Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
     11 // of MachineInstrs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "misched"
     16 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     17 #include "llvm/ADT/MapVector.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/SmallSet.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/ValueTracking.h"
     22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     23 #include "llvm/CodeGen/MachineFunctionPass.h"
     24 #include "llvm/CodeGen/MachineMemOperand.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/PseudoSourceValue.h"
     27 #include "llvm/CodeGen/RegisterPressure.h"
     28 #include "llvm/CodeGen/ScheduleDFS.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/MC/MCInstrItineraries.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/Format.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 #include "llvm/Target/TargetMachine.h"
     37 #include "llvm/Target/TargetRegisterInfo.h"
     38 #include "llvm/Target/TargetSubtargetInfo.h"
     39 using namespace llvm;
     40 
     41 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
     42     cl::ZeroOrMore, cl::init(false),
     43     cl::desc("Enable use of AA during MI GAD construction"));
     44 
     45 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
     46                                      const MachineLoopInfo &mli,
     47                                      const MachineDominatorTree &mdt,
     48                                      bool IsPostRAFlag,
     49                                      LiveIntervals *lis)
     50   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
     51     IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
     52   assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
     53   DbgValues.clear();
     54   assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
     55          "Virtual registers must be removed prior to PostRA scheduling");
     56 
     57   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
     58   SchedModel.init(*ST.getSchedModel(), &ST, TII);
     59 }
     60 
     61 /// getUnderlyingObjectFromInt - This is the function that does the work of
     62 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
     63 static const Value *getUnderlyingObjectFromInt(const Value *V) {
     64   do {
     65     if (const Operator *U = dyn_cast<Operator>(V)) {
     66       // If we find a ptrtoint, we can transfer control back to the
     67       // regular getUnderlyingObjectFromInt.
     68       if (U->getOpcode() == Instruction::PtrToInt)
     69         return U->getOperand(0);
     70       // If we find an add of a constant, a multiplied value, or a phi, it's
     71       // likely that the other operand will lead us to the base
     72       // object. We don't have to worry about the case where the
     73       // object address is somehow being computed by the multiply,
     74       // because our callers only care when the result is an
     75       // identifiable object.
     76       if (U->getOpcode() != Instruction::Add ||
     77           (!isa<ConstantInt>(U->getOperand(1)) &&
     78            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
     79            !isa<PHINode>(U->getOperand(1))))
     80         return V;
     81       V = U->getOperand(0);
     82     } else {
     83       return V;
     84     }
     85     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
     86   } while (1);
     87 }
     88 
     89 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
     90 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
     91 static void getUnderlyingObjects(const Value *V,
     92                                  SmallVectorImpl<Value *> &Objects) {
     93   SmallPtrSet<const Value*, 16> Visited;
     94   SmallVector<const Value *, 4> Working(1, V);
     95   do {
     96     V = Working.pop_back_val();
     97 
     98     SmallVector<Value *, 4> Objs;
     99     GetUnderlyingObjects(const_cast<Value *>(V), Objs);
    100 
    101     for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
    102          I != IE; ++I) {
    103       V = *I;
    104       if (!Visited.insert(V))
    105         continue;
    106       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
    107         const Value *O =
    108           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
    109         if (O->getType()->isPointerTy()) {
    110           Working.push_back(O);
    111           continue;
    112         }
    113       }
    114       Objects.push_back(const_cast<Value *>(V));
    115     }
    116   } while (!Working.empty());
    117 }
    118 
    119 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
    120 /// information and it can be tracked to a normal reference to a known
    121 /// object, return the Value for that object.
    122 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
    123               const MachineFrameInfo *MFI,
    124               SmallVectorImpl<std::pair<const Value *, bool> > &Objects) {
    125   if (!MI->hasOneMemOperand() ||
    126       !(*MI->memoperands_begin())->getValue() ||
    127       (*MI->memoperands_begin())->isVolatile())
    128     return;
    129 
    130   const Value *V = (*MI->memoperands_begin())->getValue();
    131   if (!V)
    132     return;
    133 
    134   SmallVector<Value *, 4> Objs;
    135   getUnderlyingObjects(V, Objs);
    136 
    137   for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
    138        I != IE; ++I) {
    139     bool MayAlias = true;
    140     V = *I;
    141 
    142     if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
    143       // For now, ignore PseudoSourceValues which may alias LLVM IR values
    144       // because the code that uses this function has no way to cope with
    145       // such aliases.
    146 
    147       if (PSV->isAliased(MFI)) {
    148         Objects.clear();
    149         return;
    150       }
    151 
    152       MayAlias = PSV->mayAlias(MFI);
    153     } else if (!isIdentifiedObject(V)) {
    154       Objects.clear();
    155       return;
    156     }
    157 
    158     Objects.push_back(std::make_pair(V, MayAlias));
    159   }
    160 }
    161 
    162 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
    163   BB = bb;
    164 }
    165 
    166 void ScheduleDAGInstrs::finishBlock() {
    167   // Subclasses should no longer refer to the old block.
    168   BB = 0;
    169 }
    170 
    171 /// Initialize the DAG and common scheduler state for the current scheduling
    172 /// region. This does not actually create the DAG, only clears it. The
    173 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
    174 /// region.
    175 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
    176                                     MachineBasicBlock::iterator begin,
    177                                     MachineBasicBlock::iterator end,
    178                                     unsigned endcount) {
    179   assert(bb == BB && "startBlock should set BB");
    180   RegionBegin = begin;
    181   RegionEnd = end;
    182   EndIndex = endcount;
    183   MISUnitMap.clear();
    184 
    185   ScheduleDAG::clearDAG();
    186 }
    187 
    188 /// Close the current scheduling region. Don't clear any state in case the
    189 /// driver wants to refer to the previous scheduling region.
    190 void ScheduleDAGInstrs::exitRegion() {
    191   // Nothing to do.
    192 }
    193 
    194 /// addSchedBarrierDeps - Add dependencies from instructions in the current
    195 /// list of instructions being scheduled to scheduling barrier by adding
    196 /// the exit SU to the register defs and use list. This is because we want to
    197 /// make sure instructions which define registers that are either used by
    198 /// the terminator or are live-out are properly scheduled. This is
    199 /// especially important when the definition latency of the return value(s)
    200 /// are too high to be hidden by the branch or when the liveout registers
    201 /// used by instructions in the fallthrough block.
    202 void ScheduleDAGInstrs::addSchedBarrierDeps() {
    203   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
    204   ExitSU.setInstr(ExitMI);
    205   bool AllDepKnown = ExitMI &&
    206     (ExitMI->isCall() || ExitMI->isBarrier());
    207   if (ExitMI && AllDepKnown) {
    208     // If it's a call or a barrier, add dependencies on the defs and uses of
    209     // instruction.
    210     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
    211       const MachineOperand &MO = ExitMI->getOperand(i);
    212       if (!MO.isReg() || MO.isDef()) continue;
    213       unsigned Reg = MO.getReg();
    214       if (Reg == 0) continue;
    215 
    216       if (TRI->isPhysicalRegister(Reg))
    217         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
    218       else {
    219         assert(!IsPostRA && "Virtual register encountered after regalloc.");
    220         if (MO.readsReg()) // ignore undef operands
    221           addVRegUseDeps(&ExitSU, i);
    222       }
    223     }
    224   } else {
    225     // For others, e.g. fallthrough, conditional branch, assume the exit
    226     // uses all the registers that are livein to the successor blocks.
    227     assert(Uses.empty() && "Uses in set before adding deps?");
    228     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    229            SE = BB->succ_end(); SI != SE; ++SI)
    230       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    231              E = (*SI)->livein_end(); I != E; ++I) {
    232         unsigned Reg = *I;
    233         if (!Uses.contains(Reg))
    234           Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
    235       }
    236   }
    237 }
    238 
    239 /// MO is an operand of SU's instruction that defines a physical register. Add
    240 /// data dependencies from SU to any uses of the physical register.
    241 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
    242   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
    243   assert(MO.isDef() && "expect physreg def");
    244 
    245   // Ask the target if address-backscheduling is desirable, and if so how much.
    246   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    247 
    248   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    249        Alias.isValid(); ++Alias) {
    250     if (!Uses.contains(*Alias))
    251       continue;
    252     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
    253       SUnit *UseSU = I->SU;
    254       if (UseSU == SU)
    255         continue;
    256 
    257       // Adjust the dependence latency using operand def/use information,
    258       // then allow the target to perform its own adjustments.
    259       int UseOp = I->OpIdx;
    260       MachineInstr *RegUse = 0;
    261       SDep Dep;
    262       if (UseOp < 0)
    263         Dep = SDep(SU, SDep::Artificial);
    264       else {
    265         Dep = SDep(SU, SDep::Data, *Alias);
    266         RegUse = UseSU->getInstr();
    267         Dep.setMinLatency(
    268           SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
    269                                            RegUse, UseOp, /*FindMin=*/true));
    270       }
    271       Dep.setLatency(
    272         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
    273                                          RegUse, UseOp, /*FindMin=*/false));
    274 
    275       ST.adjustSchedDependency(SU, UseSU, Dep);
    276       UseSU->addPred(Dep);
    277     }
    278   }
    279 }
    280 
    281 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
    282 /// this SUnit to following instructions in the same scheduling region that
    283 /// depend the physical register referenced at OperIdx.
    284 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
    285   const MachineInstr *MI = SU->getInstr();
    286   const MachineOperand &MO = MI->getOperand(OperIdx);
    287 
    288   // Optionally add output and anti dependencies. For anti
    289   // dependencies we use a latency of 0 because for a multi-issue
    290   // target we want to allow the defining instruction to issue
    291   // in the same cycle as the using instruction.
    292   // TODO: Using a latency of 1 here for output dependencies assumes
    293   //       there's no cost for reusing registers.
    294   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
    295   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    296        Alias.isValid(); ++Alias) {
    297     if (!Defs.contains(*Alias))
    298       continue;
    299     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
    300       SUnit *DefSU = I->SU;
    301       if (DefSU == &ExitSU)
    302         continue;
    303       if (DefSU != SU &&
    304           (Kind != SDep::Output || !MO.isDead() ||
    305            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
    306         if (Kind == SDep::Anti)
    307           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
    308         else {
    309           SDep Dep(SU, Kind, /*Reg=*/*Alias);
    310           unsigned OutLatency =
    311             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
    312           Dep.setMinLatency(OutLatency);
    313           Dep.setLatency(OutLatency);
    314           DefSU->addPred(Dep);
    315         }
    316       }
    317     }
    318   }
    319 
    320   if (!MO.isDef()) {
    321     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    322     // retrieve the existing SUnits list for this register's uses.
    323     // Push this SUnit on the use list.
    324     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
    325   }
    326   else {
    327     addPhysRegDataDeps(SU, OperIdx);
    328     unsigned Reg = MO.getReg();
    329 
    330     // clear this register's use list
    331     if (Uses.contains(Reg))
    332       Uses.eraseAll(Reg);
    333 
    334     if (!MO.isDead()) {
    335       Defs.eraseAll(Reg);
    336     } else if (SU->isCall) {
    337       // Calls will not be reordered because of chain dependencies (see
    338       // below). Since call operands are dead, calls may continue to be added
    339       // to the DefList making dependence checking quadratic in the size of
    340       // the block. Instead, we leave only one call at the back of the
    341       // DefList.
    342       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
    343       Reg2SUnitsMap::iterator B = P.first;
    344       Reg2SUnitsMap::iterator I = P.second;
    345       for (bool isBegin = I == B; !isBegin; /* empty */) {
    346         isBegin = (--I) == B;
    347         if (!I->SU->isCall)
    348           break;
    349         I = Defs.erase(I);
    350       }
    351     }
    352 
    353     // Defs are pushed in the order they are visited and never reordered.
    354     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
    355   }
    356 }
    357 
    358 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
    359 /// to instructions that occur later in the same scheduling region if they read
    360 /// from or write to the virtual register defined at OperIdx.
    361 ///
    362 /// TODO: Hoist loop induction variable increments. This has to be
    363 /// reevaluated. Generally, IV scheduling should be done before coalescing.
    364 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
    365   const MachineInstr *MI = SU->getInstr();
    366   unsigned Reg = MI->getOperand(OperIdx).getReg();
    367 
    368   // Singly defined vregs do not have output/anti dependencies.
    369   // The current operand is a def, so we have at least one.
    370   // Check here if there are any others...
    371   if (MRI.hasOneDef(Reg))
    372     return;
    373 
    374   // Add output dependence to the next nearest def of this vreg.
    375   //
    376   // Unless this definition is dead, the output dependence should be
    377   // transitively redundant with antidependencies from this definition's
    378   // uses. We're conservative for now until we have a way to guarantee the uses
    379   // are not eliminated sometime during scheduling. The output dependence edge
    380   // is also useful if output latency exceeds def-use latency.
    381   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
    382   if (DefI == VRegDefs.end())
    383     VRegDefs.insert(VReg2SUnit(Reg, SU));
    384   else {
    385     SUnit *DefSU = DefI->SU;
    386     if (DefSU != SU && DefSU != &ExitSU) {
    387       SDep Dep(SU, SDep::Output, Reg);
    388       unsigned OutLatency =
    389         SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
    390       Dep.setMinLatency(OutLatency);
    391       Dep.setLatency(OutLatency);
    392       DefSU->addPred(Dep);
    393     }
    394     DefI->SU = SU;
    395   }
    396 }
    397 
    398 /// addVRegUseDeps - Add a register data dependency if the instruction that
    399 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
    400 /// register antidependency from this SUnit to instructions that occur later in
    401 /// the same scheduling region if they write the virtual register.
    402 ///
    403 /// TODO: Handle ExitSU "uses" properly.
    404 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
    405   MachineInstr *MI = SU->getInstr();
    406   unsigned Reg = MI->getOperand(OperIdx).getReg();
    407 
    408   // Lookup this operand's reaching definition.
    409   assert(LIS && "vreg dependencies requires LiveIntervals");
    410   LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
    411   VNInfo *VNI = LRQ.valueIn();
    412 
    413   // VNI will be valid because MachineOperand::readsReg() is checked by caller.
    414   assert(VNI && "No value to read by operand");
    415   MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
    416   // Phis and other noninstructions (after coalescing) have a NULL Def.
    417   if (Def) {
    418     SUnit *DefSU = getSUnit(Def);
    419     if (DefSU) {
    420       // The reaching Def lives within this scheduling region.
    421       // Create a data dependence.
    422       SDep dep(DefSU, SDep::Data, Reg);
    423       // Adjust the dependence latency using operand def/use information, then
    424       // allow the target to perform its own adjustments.
    425       int DefOp = Def->findRegisterDefOperandIdx(Reg);
    426       dep.setLatency(
    427         SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false));
    428       dep.setMinLatency(
    429         SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true));
    430 
    431       const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    432       ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
    433       SU->addPred(dep);
    434     }
    435   }
    436 
    437   // Add antidependence to the following def of the vreg it uses.
    438   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
    439   if (DefI != VRegDefs.end() && DefI->SU != SU)
    440     DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
    441 }
    442 
    443 /// Return true if MI is an instruction we are unable to reason about
    444 /// (like a call or something with unmodeled side effects).
    445 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
    446   if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
    447       (MI->hasOrderedMemoryRef() &&
    448        (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
    449     return true;
    450   return false;
    451 }
    452 
    453 // This MI might have either incomplete info, or known to be unsafe
    454 // to deal with (i.e. volatile object).
    455 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
    456                                         const MachineFrameInfo *MFI) {
    457   if (!MI || MI->memoperands_empty())
    458     return true;
    459   // We purposefully do no check for hasOneMemOperand() here
    460   // in hope to trigger an assert downstream in order to
    461   // finish implementation.
    462   if ((*MI->memoperands_begin())->isVolatile() ||
    463        MI->hasUnmodeledSideEffects())
    464     return true;
    465   const Value *V = (*MI->memoperands_begin())->getValue();
    466   if (!V)
    467     return true;
    468 
    469   SmallVector<Value *, 4> Objs;
    470   getUnderlyingObjects(V, Objs);
    471   for (SmallVector<Value *, 4>::iterator I = Objs.begin(),
    472        IE = Objs.end(); I != IE; ++I) {
    473     V = *I;
    474 
    475     if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
    476       // Similarly to getUnderlyingObjectForInstr:
    477       // For now, ignore PseudoSourceValues which may alias LLVM IR values
    478       // because the code that uses this function has no way to cope with
    479       // such aliases.
    480       if (PSV->isAliased(MFI))
    481         return true;
    482     }
    483 
    484     // Does this pointer refer to a distinct and identifiable object?
    485     if (!isIdentifiedObject(V))
    486       return true;
    487   }
    488 
    489   return false;
    490 }
    491 
    492 /// This returns true if the two MIs need a chain edge betwee them.
    493 /// If these are not even memory operations, we still may need
    494 /// chain deps between them. The question really is - could
    495 /// these two MIs be reordered during scheduling from memory dependency
    496 /// point of view.
    497 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    498                              MachineInstr *MIa,
    499                              MachineInstr *MIb) {
    500   // Cover a trivial case - no edge is need to itself.
    501   if (MIa == MIb)
    502     return false;
    503 
    504   if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
    505     return true;
    506 
    507   // If we are dealing with two "normal" loads, we do not need an edge
    508   // between them - they could be reordered.
    509   if (!MIa->mayStore() && !MIb->mayStore())
    510     return false;
    511 
    512   // To this point analysis is generic. From here on we do need AA.
    513   if (!AA)
    514     return true;
    515 
    516   MachineMemOperand *MMOa = *MIa->memoperands_begin();
    517   MachineMemOperand *MMOb = *MIb->memoperands_begin();
    518 
    519   // FIXME: Need to handle multiple memory operands to support all targets.
    520   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
    521     llvm_unreachable("Multiple memory operands.");
    522 
    523   // The following interface to AA is fashioned after DAGCombiner::isAlias
    524   // and operates with MachineMemOperand offset with some important
    525   // assumptions:
    526   //   - LLVM fundamentally assumes flat address spaces.
    527   //   - MachineOperand offset can *only* result from legalization and
    528   //     cannot affect queries other than the trivial case of overlap
    529   //     checking.
    530   //   - These offsets never wrap and never step outside
    531   //     of allocated objects.
    532   //   - There should never be any negative offsets here.
    533   //
    534   // FIXME: Modify API to hide this math from "user"
    535   // FIXME: Even before we go to AA we can reason locally about some
    536   // memory objects. It can save compile time, and possibly catch some
    537   // corner cases not currently covered.
    538 
    539   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
    540   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
    541 
    542   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
    543   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
    544   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
    545 
    546   AliasAnalysis::AliasResult AAResult = AA->alias(
    547   AliasAnalysis::Location(MMOa->getValue(), Overlapa,
    548                           MMOa->getTBAAInfo()),
    549   AliasAnalysis::Location(MMOb->getValue(), Overlapb,
    550                           MMOb->getTBAAInfo()));
    551 
    552   return (AAResult != AliasAnalysis::NoAlias);
    553 }
    554 
    555 /// This recursive function iterates over chain deps of SUb looking for
    556 /// "latest" node that needs a chain edge to SUa.
    557 static unsigned
    558 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    559                  SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
    560                  SmallPtrSet<const SUnit*, 16> &Visited) {
    561   if (!SUa || !SUb || SUb == ExitSU)
    562     return *Depth;
    563 
    564   // Remember visited nodes.
    565   if (!Visited.insert(SUb))
    566       return *Depth;
    567   // If there is _some_ dependency already in place, do not
    568   // descend any further.
    569   // TODO: Need to make sure that if that dependency got eliminated or ignored
    570   // for any reason in the future, we would not violate DAG topology.
    571   // Currently it does not happen, but makes an implicit assumption about
    572   // future implementation.
    573   //
    574   // Independently, if we encounter node that is some sort of global
    575   // object (like a call) we already have full set of dependencies to it
    576   // and we can stop descending.
    577   if (SUa->isSucc(SUb) ||
    578       isGlobalMemoryObject(AA, SUb->getInstr()))
    579     return *Depth;
    580 
    581   // If we do need an edge, or we have exceeded depth budget,
    582   // add that edge to the predecessors chain of SUb,
    583   // and stop descending.
    584   if (*Depth > 200 ||
    585       MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
    586     SUb->addPred(SDep(SUa, SDep::MayAliasMem));
    587     return *Depth;
    588   }
    589   // Track current depth.
    590   (*Depth)++;
    591   // Iterate over chain dependencies only.
    592   for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
    593        I != E; ++I)
    594     if (I->isCtrl())
    595       iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
    596   return *Depth;
    597 }
    598 
    599 /// This function assumes that "downward" from SU there exist
    600 /// tail/leaf of already constructed DAG. It iterates downward and
    601 /// checks whether SU can be aliasing any node dominated
    602 /// by it.
    603 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    604                             SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
    605                             unsigned LatencyToLoad) {
    606   if (!SU)
    607     return;
    608 
    609   SmallPtrSet<const SUnit*, 16> Visited;
    610   unsigned Depth = 0;
    611 
    612   for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
    613        I != IE; ++I) {
    614     if (SU == *I)
    615       continue;
    616     if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
    617       SDep Dep(SU, SDep::MayAliasMem);
    618       Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
    619       (*I)->addPred(Dep);
    620     }
    621     // Now go through all the chain successors and iterate from them.
    622     // Keep track of visited nodes.
    623     for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
    624          JE = (*I)->Succs.end(); J != JE; ++J)
    625       if (J->isCtrl())
    626         iterateChainSucc (AA, MFI, SU, J->getSUnit(),
    627                           ExitSU, &Depth, Visited);
    628   }
    629 }
    630 
    631 /// Check whether two objects need a chain edge, if so, add it
    632 /// otherwise remember the rejected SU.
    633 static inline
    634 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
    635                          SUnit *SUa, SUnit *SUb,
    636                          std::set<SUnit *> &RejectList,
    637                          unsigned TrueMemOrderLatency = 0,
    638                          bool isNormalMemory = false) {
    639   // If this is a false dependency,
    640   // do not add the edge, but rememeber the rejected node.
    641   if (!EnableAASchedMI ||
    642       MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
    643     SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
    644     Dep.setLatency(TrueMemOrderLatency);
    645     SUb->addPred(Dep);
    646   }
    647   else {
    648     // Duplicate entries should be ignored.
    649     RejectList.insert(SUb);
    650     DEBUG(dbgs() << "\tReject chain dep between SU("
    651           << SUa->NodeNum << ") and SU("
    652           << SUb->NodeNum << ")\n");
    653   }
    654 }
    655 
    656 /// Create an SUnit for each real instruction, numbered in top-down toplological
    657 /// order. The instruction order A < B, implies that no edge exists from B to A.
    658 ///
    659 /// Map each real instruction to its SUnit.
    660 ///
    661 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
    662 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
    663 /// instead of pointers.
    664 ///
    665 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
    666 /// the original instruction list.
    667 void ScheduleDAGInstrs::initSUnits() {
    668   // We'll be allocating one SUnit for each real instruction in the region,
    669   // which is contained within a basic block.
    670   SUnits.reserve(BB->size());
    671 
    672   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
    673     MachineInstr *MI = I;
    674     if (MI->isDebugValue())
    675       continue;
    676 
    677     SUnit *SU = newSUnit(MI);
    678     MISUnitMap[MI] = SU;
    679 
    680     SU->isCall = MI->isCall();
    681     SU->isCommutable = MI->isCommutable();
    682 
    683     // Assign the Latency field of SU using target-provided information.
    684     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
    685   }
    686 }
    687 
    688 /// If RegPressure is non null, compute register pressure as a side effect. The
    689 /// DAG builder is an efficient place to do it because it already visits
    690 /// operands.
    691 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
    692                                         RegPressureTracker *RPTracker) {
    693   // Create an SUnit for each real instruction.
    694   initSUnits();
    695 
    696   // We build scheduling units by walking a block's instruction list from bottom
    697   // to top.
    698 
    699   // Remember where a generic side-effecting instruction is as we procede.
    700   SUnit *BarrierChain = 0, *AliasChain = 0;
    701 
    702   // Memory references to specific known memory locations are tracked
    703   // so that they can be given more precise dependencies. We track
    704   // separately the known memory locations that may alias and those
    705   // that are known not to alias
    706   MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
    707   MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
    708   std::set<SUnit*> RejectMemNodes;
    709 
    710   // Remove any stale debug info; sometimes BuildSchedGraph is called again
    711   // without emitting the info from the previous call.
    712   DbgValues.clear();
    713   FirstDbgValue = NULL;
    714 
    715   assert(Defs.empty() && Uses.empty() &&
    716          "Only BuildGraph should update Defs/Uses");
    717   Defs.setUniverse(TRI->getNumRegs());
    718   Uses.setUniverse(TRI->getNumRegs());
    719 
    720   assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
    721   // FIXME: Allow SparseSet to reserve space for the creation of virtual
    722   // registers during scheduling. Don't artificially inflate the Universe
    723   // because we want to assert that vregs are not created during DAG building.
    724   VRegDefs.setUniverse(MRI.getNumVirtRegs());
    725 
    726   // Model data dependencies between instructions being scheduled and the
    727   // ExitSU.
    728   addSchedBarrierDeps();
    729 
    730   // Walk the list of instructions, from bottom moving up.
    731   MachineInstr *DbgMI = NULL;
    732   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
    733        MII != MIE; --MII) {
    734     MachineInstr *MI = prior(MII);
    735     if (MI && DbgMI) {
    736       DbgValues.push_back(std::make_pair(DbgMI, MI));
    737       DbgMI = NULL;
    738     }
    739 
    740     if (MI->isDebugValue()) {
    741       DbgMI = MI;
    742       continue;
    743     }
    744     if (RPTracker) {
    745       RPTracker->recede();
    746       assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
    747     }
    748 
    749     assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
    750            "Cannot schedule terminators or labels!");
    751 
    752     SUnit *SU = MISUnitMap[MI];
    753     assert(SU && "No SUnit mapped to this MI");
    754 
    755     // Add register-based dependencies (data, anti, and output).
    756     bool HasVRegDef = false;
    757     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
    758       const MachineOperand &MO = MI->getOperand(j);
    759       if (!MO.isReg()) continue;
    760       unsigned Reg = MO.getReg();
    761       if (Reg == 0) continue;
    762 
    763       if (TRI->isPhysicalRegister(Reg))
    764         addPhysRegDeps(SU, j);
    765       else {
    766         assert(!IsPostRA && "Virtual register encountered!");
    767         if (MO.isDef()) {
    768           HasVRegDef = true;
    769           addVRegDefDeps(SU, j);
    770         }
    771         else if (MO.readsReg()) // ignore undef operands
    772           addVRegUseDeps(SU, j);
    773       }
    774     }
    775     // If we haven't seen any uses in this scheduling region, create a
    776     // dependence edge to ExitSU to model the live-out latency. This is required
    777     // for vreg defs with no in-region use, and prefetches with no vreg def.
    778     //
    779     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
    780     // check currently relies on being called before adding chain deps.
    781     if (SU->NumSuccs == 0 && SU->Latency > 1
    782         && (HasVRegDef || MI->mayLoad())) {
    783       SDep Dep(SU, SDep::Artificial);
    784       Dep.setLatency(SU->Latency - 1);
    785       ExitSU.addPred(Dep);
    786     }
    787 
    788     // Add chain dependencies.
    789     // Chain dependencies used to enforce memory order should have
    790     // latency of 0 (except for true dependency of Store followed by
    791     // aliased Load... we estimate that with a single cycle of latency
    792     // assuming the hardware will bypass)
    793     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
    794     // after stack slots are lowered to actual addresses.
    795     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
    796     // produce more precise dependence information.
    797     unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
    798     if (isGlobalMemoryObject(AA, MI)) {
    799       // Be conservative with these and add dependencies on all memory
    800       // references, even those that are known to not alias.
    801       for (MapVector<const Value *, SUnit *>::iterator I =
    802              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
    803         I->second->addPred(SDep(SU, SDep::Barrier));
    804       }
    805       for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
    806              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
    807         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
    808           SDep Dep(SU, SDep::Barrier);
    809           Dep.setLatency(TrueMemOrderLatency);
    810           I->second[i]->addPred(Dep);
    811         }
    812       }
    813       // Add SU to the barrier chain.
    814       if (BarrierChain)
    815         BarrierChain->addPred(SDep(SU, SDep::Barrier));
    816       BarrierChain = SU;
    817       // This is a barrier event that acts as a pivotal node in the DAG,
    818       // so it is safe to clear list of exposed nodes.
    819       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    820                       TrueMemOrderLatency);
    821       RejectMemNodes.clear();
    822       NonAliasMemDefs.clear();
    823       NonAliasMemUses.clear();
    824 
    825       // fall-through
    826     new_alias_chain:
    827       // Chain all possibly aliasing memory references though SU.
    828       if (AliasChain) {
    829         unsigned ChainLatency = 0;
    830         if (AliasChain->getInstr()->mayLoad())
    831           ChainLatency = TrueMemOrderLatency;
    832         addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
    833                            ChainLatency);
    834       }
    835       AliasChain = SU;
    836       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    837         addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
    838                            TrueMemOrderLatency);
    839       for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
    840            E = AliasMemDefs.end(); I != E; ++I)
    841         addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
    842       for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
    843            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
    844         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    845           addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
    846                              TrueMemOrderLatency);
    847       }
    848       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    849                       TrueMemOrderLatency);
    850       PendingLoads.clear();
    851       AliasMemDefs.clear();
    852       AliasMemUses.clear();
    853     } else if (MI->mayStore()) {
    854       SmallVector<std::pair<const Value *, bool>, 4> Objs;
    855       getUnderlyingObjectsForInstr(MI, MFI, Objs);
    856 
    857       if (Objs.empty()) {
    858         // Treat all other stores conservatively.
    859         goto new_alias_chain;
    860       }
    861 
    862       bool MayAlias = false;
    863       for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
    864            K = Objs.begin(), KE = Objs.end(); K != KE; ++K) {
    865         const Value *V = K->first;
    866         bool ThisMayAlias = K->second;
    867         if (ThisMayAlias)
    868           MayAlias = true;
    869 
    870         // A store to a specific PseudoSourceValue. Add precise dependencies.
    871         // Record the def in MemDefs, first adding a dep if there is
    872         // an existing def.
    873         MapVector<const Value *, SUnit *>::iterator I =
    874           ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
    875         MapVector<const Value *, SUnit *>::iterator IE =
    876           ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
    877         if (I != IE) {
    878           addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
    879           I->second = SU;
    880         } else {
    881           if (ThisMayAlias)
    882             AliasMemDefs[V] = SU;
    883           else
    884             NonAliasMemDefs[V] = SU;
    885         }
    886         // Handle the uses in MemUses, if there are any.
    887         MapVector<const Value *, std::vector<SUnit *> >::iterator J =
    888           ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
    889         MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
    890           ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
    891         if (J != JE) {
    892           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
    893             addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
    894                                TrueMemOrderLatency, true);
    895           J->second.clear();
    896         }
    897       }
    898       if (MayAlias) {
    899         // Add dependencies from all the PendingLoads, i.e. loads
    900         // with no underlying object.
    901         for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    902           addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
    903                              TrueMemOrderLatency);
    904         // Add dependence on alias chain, if needed.
    905         if (AliasChain)
    906           addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
    907         // But we also should check dependent instructions for the
    908         // SU in question.
    909         adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    910                         TrueMemOrderLatency);
    911       }
    912       // Add dependence on barrier chain, if needed.
    913       // There is no point to check aliasing on barrier event. Even if
    914       // SU and barrier _could_ be reordered, they should not. In addition,
    915       // we have lost all RejectMemNodes below barrier.
    916       if (BarrierChain)
    917         BarrierChain->addPred(SDep(SU, SDep::Barrier));
    918 
    919       if (!ExitSU.isPred(SU))
    920         // Push store's up a bit to avoid them getting in between cmp
    921         // and branches.
    922         ExitSU.addPred(SDep(SU, SDep::Artificial));
    923     } else if (MI->mayLoad()) {
    924       bool MayAlias = true;
    925       if (MI->isInvariantLoad(AA)) {
    926         // Invariant load, no chain dependencies needed!
    927       } else {
    928         SmallVector<std::pair<const Value *, bool>, 4> Objs;
    929         getUnderlyingObjectsForInstr(MI, MFI, Objs);
    930 
    931         if (Objs.empty()) {
    932           // A load with no underlying object. Depend on all
    933           // potentially aliasing stores.
    934           for (MapVector<const Value *, SUnit *>::iterator I =
    935                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
    936             addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
    937 
    938           PendingLoads.push_back(SU);
    939           MayAlias = true;
    940         } else {
    941           MayAlias = false;
    942         }
    943 
    944         for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
    945              J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
    946           const Value *V = J->first;
    947           bool ThisMayAlias = J->second;
    948 
    949           if (ThisMayAlias)
    950             MayAlias = true;
    951 
    952           // A load from a specific PseudoSourceValue. Add precise dependencies.
    953           MapVector<const Value *, SUnit *>::iterator I =
    954             ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
    955           MapVector<const Value *, SUnit *>::iterator IE =
    956             ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
    957           if (I != IE)
    958             addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
    959           if (ThisMayAlias)
    960             AliasMemUses[V].push_back(SU);
    961           else
    962             NonAliasMemUses[V].push_back(SU);
    963         }
    964         if (MayAlias)
    965           adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
    966         // Add dependencies on alias and barrier chains, if needed.
    967         if (MayAlias && AliasChain)
    968           addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
    969         if (BarrierChain)
    970           BarrierChain->addPred(SDep(SU, SDep::Barrier));
    971       }
    972     }
    973   }
    974   if (DbgMI)
    975     FirstDbgValue = DbgMI;
    976 
    977   Defs.clear();
    978   Uses.clear();
    979   VRegDefs.clear();
    980   PendingLoads.clear();
    981 }
    982 
    983 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
    984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    985   SU->getInstr()->dump();
    986 #endif
    987 }
    988 
    989 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
    990   std::string s;
    991   raw_string_ostream oss(s);
    992   if (SU == &EntrySU)
    993     oss << "<entry>";
    994   else if (SU == &ExitSU)
    995     oss << "<exit>";
    996   else
    997     SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
    998   return oss.str();
    999 }
   1000 
   1001 /// Return the basic block label. It is not necessarilly unique because a block
   1002 /// contains multiple scheduling regions. But it is fine for visualization.
   1003 std::string ScheduleDAGInstrs::getDAGName() const {
   1004   return "dag." + BB->getFullName();
   1005 }
   1006 
   1007 //===----------------------------------------------------------------------===//
   1008 // SchedDFSResult Implementation
   1009 //===----------------------------------------------------------------------===//
   1010 
   1011 namespace llvm {
   1012 /// \brief Internal state used to compute SchedDFSResult.
   1013 class SchedDFSImpl {
   1014   SchedDFSResult &R;
   1015 
   1016   /// Join DAG nodes into equivalence classes by their subtree.
   1017   IntEqClasses SubtreeClasses;
   1018   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
   1019   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
   1020 
   1021   struct RootData {
   1022     unsigned NodeID;
   1023     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
   1024     unsigned SubInstrCount; // Instr count in this tree only, not children.
   1025 
   1026     RootData(unsigned id): NodeID(id),
   1027                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
   1028                            SubInstrCount(0) {}
   1029 
   1030     unsigned getSparseSetIndex() const { return NodeID; }
   1031   };
   1032 
   1033   SparseSet<RootData> RootSet;
   1034 
   1035 public:
   1036   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
   1037     RootSet.setUniverse(R.DFSNodeData.size());
   1038   }
   1039 
   1040   /// Return true if this node been visited by the DFS traversal.
   1041   ///
   1042   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
   1043   /// ID. Later, SubtreeID is updated but remains valid.
   1044   bool isVisited(const SUnit *SU) const {
   1045     return R.DFSNodeData[SU->NodeNum].SubtreeID
   1046       != SchedDFSResult::InvalidSubtreeID;
   1047   }
   1048 
   1049   /// Initialize this node's instruction count. We don't need to flag the node
   1050   /// visited until visitPostorder because the DAG cannot have cycles.
   1051   void visitPreorder(const SUnit *SU) {
   1052     R.DFSNodeData[SU->NodeNum].InstrCount =
   1053       SU->getInstr()->isTransient() ? 0 : 1;
   1054   }
   1055 
   1056   /// Called once for each node after all predecessors are visited. Revisit this
   1057   /// node's predecessors and potentially join them now that we know the ILP of
   1058   /// the other predecessors.
   1059   void visitPostorderNode(const SUnit *SU) {
   1060     // Mark this node as the root of a subtree. It may be joined with its
   1061     // successors later.
   1062     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
   1063     RootData RData(SU->NodeNum);
   1064     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
   1065 
   1066     // If any predecessors are still in their own subtree, they either cannot be
   1067     // joined or are large enough to remain separate. If this parent node's
   1068     // total instruction count is not greater than a child subtree by at least
   1069     // the subtree limit, then try to join it now since splitting subtrees is
   1070     // only useful if multiple high-pressure paths are possible.
   1071     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
   1072     for (SUnit::const_pred_iterator
   1073            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
   1074       if (PI->getKind() != SDep::Data)
   1075         continue;
   1076       unsigned PredNum = PI->getSUnit()->NodeNum;
   1077       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
   1078         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
   1079 
   1080       // Either link or merge the TreeData entry from the child to the parent.
   1081       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
   1082         // If the predecessor's parent is invalid, this is a tree edge and the
   1083         // current node is the parent.
   1084         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
   1085           RootSet[PredNum].ParentNodeID = SU->NodeNum;
   1086       }
   1087       else if (RootSet.count(PredNum)) {
   1088         // The predecessor is not a root, but is still in the root set. This
   1089         // must be the new parent that it was just joined to. Note that
   1090         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
   1091         // set to the original parent.
   1092         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
   1093         RootSet.erase(PredNum);
   1094       }
   1095     }
   1096     RootSet[SU->NodeNum] = RData;
   1097   }
   1098 
   1099   /// Called once for each tree edge after calling visitPostOrderNode on the
   1100   /// predecessor. Increment the parent node's instruction count and
   1101   /// preemptively join this subtree to its parent's if it is small enough.
   1102   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
   1103     R.DFSNodeData[Succ->NodeNum].InstrCount
   1104       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
   1105     joinPredSubtree(PredDep, Succ);
   1106   }
   1107 
   1108   /// Add a connection for cross edges.
   1109   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
   1110     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
   1111   }
   1112 
   1113   /// Set each node's subtree ID to the representative ID and record connections
   1114   /// between trees.
   1115   void finalize() {
   1116     SubtreeClasses.compress();
   1117     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
   1118     assert(SubtreeClasses.getNumClasses() == RootSet.size()
   1119            && "number of roots should match trees");
   1120     for (SparseSet<RootData>::const_iterator
   1121            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
   1122       unsigned TreeID = SubtreeClasses[RI->NodeID];
   1123       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
   1124         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
   1125       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
   1126       // Note that SubInstrCount may be greater than InstrCount if we joined
   1127       // subtrees across a cross edge. InstrCount will be attributed to the
   1128       // original parent, while SubInstrCount will be attributed to the joined
   1129       // parent.
   1130     }
   1131     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
   1132     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
   1133     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
   1134     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
   1135       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
   1136       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
   1137             << R.DFSNodeData[Idx].SubtreeID << '\n');
   1138     }
   1139     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
   1140            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
   1141          I != E; ++I) {
   1142       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
   1143       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
   1144       if (PredTree == SuccTree)
   1145         continue;
   1146       unsigned Depth = I->first->getDepth();
   1147       addConnection(PredTree, SuccTree, Depth);
   1148       addConnection(SuccTree, PredTree, Depth);
   1149     }
   1150   }
   1151 
   1152 protected:
   1153   /// Join the predecessor subtree with the successor that is its DFS
   1154   /// parent. Apply some heuristics before joining.
   1155   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
   1156                        bool CheckLimit = true) {
   1157     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
   1158 
   1159     // Check if the predecessor is already joined.
   1160     const SUnit *PredSU = PredDep.getSUnit();
   1161     unsigned PredNum = PredSU->NodeNum;
   1162     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
   1163       return false;
   1164 
   1165     // Four is the magic number of successors before a node is considered a
   1166     // pinch point.
   1167     unsigned NumDataSucs = 0;
   1168     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
   1169            SE = PredSU->Succs.end(); SI != SE; ++SI) {
   1170       if (SI->getKind() == SDep::Data) {
   1171         if (++NumDataSucs >= 4)
   1172           return false;
   1173       }
   1174     }
   1175     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
   1176       return false;
   1177     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
   1178     SubtreeClasses.join(Succ->NodeNum, PredNum);
   1179     return true;
   1180   }
   1181 
   1182   /// Called by finalize() to record a connection between trees.
   1183   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
   1184     if (!Depth)
   1185       return;
   1186 
   1187     do {
   1188       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
   1189         R.SubtreeConnections[FromTree];
   1190       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
   1191              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
   1192         if (I->TreeID == ToTree) {
   1193           I->Level = std::max(I->Level, Depth);
   1194           return;
   1195         }
   1196       }
   1197       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
   1198       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
   1199     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
   1200   }
   1201 };
   1202 } // namespace llvm
   1203 
   1204 namespace {
   1205 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
   1206 class SchedDAGReverseDFS {
   1207   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
   1208 public:
   1209   bool isComplete() const { return DFSStack.empty(); }
   1210 
   1211   void follow(const SUnit *SU) {
   1212     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
   1213   }
   1214   void advance() { ++DFSStack.back().second; }
   1215 
   1216   const SDep *backtrack() {
   1217     DFSStack.pop_back();
   1218     return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
   1219   }
   1220 
   1221   const SUnit *getCurr() const { return DFSStack.back().first; }
   1222 
   1223   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
   1224 
   1225   SUnit::const_pred_iterator getPredEnd() const {
   1226     return getCurr()->Preds.end();
   1227   }
   1228 };
   1229 } // anonymous
   1230 
   1231 static bool hasDataSucc(const SUnit *SU) {
   1232   for (SUnit::const_succ_iterator
   1233          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
   1234     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
   1235       return true;
   1236   }
   1237   return false;
   1238 }
   1239 
   1240 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
   1241 /// search from this root.
   1242 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
   1243   if (!IsBottomUp)
   1244     llvm_unreachable("Top-down ILP metric is unimplemnted");
   1245 
   1246   SchedDFSImpl Impl(*this);
   1247   for (ArrayRef<SUnit>::const_iterator
   1248          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
   1249     const SUnit *SU = &*SI;
   1250     if (Impl.isVisited(SU) || hasDataSucc(SU))
   1251       continue;
   1252 
   1253     SchedDAGReverseDFS DFS;
   1254     Impl.visitPreorder(SU);
   1255     DFS.follow(SU);
   1256     for (;;) {
   1257       // Traverse the leftmost path as far as possible.
   1258       while (DFS.getPred() != DFS.getPredEnd()) {
   1259         const SDep &PredDep = *DFS.getPred();
   1260         DFS.advance();
   1261         // Ignore non-data edges.
   1262         if (PredDep.getKind() != SDep::Data
   1263             || PredDep.getSUnit()->isBoundaryNode()) {
   1264           continue;
   1265         }
   1266         // An already visited edge is a cross edge, assuming an acyclic DAG.
   1267         if (Impl.isVisited(PredDep.getSUnit())) {
   1268           Impl.visitCrossEdge(PredDep, DFS.getCurr());
   1269           continue;
   1270         }
   1271         Impl.visitPreorder(PredDep.getSUnit());
   1272         DFS.follow(PredDep.getSUnit());
   1273       }
   1274       // Visit the top of the stack in postorder and backtrack.
   1275       const SUnit *Child = DFS.getCurr();
   1276       const SDep *PredDep = DFS.backtrack();
   1277       Impl.visitPostorderNode(Child);
   1278       if (PredDep)
   1279         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
   1280       if (DFS.isComplete())
   1281         break;
   1282     }
   1283   }
   1284   Impl.finalize();
   1285 }
   1286 
   1287 /// The root of the given SubtreeID was just scheduled. For all subtrees
   1288 /// connected to this tree, record the depth of the connection so that the
   1289 /// nearest connected subtrees can be prioritized.
   1290 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
   1291   for (SmallVectorImpl<Connection>::const_iterator
   1292          I = SubtreeConnections[SubtreeID].begin(),
   1293          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
   1294     SubtreeConnectLevels[I->TreeID] =
   1295       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
   1296     DEBUG(dbgs() << "  Tree: " << I->TreeID
   1297           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
   1298   }
   1299 }
   1300 
   1301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1302 void ILPValue::print(raw_ostream &OS) const {
   1303   OS << InstrCount << " / " << Length << " = ";
   1304   if (!Length)
   1305     OS << "BADILP";
   1306   else
   1307     OS << format("%g", ((double)InstrCount / Length));
   1308 }
   1309 
   1310 void ILPValue::dump() const {
   1311   dbgs() << *this << '\n';
   1312 }
   1313 
   1314 namespace llvm {
   1315 
   1316 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
   1317   Val.print(OS);
   1318   return OS;
   1319 }
   1320 
   1321 } // namespace llvm
   1322 #endif // !NDEBUG || LLVM_ENABLE_DUMP
   1323