Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "MCTargetDesc/ARMMCTargetDesc.h"
     11 #include "MCTargetDesc/ARMAddressingModes.h"
     12 #include "MCTargetDesc/ARMBaseInfo.h"
     13 #include "MCTargetDesc/ARMFixupKinds.h"
     14 #include "llvm/ADT/StringSwitch.h"
     15 #include "llvm/MC/MCAsmBackend.h"
     16 #include "llvm/MC/MCAssembler.h"
     17 #include "llvm/MC/MCContext.h"
     18 #include "llvm/MC/MCDirectives.h"
     19 #include "llvm/MC/MCELFObjectWriter.h"
     20 #include "llvm/MC/MCExpr.h"
     21 #include "llvm/MC/MCFixupKindInfo.h"
     22 #include "llvm/MC/MCMachObjectWriter.h"
     23 #include "llvm/MC/MCObjectWriter.h"
     24 #include "llvm/MC/MCSectionELF.h"
     25 #include "llvm/MC/MCSectionMachO.h"
     26 #include "llvm/MC/MCSubtargetInfo.h"
     27 #include "llvm/MC/MCValue.h"
     28 #include "llvm/Object/MachOFormat.h"
     29 #include "llvm/Support/ELF.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 using namespace llvm;
     33 
     34 namespace {
     35 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
     36 public:
     37   ARMELFObjectWriter(uint8_t OSABI)
     38     : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
     39                               /*HasRelocationAddend*/ false) {}
     40 };
     41 
     42 class ARMAsmBackend : public MCAsmBackend {
     43   const MCSubtargetInfo* STI;
     44   bool isThumbMode;  // Currently emitting Thumb code.
     45 public:
     46   ARMAsmBackend(const Target &T, const StringRef TT)
     47     : MCAsmBackend(), STI(ARM_MC::createARMMCSubtargetInfo(TT, "", "")),
     48       isThumbMode(TT.startswith("thumb")) {}
     49 
     50   ~ARMAsmBackend() {
     51     delete STI;
     52   }
     53 
     54   unsigned getNumFixupKinds() const { return ARM::NumTargetFixupKinds; }
     55 
     56   bool hasNOP() const {
     57     return (STI->getFeatureBits() & ARM::HasV6T2Ops) != 0;
     58   }
     59 
     60   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
     61     const static MCFixupKindInfo Infos[ARM::NumTargetFixupKinds] = {
     62 // This table *must* be in the order that the fixup_* kinds are defined in
     63 // ARMFixupKinds.h.
     64 //
     65 // Name                      Offset (bits) Size (bits)     Flags
     66 { "fixup_arm_ldst_pcrel_12", 0,            32,  MCFixupKindInfo::FKF_IsPCRel },
     67 { "fixup_t2_ldst_pcrel_12",  0,            32,  MCFixupKindInfo::FKF_IsPCRel |
     68                                    MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     69 { "fixup_arm_pcrel_10_unscaled", 0,        32,  MCFixupKindInfo::FKF_IsPCRel },
     70 { "fixup_arm_pcrel_10",      0,            32,  MCFixupKindInfo::FKF_IsPCRel },
     71 { "fixup_t2_pcrel_10",       0,            32,  MCFixupKindInfo::FKF_IsPCRel |
     72                                    MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     73 { "fixup_thumb_adr_pcrel_10",0,            8,   MCFixupKindInfo::FKF_IsPCRel |
     74                                    MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     75 { "fixup_arm_adr_pcrel_12",  0,            32,  MCFixupKindInfo::FKF_IsPCRel },
     76 { "fixup_t2_adr_pcrel_12",   0,            32,  MCFixupKindInfo::FKF_IsPCRel |
     77                                    MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     78 { "fixup_arm_condbranch",    0,            24,  MCFixupKindInfo::FKF_IsPCRel },
     79 { "fixup_arm_uncondbranch",  0,            24,  MCFixupKindInfo::FKF_IsPCRel },
     80 { "fixup_t2_condbranch",     0,            32,  MCFixupKindInfo::FKF_IsPCRel },
     81 { "fixup_t2_uncondbranch",   0,            32,  MCFixupKindInfo::FKF_IsPCRel },
     82 { "fixup_arm_thumb_br",      0,            16,  MCFixupKindInfo::FKF_IsPCRel },
     83 { "fixup_arm_uncondbl",      0,            24,  MCFixupKindInfo::FKF_IsPCRel },
     84 { "fixup_arm_condbl",        0,            24,  MCFixupKindInfo::FKF_IsPCRel },
     85 { "fixup_arm_blx",           0,            24,  MCFixupKindInfo::FKF_IsPCRel },
     86 { "fixup_arm_thumb_bl",      0,            32,  MCFixupKindInfo::FKF_IsPCRel },
     87 { "fixup_arm_thumb_blx",     0,            32,  MCFixupKindInfo::FKF_IsPCRel },
     88 { "fixup_arm_thumb_cb",      0,            16,  MCFixupKindInfo::FKF_IsPCRel },
     89 { "fixup_arm_thumb_cp",      0,             8,  MCFixupKindInfo::FKF_IsPCRel |
     90                                    MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     91 { "fixup_arm_thumb_bcc",     0,             8,  MCFixupKindInfo::FKF_IsPCRel },
     92 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
     93 { "fixup_arm_movt_hi16",     0,            20,  0 },
     94 { "fixup_arm_movw_lo16",     0,            20,  0 },
     95 { "fixup_t2_movt_hi16",      0,            20,  0 },
     96 { "fixup_t2_movw_lo16",      0,            20,  0 },
     97 { "fixup_arm_movt_hi16_pcrel", 0,          20,  MCFixupKindInfo::FKF_IsPCRel },
     98 { "fixup_arm_movw_lo16_pcrel", 0,          20,  MCFixupKindInfo::FKF_IsPCRel },
     99 { "fixup_t2_movt_hi16_pcrel", 0,           20,  MCFixupKindInfo::FKF_IsPCRel },
    100 { "fixup_t2_movw_lo16_pcrel", 0,           20,  MCFixupKindInfo::FKF_IsPCRel },
    101     };
    102 
    103     if (Kind < FirstTargetFixupKind)
    104       return MCAsmBackend::getFixupKindInfo(Kind);
    105 
    106     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
    107            "Invalid kind!");
    108     return Infos[Kind - FirstTargetFixupKind];
    109   }
    110 
    111   /// processFixupValue - Target hook to process the literal value of a fixup
    112   /// if necessary.
    113   void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
    114                          const MCFixup &Fixup, const MCFragment *DF,
    115                          MCValue &Target, uint64_t &Value,
    116                          bool &IsResolved);
    117 
    118 
    119   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
    120                   uint64_t Value) const;
    121 
    122   bool mayNeedRelaxation(const MCInst &Inst) const;
    123 
    124   bool fixupNeedsRelaxation(const MCFixup &Fixup,
    125                             uint64_t Value,
    126                             const MCRelaxableFragment *DF,
    127                             const MCAsmLayout &Layout) const;
    128 
    129   void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
    130 
    131   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
    132 
    133   void handleAssemblerFlag(MCAssemblerFlag Flag) {
    134     switch (Flag) {
    135     default: break;
    136     case MCAF_Code16:
    137       setIsThumb(true);
    138       break;
    139     case MCAF_Code32:
    140       setIsThumb(false);
    141       break;
    142     }
    143   }
    144 
    145   unsigned getPointerSize() const { return 4; }
    146   bool isThumb() const { return isThumbMode; }
    147   void setIsThumb(bool it) { isThumbMode = it; }
    148 };
    149 } // end anonymous namespace
    150 
    151 static unsigned getRelaxedOpcode(unsigned Op) {
    152   switch (Op) {
    153   default: return Op;
    154   case ARM::tBcc:       return ARM::t2Bcc;
    155   case ARM::tLDRpciASM: return ARM::t2LDRpci;
    156   case ARM::tADR:       return ARM::t2ADR;
    157   case ARM::tB:         return ARM::t2B;
    158   }
    159 }
    160 
    161 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
    162   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
    163     return true;
    164   return false;
    165 }
    166 
    167 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
    168                                          uint64_t Value,
    169                                          const MCRelaxableFragment *DF,
    170                                          const MCAsmLayout &Layout) const {
    171   switch ((unsigned)Fixup.getKind()) {
    172   case ARM::fixup_arm_thumb_br: {
    173     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
    174     // low bit being an implied zero. There's an implied +4 offset for the
    175     // branch, so we adjust the other way here to determine what's
    176     // encodable.
    177     //
    178     // Relax if the value is too big for a (signed) i8.
    179     int64_t Offset = int64_t(Value) - 4;
    180     return Offset > 2046 || Offset < -2048;
    181   }
    182   case ARM::fixup_arm_thumb_bcc: {
    183     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
    184     // low bit being an implied zero. There's an implied +4 offset for the
    185     // branch, so we adjust the other way here to determine what's
    186     // encodable.
    187     //
    188     // Relax if the value is too big for a (signed) i8.
    189     int64_t Offset = int64_t(Value) - 4;
    190     return Offset > 254 || Offset < -256;
    191   }
    192   case ARM::fixup_thumb_adr_pcrel_10:
    193   case ARM::fixup_arm_thumb_cp: {
    194     // If the immediate is negative, greater than 1020, or not a multiple
    195     // of four, the wide version of the instruction must be used.
    196     int64_t Offset = int64_t(Value) - 4;
    197     return Offset > 1020 || Offset < 0 || Offset & 3;
    198   }
    199   }
    200   llvm_unreachable("Unexpected fixup kind in fixupNeedsRelaxation()!");
    201 }
    202 
    203 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
    204   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
    205 
    206   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
    207   if (RelaxedOp == Inst.getOpcode()) {
    208     SmallString<256> Tmp;
    209     raw_svector_ostream OS(Tmp);
    210     Inst.dump_pretty(OS);
    211     OS << "\n";
    212     report_fatal_error("unexpected instruction to relax: " + OS.str());
    213   }
    214 
    215   // The instructions we're relaxing have (so far) the same operands.
    216   // We just need to update to the proper opcode.
    217   Res = Inst;
    218   Res.setOpcode(RelaxedOp);
    219 }
    220 
    221 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
    222   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
    223   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
    224   const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
    225   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
    226   if (isThumb()) {
    227     const uint16_t nopEncoding = hasNOP() ? Thumb2_16bitNopEncoding
    228                                           : Thumb1_16bitNopEncoding;
    229     uint64_t NumNops = Count / 2;
    230     for (uint64_t i = 0; i != NumNops; ++i)
    231       OW->Write16(nopEncoding);
    232     if (Count & 1)
    233       OW->Write8(0);
    234     return true;
    235   }
    236   // ARM mode
    237   const uint32_t nopEncoding = hasNOP() ? ARMv6T2_NopEncoding
    238                                         : ARMv4_NopEncoding;
    239   uint64_t NumNops = Count / 4;
    240   for (uint64_t i = 0; i != NumNops; ++i)
    241     OW->Write32(nopEncoding);
    242   // FIXME: should this function return false when unable to write exactly
    243   // 'Count' bytes with NOP encodings?
    244   switch (Count % 4) {
    245   default: break; // No leftover bytes to write
    246   case 1: OW->Write8(0); break;
    247   case 2: OW->Write16(0); break;
    248   case 3: OW->Write16(0); OW->Write8(0xa0); break;
    249   }
    250 
    251   return true;
    252 }
    253 
    254 static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
    255                                  MCContext *Ctx = NULL) {
    256   unsigned Kind = Fixup.getKind();
    257   switch (Kind) {
    258   default:
    259     llvm_unreachable("Unknown fixup kind!");
    260   case FK_Data_1:
    261   case FK_Data_2:
    262   case FK_Data_4:
    263     return Value;
    264   case ARM::fixup_arm_movt_hi16:
    265     Value >>= 16;
    266     // Fallthrough
    267   case ARM::fixup_arm_movw_lo16:
    268   case ARM::fixup_arm_movt_hi16_pcrel:
    269   case ARM::fixup_arm_movw_lo16_pcrel: {
    270     unsigned Hi4 = (Value & 0xF000) >> 12;
    271     unsigned Lo12 = Value & 0x0FFF;
    272     // inst{19-16} = Hi4;
    273     // inst{11-0} = Lo12;
    274     Value = (Hi4 << 16) | (Lo12);
    275     return Value;
    276   }
    277   case ARM::fixup_t2_movt_hi16:
    278     Value >>= 16;
    279     // Fallthrough
    280   case ARM::fixup_t2_movw_lo16:
    281   case ARM::fixup_t2_movt_hi16_pcrel:  //FIXME: Shouldn't this be shifted like
    282                                        // the other hi16 fixup?
    283   case ARM::fixup_t2_movw_lo16_pcrel: {
    284     unsigned Hi4 = (Value & 0xF000) >> 12;
    285     unsigned i = (Value & 0x800) >> 11;
    286     unsigned Mid3 = (Value & 0x700) >> 8;
    287     unsigned Lo8 = Value & 0x0FF;
    288     // inst{19-16} = Hi4;
    289     // inst{26} = i;
    290     // inst{14-12} = Mid3;
    291     // inst{7-0} = Lo8;
    292     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
    293     uint64_t swapped = (Value & 0xFFFF0000) >> 16;
    294     swapped |= (Value & 0x0000FFFF) << 16;
    295     return swapped;
    296   }
    297   case ARM::fixup_arm_ldst_pcrel_12:
    298     // ARM PC-relative values are offset by 8.
    299     Value -= 4;
    300     // FALLTHROUGH
    301   case ARM::fixup_t2_ldst_pcrel_12: {
    302     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    303     Value -= 4;
    304     bool isAdd = true;
    305     if ((int64_t)Value < 0) {
    306       Value = -Value;
    307       isAdd = false;
    308     }
    309     if (Ctx && Value >= 4096)
    310       Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
    311     Value |= isAdd << 23;
    312 
    313     // Same addressing mode as fixup_arm_pcrel_10,
    314     // but with 16-bit halfwords swapped.
    315     if (Kind == ARM::fixup_t2_ldst_pcrel_12) {
    316       uint64_t swapped = (Value & 0xFFFF0000) >> 16;
    317       swapped |= (Value & 0x0000FFFF) << 16;
    318       return swapped;
    319     }
    320 
    321     return Value;
    322   }
    323   case ARM::fixup_thumb_adr_pcrel_10:
    324     return ((Value - 4) >> 2) & 0xff;
    325   case ARM::fixup_arm_adr_pcrel_12: {
    326     // ARM PC-relative values are offset by 8.
    327     Value -= 8;
    328     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
    329     if ((int64_t)Value < 0) {
    330       Value = -Value;
    331       opc = 2; // 0b0010
    332     }
    333     if (Ctx && ARM_AM::getSOImmVal(Value) == -1)
    334       Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
    335     // Encode the immediate and shift the opcode into place.
    336     return ARM_AM::getSOImmVal(Value) | (opc << 21);
    337   }
    338 
    339   case ARM::fixup_t2_adr_pcrel_12: {
    340     Value -= 4;
    341     unsigned opc = 0;
    342     if ((int64_t)Value < 0) {
    343       Value = -Value;
    344       opc = 5;
    345     }
    346 
    347     uint32_t out = (opc << 21);
    348     out |= (Value & 0x800) << 15;
    349     out |= (Value & 0x700) << 4;
    350     out |= (Value & 0x0FF);
    351 
    352     uint64_t swapped = (out & 0xFFFF0000) >> 16;
    353     swapped |= (out & 0x0000FFFF) << 16;
    354     return swapped;
    355   }
    356 
    357   case ARM::fixup_arm_condbranch:
    358   case ARM::fixup_arm_uncondbranch:
    359   case ARM::fixup_arm_uncondbl:
    360   case ARM::fixup_arm_condbl:
    361   case ARM::fixup_arm_blx:
    362     // These values don't encode the low two bits since they're always zero.
    363     // Offset by 8 just as above.
    364     return 0xffffff & ((Value - 8) >> 2);
    365   case ARM::fixup_t2_uncondbranch: {
    366     Value = Value - 4;
    367     Value >>= 1; // Low bit is not encoded.
    368 
    369     uint32_t out = 0;
    370     bool I =  Value & 0x800000;
    371     bool J1 = Value & 0x400000;
    372     bool J2 = Value & 0x200000;
    373     J1 ^= I;
    374     J2 ^= I;
    375 
    376     out |= I  << 26; // S bit
    377     out |= !J1 << 13; // J1 bit
    378     out |= !J2 << 11; // J2 bit
    379     out |= (Value & 0x1FF800)  << 5; // imm6 field
    380     out |= (Value & 0x0007FF);        // imm11 field
    381 
    382     uint64_t swapped = (out & 0xFFFF0000) >> 16;
    383     swapped |= (out & 0x0000FFFF) << 16;
    384     return swapped;
    385   }
    386   case ARM::fixup_t2_condbranch: {
    387     Value = Value - 4;
    388     Value >>= 1; // Low bit is not encoded.
    389 
    390     uint64_t out = 0;
    391     out |= (Value & 0x80000) << 7; // S bit
    392     out |= (Value & 0x40000) >> 7; // J2 bit
    393     out |= (Value & 0x20000) >> 4; // J1 bit
    394     out |= (Value & 0x1F800) << 5; // imm6 field
    395     out |= (Value & 0x007FF);      // imm11 field
    396 
    397     uint32_t swapped = (out & 0xFFFF0000) >> 16;
    398     swapped |= (out & 0x0000FFFF) << 16;
    399     return swapped;
    400   }
    401   case ARM::fixup_arm_thumb_bl: {
    402      // The value doesn't encode the low bit (always zero) and is offset by
    403      // four. The 32-bit immediate value is encoded as
    404      //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
    405      // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
    406      // The value is encoded into disjoint bit positions in the destination
    407      // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
    408      // J = either J1 or J2 bit
    409      //
    410      //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
    411      //
    412      // Note that the halfwords are stored high first, low second; so we need
    413      // to transpose the fixup value here to map properly.
    414      uint32_t offset = (Value - 4) >> 1;
    415      uint32_t signBit = (offset & 0x800000) >> 23;
    416      uint32_t I1Bit = (offset & 0x400000) >> 22;
    417      uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
    418      uint32_t I2Bit = (offset & 0x200000) >> 21;
    419      uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
    420      uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
    421      uint32_t imm11Bits = (offset & 0x000007FF);
    422 
    423      uint32_t Binary = 0;
    424      uint32_t firstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
    425      uint32_t secondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
    426                            (uint16_t)imm11Bits);
    427      Binary |= secondHalf << 16;
    428      Binary |= firstHalf;
    429      return Binary;
    430 
    431   }
    432   case ARM::fixup_arm_thumb_blx: {
    433      // The value doesn't encode the low two bits (always zero) and is offset by
    434      // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
    435      //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
    436      // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
    437      // The value is encoded into disjoint bit positions in the destination
    438      // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
    439      // J = either J1 or J2 bit, 0 = zero.
    440      //
    441      //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
    442      //
    443      // Note that the halfwords are stored high first, low second; so we need
    444      // to transpose the fixup value here to map properly.
    445      uint32_t offset = (Value - 2) >> 2;
    446      uint32_t signBit = (offset & 0x400000) >> 22;
    447      uint32_t I1Bit = (offset & 0x200000) >> 21;
    448      uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
    449      uint32_t I2Bit = (offset & 0x100000) >> 20;
    450      uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
    451      uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
    452      uint32_t imm10LBits = (offset & 0x3FF);
    453 
    454      uint32_t Binary = 0;
    455      uint32_t firstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
    456      uint32_t secondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
    457                            ((uint16_t)imm10LBits) << 1);
    458      Binary |= secondHalf << 16;
    459      Binary |= firstHalf;
    460      return Binary;
    461   }
    462   case ARM::fixup_arm_thumb_cp:
    463     // Offset by 4, and don't encode the low two bits. Two bytes of that
    464     // 'off by 4' is implicitly handled by the half-word ordering of the
    465     // Thumb encoding, so we only need to adjust by 2 here.
    466     return ((Value - 2) >> 2) & 0xff;
    467   case ARM::fixup_arm_thumb_cb: {
    468     // Offset by 4 and don't encode the lower bit, which is always 0.
    469     uint32_t Binary = (Value - 4) >> 1;
    470     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
    471   }
    472   case ARM::fixup_arm_thumb_br:
    473     // Offset by 4 and don't encode the lower bit, which is always 0.
    474     return ((Value - 4) >> 1) & 0x7ff;
    475   case ARM::fixup_arm_thumb_bcc:
    476     // Offset by 4 and don't encode the lower bit, which is always 0.
    477     return ((Value - 4) >> 1) & 0xff;
    478   case ARM::fixup_arm_pcrel_10_unscaled: {
    479     Value = Value - 8; // ARM fixups offset by an additional word and don't
    480                        // need to adjust for the half-word ordering.
    481     bool isAdd = true;
    482     if ((int64_t)Value < 0) {
    483       Value = -Value;
    484       isAdd = false;
    485     }
    486     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
    487     if (Ctx && Value >= 256)
    488       Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
    489     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
    490     return Value | (isAdd << 23);
    491   }
    492   case ARM::fixup_arm_pcrel_10:
    493     Value = Value - 4; // ARM fixups offset by an additional word and don't
    494                        // need to adjust for the half-word ordering.
    495     // Fall through.
    496   case ARM::fixup_t2_pcrel_10: {
    497     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    498     Value = Value - 4;
    499     bool isAdd = true;
    500     if ((int64_t)Value < 0) {
    501       Value = -Value;
    502       isAdd = false;
    503     }
    504     // These values don't encode the low two bits since they're always zero.
    505     Value >>= 2;
    506     if (Ctx && Value >= 256)
    507       Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
    508     Value |= isAdd << 23;
    509 
    510     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
    511     // swapped.
    512     if (Kind == ARM::fixup_t2_pcrel_10) {
    513       uint32_t swapped = (Value & 0xFFFF0000) >> 16;
    514       swapped |= (Value & 0x0000FFFF) << 16;
    515       return swapped;
    516     }
    517 
    518     return Value;
    519   }
    520   }
    521 }
    522 
    523 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
    524                                       const MCAsmLayout &Layout,
    525                                       const MCFixup &Fixup,
    526                                       const MCFragment *DF,
    527                                       MCValue &Target, uint64_t &Value,
    528                                       bool &IsResolved) {
    529   const MCSymbolRefExpr *A = Target.getSymA();
    530   // Some fixups to thumb function symbols need the low bit (thumb bit)
    531   // twiddled.
    532   if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
    533       (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
    534       (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
    535       (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
    536       (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
    537       (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
    538     if (A) {
    539       const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
    540       if (Asm.isThumbFunc(&Sym))
    541         Value |= 1;
    542     }
    543   }
    544   // We must always generate a relocation for BL/BLX instructions if we have
    545   // a symbol to reference, as the linker relies on knowing the destination
    546   // symbol's thumb-ness to get interworking right.
    547   if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
    548             (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl ||
    549             (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
    550             (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
    551             (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
    552     IsResolved = false;
    553 
    554   // Try to get the encoded value for the fixup as-if we're mapping it into
    555   // the instruction. This allows adjustFixupValue() to issue a diagnostic
    556   // if the value aren't invalid.
    557   (void)adjustFixupValue(Fixup, Value, &Asm.getContext());
    558 }
    559 
    560 /// getFixupKindNumBytes - The number of bytes the fixup may change.
    561 static unsigned getFixupKindNumBytes(unsigned Kind) {
    562   switch (Kind) {
    563   default:
    564     llvm_unreachable("Unknown fixup kind!");
    565 
    566   case FK_Data_1:
    567   case ARM::fixup_arm_thumb_bcc:
    568   case ARM::fixup_arm_thumb_cp:
    569   case ARM::fixup_thumb_adr_pcrel_10:
    570     return 1;
    571 
    572   case FK_Data_2:
    573   case ARM::fixup_arm_thumb_br:
    574   case ARM::fixup_arm_thumb_cb:
    575     return 2;
    576 
    577   case ARM::fixup_arm_pcrel_10_unscaled:
    578   case ARM::fixup_arm_ldst_pcrel_12:
    579   case ARM::fixup_arm_pcrel_10:
    580   case ARM::fixup_arm_adr_pcrel_12:
    581   case ARM::fixup_arm_uncondbl:
    582   case ARM::fixup_arm_condbl:
    583   case ARM::fixup_arm_blx:
    584   case ARM::fixup_arm_condbranch:
    585   case ARM::fixup_arm_uncondbranch:
    586     return 3;
    587 
    588   case FK_Data_4:
    589   case ARM::fixup_t2_ldst_pcrel_12:
    590   case ARM::fixup_t2_condbranch:
    591   case ARM::fixup_t2_uncondbranch:
    592   case ARM::fixup_t2_pcrel_10:
    593   case ARM::fixup_t2_adr_pcrel_12:
    594   case ARM::fixup_arm_thumb_bl:
    595   case ARM::fixup_arm_thumb_blx:
    596   case ARM::fixup_arm_movt_hi16:
    597   case ARM::fixup_arm_movw_lo16:
    598   case ARM::fixup_arm_movt_hi16_pcrel:
    599   case ARM::fixup_arm_movw_lo16_pcrel:
    600   case ARM::fixup_t2_movt_hi16:
    601   case ARM::fixup_t2_movw_lo16:
    602   case ARM::fixup_t2_movt_hi16_pcrel:
    603   case ARM::fixup_t2_movw_lo16_pcrel:
    604     return 4;
    605   }
    606 }
    607 
    608 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
    609                                unsigned DataSize, uint64_t Value) const {
    610   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
    611   Value = adjustFixupValue(Fixup, Value);
    612   if (!Value) return;           // Doesn't change encoding.
    613 
    614   unsigned Offset = Fixup.getOffset();
    615   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
    616 
    617   // For each byte of the fragment that the fixup touches, mask in the bits from
    618   // the fixup value. The Value has been "split up" into the appropriate
    619   // bitfields above.
    620   for (unsigned i = 0; i != NumBytes; ++i)
    621     Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
    622 }
    623 
    624 namespace {
    625 
    626 // FIXME: This should be in a separate file.
    627 // ELF is an ELF of course...
    628 class ELFARMAsmBackend : public ARMAsmBackend {
    629 public:
    630   uint8_t OSABI;
    631   ELFARMAsmBackend(const Target &T, const StringRef TT,
    632                    uint8_t _OSABI)
    633     : ARMAsmBackend(T, TT), OSABI(_OSABI) { }
    634 
    635   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    636     return createARMELFObjectWriter(OS, OSABI);
    637   }
    638 };
    639 
    640 // FIXME: This should be in a separate file.
    641 class DarwinARMAsmBackend : public ARMAsmBackend {
    642 public:
    643   const object::mach::CPUSubtypeARM Subtype;
    644   DarwinARMAsmBackend(const Target &T, const StringRef TT,
    645                       object::mach::CPUSubtypeARM st)
    646     : ARMAsmBackend(T, TT), Subtype(st) {
    647       HasDataInCodeSupport = true;
    648     }
    649 
    650   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    651     return createARMMachObjectWriter(OS, /*Is64Bit=*/false,
    652                                      object::mach::CTM_ARM,
    653                                      Subtype);
    654   }
    655 
    656   virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
    657     return false;
    658   }
    659 };
    660 
    661 } // end anonymous namespace
    662 
    663 MCAsmBackend *llvm::createARMAsmBackend(const Target &T, StringRef TT, StringRef CPU) {
    664   Triple TheTriple(TT);
    665 
    666   if (TheTriple.isOSDarwin()) {
    667     object::mach::CPUSubtypeARM CS =
    668       StringSwitch<object::mach::CPUSubtypeARM>(TheTriple.getArchName())
    669       .Cases("armv4t", "thumbv4t", object::mach::CSARM_V4T)
    670       .Cases("armv5e", "thumbv5e",object::mach::CSARM_V5TEJ)
    671       .Cases("armv6", "thumbv6", object::mach::CSARM_V6)
    672       .Cases("armv6m", "thumbv6m", object::mach::CSARM_V6M)
    673       .Cases("armv7em", "thumbv7em", object::mach::CSARM_V7EM)
    674       .Cases("armv7f", "thumbv7f", object::mach::CSARM_V7F)
    675       .Cases("armv7k", "thumbv7k", object::mach::CSARM_V7K)
    676       .Cases("armv7m", "thumbv7m", object::mach::CSARM_V7M)
    677       .Cases("armv7s", "thumbv7s", object::mach::CSARM_V7S)
    678       .Default(object::mach::CSARM_V7);
    679 
    680     return new DarwinARMAsmBackend(T, TT, CS);
    681   }
    682 
    683   if (TheTriple.isOSWindows())
    684     assert(0 && "Windows not supported on ARM");
    685 
    686   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
    687   return new ELFARMAsmBackend(T, TT, OSABI);
    688 }
    689