cells are rescanned.
   5150 
   5151   __ bind(&done);
   5152 }
   5153 
   5154 
   5155 void CallFunctionStub::Generate(MacroAssembler* masm) {
   5156   // r1 : the function to call
   5157   // r2 : cache cell for call target
   5158   Label slow, non_function;
   5159 
   5160   // The receiver might implicitly be the global object. This is
   5161   // indicated by passing the hole as the receiver to the call
   5162   // function stub.
   5163   if (ReceiverMightBeImplicit()) {
   5164     Label call;
   5165     // Get the receiver from the stack.
   5166     // function, receiver [, arguments]
   5167     __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
   5168     // Call as function is indicated with the hole.
   5169     __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
   5170     __ b(ne, &call);
   5171     // Patch the receiver on the stack with the global receiver object.
   5172     __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
   5173     __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
   5174     __ str(r2, MemOperand(sp, argc_ * kPointerSize));
   5175     __ bind(&call);
   5176   }
   5177 
   5178   // Check that the function is really a JavaScript function.
   5179   // r1: pushed function (to be verified)
   5180   __ JumpIfSmi(r1, &non_function);
   5181   // Get the map of the function object.
   5182   __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
   5183   __ b(ne, &slow);
   5184 
   5185   // Fast-case: Invoke the function now.
   5186   // r1: pushed function
   5187   ParameterCount actual(argc_);
   5188 
   5189   if (ReceiverMightBeImplicit()) {
   5190     Label call_as_function;
   5191     __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
   5192     __ b(eq, &call_as_function);
   5193     __ InvokeFunction(r1,
   5194                       actual,
   5195                       JUMP_FUNCTION,
   5196                       NullCallWrapper(),
   5197                       CALL_AS_METHOD);
   5198     __ bind(&call_as_function);
   5199   }
   5200   __ InvokeFunction(r1,
   5201                     actual,
   5202                     JUMP_FUNCTION,
   5203                     NullCallWrapper(),
   5204                     CALL_AS_FUNCTION);
   5205 
   5206   // Slow-case: Non-function called.
   5207   __ bind(&slow);
   5208   // Check for function proxy.
   5209   __ cmp(r2, Operand(JS_FUNCTION_PROXY_TYPE));
   5210   __ b(ne, &non_function);
   5211   __ push(r1);  // put proxy as additional argument
   5212   __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE));
   5213   __ mov(r2, Operand(0, RelocInfo::NONE));
   5214   __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
   5215   __ SetCallKind(r5, CALL_AS_METHOD);
   5216   {
   5217     Handle<Code> adaptor =
   5218       masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
   5219     __ Jump(adaptor, RelocInfo::CODE_TARGET);
   5220   }
   5221 
   5222   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
   5223   // of the original receiver from the call site).
   5224   __ bind(&non_function);
   5225   __ str(r1, MemOperand(sp, argc_ * kPointerSize));
   5226   __ mov(r0, Operand(argc_));  // Set up the number of arguments.
   5227   __ mov(r2, Operand(0, RelocInfo::NONE));
   5228   __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
   5229   __ SetCallKind(r5, CALL_AS_METHOD);
   5230   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   5231           RelocInfo::CODE_TARGET);
   5232 }
   5233 
   5234 
   5235 void CallConstructStub::Generate(MacroAssembler* masm) {
   5236   // r0 : number of arguments
   5237   // r1 : the function to call
   5238   // r2 : cache cell for call target
   5239   Label slow, non_function_call;
   5240 
   5241   // Check that the function is not a smi.
   5242   __ JumpIfSmi(r1, &non_function_call);
   5243   // Check that the function is a JSFunction.
   5244   __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
   5245   __ b(ne, &slow);
   5246 
   5247   if (RecordCallTarget()) {
   5248     GenerateRecordCallTarget(masm);
   5249   }
   5250 
   5251   // Jump to the function-specific construct stub.
   5252   __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
   5253   __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
   5254   __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
   5255 
   5256   // r0: number of arguments
   5257   // r1: called object
   5258   // r3: object type
   5259   Label do_call;
   5260   __ bind(&slow);
   5261   __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
   5262   __ b(ne, &non_function_call);
   5263   __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
   5264   __ jmp(&do_call);
   5265 
   5266   __ bind(&non_function_call);
   5267   __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
   5268   __ bind(&do_call);
   5269   // Set expected number of arguments to zero (not changing r0).
   5270   __ mov(r2, Operand(0, RelocInfo::NONE));
   5271   __ SetCallKind(r5, CALL_AS_METHOD);
   5272   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   5273           RelocInfo::CODE_TARGET);
   5274 }
   5275 
   5276 
   5277 // Unfortunately you have to run without snapshots to see most of these
   5278 // names in the profile since most compare stubs end up in the snapshot.
   5279 void CompareStub::PrintName(StringStream* stream) {
   5280   ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
   5281          (lhs_.is(r1) && rhs_.is(r0)));
   5282   const char* cc_name;
   5283   switch (cc_) {
   5284     case lt: cc_name = "LT"; break;
   5285     case gt: cc_name = "GT"; break;
   5286     case le: cc_name = "LE"; break;
   5287     case ge: cc_name = "GE"; break;
   5288     case eq: cc_name = "EQ"; break;
   5289     case ne: cc_name = "NE"; break;
   5290     default: cc_name = "UnknownCondition"; break;
   5291   }
   5292   bool is_equality = cc_ == eq || cc_ == ne;
   5293   stream->Add("CompareStub_%s", cc_name);
   5294   stream->Add(lhs_.is(r0) ? "_r0" : "_r1");
   5295   stream->Add(rhs_.is(r0) ? "_r0" : "_r1");
   5296   if (strict_ && is_equality) stream->Add("_STRICT");
   5297   if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
   5298   if (!include_number_compare_) stream->Add("_NO_NUMBER");
   5299   if (!include_smi_compare_) stream->Add("_NO_SMI");
   5300 }
   5301 
   5302 
   5303 int CompareStub::MinorKey() {
   5304   // Encode the three parameters in a unique 16 bit value. To avoid duplicate
   5305   // stubs the never NaN NaN condition is only taken into account if the
   5306   // condition is equals.
   5307   ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
   5308   ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
   5309          (lhs_.is(r1) && rhs_.is(r0)));
   5310   return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
   5311          | RegisterField::encode(lhs_.is(r0))
   5312          | StrictField::encode(strict_)
   5313          | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
   5314          | IncludeNumberCompareField::encode(include_number_compare_)
   5315          | IncludeSmiCompareField::encode(include_smi_compare_);
   5316 }
   5317 
   5318 
   5319 // StringCharCodeAtGenerator
   5320 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   5321   Label flat_string;
   5322   Label ascii_string;
   5323   Label got_char_code;
   5324   Label sliced_string;
   5325 
   5326   // If the receiver is a smi trigger the non-string case.
   5327   __ JumpIfSmi(object_, receiver_not_string_);
   5328 
   5329   // Fetch the instance type of the receiver into result register.
   5330   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   5331   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   5332   // If the receiver is not a string trigger the non-string case.
   5333   __ tst(result_, Operand(kIsNotStringMask));
   5334   __ b(ne, receiver_not_string_);
   5335 
   5336   // If the index is non-smi trigger the non-smi case.
   5337   __ JumpIfNotSmi(index_, &index_not_smi_);
   5338   __ bind(&got_smi_index_);
   5339 
   5340   // Check for index out of range.
   5341   __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
   5342   __ cmp(ip, Operand(index_));
   5343   __ b(ls, index_out_of_range_);
   5344 
   5345   __ mov(index_, Operand(index_, ASR, kSmiTagSize));
   5346 
   5347   StringCharLoadGenerator::Generate(masm,
   5348                                     object_,
   5349                                     index_,
   5350                                     result_,
   5351                                     &call_runtime_);
   5352 
   5353   __ mov(result_, Operand(result_, LSL, kSmiTagSize));
   5354   __ bind(&exit_);
   5355 }
   5356 
   5357 
   5358 void StringCharCodeAtGenerator::GenerateSlow(
   5359     MacroAssembler* masm,
   5360     const RuntimeCallHelper& call_helper) {
   5361   __ Abort("Unexpected fallthrough to CharCodeAt slow case");
   5362 
   5363   // Index is not a smi.
   5364   __ bind(&index_not_smi_);
   5365   // If index is a heap number, try converting it to an integer.
   5366   __ CheckMap(index_,
   5367               result_,
   5368               Heap::kHeapNumberMapRootIndex,
   5369               index_not_number_,
   5370               DONT_DO_SMI_CHECK);
   5371   call_helper.BeforeCall(masm);
   5372   __ push(object_);
   5373   __ push(index_);  // Consumed by runtime conversion function.
   5374   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
   5375     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
   5376   } else {
   5377     ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
   5378     // NumberToSmi discards numbers that are not exact integers.
   5379     __ CallRuntime(Runtime::kNumberToSmi, 1);
   5380   }
   5381   // Save the conversion result before the pop instructions below
   5382   // have a chance to overwrite it.
   5383   __ Move(index_, r0);
   5384   __ pop(object_);
   5385   // Reload the instance type.
   5386   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   5387   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   5388   call_helper.AfterCall(masm);
   5389   // If index is still not a smi, it must be out of range.
   5390   __ JumpIfNotSmi(index_, index_out_of_range_);
   5391   // Otherwise, return to the fast path.
   5392   __ jmp(&got_smi_index_);
   5393 
   5394   // Call runtime. We get here when the receiver is a string and the
   5395   // index is a number, but the code of getting the actual character
   5396   // is too complex (e.g., when the string needs to be flattened).
   5397   __ bind(&call_runtime_);
   5398   call_helper.BeforeCall(masm);
   5399   __ mov(index_, Operand(index_, LSL, kSmiTagSize));
   5400   __ Push(object_, index_);
   5401   __ CallRuntime(Runtime::kStringCharCodeAt, 2);
   5402   __ Move(result_, r0);
   5403   call_helper.AfterCall(masm);
   5404   __ jmp(&exit_);
   5405 
   5406   __ Abort("Unexpected fallthrough from CharCodeAt slow case");
   5407 }
   5408 
   5409 
   5410 // -------------------------------------------------------------------------
   5411 // StringCharFromCodeGenerator
   5412 
   5413 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   5414   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   5415   STATIC_ASSERT(kSmiTag == 0);
   5416   STATIC_ASSERT(kSmiShiftSize == 0);
   5417   ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
   5418   __ tst(code_,
   5419          Operand(kSmiTagMask |
   5420                  ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
   5421   __ b(ne, &slow_case_);
   5422 
   5423   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
   5424   // At this point code register contains smi tagged ASCII char code.
   5425   STATIC_ASSERT(kSmiTag == 0);
   5426   __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
   5427   __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
   5428   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
   5429   __ b(eq, &slow_case_);
   5430   __ bind(&exit_);
   5431 }
   5432 
   5433 
   5434 void StringCharFromCodeGenerator::GenerateSlow(
   5435     MacroAssembler* masm,
   5436     const RuntimeCallHelper& call_helper) {
   5437   __ Abort("Unexpected fallthrough to CharFromCode slow case");
   5438 
   5439   __ bind(&slow_case_);
   5440   call_helper.BeforeCall(masm);
   5441   __ push(code_);
   5442   __ CallRuntime(Runtime::kCharFromCode, 1);
   5443   __ Move(result_, r0);
   5444   call_helper.AfterCall(masm);
   5445   __ jmp(&exit_);
   5446 
   5447   __ Abort("Unexpected fallthrough from CharFromCode slow case");
   5448 }
   5449 
   5450 
   5451 // -------------------------------------------------------------------------
   5452 // StringCharAtGenerator
   5453 
   5454 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
   5455   char_code_at_generator_.GenerateFast(masm);
   5456   char_from_code_generator_.GenerateFast(masm);
   5457 }
   5458 
   5459 
   5460 void StringCharAtGenerator::GenerateSlow(
   5461     MacroAssembler* masm,
   5462     const RuntimeCallHelper& call_helper) {
   5463   char_code_at_generator_.GenerateSlow(masm, call_helper);
   5464   char_from_code_generator_.GenerateSlow(masm, call_helper);
   5465 }
   5466 
   5467 
   5468 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   5469                                           Register dest,
   5470                                           Register src,
   5471                                           Register count,
   5472                                           Register scratch,
   5473                                           bool ascii) {
   5474   Label loop;
   5475   Label done;
   5476   // This loop just copies one character at a time, as it is only used for very
   5477   // short strings.
   5478   if (!ascii) {
   5479     __ add(count, count, Operand(count), SetCC);
   5480   } else {
   5481     __ cmp(count, Operand(0, RelocInfo::NONE));
   5482   }
   5483   __ b(eq, &done);
   5484 
   5485   __ bind(&loop);
   5486   __ ldrb(scratch, MemOperand(src, 1, PostIndex));
   5487   // Perform sub between load and dependent store to get the load time to
   5488   // complete.
   5489   __ sub(count, count, Operand(1), SetCC);
   5490   __ strb(scratch, MemOperand(dest, 1, PostIndex));
   5491   // last iteration.
   5492   __ b(gt, &loop);
   5493 
   5494   __ bind(&done);
   5495 }
   5496 
   5497 
   5498 enum CopyCharactersFlags {
   5499   COPY_ASCII = 1,
   5500   DEST_ALWAYS_ALIGNED = 2
   5501 };
   5502 
   5503 
   5504 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
   5505                                               Register dest,
   5506                                               Register src,
   5507                                               Register count,
   5508                                               Register scratch1,
   5509                                               Register scratch2,
   5510                                               Register scratch3,
   5511                                               Register scratch4,
   5512                                               Register scratch5,
   5513                                               int flags) {
   5514   bool ascii = (flags & COPY_ASCII) != 0;
   5515   bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
   5516 
   5517   if (dest_always_aligned && FLAG_debug_code) {
   5518     // Check that destination is actually word aligned if the flag says
   5519     // that it is.
   5520     __ tst(dest, Operand(kPointerAlignmentMask));
   5521     __ Check(eq, "Destination of copy not aligned.");
   5522   }
   5523 
   5524   const int kReadAlignment = 4;
   5525   const int kReadAlignmentMask = kReadAlignment - 1;
   5526   // Ensure that reading an entire aligned word containing the last character
   5527   // of a string will not read outside the allocated area (because we pad up
   5528   // to kObjectAlignment).
   5529   STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
   5530   // Assumes word reads and writes are little endian.
   5531   // Nothing to do for zero characters.
   5532   Label done;
   5533   if (!ascii) {
   5534     __ add(count, count, Operand(count), SetCC);
   5535   } else {
   5536     __ cmp(count, Operand(0, RelocInfo::NONE));
   5537   }
   5538   __ b(eq, &done);
   5539 
   5540   // Assume that you cannot read (or write) unaligned.
   5541   Label byte_loop;
   5542   // Must copy at least eight bytes, otherwise just do it one byte at a time.
   5543   __ cmp(count, Operand(8));
   5544   __ add(count, dest, Operand(count));
   5545   Register limit = count;  // Read until src equals this.
   5546   __ b(lt, &byte_loop);
   5547 
   5548   if (!dest_always_aligned) {
   5549     // Align dest by byte copying. Copies between zero and three bytes.
   5550     __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
   5551     Label dest_aligned;
   5552     __ b(eq, &dest_aligned);
   5553     __ cmp(scratch4, Operand(2));
   5554     __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
   5555     __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
   5556     __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
   5557     __ strb(scratch1, MemOperand(dest, 1, PostIndex));
   5558     __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
   5559     __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
   5560     __ bind(&dest_aligned);
   5561   }
   5562 
   5563   Label simple_loop;
   5564 
   5565   __ sub(scratch4, dest, Operand(src));
   5566   __ and_(scratch4, scratch4, Operand(0x03), SetCC);
   5567   __ b(eq, &simple_loop);
   5568   // Shift register is number of bits in a source word that
   5569   // must be combined with bits in the next source word in order
   5570   // to create a destination word.
   5571 
   5572   // Complex loop for src/dst that are not aligned the same way.
   5573   {
   5574     Label loop;
   5575     __ mov(scratch4, Operand(scratch4, LSL, 3));
   5576     Register left_shift = scratch4;
   5577     __ and_(src, src, Operand(~3));  // Round down to load previous word.
   5578     __ ldr(scratch1, MemOperand(src, 4, PostIndex));
   5579     // Store the "shift" most significant bits of scratch in the least
   5580     // signficant bits (i.e., shift down by (32-shift)).
   5581     __ rsb(scratch2, left_shift, Operand(32));
   5582     Register right_shift = scratch2;
   5583     __ mov(scratch1, Operand(scratch1, LSR, right_shift));
   5584 
   5585     __ bind(&loop);
   5586     __ ldr(scratch3, MemOperand(src, 4, PostIndex));
   5587     __ sub(scratch5, limit, Operand(dest));
   5588     __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
   5589     __ str(scratch1, MemOperand(dest, 4, PostIndex));
   5590     __ mov(scratch1, Operand(scratch3, LSR, right_shift));
   5591     // Loop if four or more bytes left to copy.
   5592     // Compare to eight, because we did the subtract before increasing dst.
   5593     __ sub(scratch5, scratch5, Operand(8), SetCC);
   5594     __ b(ge, &loop);
   5595   }
   5596   // There is now between zero and three bytes left to copy (negative that
   5597   // number is in scratch5), and between one and three bytes already read into
   5598   // scratch1 (eight times that number in scratch4). We may have read past
   5599   // the end of the string, but because objects are aligned, we have not read
   5600   // past the end of the object.
   5601   // Find the minimum of remaining characters to move and preloaded characters
   5602   // and write those as bytes.
   5603   __ add(scratch5, scratch5, Operand(4), SetCC);
   5604   __ b(eq, &done);
   5605   __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
   5606   // Move minimum of bytes read and bytes left to copy to scratch4.
   5607   __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
   5608   // Between one and three (value in scratch5) characters already read into
   5609   // scratch ready to write.
   5610   __ cmp(scratch5, Operand(2));
   5611   __ strb(scratch1, MemOperand(dest, 1, PostIndex));
   5612   __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
   5613   __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
   5614   __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
   5615   __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
   5616   // Copy any remaining bytes.
   5617   __ b(&byte_loop);
   5618 
   5619   // Simple loop.
   5620   // Copy words from src to dst, until less than four bytes left.
   5621   // Both src and dest are word aligned.
   5622   __ bind(&simple_loop);
   5623   {
   5624     Label loop;
   5625     __ bind(&loop);
   5626     __ ldr(scratch1, MemOperand(src, 4, PostIndex));
   5627     __ sub(scratch3, limit, Operand(dest));
   5628     __ str(scratch1, MemOperand(dest, 4, PostIndex));
   5629     // Compare to 8, not 4, because we do the substraction before increasing
   5630     // dest.
   5631     __ cmp(scratch3, Operand(8));
   5632     __ b(ge, &loop);
   5633   }
   5634 
   5635   // Copy bytes from src to dst until dst hits limit.
   5636   __ bind(&byte_loop);
   5637   __ cmp(dest, Operand(limit));
   5638   __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
   5639   __ b(ge, &done);
   5640   __ strb(scratch1, MemOperand(dest, 1, PostIndex));
   5641   __ b(&byte_loop);
   5642 
   5643   __ bind(&done);
   5644 }
   5645 
   5646 
   5647 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
   5648                                                         Register c1,
   5649                                                         Register c2,
   5650                                                         Register scratch1,
   5651                                                         Register scratch2,
   5652                                                         Register scratch3,
   5653                                                         Register scratch4,
   5654                                                         Register scratch5,
   5655                                                         Label* not_found) {
   5656   // Register scratch3 is the general scratch register in this function.
   5657   Register scratch = scratch3;
   5658 
   5659   // Make sure that both characters are not digits as such strings has a
   5660   // different hash algorithm. Don't try to look for these in the symbol table.
   5661   Label not_array_index;
   5662   __ sub(scratch, c1, Operand(static_cast<int>('0')));
   5663   __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
   5664   __ b(hi, &not_array_index);
   5665   __ sub(scratch, c2, Operand(static_cast<int>('0')));
   5666   __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
   5667 
   5668   // If check failed combine both characters into single halfword.
   5669   // This is required by the contract of the method: code at the
   5670   // not_found branch expects this combination in c1 register
   5671   __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
   5672   __ b(ls, not_found);
   5673 
   5674   __ bind(&not_array_index);
   5675   // Calculate the two character string hash.
   5676   Register hash = scratch1;
   5677   StringHelper::GenerateHashInit(masm, hash, c1);
   5678   StringHelper::GenerateHashAddCharacter(masm, hash, c2);
   5679   StringHelper::GenerateHashGetHash(masm, hash);
   5680 
   5681   // Collect the two characters in a register.
   5682   Register chars = c1;
   5683   __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
   5684 
   5685   // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
   5686   // hash:  hash of two character string.
   5687 
   5688   // Load symbol table
   5689   // Load address of first element of the symbol table.
   5690   Register symbol_table = c2;
   5691   __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
   5692 
   5693   Register undefined = scratch4;
   5694   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
   5695 
   5696   // Calculate capacity mask from the symbol table capacity.
   5697   Register mask = scratch2;
   5698   __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
   5699   __ mov(mask, Operand(mask, ASR, 1));
   5700   __ sub(mask, mask, Operand(1));
   5701 
   5702   // Calculate untagged address of the first element of the symbol table.
   5703   Register first_symbol_table_element = symbol_table;
   5704   __ add(first_symbol_table_element, symbol_table,
   5705          Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
   5706 
   5707   // Registers
   5708   // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
   5709   // hash:  hash of two character string
   5710   // mask:  capacity mask
   5711   // first_symbol_table_element: address of the first element of
   5712   //                             the symbol table
   5713   // undefined: the undefined object
   5714   // scratch: -
   5715 
   5716   // Perform a number of probes in the symbol table.
   5717   const int kProbes = 4;
   5718   Label found_in_symbol_table;
   5719   Label next_probe[kProbes];
   5720   Register candidate = scratch5;  // Scratch register contains candidate.
   5721   for (int i = 0; i < kProbes; i++) {
   5722     // Calculate entry in symbol table.
   5723     if (i > 0) {
   5724       __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
   5725     } else {
   5726       __ mov(candidate, hash);
   5727     }
   5728 
   5729     __ and_(candidate, candidate, Operand(mask));
   5730 
   5731     // Load the entry from the symble table.
   5732     STATIC_ASSERT(SymbolTable::kEntrySize == 1);
   5733     __ ldr(candidate,
   5734            MemOperand(first_symbol_table_element,
   5735                       candidate,
   5736                       LSL,
   5737                       kPointerSizeLog2));
   5738 
   5739     // If entry is undefined no string with this hash can be found.
   5740     Label is_string;
   5741     __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
   5742     __ b(ne, &is_string);
   5743 
   5744     __ cmp(undefined, candidate);
   5745     __ b(eq, not_found);
   5746     // Must be the hole (deleted entry).
   5747     if (FLAG_debug_code) {
   5748       __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
   5749       __ cmp(ip, candidate);
   5750       __ Assert(eq, "oddball in symbol table is not undefined or the hole");
   5751     }
   5752     __ jmp(&next_probe[i]);
   5753 
   5754     __ bind(&is_string);
   5755 
   5756     // Check that the candidate is a non-external ASCII string.  The instance
   5757     // type is still in the scratch register from the CompareObjectType
   5758     // operation.
   5759     __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
   5760 
   5761     // If length is not 2 the string is not a candidate.
   5762     __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
   5763     __ cmp(scratch, Operand(Smi::FromInt(2)));
   5764     __ b(ne, &next_probe[i]);
   5765 
   5766     // Check if the two characters match.
   5767     // Assumes that word load is little endian.
   5768     __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
   5769     __ cmp(chars, scratch);
   5770     __ b(eq, &found_in_symbol_table);
   5771     __ bind(&next_probe[i]);
   5772   }
   5773 
   5774   // No matching 2 character string found by probing.
   5775   __ jmp(not_found);
   5776 
   5777   // Scratch register contains result when we fall through to here.
   5778   Register result = candidate;
   5779   __ bind(&found_in_symbol_table);
   5780   __ Move(r0, result);
   5781 }
   5782 
   5783 
   5784 void StringHelper::GenerateHashInit(MacroAssembler* masm,
   5785                                     Register hash,
   5786                                     Register character) {
   5787   // hash = character + (character << 10);
   5788   __ LoadRoot(hash, Heap::kHashSeedRootIndex);
   5789   // Untag smi seed and add the character.
   5790   __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
   5791   // hash += hash << 10;
   5792   __ add(hash, hash, Operand(hash, LSL, 10));
   5793   // hash ^= hash >> 6;
   5794   __ eor(hash, hash, Operand(hash, LSR, 6));
   5795 }
   5796 
   5797 
   5798 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
   5799                                             Register hash,
   5800                                             Register character) {
   5801   // hash += character;
   5802   __ add(hash, hash, Operand(character));
   5803   // hash += hash << 10;
   5804   __ add(hash, hash, Operand(hash, LSL, 10));
   5805   // hash ^= hash >> 6;
   5806   __ eor(hash, hash, Operand(hash, LSR, 6));
   5807 }
   5808 
   5809 
   5810 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
   5811                                        Register hash) {
   5812   // hash += hash << 3;
   5813   __ add(hash, hash, Operand(hash, LSL, 3));
   5814   // hash ^= hash >> 11;
   5815   __ eor(hash, hash, Operand(hash, LSR, 11));
   5816   // hash += hash << 15;
   5817   __ add(hash, hash, Operand(hash, LSL, 15));
   5818 
   5819   __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
   5820 
   5821   // if (hash == 0) hash = 27;
   5822   __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
   5823 }
   5824 
   5825 
   5826 void SubStringStub::Generate(MacroAssembler* masm) {
   5827   Label runtime;
   5828 
   5829   // Stack frame on entry.
   5830   //  lr: return address
   5831   //  sp[0]: to
   5832   //  sp[4]: from
   5833   //  sp[8]: string
   5834 
   5835   // This stub is called from the native-call %_SubString(...), so
   5836   // nothing can be assumed about the arguments. It is tested that:
   5837   //  "string" is a sequential string,
   5838   //  both "from" and "to" are smis, and
   5839   //  0 <= from <= to <= string.length.
   5840   // If any of these assumptions fail, we call the runtime system.
   5841 
   5842   const int kToOffset = 0 * kPointerSize;
   5843   const int kFromOffset = 1 * kPointerSize;
   5844   const int kStringOffset = 2 * kPointerSize;
   5845 
   5846   __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
   5847   STATIC_ASSERT(kFromOffset == kToOffset + 4);
   5848   STATIC_ASSERT(kSmiTag == 0);
   5849   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   5850 
   5851   // I.e., arithmetic shift right by one un-smi-tags.
   5852   __ mov(r2, Operand(r2, ASR, 1), SetCC);
   5853   __ mov(r3, Operand(r3, ASR, 1), SetCC, cc);
   5854   // If either to or from had the smi tag bit set, then carry is set now.
   5855   __ b(cs, &runtime);  // Either "from" or "to" is not a smi.
   5856   // We want to bailout to runtime here if From is negative.  In that case, the
   5857   // next instruction is not executed and we fall through to bailing out to
   5858   // runtime.  pl is the opposite of mi.
   5859   // Both r2 and r3 are untagged integers.
   5860   __ sub(r2, r2, Operand(r3), SetCC, pl);
   5861   __ b(mi, &runtime);  // Fail if from > to.
   5862 
   5863   // Make sure first argument is a string.
   5864   __ ldr(r0, MemOperand(sp, kStringOffset));
   5865   STATIC_ASSERT(kSmiTag == 0);
   5866   __ JumpIfSmi(r0, &runtime);
   5867   Condition is_string = masm->IsObjectStringType(r0, r1);
   5868   __ b(NegateCondition(is_string), &runtime);
   5869 
   5870   // Short-cut for the case of trivial substring.
   5871   Label return_r0;
   5872   // r0: original string
   5873   // r2: result string length
   5874   __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
   5875   __ cmp(r2, Operand(r4, ASR, 1));
   5876   __ b(eq, &return_r0);
   5877 
   5878   Label result_longer_than_two;
   5879   // Check for special case of two character ASCII string, in which case
   5880   // we do a lookup in the symbol table first.
   5881   __ cmp(r2, Operand(2));
   5882   __ b(gt, &result_longer_than_two);
   5883   __ b(lt, &runtime);
   5884 
   5885   __ JumpIfInstanceTypeIsNotSequentialAscii(r1, r1, &runtime);
   5886 
   5887   // Get the two characters forming the sub string.
   5888   __ add(r0, r0, Operand(r3));
   5889   __ ldrb(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
   5890   __ ldrb(r4, FieldMemOperand(r0, SeqAsciiString::kHeaderSize + 1));
   5891 
   5892   // Try to lookup two character string in symbol table.
   5893   Label make_two_character_string;
   5894   StringHelper::GenerateTwoCharacterSymbolTableProbe(
   5895       masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
   5896   __ jmp(&return_r0);
   5897 
   5898   // r2: result string length.
   5899   // r3: two characters combined into halfword in little endian byte order.
   5900   __ bind(&make_two_character_string);
   5901   __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
   5902   __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
   5903   __ jmp(&return_r0);
   5904 
   5905   __ bind(&result_longer_than_two);
   5906   // Deal with different string types: update the index if necessary
   5907   // and put the underlying string into r5.
   5908   // r0: original string
   5909   // r1: instance type
   5910   // r2: length
   5911   // r3: from index (untagged)
   5912   Label underlying_unpacked, sliced_string, seq_or_external_string;
   5913   // If the string is not indirect, it can only be sequential or external.
   5914   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   5915   STATIC_ASSERT(kIsIndirectStringMask != 0);
   5916   __ tst(r1, Operand(kIsIndirectStringMask));
   5917   __ b(eq, &seq_or_external_string);
   5918 
   5919   __ tst(r1, Operand(kSlicedNotConsMask));
   5920   __ b(ne, &sliced_string);
   5921   // Cons string.  Check whether it is flat, then fetch first part.
   5922   __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
   5923   __ CompareRoot(r5, Heap::kEmptyStringRootIndex);
   5924   __ b(ne, &runtime);
   5925   __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
   5926   // Update instance type.
   5927   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
   5928   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
   5929   __ jmp(&underlying_unpacked);
   5930 
   5931   __ bind(&sliced_string);
   5932   // Sliced string.  Fetch parent and correct start index by offset.
   5933   __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
   5934   __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
   5935   __ add(r3, r3, Operand(r4, ASR, 1));  // Add offset to index.
   5936   // Update instance type.
   5937   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
   5938   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
   5939   __ jmp(&underlying_unpacked);
   5940 
   5941   __ bind(&seq_or_external_string);
   5942   // Sequential or external string.  Just move string to the expected register.
   5943   __ mov(r5, r0);
   5944 
   5945   __ bind(&underlying_unpacked);
   5946 
   5947   if (FLAG_string_slices) {
   5948     Label copy_routine;
   5949     // r5: underlying subject string
   5950     // r1: instance type of underlying subject string
   5951     // r2: length
   5952     // r3: adjusted start index (untagged)
   5953     __ cmp(r2, Operand(SlicedString::kMinLength));
   5954     // Short slice.  Copy instead of slicing.
   5955     __ b(lt, &copy_routine);
   5956     // Allocate new sliced string.  At this point we do not reload the instance
   5957     // type including the string encoding because we simply rely on the info
   5958     // provided by the original string.  It does not matter if the original
   5959     // string's encoding is wrong because we always have to recheck encoding of
   5960     // the newly created string's parent anyways due to externalized strings.
   5961     Label two_byte_slice, set_slice_header;
   5962     STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
   5963     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   5964     __ tst(r1, Operand(kStringEncodingMask));
   5965     __ b(eq, &two_byte_slice);
   5966     __ AllocateAsciiSlicedString(r0, r2, r6, r7, &runtime);
   5967     __ jmp(&set_slice_header);
   5968     __ bind(&two_byte_slice);
   5969     __ AllocateTwoByteSlicedString(r0, r2, r6, r7, &runtime);
   5970     __ bind(&set_slice_header);
   5971     __ mov(r3, Operand(r3, LSL, 1));
   5972     __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
   5973     __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
   5974     __ jmp(&return_r0);
   5975 
   5976     __ bind(&copy_routine);
   5977   }
   5978 
   5979   // r5: underlying subject string
   5980   // r1: instance type of underlying subject string
   5981   // r2: length
   5982   // r3: adjusted start index (untagged)
   5983   Label two_byte_sequential, sequential_string, allocate_result;
   5984   STATIC_ASSERT(kExternalStringTag != 0);
   5985   STATIC_ASSERT(kSeqStringTag == 0);
   5986   __ tst(r1, Operand(kExternalStringTag));
   5987   __ b(eq, &sequential_string);
   5988 
   5989   // Handle external string.
   5990   // Rule out short external strings.
   5991   STATIC_CHECK(kShortExternalStringTag != 0);
   5992   __ tst(r1, Operand(kShortExternalStringTag));
   5993   __ b(ne, &runtime);
   5994   __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
   5995   // r5 already points to the first character of underlying string.
   5996   __ jmp(&allocate_result);
   5997 
   5998   __ bind(&sequential_string);
   5999   // Locate first character of underlying subject string.
   6000   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
   6001   __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
   6002 
   6003   __ bind(&allocate_result);
   6004   // Sequential acii string.  Allocate the result.
   6005   STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
   6006   __ tst(r1, Operand(kStringEncodingMask));
   6007   __ b(eq, &two_byte_sequential);
   6008 
   6009   // Allocate and copy the resulting ASCII string.
   6010   __ AllocateAsciiString(r0, r2, r4, r6, r7, &runtime);
   6011 
   6012   // Locate first character of substring to copy.
   6013   __ add(r5, r5, r3);
   6014   // Locate first character of result.
   6015   __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
   6016 
   6017   // r0: result string
   6018   // r1: first character of result string
   6019   // r2: result string length
   6020   // r5: first character of substring to copy
   6021   STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
   6022   StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
   6023                                            COPY_ASCII | DEST_ALWAYS_ALIGNED);
   6024   __ jmp(&return_r0);
   6025 
   6026   // Allocate and copy the resulting two-byte string.
   6027   __ bind(&two_byte_sequential);
   6028   __ AllocateTwoByteString(r0, r2, r4, r6, r7, &runtime);
   6029 
   6030   // Locate first character of substring to copy.
   6031   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   6032   __ add(r5, r5, Operand(r3, LSL, 1));
   6033   // Locate first character of result.
   6034   __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   6035 
   6036   // r0: result string.
   6037   // r1: first character of result.
   6038   // r2: result length.
   6039   // r5: first character of substring to copy.
   6040   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   6041   StringHelper::GenerateCopyCharactersLong(
   6042       masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
   6043 
   6044   __ bind(&return_r0);
   6045   Counters* counters = masm->isolate()->counters();
   6046   __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
   6047   __ add(sp, sp, Operand(3 * kPointerSize));
   6048   __ Ret();
   6049 
   6050   // Just jump to runtime to create the sub string.
   6051   __ bind(&runtime);
   6052   __ TailCallRuntime(Runtime::kSubString, 3, 1);
   6053 }
   6054 
   6055 
   6056 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
   6057                                                       Register left,
   6058                                                       Register right,
   6059                                                       Register scratch1,
   6060                                                       Register scratch2,
   6061                                                       Register scratch3) {
   6062   Register length = scratch1;
   6063 
   6064   // Compare lengths.
   6065   Label strings_not_equal, check_zero_length;
   6066   __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
   6067   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
   6068   __ cmp(length, scratch2);
   6069   __ b(eq, &check_zero_length);
   6070   __ bind(&strings_not_equal);
   6071   __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
   6072   __ Ret();
   6073 
   6074   // Check if the length is zero.
   6075   Label compare_chars;
   6076   __ bind(&check_zero_length);
   6077   STATIC_ASSERT(kSmiTag == 0);
   6078   __ cmp(length, Operand(0));
   6079   __ b(ne, &compare_chars);
   6080   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
   6081   __ Ret();
   6082 
   6083   // Compare characters.
   6084   __ bind(&compare_chars);
   6085   GenerateAsciiCharsCompareLoop(masm,
   6086                                 left, right, length, scratch2, scratch3,
   6087                                 &strings_not_equal);
   6088 
   6089   // Characters are equal.
   6090   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
   6091   __ Ret();
   6092 }
   6093 
   6094 
   6095 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
   6096                                                         Register left,
   6097                                                         Register right,
   6098                                                         Register scratch1,
   6099                                                         Register scratch2,
   6100                                                         Register scratch3,
   6101                                                         Register scratch4) {
   6102   Label result_not_equal, compare_lengths;
   6103   // Find minimum length and length difference.
   6104   __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
   6105   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
   6106   __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
   6107   Register length_delta = scratch3;
   6108   __ mov(scratch1, scratch2, LeaveCC, gt);
   6109   Register min_length = scratch1;
   6110   STATIC_ASSERT(kSmiTag == 0);
   6111   __ cmp(min_length, Operand(0));
   6112   __ b(eq, &compare_lengths);
   6113 
   6114   // Compare loop.
   6115   GenerateAsciiCharsCompareLoop(masm,
   6116                                 left, right, min_length, scratch2, scratch4,
   6117                                 &result_not_equal);
   6118 
   6119   // Compare lengths - strings up to min-length are equal.
   6120   __ bind(&compare_lengths);
   6121   ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
   6122   // Use length_delta as result if it's zero.
   6123   __ mov(r0, Operand(length_delta), SetCC);
   6124   __ bind(&result_not_equal);
   6125   // Conditionally update the result based either on length_delta or
   6126   // the last comparion performed in the loop above.
   6127   __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
   6128   __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
   6129   __ Ret();
   6130 }
   6131 
   6132 
   6133 void StringCompareStub::GenerateAsciiCharsCompareLoop(
   6134     MacroAssembler* masm,
   6135     Register left,
   6136     Register right,
   6137     Register length,
   6138     Register scratch1,
   6139     Register scratch2,
   6140     Label* chars_not_equal) {
   6141   // Change index to run from -length to -1 by adding length to string
   6142   // start. This means that loop ends when index reaches zero, which
   6143   // doesn't need an additional compare.
   6144   __ SmiUntag(length);
   6145   __ add(scratch1, length,
   6146          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
   6147   __ add(left, left, Operand(scratch1));
   6148   __ add(right, right, Operand(scratch1));
   6149   __ rsb(length, length, Operand::Zero());
   6150   Register index = length;  // index = -length;
   6151 
   6152   // Compare loop.
   6153   Label loop;
   6154   __ bind(&loop);
   6155   __ ldrb(scratch1, MemOperand(left, index));
   6156   __ ldrb(scratch2, MemOperand(right, index));
   6157   __ cmp(scratch1, scratch2);
   6158   __ b(ne, chars_not_equal);
   6159   __ add(index, index, Operand(1), SetCC);
   6160   __ b(ne, &loop);
   6161 }
   6162 
   6163 
   6164 void StringCompareStub::Generate(MacroAssembler* masm) {
   6165   Label runtime;
   6166 
   6167   Counters* counters = masm->isolate()->counters();
   6168 
   6169   // Stack frame on entry.
   6170   //  sp[0]: right string
   6171   //  sp[4]: left string
   6172   __ Ldrd(r0 , r1, MemOperand(sp));  // Load right in r0, left in r1.
   6173 
   6174   Label not_same;
   6175   __ cmp(r0, r1);
   6176   __ b(ne, &not_same);
   6177   STATIC_ASSERT(EQUAL == 0);
   6178   STATIC_ASSERT(kSmiTag == 0);
   6179   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
   6180   __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
   6181   __ add(sp, sp, Operand(2 * kPointerSize));
   6182   __ Ret();
   6183 
   6184   __ bind(&not_same);
   6185 
   6186   // Check that both objects are sequential ASCII strings.
   6187   __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
   6188 
   6189   // Compare flat ASCII strings natively. Remove arguments from stack first.
   6190   __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
   6191   __ add(sp, sp, Operand(2 * kPointerSize));
   6192   GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
   6193 
   6194   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
   6195   // tagged as a small integer.
   6196   __ bind(&runtime);
   6197   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   6198 }
   6199 
   6200 
   6201 void StringAddStub::Generate(MacroAssembler* masm) {
   6202   Label call_runtime, call_builtin;
   6203   Builtins::JavaScript builtin_id = Builtins::ADD;
   6204 
   6205   Counters* counters = masm->isolate()->counters();
   6206 
   6207   // Stack on entry:
   6208   // sp[0]: second argument (right).
   6209   // sp[4]: first argument (left).
   6210 
   6211   // Load the two arguments.
   6212   __ ldr(r0, MemOperand(sp, 1 * kPointerSize));  // First argument.
   6213   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));  // Second argument.
   6214 
   6215   // Make sure that both arguments are strings if not known in advance.
   6216   if (flags_ == NO_STRING_ADD_FLAGS) {
   6217     __ JumpIfEitherSmi(r0, r1, &call_runtime);
   6218     // Load instance types.
   6219     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
   6220     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
   6221     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
   6222     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
   6223     STATIC_ASSERT(kStringTag == 0);
   6224     // If either is not a string, go to runtime.
   6225     __ tst(r4, Operand(kIsNotStringMask));
   6226     __ tst(r5, Operand(kIsNotStringMask), eq);
   6227     __ b(ne, &call_runtime);
   6228   } else {
   6229     // Here at least one of the arguments is definitely a string.
   6230     // We convert the one that is not known to be a string.
   6231     if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
   6232       ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
   6233       GenerateConvertArgument(
   6234           masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
   6235       builtin_id = Builtins::STRING_ADD_RIGHT;
   6236     } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
   6237       ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
   6238       GenerateConvertArgument(
   6239           masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
   6240       builtin_id = Builtins::STRING_ADD_LEFT;
   6241     }
   6242   }
   6243 
   6244   // Both arguments are strings.
   6245   // r0: first string
   6246   // r1: second string
   6247   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
   6248   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
   6249   {
   6250     Label strings_not_empty;
   6251     // Check if either of the strings are empty. In that case return the other.
   6252     __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
   6253     __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
   6254     STATIC_ASSERT(kSmiTag == 0);
   6255     __ cmp(r2, Operand(Smi::FromInt(0)));  // Test if first string is empty.
   6256     __ mov(r0, Operand(r1), LeaveCC, eq);  // If first is empty, return second.
   6257     STATIC_ASSERT(kSmiTag == 0);
   6258      // Else test if second string is empty.
   6259     __ cmp(r3, Operand(Smi::FromInt(0)), ne);
   6260     __ b(ne, &strings_not_empty);  // If either string was empty, return r0.
   6261 
   6262     __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
   6263     __ add(sp, sp, Operand(2 * kPointerSize));
   6264     __ Ret();
   6265 
   6266     __ bind(&strings_not_empty);
   6267   }
   6268 
   6269   __ mov(r2, Operand(r2, ASR, kSmiTagSize));
   6270   __ mov(r3, Operand(r3, ASR, kSmiTagSize));
   6271   // Both strings are non-empty.
   6272   // r0: first string
   6273   // r1: second string
   6274   // r2: length of first string
   6275   // r3: length of second string
   6276   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
   6277   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
   6278   // Look at the length of the result of adding the two strings.
   6279   Label string_add_flat_result, longer_than_two;
   6280   // Adding two lengths can't overflow.
   6281   STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
   6282   __ add(r6, r2, Operand(r3));
   6283   // Use the symbol table when adding two one character strings, as it
   6284   // helps later optimizations to return a symbol here.
   6285   __ cmp(r6, Operand(2));
   6286   __ b(ne, &longer_than_two);
   6287 
   6288   // Check that both strings are non-external ASCII strings.
   6289   if (flags_ != NO_STRING_ADD_FLAGS) {
   6290     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
   6291     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
   6292     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
   6293     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
   6294   }
   6295   __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
   6296                                                   &call_runtime);
   6297 
   6298   // Get the two characters forming the sub string.
   6299   __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
   6300   __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
   6301 
   6302   // Try to lookup two character string in symbol table. If it is not found
   6303   // just allocate a new one.
   6304   Label make_two_character_string;
   6305   StringHelper::GenerateTwoCharacterSymbolTableProbe(
   6306       masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
   6307   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
   6308   __ add(sp, sp, Operand(2 * kPointerSize));
   6309   __ Ret();
   6310 
   6311   __ bind(&make_two_character_string);
   6312   // Resulting string has length 2 and first chars of two strings
   6313   // are combined into single halfword in r2 register.
   6314   // So we can fill resulting string without two loops by a single
   6315   // halfword store instruction (which assumes that processor is
   6316   // in a little endian mode)
   6317   __ mov(r6, Operand(2));
   6318   __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
   6319   __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
   6320   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
   6321   __ add(sp, sp, Operand(2 * kPointerSize));
   6322   __ Ret();
   6323 
   6324   __ bind(&longer_than_two);
   6325   // Check if resulting string will be flat.
   6326   __ cmp(r6, Operand(ConsString::kMinLength));
   6327   __ b(lt, &string_add_flat_result);
   6328   // Handle exceptionally long strings in the runtime system.
   6329   STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
   6330   ASSERT(IsPowerOf2(String::kMaxLength + 1));
   6331   // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
   6332   __ cmp(r6, Operand(String::kMaxLength + 1));
   6333   __ b(hs, &call_runtime);
   6334 
   6335   // If result is not supposed to be flat, allocate a cons string object.
   6336   // If both strings are ASCII the result is an ASCII cons string.
   6337   if (flags_ != NO_STRING_ADD_FLAGS) {
   6338     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
   6339     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
   6340     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
   6341     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
   6342   }
   6343   Label non_ascii, allocated, ascii_data;
   6344   STATIC_ASSERT(kTwoByteStringTag == 0);
   6345   __ tst(r4, Operand(kStringEncodingMask));
   6346   __ tst(r5, Operand(kStringEncodingMask), ne);
   6347   __ b(eq, &non_ascii);
   6348 
   6349   // Allocate an ASCII cons string.
   6350   __ bind(&ascii_data);
   6351   __ AllocateAsciiConsString(r7, r6, r4, r5, &call_runtime);
   6352   __ bind(&allocated);
   6353   // Fill the fields of the cons string.
   6354   __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
   6355   __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
   6356   __ mov(r0, Operand(r7));
   6357   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
   6358   __ add(sp, sp, Operand(2 * kPointerSize));
   6359   __ Ret();
   6360 
   6361   __ bind(&non_ascii);
   6362   // At least one of the strings is two-byte. Check whether it happens
   6363   // to contain only ASCII characters.
   6364   // r4: first instance type.
   6365   // r5: second instance type.
   6366   __ tst(r4, Operand(kAsciiDataHintMask));
   6367   __ tst(r5, Operand(kAsciiDataHintMask), ne);
   6368   __ b(ne, &ascii_data);
   6369   __ eor(r4, r4, Operand(r5));
   6370   STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
   6371   __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
   6372   __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
   6373   __ b(eq, &ascii_data);
   6374 
   6375   // Allocate a two byte cons string.
   6376   __ AllocateTwoByteConsString(r7, r6, r4, r5, &call_runtime);
   6377   __ jmp(&allocated);
   6378 
   6379   // We cannot encounter sliced strings or cons strings here since:
   6380   STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
   6381   // Handle creating a flat result from either external or sequential strings.
   6382   // Locate the first characters' locations.
   6383   // r0: first string
   6384   // r1: second string
   6385   // r2: length of first string
   6386   // r3: length of second string
   6387   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
   6388   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
   6389   // r6: sum of lengths.
   6390   Label first_prepared, second_prepared;
   6391   __ bind(&string_add_flat_result);
   6392   if (flags_ != NO_STRING_ADD_FLAGS) {
   6393     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
   6394     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
   6395     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
   6396     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
   6397   }
   6398 
   6399   // Check whether both strings have same encoding
   6400   __ eor(r7, r4, Operand(r5));
   6401   __ tst(r7, Operand(kStringEncodingMask));
   6402   __ b(ne, &call_runtime);
   6403 
   6404   STATIC_ASSERT(kSeqStringTag == 0);
   6405   __ tst(r4, Operand(kStringRepresentationMask));
   6406   STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
   6407   __ add(r7,
   6408          r0,
   6409          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag),
   6410          LeaveCC,
   6411          eq);
   6412   __ b(eq, &first_prepared);
   6413   // External string: rule out short external string and load string resource.
   6414   STATIC_ASSERT(kShortExternalStringTag != 0);
   6415   __ tst(r4, Operand(kShortExternalStringMask));
   6416   __ b(ne, &call_runtime);
   6417   __ ldr(r7, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
   6418   __ bind(&first_prepared);
   6419 
   6420   STATIC_ASSERT(kSeqStringTag == 0);
   6421   __ tst(r5, Operand(kStringRepresentationMask));
   6422   STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
   6423   __ add(r1,
   6424          r1,
   6425          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag),
   6426          LeaveCC,
   6427          eq);
   6428   __ b(eq, &second_prepared);
   6429   // External string: rule out short external string and load string resource.
   6430   STATIC_ASSERT(kShortExternalStringTag != 0);
   6431   __ tst(r5, Operand(kShortExternalStringMask));
   6432   __ b(ne, &call_runtime);
   6433   __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset));
   6434   __ bind(&second_prepared);
   6435 
   6436   Label non_ascii_string_add_flat_result;
   6437   // r7: first character of first string
   6438   // r1: first character of second string
   6439   // r2: length of first string.
   6440   // r3: length of second string.
   6441   // r6: sum of lengths.
   6442   // Both strings have the same encoding.
   6443   STATIC_ASSERT(kTwoByteStringTag == 0);
   6444   __ tst(r5, Operand(kStringEncodingMask));
   6445   __ b(eq, &non_ascii_string_add_flat_result);
   6446 
   6447   __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
   6448   __ add(r6, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
   6449   // r0: result string.
   6450   // r7: first character of first string.
   6451   // r1: first character of second string.
   6452   // r2: length of first string.
   6453   // r3: length of second string.
   6454   // r6: first character of result.
   6455   StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, true);
   6456   // r6: next character of result.
   6457   StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
   6458   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
   6459   __ add(sp, sp, Operand(2 * kPointerSize));
   6460   __ Ret();
   6461 
   6462   __ bind(&non_ascii_string_add_flat_result);
   6463   __ AllocateTwoByteString(r0, r6, r4, r5, r9, &call_runtime);
   6464   __ add(r6, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   6465   // r0: result string.
   6466   // r7: first character of first string.
   6467   // r1: first character of second string.
   6468   // r2: length of first string.
   6469   // r3: length of second string.
   6470   // r6: first character of result.
   6471   StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, false);
   6472   // r6: next character of result.
   6473   StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
   6474   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
   6475   __ add(sp, sp, Operand(2 * kPointerSize));
   6476   __ Ret();
   6477 
   6478   // Just jump to runtime to add the two strings.
   6479   __ bind(&call_runtime);
   6480   __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
   6481 
   6482   if (call_builtin.is_linked()) {
   6483     __ bind(&call_builtin);
   6484     __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
   6485   }
   6486 }
   6487 
   6488 
   6489 void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
   6490                                             int stack_offset,
   6491                                             Register arg,
   6492                                             Register scratch1,
   6493                                             Register scratch2,
   6494                                             Register scratch3,
   6495                                             Register scratch4,
   6496                                             Label* slow) {
   6497   // First check if the argument is already a string.
   6498   Label not_string, done;
   6499   __ JumpIfSmi(arg, &not_string);
   6500   __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
   6501   __ b(lt, &done);
   6502 
   6503   // Check the number to string cache.
   6504   Label not_cached;
   6505   __ bind(&not_string);
   6506   // Puts the cached result into scratch1.
   6507   NumberToStringStub::GenerateLookupNumberStringCache(masm,
   6508                                                       arg,
   6509                                                       scratch1,
   6510                                                       scratch2,
   6511                                                       scratch3,
   6512                                                       scratch4,
   6513                                                       false,
   6514                                                       &not_cached);
   6515   __ mov(arg, scratch1);
   6516   __ str(arg, MemOperand(sp, stack_offset));
   6517   __ jmp(&done);
   6518 
   6519   // Check if the argument is a safe string wrapper.
   6520   __ bind(&not_cached);
   6521   __ JumpIfSmi(arg, slow);
   6522   __ CompareObjectType(
   6523       arg, scratch1, scratch2, JS_VALUE_TYPE);  // map -> scratch1.
   6524   __ b(ne, slow);
   6525   __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
   6526   __ and_(scratch2,
   6527           scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
   6528   __ cmp(scratch2,
   6529          Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
   6530   __ b(ne, slow);
   6531   __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
   6532   __ str(arg, MemOperand(sp, stack_offset));
   6533 
   6534   __ bind(&done);
   6535 }
   6536 
   6537 
   6538 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
   6539   ASSERT(state_ == CompareIC::SMIS);
   6540   Label miss;
   6541   __ orr(r2, r1, r0);
   6542   __ JumpIfNotSmi(r2, &miss);
   6543 
   6544   if (GetCondition() == eq) {
   6545     // For equality we do not care about the sign of the result.
   6546     __ sub(r0, r0, r1, SetCC);
   6547   } else {
   6548     // Untag before subtracting to avoid handling overflow.
   6549     __ SmiUntag(r1);
   6550     __ sub(r0, r1, SmiUntagOperand(r0));
   6551   }
   6552   __ Ret();
   6553 
   6554   __ bind(&miss);
   6555   GenerateMiss(masm);
   6556 }
   6557 
   6558 
   6559 void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
   6560   ASSERT(state_ == CompareIC::HEAP_NUMBERS);
   6561 
   6562   Label generic_stub;
   6563   Label unordered, maybe_undefined1, maybe_undefined2;
   6564   Label miss;
   6565   __ and_(r2, r1, Operand(r0));
   6566   __ JumpIfSmi(r2, &generic_stub);
   6567 
   6568   __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
   6569   __ b(ne, &maybe_undefined1);
   6570   __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
   6571   __ b(ne, &maybe_undefined2);
   6572 
   6573   // Inlining the double comparison and falling back to the general compare
   6574   // stub if NaN is involved or VFP3 is unsupported.
   6575   if (CpuFeatures::IsSupported(VFP3)) {
   6576     CpuFeatures::Scope scope(VFP3);
   6577 
   6578     // Load left and right operand
   6579     __ sub(r2, r1, Operand(kHeapObjectTag));
   6580     __ vldr(d0, r2, HeapNumber::kValueOffset);
   6581     __ sub(r2, r0, Operand(kHeapObjectTag));
   6582     __ vldr(d1, r2, HeapNumber::kValueOffset);
   6583 
   6584     // Compare operands
   6585     __ VFPCompareAndSetFlags(d0, d1);
   6586 
   6587     // Don't base result on status bits when a NaN is involved.
   6588     __ b(vs, &unordered);
   6589 
   6590     // Return a result of -1, 0, or 1, based on status bits.
   6591     __ mov(r0, Operand(EQUAL), LeaveCC, eq);
   6592     __ mov(r0, Operand(LESS), LeaveCC, lt);
   6593     __ mov(r0, Operand(GREATER), LeaveCC, gt);
   6594     __ Ret();
   6595   }
   6596 
   6597   __ bind(&unordered);
   6598   CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
   6599   __ bind(&generic_stub);
   6600   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   6601 
   6602   __ bind(&maybe_undefined1);
   6603   if (Token::IsOrderedRelationalCompareOp(op_)) {
   6604     __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
   6605     __ b(ne, &miss);
   6606     __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
   6607     __ b(ne, &maybe_undefined2);
   6608     __ jmp(&unordered);
   6609   }
   6610 
   6611   __ bind(&maybe_undefined2);
   6612   if (Token::IsOrderedRelationalCompareOp(op_)) {
   6613     __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
   6614     __ b(eq, &unordered);
   6615   }
   6616 
   6617   __ bind(&miss);
   6618   GenerateMiss(masm);
   6619 }
   6620 
   6621 
   6622 void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
   6623   ASSERT(state_ == CompareIC::SYMBOLS);
   6624   Label miss;
   6625 
   6626   // Registers containing left and right operands respectively.
   6627   Register left = r1;
   6628   Register right = r0;
   6629   Register tmp1 = r2;
   6630   Register tmp2 = r3;
   6631 
   6632   // Check that both operands are heap objects.
   6633   __ JumpIfEitherSmi(left, right, &miss);
   6634 
   6635   // Check that both operands are symbols.
   6636   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   6637   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   6638   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   6639   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   6640   STATIC_ASSERT(kSymbolTag != 0);
   6641   __ and_(tmp1, tmp1, Operand(tmp2));
   6642   __ tst(tmp1, Operand(kIsSymbolMask));
   6643   __ b(eq, &miss);
   6644 
   6645   // Symbols are compared by identity.
   6646   __ cmp(left, right);
   6647   // Make sure r0 is non-zero. At this point input operands are
   6648   // guaranteed to be non-zero.
   6649   ASSERT(right.is(r0));
   6650   STATIC_ASSERT(EQUAL == 0);
   6651   STATIC_ASSERT(kSmiTag == 0);
   6652   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
   6653   __ Ret();
   6654 
   6655   __ bind(&miss);
   6656   GenerateMiss(masm);
   6657 }
   6658 
   6659 
   6660 void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
   6661   ASSERT(state_ == CompareIC::STRINGS);
   6662   Label miss;
   6663 
   6664   bool equality = Token::IsEqualityOp(op_);
   6665 
   6666   // Registers containing left and right operands respectively.
   6667   Register left = r1;
   6668   Register right = r0;
   6669   Register tmp1 = r2;
   6670   Register tmp2 = r3;
   6671   Register tmp3 = r4;
   6672   Register tmp4 = r5;
   6673 
   6674   // Check that both operands are heap objects.
   6675   __ JumpIfEitherSmi(left, right, &miss);
   6676 
   6677   // Check that both operands are strings. This leaves the instance
   6678   // types loaded in tmp1 and tmp2.
   6679   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   6680   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   6681   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   6682   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   6683   STATIC_ASSERT(kNotStringTag != 0);
   6684   __ orr(tmp3, tmp1, tmp2);
   6685   __ tst(tmp3, Operand(kIsNotStringMask));
   6686   __ b(ne, &miss);
   6687 
   6688   // Fast check for identical strings.
   6689   __ cmp(left, right);
   6690   STATIC_ASSERT(EQUAL == 0);
   6691   STATIC_ASSERT(kSmiTag == 0);
   6692   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
   6693   __ Ret(eq);
   6694 
   6695   // Handle not identical strings.
   6696 
   6697   // Check that both strings are symbols. If they are, we're done
   6698   // because we already know they are not identical.
   6699   if (equality) {
   6700     ASSERT(GetCondition() == eq);
   6701     STATIC_ASSERT(kSymbolTag != 0);
   6702     __ and_(tmp3, tmp1, Operand(tmp2));
   6703     __ tst(tmp3, Operand(kIsSymbolMask));
   6704     // Make sure r0 is non-zero. At this point input operands are
   6705     // guaranteed to be non-zero.
   6706     ASSERT(right.is(r0));
   6707     __ Ret(ne);
   6708   }
   6709 
   6710   // Check that both strings are sequential ASCII.
   6711   Label runtime;
   6712   __ JumpIfBothInstanceTypesAreNotSequentialAscii(
   6713       tmp1, tmp2, tmp3, tmp4, &runtime);
   6714 
   6715   // Compare flat ASCII strings. Returns when done.
   6716   if (equality) {
   6717     StringCompareStub::GenerateFlatAsciiStringEquals(
   6718         masm, left, right, tmp1, tmp2, tmp3);
   6719   } else {
   6720     StringCompareStub::GenerateCompareFlatAsciiStrings(
   6721         masm, left, right, tmp1, tmp2, tmp3, tmp4);
   6722   }
   6723 
   6724   // Handle more complex cases in runtime.
   6725   __ bind(&runtime);
   6726   __ Push(left, right);
   6727   if (equality) {
   6728     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
   6729   } else {
   6730     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   6731   }
   6732 
   6733   __ bind(&miss);
   6734   GenerateMiss(masm);
   6735 }
   6736 
   6737 
   6738 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
   6739   ASSERT(state_ == CompareIC::OBJECTS);
   6740   Label miss;
   6741   __ and_(r2, r1, Operand(r0));
   6742   __ JumpIfSmi(r2, &miss);
   6743 
   6744   __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
   6745   __ b(ne, &miss);
   6746   __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
   6747   __ b(ne, &miss);
   6748 
   6749   ASSERT(GetCondition() == eq);
   6750   __ sub(r0, r0, Operand(r1));
   6751   __ Ret();
   6752 
   6753   __ bind(&miss);
   6754   GenerateMiss(masm);
   6755 }
   6756 
   6757 
   6758 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
   6759   Label miss;
   6760   __ and_(r2, r1, Operand(r0));
   6761   __ JumpIfSmi(r2, &miss);
   6762   __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
   6763   __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
   6764   __ cmp(r2, Operand(known_map_));
   6765   __ b(ne, &miss);
   6766   __ cmp(r3, Operand(known_map_));
   6767   __ b(ne, &miss);
   6768 
   6769   __ sub(r0, r0, Operand(r1));
   6770   __ Ret();
   6771 
   6772   __ bind(&miss);
   6773   GenerateMiss(masm);
   6774 }
   6775 
   6776 
   6777 
   6778 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
   6779   {
   6780     // Call the runtime system in a fresh internal frame.
   6781     ExternalReference miss =
   6782         ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
   6783 
   6784     FrameScope scope(masm, StackFrame::INTERNAL);
   6785     __ Push(r1, r0);
   6786     __ push(lr);
   6787     __ Push(r1, r0);
   6788     __ mov(ip, Operand(Smi::FromInt(op_)));
   6789     __ push(ip);
   6790     __ CallExternalReference(miss, 3);
   6791     // Compute the entry point of the rewritten stub.
   6792     __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
   6793     // Restore registers.
   6794     __ pop(lr);
   6795     __ pop(r0);
   6796     __ pop(r1);
   6797   }
   6798 
   6799   __ Jump(r2);
   6800 }
   6801 
   6802 
   6803 void DirectCEntryStub::Generate(MacroAssembler* masm) {
   6804   __ ldr(pc, MemOperand(sp, 0));
   6805 }
   6806 
   6807 
   6808 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
   6809                                     ExternalReference function) {
   6810   __ mov(r2, Operand(function));
   6811   GenerateCall(masm, r2);
   6812 }
   6813 
   6814 
   6815 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
   6816                                     Register target) {
   6817   __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
   6818                      RelocInfo::CODE_TARGET));
   6819   // Push return address (accessible to GC through exit frame pc).
   6820   // Note that using pc with str is deprecated.
   6821   Label start;
   6822   __ bind(&start);
   6823   __ add(ip, pc, Operand(Assembler::kInstrSize));
   6824   __ str(ip, MemOperand(sp, 0));
   6825   __ Jump(target);  // Call the C++ function.
   6826   ASSERT_EQ(Assembler::kInstrSize + Assembler::kPcLoadDelta,
   6827             masm->SizeOfCodeGeneratedSince(&start));
   6828 }
   6829 
   6830 
   6831 void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   6832                                                         Label* miss,
   6833                                                         Label* done,
   6834                                                         Register receiver,
   6835                                                         Register properties,
   6836                                                         Handle<String> name,
   6837                                                         Register scratch0) {
   6838   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   6839   // not equal to the name and kProbes-th slot is not used (its name is the
   6840   // undefined value), it guarantees the hash table doesn't contain the
   6841   // property. It's true even if some slots represent deleted properties
   6842   // (their names are the hole value).
   6843   for (int i = 0; i < kInlinedProbes; i++) {
   6844     // scratch0 points to properties hash.
   6845     // Compute the masked index: (hash + i + i * i) & mask.
   6846     Register index = scratch0;
   6847     // Capacity is smi 2^n.
   6848     __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
   6849     __ sub(index, index, Operand(1));
   6850     __ and_(index, index, Operand(
   6851         Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
   6852 
   6853     // Scale the index by multiplying by the entry size.
   6854     ASSERT(StringDictionary::kEntrySize == 3);
   6855     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
   6856 
   6857     Register entity_name = scratch0;
   6858     // Having undefined at this place means the name is not contained.
   6859     ASSERT_EQ(kSmiTagSize, 1);
   6860     Register tmp = properties;
   6861     __ add(tmp, properties, Operand(index, LSL, 1));
   6862     __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
   6863 
   6864     ASSERT(!tmp.is(entity_name));
   6865     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
   6866     __ cmp(entity_name, tmp);
   6867     __ b(eq, done);
   6868 
   6869     if (i != kInlinedProbes - 1) {
   6870       // Load the hole ready for use below:
   6871       __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
   6872 
   6873       // Stop if found the property.
   6874       __ cmp(entity_name, Operand(Handle<String>(name)));
   6875       __ b(eq, miss);
   6876 
   6877       Label the_hole;
   6878       __ cmp(entity_name, tmp);
   6879       __ b(eq, &the_hole);
   6880 
   6881       // Check if the entry name is not a symbol.
   6882       __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
   6883       __ ldrb(entity_name,
   6884               FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
   6885       __ tst(entity_name, Operand(kIsSymbolMask));
   6886       __ b(eq, miss);
   6887 
   6888       __ bind(&the_hole);
   6889 
   6890       // Restore the properties.
   6891       __ ldr(properties,
   6892              FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   6893     }
   6894   }
   6895 
   6896   const int spill_mask =
   6897       (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
   6898        r2.bit() | r1.bit() | r0.bit());
   6899 
   6900   __ stm(db_w, sp, spill_mask);
   6901   __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   6902   __ mov(r1, Operand(Handle<String>(name)));
   6903   StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
   6904   __ CallStub(&stub);
   6905   __ cmp(r0, Operand(0));
   6906   __ ldm(ia_w, sp, spill_mask);
   6907 
   6908   __ b(eq, done);
   6909   __ b(ne, miss);
   6910 }
   6911 
   6912 
   6913 // Probe the string dictionary in the |elements| register. Jump to the
   6914 // |done| label if a property with the given name is found. Jump to
   6915 // the |miss| label otherwise.
   6916 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
   6917 void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   6918                                                         Label* miss,
   6919                                                         Label* done,
   6920                                                         Register elements,
   6921                                                         Register name,
   6922                                                         Register scratch1,
   6923                                                         Register scratch2) {
   6924   ASSERT(!elements.is(scratch1));
   6925   ASSERT(!elements.is(scratch2));
   6926   ASSERT(!name.is(scratch1));
   6927   ASSERT(!name.is(scratch2));
   6928 
   6929   // Assert that name contains a string.
   6930   if (FLAG_debug_code) __ AbortIfNotString(name);
   6931 
   6932   // Compute the capacity mask.
   6933   __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
   6934   __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize));  // convert smi to int
   6935   __ sub(scratch1, scratch1, Operand(1));
   6936 
   6937   // Generate an unrolled loop that performs a few probes before
   6938   // giving up. Measurements done on Gmail indicate that 2 probes
   6939   // cover ~93% of loads from dictionaries.
   6940   for (int i = 0; i < kInlinedProbes; i++) {
   6941     // Compute the masked index: (hash + i + i * i) & mask.
   6942     __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
   6943     if (i > 0) {
   6944       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   6945       // the hash in a separate instruction. The value hash + i + i * i is right
   6946       // shifted in the following and instruction.
   6947       ASSERT(StringDictionary::GetProbeOffset(i) <
   6948              1 << (32 - String::kHashFieldOffset));
   6949       __ add(scratch2, scratch2, Operand(
   6950           StringDictionary::GetProbeOffset(i) << String::kHashShift));
   6951     }
   6952     __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift));
   6953 
   6954     // Scale the index by multiplying by the element size.
   6955     ASSERT(StringDictionary::kEntrySize == 3);
   6956     // scratch2 = scratch2 * 3.
   6957     __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
   6958 
   6959     // Check if the key is identical to the name.
   6960     __ add(scratch2, elements, Operand(scratch2, LSL, 2));
   6961     __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
   6962     __ cmp(name, Operand(ip));
   6963     __ b(eq, done);
   6964   }
   6965 
   6966   const int spill_mask =
   6967       (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
   6968        r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
   6969       ~(scratch1.bit() | scratch2.bit());
   6970 
   6971   __ stm(db_w, sp, spill_mask);
   6972   if (name.is(r0)) {
   6973     ASSERT(!elements.is(r1));
   6974     __ Move(r1, name);
   6975     __ Move(r0, elements);
   6976   } else {
   6977     __ Move(r0, elements);
   6978     __ Move(r1, name);
   6979   }
   6980   StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
   6981   __ CallStub(&stub);
   6982   __ cmp(r0, Operand(0));
   6983   __ mov(scratch2, Operand(r2));
   6984   __ ldm(ia_w, sp, spill_mask);
   6985 
   6986   __ b(ne, done);
   6987   __ b(eq, miss);
   6988 }
   6989 
   6990 
   6991 void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
   6992   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   6993   // we cannot call anything that could cause a GC from this stub.
   6994   // Registers:
   6995   //  result: StringDictionary to probe
   6996   //  r1: key
   6997   //  : StringDictionary to probe.
   6998   //  index_: will hold an index of entry if lookup is successful.
   6999   //          might alias with result_.
   7000   // Returns:
   7001   //  result_ is zero if lookup failed, non zero otherwise.
   7002 
   7003   Register result = r0;
   7004   Register dictionary = r0;
   7005   Register key = r1;
   7006   Register index = r2;
   7007   Register mask = r3;
   7008   Register hash = r4;
   7009   Register undefined = r5;
   7010   Register entry_key = r6;
   7011 
   7012   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   7013 
   7014   __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
   7015   __ mov(mask, Operand(mask, ASR, kSmiTagSize));
   7016   __ sub(mask, mask, Operand(1));
   7017 
   7018   __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset));
   7019 
   7020   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
   7021 
   7022   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   7023     // Compute the masked index: (hash + i + i * i) & mask.
   7024     // Capacity is smi 2^n.
   7025     if (i > 0) {
   7026       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   7027       // the hash in a separate instruction. The value hash + i + i * i is right
   7028       // shifted in the following and instruction.
   7029       ASSERT(StringDictionary::GetProbeOffset(i) <
   7030              1 << (32 - String::kHashFieldOffset));
   7031       __ add(index, hash, Operand(
   7032           StringDictionary::GetProbeOffset(i) << String::kHashShift));
   7033     } else {
   7034       __ mov(index, Operand(hash));
   7035     }
   7036     __ and_(index, mask, Operand(index, LSR, String::kHashShift));
   7037 
   7038     // Scale the index by multiplying by the entry size.
   7039     ASSERT(StringDictionary::kEntrySize == 3);
   7040     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
   7041 
   7042     ASSERT_EQ(kSmiTagSize, 1);
   7043     __ add(index, dictionary, Operand(index, LSL, 2));
   7044     __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
   7045 
   7046     // Having undefined at this place means the name is not contained.
   7047     __ cmp(entry_key, Operand(undefined));
   7048     __ b(eq, &not_in_dictionary);
   7049 
   7050     // Stop if found the property.
   7051     __ cmp(entry_key, Operand(key));
   7052     __ b(eq, &in_dictionary);
   7053 
   7054     if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
   7055       // Check if the entry name is not a symbol.
   7056       __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
   7057       __ ldrb(entry_key,
   7058               FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
   7059       __ tst(entry_key, Operand(kIsSymbolMask));
   7060       __ b(eq, &maybe_in_dictionary);
   7061     }
   7062   }
   7063 
   7064   __ bind(&maybe_in_dictionary);
   7065   // If we are doing negative lookup then probing failure should be
   7066   // treated as a lookup success. For positive lookup probing failure
   7067   // should be treated as lookup failure.
   7068   if (mode_ == POSITIVE_LOOKUP) {
   7069     __ mov(result, Operand::Zero());
   7070     __ Ret();
   7071   }
   7072 
   7073   __ bind(&in_dictionary);
   7074   __ mov(result, Operand(1));
   7075   __ Ret();
   7076 
   7077   __ bind(&not_in_dictionary);
   7078   __ mov(result, Operand::Zero());
   7079   __ Ret();
   7080 }
   7081 
   7082 
   7083 struct AheadOfTimeWriteBarrierStubList {
   7084   Register object, value, address;
   7085   RememberedSetAction action;
   7086 };
   7087 
   7088 #define REG(Name) { kRegister_ ## Name ## _Code }
   7089 
   7090 static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
   7091   // Used in RegExpExecStub.
   7092   { REG(r6), REG(r4), REG(r7), EMIT_REMEMBERED_SET },
   7093   { REG(r6), REG(r2), REG(r7), EMIT_REMEMBERED_SET },
   7094   // Used in CompileArrayPushCall.
   7095   // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
   7096   // Also used in KeyedStoreIC::GenerateGeneric.
   7097   { REG(r3), REG(r4), REG(r5), EMIT_REMEMBERED_SET },
   7098   // Used in CompileStoreGlobal.
   7099   { REG(r4), REG(r1), REG(r2), OMIT_REMEMBERED_SET },
   7100   // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
   7101   { REG(r1), REG(r2), REG(r3), EMIT_REMEMBERED_SET },
   7102   { REG(r3), REG(r2), REG(r1), EMIT_REMEMBERED_SET },
   7103   // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
   7104   { REG(r2), REG(r1), REG(r3), EMIT_REMEMBERED_SET },
   7105   { REG(r3), REG(r1), REG(r2), EMIT_REMEMBERED_SET },
   7106   // KeyedStoreStubCompiler::GenerateStoreFastElement.
   7107   { REG(r3), REG(r2), REG(r4), EMIT_REMEMBERED_SET },
   7108   { REG(r2), REG(r3), REG(r4), EMIT_REMEMBERED_SET },
   7109   // ElementsTransitionGenerator::GenerateSmiOnlyToObject
   7110   // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
   7111   // and ElementsTransitionGenerator::GenerateDoubleToObject
   7112   { REG(r2), REG(r3), REG(r9), EMIT_REMEMBERED_SET },
   7113   { REG(r2), REG(r3), REG(r9), OMIT_REMEMBERED_SET },
   7114   // ElementsTransitionGenerator::GenerateDoubleToObject
   7115   { REG(r6), REG(r2), REG(r0), EMIT_REMEMBERED_SET },
   7116   { REG(r2), REG(r6), REG(r9), EMIT_REMEMBERED_SET },
   7117   // StoreArrayLiteralElementStub::Generate
   7118   { REG(r5), REG(r0), REG(r6), EMIT_REMEMBERED_SET },
   7119   // Null termination.
   7120   { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
   7121 };
   7122 
   7123 #undef REG
   7124 
   7125 bool RecordWriteStub::IsPregenerated() {
   7126   for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
   7127        !entry->object.is(no_reg);
   7128        entry++) {
   7129     if (object_.is(entry->object) &&
   7130         value_.is(entry->value) &&
   7131         address_.is(entry->address) &&
   7132         remembered_set_action_ == entry->action &&
   7133         save_fp_regs_mode_ == kDontSaveFPRegs) {
   7134       return true;
   7135     }
   7136   }
   7137   return false;
   7138 }
   7139 
   7140 
   7141 bool StoreBufferOverflowStub::IsPregenerated() {
   7142   return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
   7143 }
   7144 
   7145 
   7146 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
   7147   StoreBufferOverflowStub stub1(kDontSaveFPRegs);
   7148   stub1.GetCode()->set_is_pregenerated(true);
   7149 }
   7150 
   7151 
   7152 void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
   7153   for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
   7154        !entry->object.is(no_reg);
   7155        entry++) {
   7156     RecordWriteStub stub(entry->object,
   7157                          entry->value,
   7158                          entry->address,
   7159                          entry->action,
   7160                          kDontSaveFPRegs);
   7161     stub.GetCode()->set_is_pregenerated(true);
   7162   }
   7163 }
   7164 
   7165 
   7166 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   7167 // the value has just been written into the object, now this stub makes sure
   7168 // we keep the GC informed.  The word in the object where the value has been
   7169 // written is in the address register.
   7170 void RecordWriteStub::Generate(MacroAssembler* masm) {
   7171   Label skip_to_incremental_noncompacting;
   7172   Label skip_to_incremental_compacting;
   7173 
   7174   // The first two instructions are generated with labels so as to get the
   7175   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   7176   // forth between a compare instructions (a nop in this position) and the
   7177   // real branch when we start and stop incremental heap marking.
   7178   // See RecordWriteStub::Patch for details.
   7179   __ b(&skip_to_incremental_noncompacting);
   7180   __ b(&skip_to_incremental_compacting);
   7181 
   7182   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
   7183     __ RememberedSetHelper(object_,
   7184                            address_,
   7185                            value_,
   7186                            save_fp_regs_mode_,
   7187                            MacroAssembler::kReturnAtEnd);
   7188   }
   7189   __ Ret();
   7190 
   7191   __ bind(&skip_to_incremental_noncompacting);
   7192   GenerateIncremental(masm, INCREMENTAL);
   7193 
   7194   __ bind(&skip_to_incremental_compacting);
   7195   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   7196 
   7197   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   7198   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   7199   ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
   7200   ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
   7201   PatchBranchIntoNop(masm, 0);
   7202   PatchBranchIntoNop(masm, Assembler::kInstrSize);
   7203 }
   7204 
   7205 
   7206 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   7207   regs_.Save(masm);
   7208 
   7209   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
   7210     Label dont_need_remembered_set;
   7211 
   7212     __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
   7213     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   7214                            regs_.scratch0(),
   7215                            &dont_need_remembered_set);
   7216 
   7217     __ CheckPageFlag(regs_.object(),
   7218                      regs_.scratch0(),
   7219                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
   7220                      ne,
   7221                      &dont_need_remembered_set);
   7222 
   7223     // First notify the incremental marker if necessary, then update the
   7224     // remembered set.
   7225     CheckNeedsToInformIncrementalMarker(
   7226         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   7227     InformIncrementalMarker(masm, mode);
   7228     regs_.Restore(masm);
   7229     __ RememberedSetHelper(object_,
   7230                            address_,
   7231                            value_,
   7232                            save_fp_regs_mode_,
   7233                            MacroAssembler::kReturnAtEnd);
   7234 
   7235     __ bind(&dont_need_remembered_set);
   7236   }
   7237 
   7238   CheckNeedsToInformIncrementalMarker(
   7239       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   7240   InformIncrementalMarker(masm, mode);
   7241   regs_.Restore(masm);
   7242   __ Ret();
   7243 }
   7244 
   7245 
   7246 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
   7247   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
   7248   int argument_count = 3;
   7249   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   7250   Register address =
   7251       r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
   7252   ASSERT(!address.is(regs_.object()));
   7253   ASSERT(!address.is(r0));
   7254   __ Move(address, regs_.address());
   7255   __ Move(r0, regs_.object());
   7256   if (mode == INCREMENTAL_COMPACTION) {
   7257     __ Move(r1, address);
   7258   } else {
   7259     ASSERT(mode == INCREMENTAL);
   7260     __ ldr(r1, MemOperand(address, 0));
   7261   }
   7262   __ mov(r2, Operand(ExternalReference::isolate_address()));
   7263 
   7264   AllowExternalCallThatCantCauseGC scope(masm);
   7265   if (mode == INCREMENTAL_COMPACTION) {
   7266     __ CallCFunction(
   7267         ExternalReference::incremental_evacuation_record_write_function(
   7268             masm->isolate()),
   7269         argument_count);
   7270   } else {
   7271     ASSERT(mode == INCREMENTAL);
   7272     __ CallCFunction(
   7273         ExternalReference::incremental_marking_record_write_function(
   7274             masm->isolate()),
   7275         argument_count);
   7276   }
   7277   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
   7278 }
   7279 
   7280 
   7281 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   7282     MacroAssembler* masm,
   7283     OnNoNeedToInformIncrementalMarker on_no_need,
   7284     Mode mode) {
   7285   Label on_black;
   7286   Label need_incremental;
   7287   Label need_incremental_pop_scratch;
   7288 
   7289   // Let's look at the color of the object:  If it is not black we don't have
   7290   // to inform the incremental marker.
   7291   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
   7292 
   7293   regs_.Restore(masm);
   7294   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   7295     __ RememberedSetHelper(object_,
   7296                            address_,
   7297                            value_,
   7298                            save_fp_regs_mode_,
   7299                            MacroAssembler::kReturnAtEnd);
   7300   } else {
   7301     __ Ret();
   7302   }
   7303 
   7304   __ bind(&on_black);
   7305 
   7306   // Get the value from the slot.
   7307   __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
   7308 
   7309   if (mode == INCREMENTAL_COMPACTION) {
   7310     Label ensure_not_white;
   7311 
   7312     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   7313                      regs_.scratch1(),  // Scratch.
   7314                      MemoryChunk::kEvacuationCandidateMask,
   7315                      eq,
   7316                      &ensure_not_white);
   7317 
   7318     __ CheckPageFlag(regs_.object(),
   7319                      regs_.scratch1(),  // Scratch.
   7320                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   7321                      eq,
   7322                      &need_incremental);
   7323 
   7324     __ bind(&ensure_not_white);
   7325   }
   7326 
   7327   // We need extra registers for this, so we push the object and the address
   7328   // register temporarily.
   7329   __ Push(regs_.object(), regs_.address());
   7330   __ EnsureNotWhite(regs_.scratch0(),  // The value.
   7331                     regs_.scratch1(),  // Scratch.
   7332                     regs_.object(),  // Scratch.
   7333                     regs_.address(),  // Scratch.
   7334                     &need_incremental_pop_scratch);
   7335   __ Pop(regs_.object(), regs_.address());
   7336 
   7337   regs_.Restore(masm);
   7338   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   7339     __ RememberedSetHelper(object_,
   7340                            address_,
   7341                            value_,
   7342                            save_fp_regs_mode_,
   7343                            MacroAssembler::kReturnAtEnd);
   7344   } else {
   7345     __ Ret();
   7346   }
   7347 
   7348   __ bind(&need_incremental_pop_scratch);
   7349   __ Pop(regs_.object(), regs_.address());
   7350 
   7351   __ bind(&need_incremental);
   7352 
   7353   // Fall through when we need to inform the incremental marker.
   7354 }
   7355 
   7356 
   7357 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
   7358   // ----------- S t a t e -------------
   7359   //  -- r0    : element value to store
   7360   //  -- r1    : array literal
   7361   //  -- r2    : map of array literal
   7362   //  -- r3    : element index as smi
   7363   //  -- r4    : array literal index in function as smi
   7364   // -----------------------------------
   7365 
   7366   Label element_done;
   7367   Label double_elements;
   7368   Label smi_element;
   7369   Label slow_elements;
   7370   Label fast_elements;
   7371 
   7372   __ CheckFastElements(r2, r5, &double_elements);
   7373   // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
   7374   __ JumpIfSmi(r0, &smi_element);
   7375   __ CheckFastSmiOnlyElements(r2, r5, &fast_elements);
   7376 
   7377   // Store into the array literal requires a elements transition. Call into
   7378   // the runtime.
   7379   __ bind(&slow_elements);
   7380   // call.
   7381   __ Push(r1, r3, r0);
   7382   __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   7383   __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
   7384   __ Push(r5, r4);
   7385   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
   7386 
   7387   // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
   7388   __ bind(&fast_elements);
   7389   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
   7390   __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
   7391   __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   7392   __ str(r0, MemOperand(r6, 0));
   7393   // Update the write barrier for the array store.
   7394   __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
   7395                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   7396   __ Ret();
   7397 
   7398   // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
   7399   // FAST_ELEMENTS, and value is Smi.
   7400   __ bind(&smi_element);
   7401   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
   7402   __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
   7403   __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
   7404   __ Ret();
   7405 
   7406   // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
   7407   __ bind(&double_elements);
   7408   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
   7409   __ StoreNumberToDoubleElements(r0, r3, r1, r5, r6, r7, r9, r2,
   7410                                  &slow_elements);
   7411   __ Ret();
   7412 }
   7413 
   7414 #undef __
   7415 
   7416 } }  // namespace v8::internal
   7417 
   7418 #endif  // V8_TARGET_ARCH_ARM
   7419