Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // An example of solving a dynamically sized problem with various
     32 // solvers and loss functions.
     33 //
     34 // For a simpler bare bones example of doing bundle adjustment with
     35 // Ceres, please see simple_bundle_adjuster.cc.
     36 //
     37 // NOTE: This example will not compile without gflags and SuiteSparse.
     38 //
     39 // The problem being solved here is known as a Bundle Adjustment
     40 // problem in computer vision. Given a set of 3d points X_1, ..., X_n,
     41 // a set of cameras P_1, ..., P_m. If the point X_i is visible in
     42 // image j, then there is a 2D observation u_ij that is the expected
     43 // projection of X_i using P_j. The aim of this optimization is to
     44 // find values of X_i and P_j such that the reprojection error
     45 //
     46 //    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2
     47 //
     48 // is minimized.
     49 //
     50 // The problem used here comes from a collection of bundle adjustment
     51 // problems published at University of Washington.
     52 // http://grail.cs.washington.edu/projects/bal
     53 
     54 #include <algorithm>
     55 #include <cmath>
     56 #include <cstdio>
     57 #include <cstdlib>
     58 #include <string>
     59 #include <vector>
     60 
     61 #include "bal_problem.h"
     62 #include "ceres/ceres.h"
     63 #include "ceres/random.h"
     64 #include "gflags/gflags.h"
     65 #include "glog/logging.h"
     66 #include "snavely_reprojection_error.h"
     67 
     68 DEFINE_string(input, "", "Input File name");
     69 DEFINE_string(trust_region_strategy, "levenberg_marquardt",
     70               "Options are: levenberg_marquardt, dogleg.");
     71 DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
     72               "subspace_dogleg.");
     73 
     74 DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
     75             "refine each successful trust region step.");
     76 
     77 DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
     78             "automatic, cameras, points, cameras,points, points,cameras");
     79 
     80 DEFINE_string(linear_solver, "sparse_schur", "Options are: "
     81               "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "
     82               "dense_qr, dense_normal_cholesky and cgnr.");
     83 DEFINE_string(preconditioner, "jacobi", "Options are: "
     84               "identity, jacobi, schur_jacobi, cluster_jacobi, "
     85               "cluster_tridiagonal.");
     86 DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
     87               "Options are: suite_sparse and cx_sparse.");
     88 DEFINE_string(ordering, "automatic", "Options are: automatic, user.");
     89 
     90 DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
     91             "rotations. If false, angle axis is used.");
     92 DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
     93             "parameterization.");
     94 DEFINE_bool(robustify, false, "Use a robust loss function.");
     95 
     96 DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
     97              "accuracy of each linear solve of the truncated newton step. "
     98              "Changing this parameter can affect solve performance.");
     99 
    100 DEFINE_bool(use_block_amd, true, "Use a block oriented fill reducing "
    101             "ordering.");
    102 
    103 DEFINE_int32(num_threads, 1, "Number of threads.");
    104 DEFINE_int32(num_iterations, 5, "Number of iterations.");
    105 DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
    106 DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
    107             " nonmonotic steps.");
    108 
    109 DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
    110               "perturbation.");
    111 DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
    112               "translation perturbation.");
    113 DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
    114               "perturbation.");
    115 DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
    116              "of the pseudo random number generator used to generate "
    117              "the pertubations.");
    118 DEFINE_string(solver_log, "", "File to record the solver execution to.");
    119 
    120 namespace ceres {
    121 namespace examples {
    122 
    123 void SetLinearSolver(Solver::Options* options) {
    124   CHECK(StringToLinearSolverType(FLAGS_linear_solver,
    125                                  &options->linear_solver_type));
    126   CHECK(StringToPreconditionerType(FLAGS_preconditioner,
    127                                    &options->preconditioner_type));
    128   CHECK(StringToSparseLinearAlgebraLibraryType(
    129             FLAGS_sparse_linear_algebra_library,
    130             &options->sparse_linear_algebra_library));
    131   options->num_linear_solver_threads = FLAGS_num_threads;
    132 }
    133 
    134 void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
    135   const int num_points = bal_problem->num_points();
    136   const int point_block_size = bal_problem->point_block_size();
    137   double* points = bal_problem->mutable_points();
    138 
    139   const int num_cameras = bal_problem->num_cameras();
    140   const int camera_block_size = bal_problem->camera_block_size();
    141   double* cameras = bal_problem->mutable_cameras();
    142 
    143   options->use_block_amd = FLAGS_use_block_amd;
    144 
    145   if (options->use_inner_iterations) {
    146     if (FLAGS_blocks_for_inner_iterations == "cameras") {
    147       LOG(INFO) << "Camera blocks for inner iterations";
    148       options->inner_iteration_ordering = new ParameterBlockOrdering;
    149       for (int i = 0; i < num_cameras; ++i) {
    150         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
    151       }
    152     } else if (FLAGS_blocks_for_inner_iterations == "points") {
    153       LOG(INFO) << "Point blocks for inner iterations";
    154       options->inner_iteration_ordering = new ParameterBlockOrdering;
    155       for (int i = 0; i < num_points; ++i) {
    156         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
    157       }
    158     } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
    159       LOG(INFO) << "Camera followed by point blocks for inner iterations";
    160       options->inner_iteration_ordering = new ParameterBlockOrdering;
    161       for (int i = 0; i < num_cameras; ++i) {
    162         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
    163       }
    164       for (int i = 0; i < num_points; ++i) {
    165         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);
    166       }
    167     } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
    168       LOG(INFO) << "Point followed by camera blocks for inner iterations";
    169       options->inner_iteration_ordering = new ParameterBlockOrdering;
    170       for (int i = 0; i < num_cameras; ++i) {
    171         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
    172       }
    173       for (int i = 0; i < num_points; ++i) {
    174         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
    175       }
    176     } else if (FLAGS_blocks_for_inner_iterations == "automatic") {
    177       LOG(INFO) << "Choosing automatic blocks for inner iterations";
    178     } else {
    179       LOG(FATAL) << "Unknown block type for inner iterations: "
    180                  << FLAGS_blocks_for_inner_iterations;
    181     }
    182   }
    183 
    184   // Bundle adjustment problems have a sparsity structure that makes
    185   // them amenable to more specialized and much more efficient
    186   // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
    187   // ITERATIVE_SCHUR solvers make use of this specialized
    188   // structure.
    189   //
    190   // This can either be done by specifying Options::ordering_type =
    191   // ceres::SCHUR, in which case Ceres will automatically determine
    192   // the right ParameterBlock ordering, or by manually specifying a
    193   // suitable ordering vector and defining
    194   // Options::num_eliminate_blocks.
    195   if (FLAGS_ordering == "automatic") {
    196     return;
    197   }
    198 
    199   ceres::ParameterBlockOrdering* ordering =
    200       new ceres::ParameterBlockOrdering;
    201 
    202   // The points come before the cameras.
    203   for (int i = 0; i < num_points; ++i) {
    204     ordering->AddElementToGroup(points + point_block_size * i, 0);
    205   }
    206 
    207   for (int i = 0; i < num_cameras; ++i) {
    208     // When using axis-angle, there is a single parameter block for
    209     // the entire camera.
    210     ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
    211     // If quaternions are used, there are two blocks, so add the
    212     // second block to the ordering.
    213     if (FLAGS_use_quaternions) {
    214       ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1);
    215     }
    216   }
    217 
    218   options->linear_solver_ordering = ordering;
    219 }
    220 
    221 void SetMinimizerOptions(Solver::Options* options) {
    222   options->max_num_iterations = FLAGS_num_iterations;
    223   options->minimizer_progress_to_stdout = true;
    224   options->num_threads = FLAGS_num_threads;
    225   options->eta = FLAGS_eta;
    226   options->max_solver_time_in_seconds = FLAGS_max_solver_time;
    227   options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
    228   CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
    229                                         &options->trust_region_strategy_type));
    230   CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
    231   options->use_inner_iterations = FLAGS_inner_iterations;
    232 }
    233 
    234 void SetSolverOptionsFromFlags(BALProblem* bal_problem,
    235                                Solver::Options* options) {
    236   SetMinimizerOptions(options);
    237   SetLinearSolver(options);
    238   SetOrdering(bal_problem, options);
    239 }
    240 
    241 void BuildProblem(BALProblem* bal_problem, Problem* problem) {
    242   const int point_block_size = bal_problem->point_block_size();
    243   const int camera_block_size = bal_problem->camera_block_size();
    244   double* points = bal_problem->mutable_points();
    245   double* cameras = bal_problem->mutable_cameras();
    246 
    247   // Observations is 2*num_observations long array observations =
    248   // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
    249   // and y positions of the observation.
    250   const double* observations = bal_problem->observations();
    251 
    252   for (int i = 0; i < bal_problem->num_observations(); ++i) {
    253     CostFunction* cost_function;
    254     // Each Residual block takes a point and a camera as input and
    255     // outputs a 2 dimensional residual.
    256     if (FLAGS_use_quaternions) {
    257       cost_function = new AutoDiffCostFunction<
    258           SnavelyReprojectionErrorWithQuaternions, 2, 4, 6, 3>(
    259               new SnavelyReprojectionErrorWithQuaternions(
    260                   observations[2 * i + 0],
    261                   observations[2 * i + 1]));
    262     } else {
    263       cost_function =
    264           new AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
    265               new SnavelyReprojectionError(observations[2 * i + 0],
    266                                            observations[2 * i + 1]));
    267     }
    268 
    269     // If enabled use Huber's loss function.
    270     LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
    271 
    272     // Each observation correponds to a pair of a camera and a point
    273     // which are identified by camera_index()[i] and point_index()[i]
    274     // respectively.
    275     double* camera =
    276         cameras + camera_block_size * bal_problem->camera_index()[i];
    277     double* point = points + point_block_size * bal_problem->point_index()[i];
    278 
    279     if (FLAGS_use_quaternions) {
    280       // When using quaternions, we split the camera into two
    281       // parameter blocks. One of size 4 for the quaternion and the
    282       // other of size 6 containing the translation, focal length and
    283       // the radial distortion parameters.
    284       problem->AddResidualBlock(cost_function,
    285                                 loss_function,
    286                                 camera,
    287                                 camera + 4,
    288                                 point);
    289     } else {
    290       problem->AddResidualBlock(cost_function, loss_function, camera, point);
    291     }
    292   }
    293 
    294   if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
    295     LocalParameterization* quaternion_parameterization =
    296          new QuaternionParameterization;
    297     for (int i = 0; i < bal_problem->num_cameras(); ++i) {
    298       problem->SetParameterization(cameras + camera_block_size * i,
    299                                    quaternion_parameterization);
    300     }
    301   }
    302 }
    303 
    304 void SolveProblem(const char* filename) {
    305   BALProblem bal_problem(filename, FLAGS_use_quaternions);
    306   Problem problem;
    307 
    308   SetRandomState(FLAGS_random_seed);
    309   bal_problem.Normalize();
    310   bal_problem.Perturb(FLAGS_rotation_sigma,
    311                       FLAGS_translation_sigma,
    312                       FLAGS_point_sigma);
    313 
    314   BuildProblem(&bal_problem, &problem);
    315   Solver::Options options;
    316   SetSolverOptionsFromFlags(&bal_problem, &options);
    317   options.solver_log = FLAGS_solver_log;
    318   options.gradient_tolerance = 1e-16;
    319   options.function_tolerance = 1e-16;
    320   Solver::Summary summary;
    321   Solve(options, &problem, &summary);
    322   std::cout << summary.FullReport() << "\n";
    323 }
    324 
    325 }  // namespace examples
    326 }  // namespace ceres
    327 
    328 int main(int argc, char** argv) {
    329   google::ParseCommandLineFlags(&argc, &argv, true);
    330   google::InitGoogleLogging(argv[0]);
    331   if (FLAGS_input.empty()) {
    332     LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";
    333     return 1;
    334   }
    335 
    336   CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
    337       << "--use_local_parameterization can only be used with "
    338       << "--use_quaternions.";
    339   ceres::examples::SolveProblem(FLAGS_input.c_str());
    340   return 0;
    341 }
    342