1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "api.h" 31 #include "arguments.h" 32 #include "bootstrapper.h" 33 #include "code-stubs.h" 34 #include "codegen.h" 35 #include "compilation-cache.h" 36 #include "compiler.h" 37 #include "debug.h" 38 #include "deoptimizer.h" 39 #include "execution.h" 40 #include "full-codegen.h" 41 #include "global-handles.h" 42 #include "ic.h" 43 #include "ic-inl.h" 44 #include "isolate-inl.h" 45 #include "list.h" 46 #include "messages.h" 47 #include "natives.h" 48 #include "stub-cache.h" 49 #include "log.h" 50 51 #include "../include/v8-debug.h" 52 53 namespace v8 { 54 namespace internal { 55 56 #ifdef ENABLE_DEBUGGER_SUPPORT 57 58 59 Debug::Debug(Isolate* isolate) 60 : has_break_points_(false), 61 script_cache_(NULL), 62 debug_info_list_(NULL), 63 disable_break_(false), 64 break_on_exception_(false), 65 break_on_uncaught_exception_(false), 66 debug_break_return_(NULL), 67 debug_break_slot_(NULL), 68 isolate_(isolate) { 69 memset(registers_, 0, sizeof(JSCallerSavedBuffer)); 70 } 71 72 73 Debug::~Debug() { 74 } 75 76 77 static void PrintLn(v8::Local<v8::Value> value) { 78 v8::Local<v8::String> s = value->ToString(); 79 ScopedVector<char> data(s->Length() + 1); 80 if (data.start() == NULL) { 81 V8::FatalProcessOutOfMemory("PrintLn"); 82 return; 83 } 84 s->WriteAscii(data.start()); 85 PrintF("%s\n", data.start()); 86 } 87 88 89 static Handle<Code> ComputeCallDebugPrepareStepIn(int argc, Code::Kind kind) { 90 Isolate* isolate = Isolate::Current(); 91 return isolate->stub_cache()->ComputeCallDebugPrepareStepIn(argc, kind); 92 } 93 94 95 static v8::Handle<v8::Context> GetDebugEventContext(Isolate* isolate) { 96 Handle<Context> context = isolate->debug()->debugger_entry()->GetContext(); 97 // Isolate::context() may have been NULL when "script collected" event 98 // occured. 99 if (context.is_null()) return v8::Local<v8::Context>(); 100 Handle<Context> global_context(context->global_context()); 101 return v8::Utils::ToLocal(global_context); 102 } 103 104 105 BreakLocationIterator::BreakLocationIterator(Handle<DebugInfo> debug_info, 106 BreakLocatorType type) { 107 debug_info_ = debug_info; 108 type_ = type; 109 reloc_iterator_ = NULL; 110 reloc_iterator_original_ = NULL; 111 Reset(); // Initialize the rest of the member variables. 112 } 113 114 115 BreakLocationIterator::~BreakLocationIterator() { 116 ASSERT(reloc_iterator_ != NULL); 117 ASSERT(reloc_iterator_original_ != NULL); 118 delete reloc_iterator_; 119 delete reloc_iterator_original_; 120 } 121 122 123 void BreakLocationIterator::Next() { 124 AssertNoAllocation nogc; 125 ASSERT(!RinfoDone()); 126 127 // Iterate through reloc info for code and original code stopping at each 128 // breakable code target. 129 bool first = break_point_ == -1; 130 while (!RinfoDone()) { 131 if (!first) RinfoNext(); 132 first = false; 133 if (RinfoDone()) return; 134 135 // Whenever a statement position or (plain) position is passed update the 136 // current value of these. 137 if (RelocInfo::IsPosition(rmode())) { 138 if (RelocInfo::IsStatementPosition(rmode())) { 139 statement_position_ = static_cast<int>( 140 rinfo()->data() - debug_info_->shared()->start_position()); 141 } 142 // Always update the position as we don't want that to be before the 143 // statement position. 144 position_ = static_cast<int>( 145 rinfo()->data() - debug_info_->shared()->start_position()); 146 ASSERT(position_ >= 0); 147 ASSERT(statement_position_ >= 0); 148 } 149 150 if (IsDebugBreakSlot()) { 151 // There is always a possible break point at a debug break slot. 152 break_point_++; 153 return; 154 } else if (RelocInfo::IsCodeTarget(rmode())) { 155 // Check for breakable code target. Look in the original code as setting 156 // break points can cause the code targets in the running (debugged) code 157 // to be of a different kind than in the original code. 158 Address target = original_rinfo()->target_address(); 159 Code* code = Code::GetCodeFromTargetAddress(target); 160 if ((code->is_inline_cache_stub() && 161 !code->is_binary_op_stub() && 162 !code->is_unary_op_stub() && 163 !code->is_compare_ic_stub() && 164 !code->is_to_boolean_ic_stub()) || 165 RelocInfo::IsConstructCall(rmode())) { 166 break_point_++; 167 return; 168 } 169 if (code->kind() == Code::STUB) { 170 if (IsDebuggerStatement()) { 171 break_point_++; 172 return; 173 } 174 if (type_ == ALL_BREAK_LOCATIONS) { 175 if (Debug::IsBreakStub(code)) { 176 break_point_++; 177 return; 178 } 179 } else { 180 ASSERT(type_ == SOURCE_BREAK_LOCATIONS); 181 if (Debug::IsSourceBreakStub(code)) { 182 break_point_++; 183 return; 184 } 185 } 186 } 187 } 188 189 // Check for break at return. 190 if (RelocInfo::IsJSReturn(rmode())) { 191 // Set the positions to the end of the function. 192 if (debug_info_->shared()->HasSourceCode()) { 193 position_ = debug_info_->shared()->end_position() - 194 debug_info_->shared()->start_position() - 1; 195 } else { 196 position_ = 0; 197 } 198 statement_position_ = position_; 199 break_point_++; 200 return; 201 } 202 } 203 } 204 205 206 void BreakLocationIterator::Next(int count) { 207 while (count > 0) { 208 Next(); 209 count--; 210 } 211 } 212 213 214 // Find the break point closest to the supplied address. 215 void BreakLocationIterator::FindBreakLocationFromAddress(Address pc) { 216 // Run through all break points to locate the one closest to the address. 217 int closest_break_point = 0; 218 int distance = kMaxInt; 219 while (!Done()) { 220 // Check if this break point is closer that what was previously found. 221 if (this->pc() < pc && pc - this->pc() < distance) { 222 closest_break_point = break_point(); 223 distance = static_cast<int>(pc - this->pc()); 224 // Check whether we can't get any closer. 225 if (distance == 0) break; 226 } 227 Next(); 228 } 229 230 // Move to the break point found. 231 Reset(); 232 Next(closest_break_point); 233 } 234 235 236 // Find the break point closest to the supplied source position. 237 void BreakLocationIterator::FindBreakLocationFromPosition(int position) { 238 // Run through all break points to locate the one closest to the source 239 // position. 240 int closest_break_point = 0; 241 int distance = kMaxInt; 242 while (!Done()) { 243 // Check if this break point is closer that what was previously found. 244 if (position <= statement_position() && 245 statement_position() - position < distance) { 246 closest_break_point = break_point(); 247 distance = statement_position() - position; 248 // Check whether we can't get any closer. 249 if (distance == 0) break; 250 } 251 Next(); 252 } 253 254 // Move to the break point found. 255 Reset(); 256 Next(closest_break_point); 257 } 258 259 260 void BreakLocationIterator::Reset() { 261 // Create relocation iterators for the two code objects. 262 if (reloc_iterator_ != NULL) delete reloc_iterator_; 263 if (reloc_iterator_original_ != NULL) delete reloc_iterator_original_; 264 reloc_iterator_ = new RelocIterator(debug_info_->code()); 265 reloc_iterator_original_ = new RelocIterator(debug_info_->original_code()); 266 267 // Position at the first break point. 268 break_point_ = -1; 269 position_ = 1; 270 statement_position_ = 1; 271 Next(); 272 } 273 274 275 bool BreakLocationIterator::Done() const { 276 return RinfoDone(); 277 } 278 279 280 void BreakLocationIterator::SetBreakPoint(Handle<Object> break_point_object) { 281 // If there is not already a real break point here patch code with debug 282 // break. 283 if (!HasBreakPoint()) { 284 SetDebugBreak(); 285 } 286 ASSERT(IsDebugBreak() || IsDebuggerStatement()); 287 // Set the break point information. 288 DebugInfo::SetBreakPoint(debug_info_, code_position(), 289 position(), statement_position(), 290 break_point_object); 291 } 292 293 294 void BreakLocationIterator::ClearBreakPoint(Handle<Object> break_point_object) { 295 // Clear the break point information. 296 DebugInfo::ClearBreakPoint(debug_info_, code_position(), break_point_object); 297 // If there are no more break points here remove the debug break. 298 if (!HasBreakPoint()) { 299 ClearDebugBreak(); 300 ASSERT(!IsDebugBreak()); 301 } 302 } 303 304 305 void BreakLocationIterator::SetOneShot() { 306 // Debugger statement always calls debugger. No need to modify it. 307 if (IsDebuggerStatement()) { 308 return; 309 } 310 311 // If there is a real break point here no more to do. 312 if (HasBreakPoint()) { 313 ASSERT(IsDebugBreak()); 314 return; 315 } 316 317 // Patch code with debug break. 318 SetDebugBreak(); 319 } 320 321 322 void BreakLocationIterator::ClearOneShot() { 323 // Debugger statement always calls debugger. No need to modify it. 324 if (IsDebuggerStatement()) { 325 return; 326 } 327 328 // If there is a real break point here no more to do. 329 if (HasBreakPoint()) { 330 ASSERT(IsDebugBreak()); 331 return; 332 } 333 334 // Patch code removing debug break. 335 ClearDebugBreak(); 336 ASSERT(!IsDebugBreak()); 337 } 338 339 340 void BreakLocationIterator::SetDebugBreak() { 341 // Debugger statement always calls debugger. No need to modify it. 342 if (IsDebuggerStatement()) { 343 return; 344 } 345 346 // If there is already a break point here just return. This might happen if 347 // the same code is flooded with break points twice. Flooding the same 348 // function twice might happen when stepping in a function with an exception 349 // handler as the handler and the function is the same. 350 if (IsDebugBreak()) { 351 return; 352 } 353 354 if (RelocInfo::IsJSReturn(rmode())) { 355 // Patch the frame exit code with a break point. 356 SetDebugBreakAtReturn(); 357 } else if (IsDebugBreakSlot()) { 358 // Patch the code in the break slot. 359 SetDebugBreakAtSlot(); 360 } else { 361 // Patch the IC call. 362 SetDebugBreakAtIC(); 363 } 364 ASSERT(IsDebugBreak()); 365 } 366 367 368 void BreakLocationIterator::ClearDebugBreak() { 369 // Debugger statement always calls debugger. No need to modify it. 370 if (IsDebuggerStatement()) { 371 return; 372 } 373 374 if (RelocInfo::IsJSReturn(rmode())) { 375 // Restore the frame exit code. 376 ClearDebugBreakAtReturn(); 377 } else if (IsDebugBreakSlot()) { 378 // Restore the code in the break slot. 379 ClearDebugBreakAtSlot(); 380 } else { 381 // Patch the IC call. 382 ClearDebugBreakAtIC(); 383 } 384 ASSERT(!IsDebugBreak()); 385 } 386 387 388 void BreakLocationIterator::PrepareStepIn() { 389 HandleScope scope; 390 391 // Step in can only be prepared if currently positioned on an IC call, 392 // construct call or CallFunction stub call. 393 Address target = rinfo()->target_address(); 394 Handle<Code> target_code(Code::GetCodeFromTargetAddress(target)); 395 if (target_code->is_call_stub() || target_code->is_keyed_call_stub()) { 396 // Step in through IC call is handled by the runtime system. Therefore make 397 // sure that the any current IC is cleared and the runtime system is 398 // called. If the executing code has a debug break at the location change 399 // the call in the original code as it is the code there that will be 400 // executed in place of the debug break call. 401 Handle<Code> stub = ComputeCallDebugPrepareStepIn( 402 target_code->arguments_count(), target_code->kind()); 403 if (IsDebugBreak()) { 404 original_rinfo()->set_target_address(stub->entry()); 405 } else { 406 rinfo()->set_target_address(stub->entry()); 407 } 408 } else { 409 #ifdef DEBUG 410 // All the following stuff is needed only for assertion checks so the code 411 // is wrapped in ifdef. 412 Handle<Code> maybe_call_function_stub = target_code; 413 if (IsDebugBreak()) { 414 Address original_target = original_rinfo()->target_address(); 415 maybe_call_function_stub = 416 Handle<Code>(Code::GetCodeFromTargetAddress(original_target)); 417 } 418 bool is_call_function_stub = 419 (maybe_call_function_stub->kind() == Code::STUB && 420 maybe_call_function_stub->major_key() == CodeStub::CallFunction); 421 422 // Step in through construct call requires no changes to the running code. 423 // Step in through getters/setters should already be prepared as well 424 // because caller of this function (Debug::PrepareStep) is expected to 425 // flood the top frame's function with one shot breakpoints. 426 // Step in through CallFunction stub should also be prepared by caller of 427 // this function (Debug::PrepareStep) which should flood target function 428 // with breakpoints. 429 ASSERT(RelocInfo::IsConstructCall(rmode()) || 430 target_code->is_inline_cache_stub() || 431 is_call_function_stub); 432 #endif 433 } 434 } 435 436 437 // Check whether the break point is at a position which will exit the function. 438 bool BreakLocationIterator::IsExit() const { 439 return (RelocInfo::IsJSReturn(rmode())); 440 } 441 442 443 bool BreakLocationIterator::HasBreakPoint() { 444 return debug_info_->HasBreakPoint(code_position()); 445 } 446 447 448 // Check whether there is a debug break at the current position. 449 bool BreakLocationIterator::IsDebugBreak() { 450 if (RelocInfo::IsJSReturn(rmode())) { 451 return IsDebugBreakAtReturn(); 452 } else if (IsDebugBreakSlot()) { 453 return IsDebugBreakAtSlot(); 454 } else { 455 return Debug::IsDebugBreak(rinfo()->target_address()); 456 } 457 } 458 459 460 void BreakLocationIterator::SetDebugBreakAtIC() { 461 // Patch the original code with the current address as the current address 462 // might have changed by the inline caching since the code was copied. 463 original_rinfo()->set_target_address(rinfo()->target_address()); 464 465 RelocInfo::Mode mode = rmode(); 466 if (RelocInfo::IsCodeTarget(mode)) { 467 Address target = rinfo()->target_address(); 468 Handle<Code> target_code(Code::GetCodeFromTargetAddress(target)); 469 470 // Patch the code to invoke the builtin debug break function matching the 471 // calling convention used by the call site. 472 Handle<Code> dbgbrk_code(Debug::FindDebugBreak(target_code, mode)); 473 rinfo()->set_target_address(dbgbrk_code->entry()); 474 } 475 } 476 477 478 void BreakLocationIterator::ClearDebugBreakAtIC() { 479 // Patch the code to the original invoke. 480 rinfo()->set_target_address(original_rinfo()->target_address()); 481 } 482 483 484 bool BreakLocationIterator::IsDebuggerStatement() { 485 return RelocInfo::DEBUG_BREAK == rmode(); 486 } 487 488 489 bool BreakLocationIterator::IsDebugBreakSlot() { 490 return RelocInfo::DEBUG_BREAK_SLOT == rmode(); 491 } 492 493 494 Object* BreakLocationIterator::BreakPointObjects() { 495 return debug_info_->GetBreakPointObjects(code_position()); 496 } 497 498 499 // Clear out all the debug break code. This is ONLY supposed to be used when 500 // shutting down the debugger as it will leave the break point information in 501 // DebugInfo even though the code is patched back to the non break point state. 502 void BreakLocationIterator::ClearAllDebugBreak() { 503 while (!Done()) { 504 ClearDebugBreak(); 505 Next(); 506 } 507 } 508 509 510 bool BreakLocationIterator::RinfoDone() const { 511 ASSERT(reloc_iterator_->done() == reloc_iterator_original_->done()); 512 return reloc_iterator_->done(); 513 } 514 515 516 void BreakLocationIterator::RinfoNext() { 517 reloc_iterator_->next(); 518 reloc_iterator_original_->next(); 519 #ifdef DEBUG 520 ASSERT(reloc_iterator_->done() == reloc_iterator_original_->done()); 521 if (!reloc_iterator_->done()) { 522 ASSERT(rmode() == original_rmode()); 523 } 524 #endif 525 } 526 527 528 // Threading support. 529 void Debug::ThreadInit() { 530 thread_local_.break_count_ = 0; 531 thread_local_.break_id_ = 0; 532 thread_local_.break_frame_id_ = StackFrame::NO_ID; 533 thread_local_.last_step_action_ = StepNone; 534 thread_local_.last_statement_position_ = RelocInfo::kNoPosition; 535 thread_local_.step_count_ = 0; 536 thread_local_.last_fp_ = 0; 537 thread_local_.queued_step_count_ = 0; 538 thread_local_.step_into_fp_ = 0; 539 thread_local_.step_out_fp_ = 0; 540 thread_local_.after_break_target_ = 0; 541 // TODO(isolates): frames_are_dropped_? 542 thread_local_.debugger_entry_ = NULL; 543 thread_local_.pending_interrupts_ = 0; 544 thread_local_.restarter_frame_function_pointer_ = NULL; 545 } 546 547 548 char* Debug::ArchiveDebug(char* storage) { 549 char* to = storage; 550 memcpy(to, reinterpret_cast<char*>(&thread_local_), sizeof(ThreadLocal)); 551 to += sizeof(ThreadLocal); 552 memcpy(to, reinterpret_cast<char*>(®isters_), sizeof(registers_)); 553 ThreadInit(); 554 ASSERT(to <= storage + ArchiveSpacePerThread()); 555 return storage + ArchiveSpacePerThread(); 556 } 557 558 559 char* Debug::RestoreDebug(char* storage) { 560 char* from = storage; 561 memcpy(reinterpret_cast<char*>(&thread_local_), from, sizeof(ThreadLocal)); 562 from += sizeof(ThreadLocal); 563 memcpy(reinterpret_cast<char*>(®isters_), from, sizeof(registers_)); 564 ASSERT(from <= storage + ArchiveSpacePerThread()); 565 return storage + ArchiveSpacePerThread(); 566 } 567 568 569 int Debug::ArchiveSpacePerThread() { 570 return sizeof(ThreadLocal) + sizeof(JSCallerSavedBuffer); 571 } 572 573 574 // Frame structure (conforms InternalFrame structure): 575 // -- code 576 // -- SMI maker 577 // -- function (slot is called "context") 578 // -- frame base 579 Object** Debug::SetUpFrameDropperFrame(StackFrame* bottom_js_frame, 580 Handle<Code> code) { 581 ASSERT(bottom_js_frame->is_java_script()); 582 583 Address fp = bottom_js_frame->fp(); 584 585 // Move function pointer into "context" slot. 586 Memory::Object_at(fp + StandardFrameConstants::kContextOffset) = 587 Memory::Object_at(fp + JavaScriptFrameConstants::kFunctionOffset); 588 589 Memory::Object_at(fp + InternalFrameConstants::kCodeOffset) = *code; 590 Memory::Object_at(fp + StandardFrameConstants::kMarkerOffset) = 591 Smi::FromInt(StackFrame::INTERNAL); 592 593 return reinterpret_cast<Object**>(&Memory::Object_at( 594 fp + StandardFrameConstants::kContextOffset)); 595 } 596 597 const int Debug::kFrameDropperFrameSize = 4; 598 599 600 void ScriptCache::Add(Handle<Script> script) { 601 GlobalHandles* global_handles = Isolate::Current()->global_handles(); 602 // Create an entry in the hash map for the script. 603 int id = Smi::cast(script->id())->value(); 604 HashMap::Entry* entry = 605 HashMap::Lookup(reinterpret_cast<void*>(id), Hash(id), true); 606 if (entry->value != NULL) { 607 ASSERT(*script == *reinterpret_cast<Script**>(entry->value)); 608 return; 609 } 610 611 // Globalize the script object, make it weak and use the location of the 612 // global handle as the value in the hash map. 613 Handle<Script> script_ = 614 Handle<Script>::cast( 615 (global_handles->Create(*script))); 616 global_handles->MakeWeak( 617 reinterpret_cast<Object**>(script_.location()), 618 this, 619 ScriptCache::HandleWeakScript); 620 entry->value = script_.location(); 621 } 622 623 624 Handle<FixedArray> ScriptCache::GetScripts() { 625 Handle<FixedArray> instances = FACTORY->NewFixedArray(occupancy()); 626 int count = 0; 627 for (HashMap::Entry* entry = Start(); entry != NULL; entry = Next(entry)) { 628 ASSERT(entry->value != NULL); 629 if (entry->value != NULL) { 630 instances->set(count, *reinterpret_cast<Script**>(entry->value)); 631 count++; 632 } 633 } 634 return instances; 635 } 636 637 638 void ScriptCache::ProcessCollectedScripts() { 639 Debugger* debugger = Isolate::Current()->debugger(); 640 for (int i = 0; i < collected_scripts_.length(); i++) { 641 debugger->OnScriptCollected(collected_scripts_[i]); 642 } 643 collected_scripts_.Clear(); 644 } 645 646 647 void ScriptCache::Clear() { 648 GlobalHandles* global_handles = Isolate::Current()->global_handles(); 649 // Iterate the script cache to get rid of all the weak handles. 650 for (HashMap::Entry* entry = Start(); entry != NULL; entry = Next(entry)) { 651 ASSERT(entry != NULL); 652 Object** location = reinterpret_cast<Object**>(entry->value); 653 ASSERT((*location)->IsScript()); 654 global_handles->ClearWeakness(location); 655 global_handles->Destroy(location); 656 } 657 // Clear the content of the hash map. 658 HashMap::Clear(); 659 } 660 661 662 void ScriptCache::HandleWeakScript(v8::Persistent<v8::Value> obj, void* data) { 663 ScriptCache* script_cache = reinterpret_cast<ScriptCache*>(data); 664 // Find the location of the global handle. 665 Script** location = 666 reinterpret_cast<Script**>(Utils::OpenHandle(*obj).location()); 667 ASSERT((*location)->IsScript()); 668 669 // Remove the entry from the cache. 670 int id = Smi::cast((*location)->id())->value(); 671 script_cache->Remove(reinterpret_cast<void*>(id), Hash(id)); 672 script_cache->collected_scripts_.Add(id); 673 674 // Clear the weak handle. 675 obj.Dispose(); 676 obj.Clear(); 677 } 678 679 680 void Debug::SetUp(bool create_heap_objects) { 681 ThreadInit(); 682 if (create_heap_objects) { 683 // Get code to handle debug break on return. 684 debug_break_return_ = 685 isolate_->builtins()->builtin(Builtins::kReturn_DebugBreak); 686 ASSERT(debug_break_return_->IsCode()); 687 // Get code to handle debug break in debug break slots. 688 debug_break_slot_ = 689 isolate_->builtins()->builtin(Builtins::kSlot_DebugBreak); 690 ASSERT(debug_break_slot_->IsCode()); 691 } 692 } 693 694 695 void Debug::HandleWeakDebugInfo(v8::Persistent<v8::Value> obj, void* data) { 696 Debug* debug = Isolate::Current()->debug(); 697 DebugInfoListNode* node = reinterpret_cast<DebugInfoListNode*>(data); 698 // We need to clear all breakpoints associated with the function to restore 699 // original code and avoid patching the code twice later because 700 // the function will live in the heap until next gc, and can be found by 701 // Runtime::FindSharedFunctionInfoInScript. 702 BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS); 703 it.ClearAllDebugBreak(); 704 debug->RemoveDebugInfo(node->debug_info()); 705 #ifdef DEBUG 706 node = debug->debug_info_list_; 707 while (node != NULL) { 708 ASSERT(node != reinterpret_cast<DebugInfoListNode*>(data)); 709 node = node->next(); 710 } 711 #endif 712 } 713 714 715 DebugInfoListNode::DebugInfoListNode(DebugInfo* debug_info): next_(NULL) { 716 GlobalHandles* global_handles = Isolate::Current()->global_handles(); 717 // Globalize the request debug info object and make it weak. 718 debug_info_ = Handle<DebugInfo>::cast( 719 (global_handles->Create(debug_info))); 720 global_handles->MakeWeak( 721 reinterpret_cast<Object**>(debug_info_.location()), 722 this, 723 Debug::HandleWeakDebugInfo); 724 } 725 726 727 DebugInfoListNode::~DebugInfoListNode() { 728 Isolate::Current()->global_handles()->Destroy( 729 reinterpret_cast<Object**>(debug_info_.location())); 730 } 731 732 733 bool Debug::CompileDebuggerScript(int index) { 734 Isolate* isolate = Isolate::Current(); 735 Factory* factory = isolate->factory(); 736 HandleScope scope(isolate); 737 738 // Bail out if the index is invalid. 739 if (index == -1) { 740 return false; 741 } 742 743 // Find source and name for the requested script. 744 Handle<String> source_code = 745 isolate->bootstrapper()->NativesSourceLookup(index); 746 Vector<const char> name = Natives::GetScriptName(index); 747 Handle<String> script_name = factory->NewStringFromAscii(name); 748 749 // Compile the script. 750 Handle<SharedFunctionInfo> function_info; 751 function_info = Compiler::Compile(source_code, 752 script_name, 753 0, 0, NULL, NULL, 754 Handle<String>::null(), 755 NATIVES_CODE); 756 757 // Silently ignore stack overflows during compilation. 758 if (function_info.is_null()) { 759 ASSERT(isolate->has_pending_exception()); 760 isolate->clear_pending_exception(); 761 return false; 762 } 763 764 // Execute the shared function in the debugger context. 765 Handle<Context> context = isolate->global_context(); 766 bool caught_exception; 767 Handle<JSFunction> function = 768 factory->NewFunctionFromSharedFunctionInfo(function_info, context); 769 770 Handle<Object> exception = 771 Execution::TryCall(function, Handle<Object>(context->global()), 772 0, NULL, &caught_exception); 773 774 // Check for caught exceptions. 775 if (caught_exception) { 776 ASSERT(!isolate->has_pending_exception()); 777 MessageLocation computed_location; 778 isolate->ComputeLocation(&computed_location); 779 Handle<Object> message = MessageHandler::MakeMessageObject( 780 "error_loading_debugger", &computed_location, 781 Vector<Handle<Object> >::empty(), Handle<String>(), Handle<JSArray>()); 782 ASSERT(!isolate->has_pending_exception()); 783 isolate->set_pending_exception(*exception); 784 MessageHandler::ReportMessage(Isolate::Current(), NULL, message); 785 isolate->clear_pending_exception(); 786 return false; 787 } 788 789 // Mark this script as native and return successfully. 790 Handle<Script> script(Script::cast(function->shared()->script())); 791 script->set_type(Smi::FromInt(Script::TYPE_NATIVE)); 792 return true; 793 } 794 795 796 bool Debug::Load() { 797 // Return if debugger is already loaded. 798 if (IsLoaded()) return true; 799 800 Debugger* debugger = isolate_->debugger(); 801 802 // Bail out if we're already in the process of compiling the native 803 // JavaScript source code for the debugger. 804 if (debugger->compiling_natives() || 805 debugger->is_loading_debugger()) 806 return false; 807 debugger->set_loading_debugger(true); 808 809 // Disable breakpoints and interrupts while compiling and running the 810 // debugger scripts including the context creation code. 811 DisableBreak disable(true); 812 PostponeInterruptsScope postpone(isolate_); 813 814 // Create the debugger context. 815 HandleScope scope(isolate_); 816 Handle<Context> context = 817 isolate_->bootstrapper()->CreateEnvironment( 818 isolate_, 819 Handle<Object>::null(), 820 v8::Handle<ObjectTemplate>(), 821 NULL); 822 823 // Fail if no context could be created. 824 if (context.is_null()) return false; 825 826 // Use the debugger context. 827 SaveContext save(isolate_); 828 isolate_->set_context(*context); 829 830 // Expose the builtins object in the debugger context. 831 Handle<String> key = isolate_->factory()->LookupAsciiSymbol("builtins"); 832 Handle<GlobalObject> global = Handle<GlobalObject>(context->global()); 833 RETURN_IF_EMPTY_HANDLE_VALUE( 834 isolate_, 835 JSReceiver::SetProperty(global, key, Handle<Object>(global->builtins()), 836 NONE, kNonStrictMode), 837 false); 838 839 // Compile the JavaScript for the debugger in the debugger context. 840 debugger->set_compiling_natives(true); 841 bool caught_exception = 842 !CompileDebuggerScript(Natives::GetIndex("mirror")) || 843 !CompileDebuggerScript(Natives::GetIndex("debug")); 844 845 if (FLAG_enable_liveedit) { 846 caught_exception = caught_exception || 847 !CompileDebuggerScript(Natives::GetIndex("liveedit")); 848 } 849 850 debugger->set_compiling_natives(false); 851 852 // Make sure we mark the debugger as not loading before we might 853 // return. 854 debugger->set_loading_debugger(false); 855 856 // Check for caught exceptions. 857 if (caught_exception) return false; 858 859 // Debugger loaded. 860 debug_context_ = context; 861 862 return true; 863 } 864 865 866 void Debug::Unload() { 867 // Return debugger is not loaded. 868 if (!IsLoaded()) { 869 return; 870 } 871 872 // Clear the script cache. 873 DestroyScriptCache(); 874 875 // Clear debugger context global handle. 876 Isolate::Current()->global_handles()->Destroy( 877 reinterpret_cast<Object**>(debug_context_.location())); 878 debug_context_ = Handle<Context>(); 879 } 880 881 882 // Set the flag indicating that preemption happened during debugging. 883 void Debug::PreemptionWhileInDebugger() { 884 ASSERT(InDebugger()); 885 Debug::set_interrupts_pending(PREEMPT); 886 } 887 888 889 void Debug::Iterate(ObjectVisitor* v) { 890 v->VisitPointer(BitCast<Object**>(&(debug_break_return_))); 891 v->VisitPointer(BitCast<Object**>(&(debug_break_slot_))); 892 } 893 894 895 Object* Debug::Break(Arguments args) { 896 Heap* heap = isolate_->heap(); 897 HandleScope scope(isolate_); 898 ASSERT(args.length() == 0); 899 900 thread_local_.frame_drop_mode_ = FRAMES_UNTOUCHED; 901 902 // Get the top-most JavaScript frame. 903 JavaScriptFrameIterator it(isolate_); 904 JavaScriptFrame* frame = it.frame(); 905 906 // Just continue if breaks are disabled or debugger cannot be loaded. 907 if (disable_break() || !Load()) { 908 SetAfterBreakTarget(frame); 909 return heap->undefined_value(); 910 } 911 912 // Enter the debugger. 913 EnterDebugger debugger; 914 if (debugger.FailedToEnter()) { 915 return heap->undefined_value(); 916 } 917 918 // Postpone interrupt during breakpoint processing. 919 PostponeInterruptsScope postpone(isolate_); 920 921 // Get the debug info (create it if it does not exist). 922 Handle<SharedFunctionInfo> shared = 923 Handle<SharedFunctionInfo>(JSFunction::cast(frame->function())->shared()); 924 Handle<DebugInfo> debug_info = GetDebugInfo(shared); 925 926 // Find the break point where execution has stopped. 927 BreakLocationIterator break_location_iterator(debug_info, 928 ALL_BREAK_LOCATIONS); 929 break_location_iterator.FindBreakLocationFromAddress(frame->pc()); 930 931 // Check whether step next reached a new statement. 932 if (!StepNextContinue(&break_location_iterator, frame)) { 933 // Decrease steps left if performing multiple steps. 934 if (thread_local_.step_count_ > 0) { 935 thread_local_.step_count_--; 936 } 937 } 938 939 // If there is one or more real break points check whether any of these are 940 // triggered. 941 Handle<Object> break_points_hit(heap->undefined_value()); 942 if (break_location_iterator.HasBreakPoint()) { 943 Handle<Object> break_point_objects = 944 Handle<Object>(break_location_iterator.BreakPointObjects()); 945 break_points_hit = CheckBreakPoints(break_point_objects); 946 } 947 948 // If step out is active skip everything until the frame where we need to step 949 // out to is reached, unless real breakpoint is hit. 950 if (StepOutActive() && frame->fp() != step_out_fp() && 951 break_points_hit->IsUndefined() ) { 952 // Step count should always be 0 for StepOut. 953 ASSERT(thread_local_.step_count_ == 0); 954 } else if (!break_points_hit->IsUndefined() || 955 (thread_local_.last_step_action_ != StepNone && 956 thread_local_.step_count_ == 0)) { 957 // Notify debugger if a real break point is triggered or if performing 958 // single stepping with no more steps to perform. Otherwise do another step. 959 960 // Clear all current stepping setup. 961 ClearStepping(); 962 963 if (thread_local_.queued_step_count_ > 0) { 964 // Perform queued steps 965 int step_count = thread_local_.queued_step_count_; 966 967 // Clear queue 968 thread_local_.queued_step_count_ = 0; 969 970 PrepareStep(StepNext, step_count); 971 } else { 972 // Notify the debug event listeners. 973 isolate_->debugger()->OnDebugBreak(break_points_hit, false); 974 } 975 } else if (thread_local_.last_step_action_ != StepNone) { 976 // Hold on to last step action as it is cleared by the call to 977 // ClearStepping. 978 StepAction step_action = thread_local_.last_step_action_; 979 int step_count = thread_local_.step_count_; 980 981 // If StepNext goes deeper in code, StepOut until original frame 982 // and keep step count queued up in the meantime. 983 if (step_action == StepNext && frame->fp() < thread_local_.last_fp_) { 984 // Count frames until target frame 985 int count = 0; 986 JavaScriptFrameIterator it(isolate_); 987 while (!it.done() && it.frame()->fp() != thread_local_.last_fp_) { 988 count++; 989 it.Advance(); 990 } 991 992 // If we found original frame 993 if (it.frame()->fp() == thread_local_.last_fp_) { 994 if (step_count > 1) { 995 // Save old count and action to continue stepping after 996 // StepOut 997 thread_local_.queued_step_count_ = step_count - 1; 998 } 999 1000 // Set up for StepOut to reach target frame 1001 step_action = StepOut; 1002 step_count = count; 1003 } 1004 } 1005 1006 // Clear all current stepping setup. 1007 ClearStepping(); 1008 1009 // Set up for the remaining steps. 1010 PrepareStep(step_action, step_count); 1011 } 1012 1013 if (thread_local_.frame_drop_mode_ == FRAMES_UNTOUCHED) { 1014 SetAfterBreakTarget(frame); 1015 } else if (thread_local_.frame_drop_mode_ == 1016 FRAME_DROPPED_IN_IC_CALL) { 1017 // We must have been calling IC stub. Do not go there anymore. 1018 Code* plain_return = isolate_->builtins()->builtin( 1019 Builtins::kPlainReturn_LiveEdit); 1020 thread_local_.after_break_target_ = plain_return->entry(); 1021 } else if (thread_local_.frame_drop_mode_ == 1022 FRAME_DROPPED_IN_DEBUG_SLOT_CALL) { 1023 // Debug break slot stub does not return normally, instead it manually 1024 // cleans the stack and jumps. We should patch the jump address. 1025 Code* plain_return = isolate_->builtins()->builtin( 1026 Builtins::kFrameDropper_LiveEdit); 1027 thread_local_.after_break_target_ = plain_return->entry(); 1028 } else if (thread_local_.frame_drop_mode_ == 1029 FRAME_DROPPED_IN_DIRECT_CALL) { 1030 // Nothing to do, after_break_target is not used here. 1031 } else if (thread_local_.frame_drop_mode_ == 1032 FRAME_DROPPED_IN_RETURN_CALL) { 1033 Code* plain_return = isolate_->builtins()->builtin( 1034 Builtins::kFrameDropper_LiveEdit); 1035 thread_local_.after_break_target_ = plain_return->entry(); 1036 } else { 1037 UNREACHABLE(); 1038 } 1039 1040 return heap->undefined_value(); 1041 } 1042 1043 1044 RUNTIME_FUNCTION(Object*, Debug_Break) { 1045 return isolate->debug()->Break(args); 1046 } 1047 1048 1049 // Check the break point objects for whether one or more are actually 1050 // triggered. This function returns a JSArray with the break point objects 1051 // which is triggered. 1052 Handle<Object> Debug::CheckBreakPoints(Handle<Object> break_point_objects) { 1053 Factory* factory = isolate_->factory(); 1054 1055 // Count the number of break points hit. If there are multiple break points 1056 // they are in a FixedArray. 1057 Handle<FixedArray> break_points_hit; 1058 int break_points_hit_count = 0; 1059 ASSERT(!break_point_objects->IsUndefined()); 1060 if (break_point_objects->IsFixedArray()) { 1061 Handle<FixedArray> array(FixedArray::cast(*break_point_objects)); 1062 break_points_hit = factory->NewFixedArray(array->length()); 1063 for (int i = 0; i < array->length(); i++) { 1064 Handle<Object> o(array->get(i)); 1065 if (CheckBreakPoint(o)) { 1066 break_points_hit->set(break_points_hit_count++, *o); 1067 } 1068 } 1069 } else { 1070 break_points_hit = factory->NewFixedArray(1); 1071 if (CheckBreakPoint(break_point_objects)) { 1072 break_points_hit->set(break_points_hit_count++, *break_point_objects); 1073 } 1074 } 1075 1076 // Return undefined if no break points were triggered. 1077 if (break_points_hit_count == 0) { 1078 return factory->undefined_value(); 1079 } 1080 // Return break points hit as a JSArray. 1081 Handle<JSArray> result = factory->NewJSArrayWithElements(break_points_hit); 1082 result->set_length(Smi::FromInt(break_points_hit_count)); 1083 return result; 1084 } 1085 1086 1087 // Check whether a single break point object is triggered. 1088 bool Debug::CheckBreakPoint(Handle<Object> break_point_object) { 1089 Factory* factory = isolate_->factory(); 1090 HandleScope scope(isolate_); 1091 1092 // Ignore check if break point object is not a JSObject. 1093 if (!break_point_object->IsJSObject()) return true; 1094 1095 // Get the function IsBreakPointTriggered (defined in debug-debugger.js). 1096 Handle<String> is_break_point_triggered_symbol = 1097 factory->LookupAsciiSymbol("IsBreakPointTriggered"); 1098 Handle<JSFunction> check_break_point = 1099 Handle<JSFunction>(JSFunction::cast( 1100 debug_context()->global()->GetPropertyNoExceptionThrown( 1101 *is_break_point_triggered_symbol))); 1102 1103 // Get the break id as an object. 1104 Handle<Object> break_id = factory->NewNumberFromInt(Debug::break_id()); 1105 1106 // Call HandleBreakPointx. 1107 bool caught_exception; 1108 Handle<Object> argv[] = { break_id, break_point_object }; 1109 Handle<Object> result = Execution::TryCall(check_break_point, 1110 isolate_->js_builtins_object(), 1111 ARRAY_SIZE(argv), 1112 argv, 1113 &caught_exception); 1114 1115 // If exception or non boolean result handle as not triggered 1116 if (caught_exception || !result->IsBoolean()) { 1117 return false; 1118 } 1119 1120 // Return whether the break point is triggered. 1121 ASSERT(!result.is_null()); 1122 return (*result)->IsTrue(); 1123 } 1124 1125 1126 // Check whether the function has debug information. 1127 bool Debug::HasDebugInfo(Handle<SharedFunctionInfo> shared) { 1128 return !shared->debug_info()->IsUndefined(); 1129 } 1130 1131 1132 // Return the debug info for this function. EnsureDebugInfo must be called 1133 // prior to ensure the debug info has been generated for shared. 1134 Handle<DebugInfo> Debug::GetDebugInfo(Handle<SharedFunctionInfo> shared) { 1135 ASSERT(HasDebugInfo(shared)); 1136 return Handle<DebugInfo>(DebugInfo::cast(shared->debug_info())); 1137 } 1138 1139 1140 void Debug::SetBreakPoint(Handle<SharedFunctionInfo> shared, 1141 Handle<Object> break_point_object, 1142 int* source_position) { 1143 HandleScope scope(isolate_); 1144 1145 PrepareForBreakPoints(); 1146 1147 if (!EnsureDebugInfo(shared)) { 1148 // Return if retrieving debug info failed. 1149 return; 1150 } 1151 1152 Handle<DebugInfo> debug_info = GetDebugInfo(shared); 1153 // Source positions starts with zero. 1154 ASSERT(*source_position >= 0); 1155 1156 // Find the break point and change it. 1157 BreakLocationIterator it(debug_info, SOURCE_BREAK_LOCATIONS); 1158 it.FindBreakLocationFromPosition(*source_position); 1159 it.SetBreakPoint(break_point_object); 1160 1161 *source_position = it.position(); 1162 1163 // At least one active break point now. 1164 ASSERT(debug_info->GetBreakPointCount() > 0); 1165 } 1166 1167 1168 void Debug::ClearBreakPoint(Handle<Object> break_point_object) { 1169 HandleScope scope(isolate_); 1170 1171 DebugInfoListNode* node = debug_info_list_; 1172 while (node != NULL) { 1173 Object* result = DebugInfo::FindBreakPointInfo(node->debug_info(), 1174 break_point_object); 1175 if (!result->IsUndefined()) { 1176 // Get information in the break point. 1177 BreakPointInfo* break_point_info = BreakPointInfo::cast(result); 1178 Handle<DebugInfo> debug_info = node->debug_info(); 1179 Handle<SharedFunctionInfo> shared(debug_info->shared()); 1180 int source_position = break_point_info->statement_position()->value(); 1181 1182 // Source positions starts with zero. 1183 ASSERT(source_position >= 0); 1184 1185 // Find the break point and clear it. 1186 BreakLocationIterator it(debug_info, SOURCE_BREAK_LOCATIONS); 1187 it.FindBreakLocationFromPosition(source_position); 1188 it.ClearBreakPoint(break_point_object); 1189 1190 // If there are no more break points left remove the debug info for this 1191 // function. 1192 if (debug_info->GetBreakPointCount() == 0) { 1193 RemoveDebugInfo(debug_info); 1194 } 1195 1196 return; 1197 } 1198 node = node->next(); 1199 } 1200 } 1201 1202 1203 void Debug::ClearAllBreakPoints() { 1204 DebugInfoListNode* node = debug_info_list_; 1205 while (node != NULL) { 1206 // Remove all debug break code. 1207 BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS); 1208 it.ClearAllDebugBreak(); 1209 node = node->next(); 1210 } 1211 1212 // Remove all debug info. 1213 while (debug_info_list_ != NULL) { 1214 RemoveDebugInfo(debug_info_list_->debug_info()); 1215 } 1216 } 1217 1218 1219 void Debug::FloodWithOneShot(Handle<SharedFunctionInfo> shared) { 1220 PrepareForBreakPoints(); 1221 // Make sure the function has set up the debug info. 1222 if (!EnsureDebugInfo(shared)) { 1223 // Return if we failed to retrieve the debug info. 1224 return; 1225 } 1226 1227 // Flood the function with break points. 1228 BreakLocationIterator it(GetDebugInfo(shared), ALL_BREAK_LOCATIONS); 1229 while (!it.Done()) { 1230 it.SetOneShot(); 1231 it.Next(); 1232 } 1233 } 1234 1235 1236 void Debug::FloodBoundFunctionWithOneShot(Handle<JSFunction> function) { 1237 Handle<FixedArray> new_bindings(function->function_bindings()); 1238 Handle<Object> bindee(new_bindings->get(JSFunction::kBoundFunctionIndex)); 1239 1240 if (!bindee.is_null() && bindee->IsJSFunction() && 1241 !JSFunction::cast(*bindee)->IsBuiltin()) { 1242 Handle<SharedFunctionInfo> shared_info(JSFunction::cast(*bindee)->shared()); 1243 Debug::FloodWithOneShot(shared_info); 1244 } 1245 } 1246 1247 1248 void Debug::FloodHandlerWithOneShot() { 1249 // Iterate through the JavaScript stack looking for handlers. 1250 StackFrame::Id id = break_frame_id(); 1251 if (id == StackFrame::NO_ID) { 1252 // If there is no JavaScript stack don't do anything. 1253 return; 1254 } 1255 for (JavaScriptFrameIterator it(isolate_, id); !it.done(); it.Advance()) { 1256 JavaScriptFrame* frame = it.frame(); 1257 if (frame->HasHandler()) { 1258 Handle<SharedFunctionInfo> shared = 1259 Handle<SharedFunctionInfo>( 1260 JSFunction::cast(frame->function())->shared()); 1261 // Flood the function with the catch block with break points 1262 FloodWithOneShot(shared); 1263 return; 1264 } 1265 } 1266 } 1267 1268 1269 void Debug::ChangeBreakOnException(ExceptionBreakType type, bool enable) { 1270 if (type == BreakUncaughtException) { 1271 break_on_uncaught_exception_ = enable; 1272 } else { 1273 break_on_exception_ = enable; 1274 } 1275 } 1276 1277 1278 bool Debug::IsBreakOnException(ExceptionBreakType type) { 1279 if (type == BreakUncaughtException) { 1280 return break_on_uncaught_exception_; 1281 } else { 1282 return break_on_exception_; 1283 } 1284 } 1285 1286 1287 void Debug::PrepareStep(StepAction step_action, int step_count) { 1288 HandleScope scope(isolate_); 1289 1290 PrepareForBreakPoints(); 1291 1292 ASSERT(Debug::InDebugger()); 1293 1294 // Remember this step action and count. 1295 thread_local_.last_step_action_ = step_action; 1296 if (step_action == StepOut) { 1297 // For step out target frame will be found on the stack so there is no need 1298 // to set step counter for it. It's expected to always be 0 for StepOut. 1299 thread_local_.step_count_ = 0; 1300 } else { 1301 thread_local_.step_count_ = step_count; 1302 } 1303 1304 // Get the frame where the execution has stopped and skip the debug frame if 1305 // any. The debug frame will only be present if execution was stopped due to 1306 // hitting a break point. In other situations (e.g. unhandled exception) the 1307 // debug frame is not present. 1308 StackFrame::Id id = break_frame_id(); 1309 if (id == StackFrame::NO_ID) { 1310 // If there is no JavaScript stack don't do anything. 1311 return; 1312 } 1313 JavaScriptFrameIterator frames_it(isolate_, id); 1314 JavaScriptFrame* frame = frames_it.frame(); 1315 1316 // First of all ensure there is one-shot break points in the top handler 1317 // if any. 1318 FloodHandlerWithOneShot(); 1319 1320 // If the function on the top frame is unresolved perform step out. This will 1321 // be the case when calling unknown functions and having the debugger stopped 1322 // in an unhandled exception. 1323 if (!frame->function()->IsJSFunction()) { 1324 // Step out: Find the calling JavaScript frame and flood it with 1325 // breakpoints. 1326 frames_it.Advance(); 1327 // Fill the function to return to with one-shot break points. 1328 JSFunction* function = JSFunction::cast(frames_it.frame()->function()); 1329 FloodWithOneShot(Handle<SharedFunctionInfo>(function->shared())); 1330 return; 1331 } 1332 1333 // Get the debug info (create it if it does not exist). 1334 Handle<SharedFunctionInfo> shared = 1335 Handle<SharedFunctionInfo>(JSFunction::cast(frame->function())->shared()); 1336 if (!EnsureDebugInfo(shared)) { 1337 // Return if ensuring debug info failed. 1338 return; 1339 } 1340 Handle<DebugInfo> debug_info = GetDebugInfo(shared); 1341 1342 // Find the break location where execution has stopped. 1343 BreakLocationIterator it(debug_info, ALL_BREAK_LOCATIONS); 1344 it.FindBreakLocationFromAddress(frame->pc()); 1345 1346 // Compute whether or not the target is a call target. 1347 bool is_load_or_store = false; 1348 bool is_inline_cache_stub = false; 1349 bool is_at_restarted_function = false; 1350 Handle<Code> call_function_stub; 1351 1352 if (thread_local_.restarter_frame_function_pointer_ == NULL) { 1353 if (RelocInfo::IsCodeTarget(it.rinfo()->rmode())) { 1354 bool is_call_target = false; 1355 Address target = it.rinfo()->target_address(); 1356 Code* code = Code::GetCodeFromTargetAddress(target); 1357 if (code->is_call_stub() || code->is_keyed_call_stub()) { 1358 is_call_target = true; 1359 } 1360 if (code->is_inline_cache_stub()) { 1361 is_inline_cache_stub = true; 1362 is_load_or_store = !is_call_target; 1363 } 1364 1365 // Check if target code is CallFunction stub. 1366 Code* maybe_call_function_stub = code; 1367 // If there is a breakpoint at this line look at the original code to 1368 // check if it is a CallFunction stub. 1369 if (it.IsDebugBreak()) { 1370 Address original_target = it.original_rinfo()->target_address(); 1371 maybe_call_function_stub = 1372 Code::GetCodeFromTargetAddress(original_target); 1373 } 1374 if (maybe_call_function_stub->kind() == Code::STUB && 1375 maybe_call_function_stub->major_key() == CodeStub::CallFunction) { 1376 // Save reference to the code as we may need it to find out arguments 1377 // count for 'step in' later. 1378 call_function_stub = Handle<Code>(maybe_call_function_stub); 1379 } 1380 } 1381 } else { 1382 is_at_restarted_function = true; 1383 } 1384 1385 // If this is the last break code target step out is the only possibility. 1386 if (it.IsExit() || step_action == StepOut) { 1387 if (step_action == StepOut) { 1388 // Skip step_count frames starting with the current one. 1389 while (step_count-- > 0 && !frames_it.done()) { 1390 frames_it.Advance(); 1391 } 1392 } else { 1393 ASSERT(it.IsExit()); 1394 frames_it.Advance(); 1395 } 1396 // Skip builtin functions on the stack. 1397 while (!frames_it.done() && 1398 JSFunction::cast(frames_it.frame()->function())->IsBuiltin()) { 1399 frames_it.Advance(); 1400 } 1401 // Step out: If there is a JavaScript caller frame, we need to 1402 // flood it with breakpoints. 1403 if (!frames_it.done()) { 1404 // Fill the function to return to with one-shot break points. 1405 JSFunction* function = JSFunction::cast(frames_it.frame()->function()); 1406 FloodWithOneShot(Handle<SharedFunctionInfo>(function->shared())); 1407 // Set target frame pointer. 1408 ActivateStepOut(frames_it.frame()); 1409 } 1410 } else if (!(is_inline_cache_stub || RelocInfo::IsConstructCall(it.rmode()) || 1411 !call_function_stub.is_null() || is_at_restarted_function) 1412 || step_action == StepNext || step_action == StepMin) { 1413 // Step next or step min. 1414 1415 // Fill the current function with one-shot break points. 1416 FloodWithOneShot(shared); 1417 1418 // Remember source position and frame to handle step next. 1419 thread_local_.last_statement_position_ = 1420 debug_info->code()->SourceStatementPosition(frame->pc()); 1421 thread_local_.last_fp_ = frame->fp(); 1422 } else { 1423 // If there's restarter frame on top of the stack, just get the pointer 1424 // to function which is going to be restarted. 1425 if (is_at_restarted_function) { 1426 Handle<JSFunction> restarted_function( 1427 JSFunction::cast(*thread_local_.restarter_frame_function_pointer_)); 1428 Handle<SharedFunctionInfo> restarted_shared( 1429 restarted_function->shared()); 1430 FloodWithOneShot(restarted_shared); 1431 } else if (!call_function_stub.is_null()) { 1432 // If it's CallFunction stub ensure target function is compiled and flood 1433 // it with one shot breakpoints. 1434 1435 // Find out number of arguments from the stub minor key. 1436 // Reverse lookup required as the minor key cannot be retrieved 1437 // from the code object. 1438 Handle<Object> obj( 1439 isolate_->heap()->code_stubs()->SlowReverseLookup( 1440 *call_function_stub)); 1441 ASSERT(!obj.is_null()); 1442 ASSERT(!(*obj)->IsUndefined()); 1443 ASSERT(obj->IsSmi()); 1444 // Get the STUB key and extract major and minor key. 1445 uint32_t key = Smi::cast(*obj)->value(); 1446 // Argc in the stub is the number of arguments passed - not the 1447 // expected arguments of the called function. 1448 int call_function_arg_count = 1449 CallFunctionStub::ExtractArgcFromMinorKey( 1450 CodeStub::MinorKeyFromKey(key)); 1451 ASSERT(call_function_stub->major_key() == 1452 CodeStub::MajorKeyFromKey(key)); 1453 1454 // Find target function on the expression stack. 1455 // Expression stack looks like this (top to bottom): 1456 // argN 1457 // ... 1458 // arg0 1459 // Receiver 1460 // Function to call 1461 int expressions_count = frame->ComputeExpressionsCount(); 1462 ASSERT(expressions_count - 2 - call_function_arg_count >= 0); 1463 Object* fun = frame->GetExpression( 1464 expressions_count - 2 - call_function_arg_count); 1465 if (fun->IsJSFunction()) { 1466 Handle<JSFunction> js_function(JSFunction::cast(fun)); 1467 if (js_function->shared()->bound()) { 1468 Debug::FloodBoundFunctionWithOneShot(js_function); 1469 } else if (!js_function->IsBuiltin()) { 1470 // Don't step into builtins. 1471 // It will also compile target function if it's not compiled yet. 1472 FloodWithOneShot(Handle<SharedFunctionInfo>(js_function->shared())); 1473 } 1474 } 1475 } 1476 1477 // Fill the current function with one-shot break points even for step in on 1478 // a call target as the function called might be a native function for 1479 // which step in will not stop. It also prepares for stepping in 1480 // getters/setters. 1481 FloodWithOneShot(shared); 1482 1483 if (is_load_or_store) { 1484 // Remember source position and frame to handle step in getter/setter. If 1485 // there is a custom getter/setter it will be handled in 1486 // Object::Get/SetPropertyWithCallback, otherwise the step action will be 1487 // propagated on the next Debug::Break. 1488 thread_local_.last_statement_position_ = 1489 debug_info->code()->SourceStatementPosition(frame->pc()); 1490 thread_local_.last_fp_ = frame->fp(); 1491 } 1492 1493 // Step in or Step in min 1494 it.PrepareStepIn(); 1495 ActivateStepIn(frame); 1496 } 1497 } 1498 1499 1500 // Check whether the current debug break should be reported to the debugger. It 1501 // is used to have step next and step in only report break back to the debugger 1502 // if on a different frame or in a different statement. In some situations 1503 // there will be several break points in the same statement when the code is 1504 // flooded with one-shot break points. This function helps to perform several 1505 // steps before reporting break back to the debugger. 1506 bool Debug::StepNextContinue(BreakLocationIterator* break_location_iterator, 1507 JavaScriptFrame* frame) { 1508 // StepNext and StepOut shouldn't bring us deeper in code, so last frame 1509 // shouldn't be a parent of current frame. 1510 if (thread_local_.last_step_action_ == StepNext || 1511 thread_local_.last_step_action_ == StepOut) { 1512 if (frame->fp() < thread_local_.last_fp_) return true; 1513 } 1514 1515 // If the step last action was step next or step in make sure that a new 1516 // statement is hit. 1517 if (thread_local_.last_step_action_ == StepNext || 1518 thread_local_.last_step_action_ == StepIn) { 1519 // Never continue if returning from function. 1520 if (break_location_iterator->IsExit()) return false; 1521 1522 // Continue if we are still on the same frame and in the same statement. 1523 int current_statement_position = 1524 break_location_iterator->code()->SourceStatementPosition(frame->pc()); 1525 return thread_local_.last_fp_ == frame->fp() && 1526 thread_local_.last_statement_position_ == current_statement_position; 1527 } 1528 1529 // No step next action - don't continue. 1530 return false; 1531 } 1532 1533 1534 // Check whether the code object at the specified address is a debug break code 1535 // object. 1536 bool Debug::IsDebugBreak(Address addr) { 1537 Code* code = Code::GetCodeFromTargetAddress(addr); 1538 return code->ic_state() == DEBUG_BREAK; 1539 } 1540 1541 1542 // Check whether a code stub with the specified major key is a possible break 1543 // point location when looking for source break locations. 1544 bool Debug::IsSourceBreakStub(Code* code) { 1545 CodeStub::Major major_key = CodeStub::GetMajorKey(code); 1546 return major_key == CodeStub::CallFunction; 1547 } 1548 1549 1550 // Check whether a code stub with the specified major key is a possible break 1551 // location. 1552 bool Debug::IsBreakStub(Code* code) { 1553 CodeStub::Major major_key = CodeStub::GetMajorKey(code); 1554 return major_key == CodeStub::CallFunction; 1555 } 1556 1557 1558 // Find the builtin to use for invoking the debug break 1559 Handle<Code> Debug::FindDebugBreak(Handle<Code> code, RelocInfo::Mode mode) { 1560 Isolate* isolate = Isolate::Current(); 1561 1562 // Find the builtin debug break function matching the calling convention 1563 // used by the call site. 1564 if (code->is_inline_cache_stub()) { 1565 switch (code->kind()) { 1566 case Code::CALL_IC: 1567 case Code::KEYED_CALL_IC: 1568 return isolate->stub_cache()->ComputeCallDebugBreak( 1569 code->arguments_count(), code->kind()); 1570 1571 case Code::LOAD_IC: 1572 return isolate->builtins()->LoadIC_DebugBreak(); 1573 1574 case Code::STORE_IC: 1575 return isolate->builtins()->StoreIC_DebugBreak(); 1576 1577 case Code::KEYED_LOAD_IC: 1578 return isolate->builtins()->KeyedLoadIC_DebugBreak(); 1579 1580 case Code::KEYED_STORE_IC: 1581 return isolate->builtins()->KeyedStoreIC_DebugBreak(); 1582 1583 default: 1584 UNREACHABLE(); 1585 } 1586 } 1587 if (RelocInfo::IsConstructCall(mode)) { 1588 if (code->has_function_cache()) { 1589 return isolate->builtins()->CallConstructStub_Recording_DebugBreak(); 1590 } else { 1591 return isolate->builtins()->CallConstructStub_DebugBreak(); 1592 } 1593 } 1594 if (code->kind() == Code::STUB) { 1595 ASSERT(code->major_key() == CodeStub::CallFunction); 1596 if (code->has_function_cache()) { 1597 return isolate->builtins()->CallFunctionStub_Recording_DebugBreak(); 1598 } else { 1599 return isolate->builtins()->CallFunctionStub_DebugBreak(); 1600 } 1601 } 1602 1603 UNREACHABLE(); 1604 return Handle<Code>::null(); 1605 } 1606 1607 1608 // Simple function for returning the source positions for active break points. 1609 Handle<Object> Debug::GetSourceBreakLocations( 1610 Handle<SharedFunctionInfo> shared) { 1611 Isolate* isolate = Isolate::Current(); 1612 Heap* heap = isolate->heap(); 1613 if (!HasDebugInfo(shared)) return Handle<Object>(heap->undefined_value()); 1614 Handle<DebugInfo> debug_info = GetDebugInfo(shared); 1615 if (debug_info->GetBreakPointCount() == 0) { 1616 return Handle<Object>(heap->undefined_value()); 1617 } 1618 Handle<FixedArray> locations = 1619 isolate->factory()->NewFixedArray(debug_info->GetBreakPointCount()); 1620 int count = 0; 1621 for (int i = 0; i < debug_info->break_points()->length(); i++) { 1622 if (!debug_info->break_points()->get(i)->IsUndefined()) { 1623 BreakPointInfo* break_point_info = 1624 BreakPointInfo::cast(debug_info->break_points()->get(i)); 1625 if (break_point_info->GetBreakPointCount() > 0) { 1626 locations->set(count++, break_point_info->statement_position()); 1627 } 1628 } 1629 } 1630 return locations; 1631 } 1632 1633 1634 void Debug::NewBreak(StackFrame::Id break_frame_id) { 1635 thread_local_.break_frame_id_ = break_frame_id; 1636 thread_local_.break_id_ = ++thread_local_.break_count_; 1637 } 1638 1639 1640 void Debug::SetBreak(StackFrame::Id break_frame_id, int break_id) { 1641 thread_local_.break_frame_id_ = break_frame_id; 1642 thread_local_.break_id_ = break_id; 1643 } 1644 1645 1646 // Handle stepping into a function. 1647 void Debug::HandleStepIn(Handle<JSFunction> function, 1648 Handle<Object> holder, 1649 Address fp, 1650 bool is_constructor) { 1651 // If the frame pointer is not supplied by the caller find it. 1652 if (fp == 0) { 1653 StackFrameIterator it; 1654 it.Advance(); 1655 // For constructor functions skip another frame. 1656 if (is_constructor) { 1657 ASSERT(it.frame()->is_construct()); 1658 it.Advance(); 1659 } 1660 fp = it.frame()->fp(); 1661 } 1662 1663 // Flood the function with one-shot break points if it is called from where 1664 // step into was requested. 1665 if (fp == step_in_fp()) { 1666 if (function->shared()->bound()) { 1667 // Handle Function.prototype.bind 1668 Debug::FloodBoundFunctionWithOneShot(function); 1669 } else if (!function->IsBuiltin()) { 1670 // Don't allow step into functions in the native context. 1671 if (function->shared()->code() == 1672 Isolate::Current()->builtins()->builtin(Builtins::kFunctionApply) || 1673 function->shared()->code() == 1674 Isolate::Current()->builtins()->builtin(Builtins::kFunctionCall)) { 1675 // Handle function.apply and function.call separately to flood the 1676 // function to be called and not the code for Builtins::FunctionApply or 1677 // Builtins::FunctionCall. The receiver of call/apply is the target 1678 // function. 1679 if (!holder.is_null() && holder->IsJSFunction() && 1680 !JSFunction::cast(*holder)->IsBuiltin()) { 1681 Handle<SharedFunctionInfo> shared_info( 1682 JSFunction::cast(*holder)->shared()); 1683 Debug::FloodWithOneShot(shared_info); 1684 } 1685 } else { 1686 Debug::FloodWithOneShot(Handle<SharedFunctionInfo>(function->shared())); 1687 } 1688 } 1689 } 1690 } 1691 1692 1693 void Debug::ClearStepping() { 1694 // Clear the various stepping setup. 1695 ClearOneShot(); 1696 ClearStepIn(); 1697 ClearStepOut(); 1698 ClearStepNext(); 1699 1700 // Clear multiple step counter. 1701 thread_local_.step_count_ = 0; 1702 } 1703 1704 // Clears all the one-shot break points that are currently set. Normally this 1705 // function is called each time a break point is hit as one shot break points 1706 // are used to support stepping. 1707 void Debug::ClearOneShot() { 1708 // The current implementation just runs through all the breakpoints. When the 1709 // last break point for a function is removed that function is automatically 1710 // removed from the list. 1711 1712 DebugInfoListNode* node = debug_info_list_; 1713 while (node != NULL) { 1714 BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS); 1715 while (!it.Done()) { 1716 it.ClearOneShot(); 1717 it.Next(); 1718 } 1719 node = node->next(); 1720 } 1721 } 1722 1723 1724 void Debug::ActivateStepIn(StackFrame* frame) { 1725 ASSERT(!StepOutActive()); 1726 thread_local_.step_into_fp_ = frame->fp(); 1727 } 1728 1729 1730 void Debug::ClearStepIn() { 1731 thread_local_.step_into_fp_ = 0; 1732 } 1733 1734 1735 void Debug::ActivateStepOut(StackFrame* frame) { 1736 ASSERT(!StepInActive()); 1737 thread_local_.step_out_fp_ = frame->fp(); 1738 } 1739 1740 1741 void Debug::ClearStepOut() { 1742 thread_local_.step_out_fp_ = 0; 1743 } 1744 1745 1746 void Debug::ClearStepNext() { 1747 thread_local_.last_step_action_ = StepNone; 1748 thread_local_.last_statement_position_ = RelocInfo::kNoPosition; 1749 thread_local_.last_fp_ = 0; 1750 } 1751 1752 1753 // Helper function to compile full code for debugging. This code will 1754 // have debug break slots and deoptimization 1755 // information. Deoptimization information is required in case that an 1756 // optimized version of this function is still activated on the 1757 // stack. It will also make sure that the full code is compiled with 1758 // the same flags as the previous version - that is flags which can 1759 // change the code generated. The current method of mapping from 1760 // already compiled full code without debug break slots to full code 1761 // with debug break slots depends on the generated code is otherwise 1762 // exactly the same. 1763 static bool CompileFullCodeForDebugging(Handle<SharedFunctionInfo> shared, 1764 Handle<Code> current_code) { 1765 ASSERT(!current_code->has_debug_break_slots()); 1766 1767 CompilationInfo info(shared); 1768 info.MarkCompilingForDebugging(current_code); 1769 ASSERT(!info.shared_info()->is_compiled()); 1770 ASSERT(!info.isolate()->has_pending_exception()); 1771 1772 // Use compile lazy which will end up compiling the full code in the 1773 // configuration configured above. 1774 bool result = Compiler::CompileLazy(&info); 1775 ASSERT(result != Isolate::Current()->has_pending_exception()); 1776 info.isolate()->clear_pending_exception(); 1777 #if DEBUG 1778 if (result) { 1779 Handle<Code> new_code(shared->code()); 1780 ASSERT(new_code->has_debug_break_slots()); 1781 ASSERT(current_code->is_compiled_optimizable() == 1782 new_code->is_compiled_optimizable()); 1783 } 1784 #endif 1785 return result; 1786 } 1787 1788 1789 static void CollectActiveFunctionsFromThread( 1790 Isolate* isolate, 1791 ThreadLocalTop* top, 1792 List<Handle<JSFunction> >* active_functions, 1793 Object* active_code_marker) { 1794 // Find all non-optimized code functions with activation frames 1795 // on the stack. This includes functions which have optimized 1796 // activations (including inlined functions) on the stack as the 1797 // non-optimized code is needed for the lazy deoptimization. 1798 for (JavaScriptFrameIterator it(isolate, top); !it.done(); it.Advance()) { 1799 JavaScriptFrame* frame = it.frame(); 1800 if (frame->is_optimized()) { 1801 List<JSFunction*> functions(Compiler::kMaxInliningLevels + 1); 1802 frame->GetFunctions(&functions); 1803 for (int i = 0; i < functions.length(); i++) { 1804 JSFunction* function = functions[i]; 1805 active_functions->Add(Handle<JSFunction>(function)); 1806 function->shared()->code()->set_gc_metadata(active_code_marker); 1807 } 1808 } else if (frame->function()->IsJSFunction()) { 1809 JSFunction* function = JSFunction::cast(frame->function()); 1810 ASSERT(frame->LookupCode()->kind() == Code::FUNCTION); 1811 active_functions->Add(Handle<JSFunction>(function)); 1812 function->shared()->code()->set_gc_metadata(active_code_marker); 1813 } 1814 } 1815 } 1816 1817 1818 static void RedirectActivationsToRecompiledCodeOnThread( 1819 Isolate* isolate, 1820 ThreadLocalTop* top) { 1821 for (JavaScriptFrameIterator it(isolate, top); !it.done(); it.Advance()) { 1822 JavaScriptFrame* frame = it.frame(); 1823 1824 if (frame->is_optimized() || !frame->function()->IsJSFunction()) continue; 1825 1826 JSFunction* function = JSFunction::cast(frame->function()); 1827 1828 ASSERT(frame->LookupCode()->kind() == Code::FUNCTION); 1829 1830 Handle<Code> frame_code(frame->LookupCode()); 1831 if (frame_code->has_debug_break_slots()) continue; 1832 1833 Handle<Code> new_code(function->shared()->code()); 1834 if (new_code->kind() != Code::FUNCTION || 1835 !new_code->has_debug_break_slots()) { 1836 continue; 1837 } 1838 1839 intptr_t delta = frame->pc() - frame_code->instruction_start(); 1840 int debug_break_slot_count = 0; 1841 int mask = RelocInfo::ModeMask(RelocInfo::DEBUG_BREAK_SLOT); 1842 for (RelocIterator it(*new_code, mask); !it.done(); it.next()) { 1843 // Check if the pc in the new code with debug break 1844 // slots is before this slot. 1845 RelocInfo* info = it.rinfo(); 1846 int debug_break_slot_bytes = 1847 debug_break_slot_count * Assembler::kDebugBreakSlotLength; 1848 intptr_t new_delta = 1849 info->pc() - 1850 new_code->instruction_start() - 1851 debug_break_slot_bytes; 1852 if (new_delta > delta) { 1853 break; 1854 } 1855 1856 // Passed a debug break slot in the full code with debug 1857 // break slots. 1858 debug_break_slot_count++; 1859 } 1860 if (frame_code->has_self_optimization_header() && 1861 !new_code->has_self_optimization_header()) { 1862 delta -= FullCodeGenerator::self_optimization_header_size(); 1863 } else { 1864 ASSERT(frame_code->has_self_optimization_header() == 1865 new_code->has_self_optimization_header()); 1866 } 1867 int debug_break_slot_bytes = 1868 debug_break_slot_count * Assembler::kDebugBreakSlotLength; 1869 if (FLAG_trace_deopt) { 1870 PrintF("Replacing code %08" V8PRIxPTR " - %08" V8PRIxPTR " (%d) " 1871 "with %08" V8PRIxPTR " - %08" V8PRIxPTR " (%d) " 1872 "for debugging, " 1873 "changing pc from %08" V8PRIxPTR " to %08" V8PRIxPTR "\n", 1874 reinterpret_cast<intptr_t>( 1875 frame_code->instruction_start()), 1876 reinterpret_cast<intptr_t>( 1877 frame_code->instruction_start()) + 1878 frame_code->instruction_size(), 1879 frame_code->instruction_size(), 1880 reinterpret_cast<intptr_t>(new_code->instruction_start()), 1881 reinterpret_cast<intptr_t>(new_code->instruction_start()) + 1882 new_code->instruction_size(), 1883 new_code->instruction_size(), 1884 reinterpret_cast<intptr_t>(frame->pc()), 1885 reinterpret_cast<intptr_t>(new_code->instruction_start()) + 1886 delta + debug_break_slot_bytes); 1887 } 1888 1889 // Patch the return address to return into the code with 1890 // debug break slots. 1891 frame->set_pc( 1892 new_code->instruction_start() + delta + debug_break_slot_bytes); 1893 } 1894 } 1895 1896 1897 class ActiveFunctionsCollector : public ThreadVisitor { 1898 public: 1899 explicit ActiveFunctionsCollector(List<Handle<JSFunction> >* active_functions, 1900 Object* active_code_marker) 1901 : active_functions_(active_functions), 1902 active_code_marker_(active_code_marker) { } 1903 1904 void VisitThread(Isolate* isolate, ThreadLocalTop* top) { 1905 CollectActiveFunctionsFromThread(isolate, 1906 top, 1907 active_functions_, 1908 active_code_marker_); 1909 } 1910 1911 private: 1912 List<Handle<JSFunction> >* active_functions_; 1913 Object* active_code_marker_; 1914 }; 1915 1916 1917 class ActiveFunctionsRedirector : public ThreadVisitor { 1918 public: 1919 void VisitThread(Isolate* isolate, ThreadLocalTop* top) { 1920 RedirectActivationsToRecompiledCodeOnThread(isolate, top); 1921 } 1922 }; 1923 1924 1925 void Debug::PrepareForBreakPoints() { 1926 // If preparing for the first break point make sure to deoptimize all 1927 // functions as debugging does not work with optimized code. 1928 if (!has_break_points_) { 1929 Deoptimizer::DeoptimizeAll(); 1930 1931 Handle<Code> lazy_compile = 1932 Handle<Code>(isolate_->builtins()->builtin(Builtins::kLazyCompile)); 1933 1934 // Keep the list of activated functions in a handlified list as it 1935 // is used both in GC and non-GC code. 1936 List<Handle<JSFunction> > active_functions(100); 1937 1938 { 1939 // We are going to iterate heap to find all functions without 1940 // debug break slots. 1941 isolate_->heap()->CollectAllGarbage(Heap::kMakeHeapIterableMask, 1942 "preparing for breakpoints"); 1943 1944 // Ensure no GC in this scope as we are going to use gc_metadata 1945 // field in the Code object to mark active functions. 1946 AssertNoAllocation no_allocation; 1947 1948 Object* active_code_marker = isolate_->heap()->the_hole_value(); 1949 1950 CollectActiveFunctionsFromThread(isolate_, 1951 isolate_->thread_local_top(), 1952 &active_functions, 1953 active_code_marker); 1954 ActiveFunctionsCollector active_functions_collector(&active_functions, 1955 active_code_marker); 1956 isolate_->thread_manager()->IterateArchivedThreads( 1957 &active_functions_collector); 1958 1959 // Scan the heap for all non-optimized functions which have no 1960 // debug break slots and are not active or inlined into an active 1961 // function and mark them for lazy compilation. 1962 HeapIterator iterator; 1963 HeapObject* obj = NULL; 1964 while (((obj = iterator.next()) != NULL)) { 1965 if (obj->IsJSFunction()) { 1966 JSFunction* function = JSFunction::cast(obj); 1967 SharedFunctionInfo* shared = function->shared(); 1968 if (shared->allows_lazy_compilation() && 1969 shared->script()->IsScript() && 1970 function->code()->kind() == Code::FUNCTION && 1971 !function->code()->has_debug_break_slots() && 1972 shared->code()->gc_metadata() != active_code_marker) { 1973 function->set_code(*lazy_compile); 1974 function->shared()->set_code(*lazy_compile); 1975 } 1976 } 1977 } 1978 1979 // Clear gc_metadata field. 1980 for (int i = 0; i < active_functions.length(); i++) { 1981 Handle<JSFunction> function = active_functions[i]; 1982 function->shared()->code()->set_gc_metadata(Smi::FromInt(0)); 1983 } 1984 } 1985 1986 // Now recompile all functions with activation frames and and 1987 // patch the return address to run in the new compiled code. 1988 for (int i = 0; i < active_functions.length(); i++) { 1989 Handle<JSFunction> function = active_functions[i]; 1990 1991 if (function->code()->kind() == Code::FUNCTION && 1992 function->code()->has_debug_break_slots()) { 1993 // Nothing to do. Function code already had debug break slots. 1994 continue; 1995 } 1996 1997 Handle<SharedFunctionInfo> shared(function->shared()); 1998 // If recompilation is not possible just skip it. 1999 if (shared->is_toplevel() || 2000 !shared->allows_lazy_compilation() || 2001 shared->code()->kind() == Code::BUILTIN) { 2002 continue; 2003 } 2004 2005 // Make sure that the shared full code is compiled with debug 2006 // break slots. 2007 if (!shared->code()->has_debug_break_slots()) { 2008 // Try to compile the full code with debug break slots. If it 2009 // fails just keep the current code. 2010 Handle<Code> current_code(function->shared()->code()); 2011 ZoneScope zone_scope(isolate_, DELETE_ON_EXIT); 2012 shared->set_code(*lazy_compile); 2013 bool prev_force_debugger_active = 2014 isolate_->debugger()->force_debugger_active(); 2015 isolate_->debugger()->set_force_debugger_active(true); 2016 ASSERT(current_code->kind() == Code::FUNCTION); 2017 CompileFullCodeForDebugging(shared, current_code); 2018 isolate_->debugger()->set_force_debugger_active( 2019 prev_force_debugger_active); 2020 if (!shared->is_compiled()) { 2021 shared->set_code(*current_code); 2022 continue; 2023 } 2024 } 2025 2026 // Keep function code in sync with shared function info. 2027 function->set_code(shared->code()); 2028 } 2029 2030 RedirectActivationsToRecompiledCodeOnThread(isolate_, 2031 isolate_->thread_local_top()); 2032 2033 ActiveFunctionsRedirector active_functions_redirector; 2034 isolate_->thread_manager()->IterateArchivedThreads( 2035 &active_functions_redirector); 2036 } 2037 } 2038 2039 2040 // Ensures the debug information is present for shared. 2041 bool Debug::EnsureDebugInfo(Handle<SharedFunctionInfo> shared) { 2042 // Return if we already have the debug info for shared. 2043 if (HasDebugInfo(shared)) { 2044 ASSERT(shared->is_compiled()); 2045 return true; 2046 } 2047 2048 // Ensure shared in compiled. Return false if this failed. 2049 if (!SharedFunctionInfo::EnsureCompiled(shared, CLEAR_EXCEPTION)) { 2050 return false; 2051 } 2052 2053 // Create the debug info object. 2054 Handle<DebugInfo> debug_info = FACTORY->NewDebugInfo(shared); 2055 2056 // Add debug info to the list. 2057 DebugInfoListNode* node = new DebugInfoListNode(*debug_info); 2058 node->set_next(debug_info_list_); 2059 debug_info_list_ = node; 2060 2061 // Now there is at least one break point. 2062 has_break_points_ = true; 2063 2064 return true; 2065 } 2066 2067 2068 void Debug::RemoveDebugInfo(Handle<DebugInfo> debug_info) { 2069 ASSERT(debug_info_list_ != NULL); 2070 // Run through the debug info objects to find this one and remove it. 2071 DebugInfoListNode* prev = NULL; 2072 DebugInfoListNode* current = debug_info_list_; 2073 while (current != NULL) { 2074 if (*current->debug_info() == *debug_info) { 2075 // Unlink from list. If prev is NULL we are looking at the first element. 2076 if (prev == NULL) { 2077 debug_info_list_ = current->next(); 2078 } else { 2079 prev->set_next(current->next()); 2080 } 2081 current->debug_info()->shared()->set_debug_info( 2082 isolate_->heap()->undefined_value()); 2083 delete current; 2084 2085 // If there are no more debug info objects there are not more break 2086 // points. 2087 has_break_points_ = debug_info_list_ != NULL; 2088 2089 return; 2090 } 2091 // Move to next in list. 2092 prev = current; 2093 current = current->next(); 2094 } 2095 UNREACHABLE(); 2096 } 2097 2098 2099 void Debug::SetAfterBreakTarget(JavaScriptFrame* frame) { 2100 HandleScope scope(isolate_); 2101 2102 PrepareForBreakPoints(); 2103 2104 // Get the executing function in which the debug break occurred. 2105 Handle<SharedFunctionInfo> shared = 2106 Handle<SharedFunctionInfo>(JSFunction::cast(frame->function())->shared()); 2107 if (!EnsureDebugInfo(shared)) { 2108 // Return if we failed to retrieve the debug info. 2109 return; 2110 } 2111 Handle<DebugInfo> debug_info = GetDebugInfo(shared); 2112 Handle<Code> code(debug_info->code()); 2113 Handle<Code> original_code(debug_info->original_code()); 2114 #ifdef DEBUG 2115 // Get the code which is actually executing. 2116 Handle<Code> frame_code(frame->LookupCode()); 2117 ASSERT(frame_code.is_identical_to(code)); 2118 #endif 2119 2120 // Find the call address in the running code. This address holds the call to 2121 // either a DebugBreakXXX or to the debug break return entry code if the 2122 // break point is still active after processing the break point. 2123 Address addr = frame->pc() - Assembler::kCallTargetAddressOffset; 2124 2125 // Check if the location is at JS exit or debug break slot. 2126 bool at_js_return = false; 2127 bool break_at_js_return_active = false; 2128 bool at_debug_break_slot = false; 2129 RelocIterator it(debug_info->code()); 2130 while (!it.done() && !at_js_return && !at_debug_break_slot) { 2131 if (RelocInfo::IsJSReturn(it.rinfo()->rmode())) { 2132 at_js_return = (it.rinfo()->pc() == 2133 addr - Assembler::kPatchReturnSequenceAddressOffset); 2134 break_at_js_return_active = it.rinfo()->IsPatchedReturnSequence(); 2135 } 2136 if (RelocInfo::IsDebugBreakSlot(it.rinfo()->rmode())) { 2137 at_debug_break_slot = (it.rinfo()->pc() == 2138 addr - Assembler::kPatchDebugBreakSlotAddressOffset); 2139 } 2140 it.next(); 2141 } 2142 2143 // Handle the jump to continue execution after break point depending on the 2144 // break location. 2145 if (at_js_return) { 2146 // If the break point as return is still active jump to the corresponding 2147 // place in the original code. If not the break point was removed during 2148 // break point processing. 2149 if (break_at_js_return_active) { 2150 addr += original_code->instruction_start() - code->instruction_start(); 2151 } 2152 2153 // Move back to where the call instruction sequence started. 2154 thread_local_.after_break_target_ = 2155 addr - Assembler::kPatchReturnSequenceAddressOffset; 2156 } else if (at_debug_break_slot) { 2157 // Address of where the debug break slot starts. 2158 addr = addr - Assembler::kPatchDebugBreakSlotAddressOffset; 2159 2160 // Continue just after the slot. 2161 thread_local_.after_break_target_ = addr + Assembler::kDebugBreakSlotLength; 2162 } else if (IsDebugBreak(Assembler::target_address_at(addr))) { 2163 // We now know that there is still a debug break call at the target address, 2164 // so the break point is still there and the original code will hold the 2165 // address to jump to in order to complete the call which is replaced by a 2166 // call to DebugBreakXXX. 2167 2168 // Find the corresponding address in the original code. 2169 addr += original_code->instruction_start() - code->instruction_start(); 2170 2171 // Install jump to the call address in the original code. This will be the 2172 // call which was overwritten by the call to DebugBreakXXX. 2173 thread_local_.after_break_target_ = Assembler::target_address_at(addr); 2174 } else { 2175 // There is no longer a break point present. Don't try to look in the 2176 // original code as the running code will have the right address. This takes 2177 // care of the case where the last break point is removed from the function 2178 // and therefore no "original code" is available. 2179 thread_local_.after_break_target_ = Assembler::target_address_at(addr); 2180 } 2181 } 2182 2183 2184 bool Debug::IsBreakAtReturn(JavaScriptFrame* frame) { 2185 HandleScope scope(isolate_); 2186 2187 // If there are no break points this cannot be break at return, as 2188 // the debugger statement and stack guard bebug break cannot be at 2189 // return. 2190 if (!has_break_points_) { 2191 return false; 2192 } 2193 2194 PrepareForBreakPoints(); 2195 2196 // Get the executing function in which the debug break occurred. 2197 Handle<SharedFunctionInfo> shared = 2198 Handle<SharedFunctionInfo>(JSFunction::cast(frame->function())->shared()); 2199 if (!EnsureDebugInfo(shared)) { 2200 // Return if we failed to retrieve the debug info. 2201 return false; 2202 } 2203 Handle<DebugInfo> debug_info = GetDebugInfo(shared); 2204 Handle<Code> code(debug_info->code()); 2205 #ifdef DEBUG 2206 // Get the code which is actually executing. 2207 Handle<Code> frame_code(frame->LookupCode()); 2208 ASSERT(frame_code.is_identical_to(code)); 2209 #endif 2210 2211 // Find the call address in the running code. 2212 Address addr = frame->pc() - Assembler::kCallTargetAddressOffset; 2213 2214 // Check if the location is at JS return. 2215 RelocIterator it(debug_info->code()); 2216 while (!it.done()) { 2217 if (RelocInfo::IsJSReturn(it.rinfo()->rmode())) { 2218 return (it.rinfo()->pc() == 2219 addr - Assembler::kPatchReturnSequenceAddressOffset); 2220 } 2221 it.next(); 2222 } 2223 return false; 2224 } 2225 2226 2227 void Debug::FramesHaveBeenDropped(StackFrame::Id new_break_frame_id, 2228 FrameDropMode mode, 2229 Object** restarter_frame_function_pointer) { 2230 thread_local_.frame_drop_mode_ = mode; 2231 thread_local_.break_frame_id_ = new_break_frame_id; 2232 thread_local_.restarter_frame_function_pointer_ = 2233 restarter_frame_function_pointer; 2234 } 2235 2236 2237 bool Debug::IsDebugGlobal(GlobalObject* global) { 2238 return IsLoaded() && global == debug_context()->global(); 2239 } 2240 2241 2242 void Debug::ClearMirrorCache() { 2243 PostponeInterruptsScope postpone(isolate_); 2244 HandleScope scope(isolate_); 2245 ASSERT(isolate_->context() == *Debug::debug_context()); 2246 2247 // Clear the mirror cache. 2248 Handle<String> function_name = 2249 isolate_->factory()->LookupSymbol(CStrVector("ClearMirrorCache")); 2250 Handle<Object> fun(Isolate::Current()->global()->GetPropertyNoExceptionThrown( 2251 *function_name)); 2252 ASSERT(fun->IsJSFunction()); 2253 bool caught_exception; 2254 Execution::TryCall(Handle<JSFunction>::cast(fun), 2255 Handle<JSObject>(Debug::debug_context()->global()), 2256 0, NULL, &caught_exception); 2257 } 2258 2259 2260 void Debug::CreateScriptCache() { 2261 Heap* heap = isolate_->heap(); 2262 HandleScope scope(isolate_); 2263 2264 // Perform two GCs to get rid of all unreferenced scripts. The first GC gets 2265 // rid of all the cached script wrappers and the second gets rid of the 2266 // scripts which are no longer referenced. The second also sweeps precisely, 2267 // which saves us doing yet another GC to make the heap iterable. 2268 heap->CollectAllGarbage(Heap::kNoGCFlags, "Debug::CreateScriptCache"); 2269 heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, 2270 "Debug::CreateScriptCache"); 2271 2272 ASSERT(script_cache_ == NULL); 2273 script_cache_ = new ScriptCache(); 2274 2275 // Scan heap for Script objects. 2276 int count = 0; 2277 HeapIterator iterator; 2278 AssertNoAllocation no_allocation; 2279 2280 for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { 2281 if (obj->IsScript() && Script::cast(obj)->HasValidSource()) { 2282 script_cache_->Add(Handle<Script>(Script::cast(obj))); 2283 count++; 2284 } 2285 } 2286 } 2287 2288 2289 void Debug::DestroyScriptCache() { 2290 // Get rid of the script cache if it was created. 2291 if (script_cache_ != NULL) { 2292 delete script_cache_; 2293 script_cache_ = NULL; 2294 } 2295 } 2296 2297 2298 void Debug::AddScriptToScriptCache(Handle<Script> script) { 2299 if (script_cache_ != NULL) { 2300 script_cache_->Add(script); 2301 } 2302 } 2303 2304 2305 Handle<FixedArray> Debug::GetLoadedScripts() { 2306 // Create and fill the script cache when the loaded scripts is requested for 2307 // the first time. 2308 if (script_cache_ == NULL) { 2309 CreateScriptCache(); 2310 } 2311 2312 // If the script cache is not active just return an empty array. 2313 ASSERT(script_cache_ != NULL); 2314 if (script_cache_ == NULL) { 2315 isolate_->factory()->NewFixedArray(0); 2316 } 2317 2318 // Perform GC to get unreferenced scripts evicted from the cache before 2319 // returning the content. 2320 isolate_->heap()->CollectAllGarbage(Heap::kNoGCFlags, 2321 "Debug::GetLoadedScripts"); 2322 2323 // Get the scripts from the cache. 2324 return script_cache_->GetScripts(); 2325 } 2326 2327 2328 void Debug::AfterGarbageCollection() { 2329 // Generate events for collected scripts. 2330 if (script_cache_ != NULL) { 2331 script_cache_->ProcessCollectedScripts(); 2332 } 2333 } 2334 2335 2336 Debugger::Debugger(Isolate* isolate) 2337 : debugger_access_(isolate->debugger_access()), 2338 event_listener_(Handle<Object>()), 2339 event_listener_data_(Handle<Object>()), 2340 compiling_natives_(false), 2341 is_loading_debugger_(false), 2342 never_unload_debugger_(false), 2343 force_debugger_active_(false), 2344 message_handler_(NULL), 2345 debugger_unload_pending_(false), 2346 host_dispatch_handler_(NULL), 2347 dispatch_handler_access_(OS::CreateMutex()), 2348 debug_message_dispatch_handler_(NULL), 2349 message_dispatch_helper_thread_(NULL), 2350 host_dispatch_micros_(100 * 1000), 2351 agent_(NULL), 2352 command_queue_(isolate->logger(), kQueueInitialSize), 2353 command_received_(OS::CreateSemaphore(0)), 2354 event_command_queue_(isolate->logger(), kQueueInitialSize), 2355 isolate_(isolate) { 2356 } 2357 2358 2359 Debugger::~Debugger() { 2360 delete dispatch_handler_access_; 2361 dispatch_handler_access_ = 0; 2362 delete command_received_; 2363 command_received_ = 0; 2364 } 2365 2366 2367 Handle<Object> Debugger::MakeJSObject(Vector<const char> constructor_name, 2368 int argc, 2369 Handle<Object> argv[], 2370 bool* caught_exception) { 2371 ASSERT(isolate_->context() == *isolate_->debug()->debug_context()); 2372 2373 // Create the execution state object. 2374 Handle<String> constructor_str = 2375 isolate_->factory()->LookupSymbol(constructor_name); 2376 Handle<Object> constructor( 2377 isolate_->global()->GetPropertyNoExceptionThrown(*constructor_str)); 2378 ASSERT(constructor->IsJSFunction()); 2379 if (!constructor->IsJSFunction()) { 2380 *caught_exception = true; 2381 return isolate_->factory()->undefined_value(); 2382 } 2383 Handle<Object> js_object = Execution::TryCall( 2384 Handle<JSFunction>::cast(constructor), 2385 Handle<JSObject>(isolate_->debug()->debug_context()->global()), 2386 argc, 2387 argv, 2388 caught_exception); 2389 return js_object; 2390 } 2391 2392 2393 Handle<Object> Debugger::MakeExecutionState(bool* caught_exception) { 2394 // Create the execution state object. 2395 Handle<Object> break_id = isolate_->factory()->NewNumberFromInt( 2396 isolate_->debug()->break_id()); 2397 Handle<Object> argv[] = { break_id }; 2398 return MakeJSObject(CStrVector("MakeExecutionState"), 2399 ARRAY_SIZE(argv), 2400 argv, 2401 caught_exception); 2402 } 2403 2404 2405 Handle<Object> Debugger::MakeBreakEvent(Handle<Object> exec_state, 2406 Handle<Object> break_points_hit, 2407 bool* caught_exception) { 2408 // Create the new break event object. 2409 Handle<Object> argv[] = { exec_state, break_points_hit }; 2410 return MakeJSObject(CStrVector("MakeBreakEvent"), 2411 ARRAY_SIZE(argv), 2412 argv, 2413 caught_exception); 2414 } 2415 2416 2417 Handle<Object> Debugger::MakeExceptionEvent(Handle<Object> exec_state, 2418 Handle<Object> exception, 2419 bool uncaught, 2420 bool* caught_exception) { 2421 Factory* factory = isolate_->factory(); 2422 // Create the new exception event object. 2423 Handle<Object> argv[] = { exec_state, 2424 exception, 2425 factory->ToBoolean(uncaught) }; 2426 return MakeJSObject(CStrVector("MakeExceptionEvent"), 2427 ARRAY_SIZE(argv), 2428 argv, 2429 caught_exception); 2430 } 2431 2432 2433 Handle<Object> Debugger::MakeNewFunctionEvent(Handle<Object> function, 2434 bool* caught_exception) { 2435 // Create the new function event object. 2436 Handle<Object> argv[] = { function }; 2437 return MakeJSObject(CStrVector("MakeNewFunctionEvent"), 2438 ARRAY_SIZE(argv), 2439 argv, 2440 caught_exception); 2441 } 2442 2443 2444 Handle<Object> Debugger::MakeCompileEvent(Handle<Script> script, 2445 bool before, 2446 bool* caught_exception) { 2447 Factory* factory = isolate_->factory(); 2448 // Create the compile event object. 2449 Handle<Object> exec_state = MakeExecutionState(caught_exception); 2450 Handle<Object> script_wrapper = GetScriptWrapper(script); 2451 Handle<Object> argv[] = { exec_state, 2452 script_wrapper, 2453 factory->ToBoolean(before) }; 2454 return MakeJSObject(CStrVector("MakeCompileEvent"), 2455 ARRAY_SIZE(argv), 2456 argv, 2457 caught_exception); 2458 } 2459 2460 2461 Handle<Object> Debugger::MakeScriptCollectedEvent(int id, 2462 bool* caught_exception) { 2463 // Create the script collected event object. 2464 Handle<Object> exec_state = MakeExecutionState(caught_exception); 2465 Handle<Object> id_object = Handle<Smi>(Smi::FromInt(id)); 2466 Handle<Object> argv[] = { exec_state, id_object }; 2467 2468 return MakeJSObject(CStrVector("MakeScriptCollectedEvent"), 2469 ARRAY_SIZE(argv), 2470 argv, 2471 caught_exception); 2472 } 2473 2474 2475 void Debugger::OnException(Handle<Object> exception, bool uncaught) { 2476 HandleScope scope(isolate_); 2477 Debug* debug = isolate_->debug(); 2478 2479 // Bail out based on state or if there is no listener for this event 2480 if (debug->InDebugger()) return; 2481 if (!Debugger::EventActive(v8::Exception)) return; 2482 2483 // Bail out if exception breaks are not active 2484 if (uncaught) { 2485 // Uncaught exceptions are reported by either flags. 2486 if (!(debug->break_on_uncaught_exception() || 2487 debug->break_on_exception())) return; 2488 } else { 2489 // Caught exceptions are reported is activated. 2490 if (!debug->break_on_exception()) return; 2491 } 2492 2493 // Enter the debugger. 2494 EnterDebugger debugger; 2495 if (debugger.FailedToEnter()) return; 2496 2497 // Clear all current stepping setup. 2498 debug->ClearStepping(); 2499 // Create the event data object. 2500 bool caught_exception = false; 2501 Handle<Object> exec_state = MakeExecutionState(&caught_exception); 2502 Handle<Object> event_data; 2503 if (!caught_exception) { 2504 event_data = MakeExceptionEvent(exec_state, exception, uncaught, 2505 &caught_exception); 2506 } 2507 // Bail out and don't call debugger if exception. 2508 if (caught_exception) { 2509 return; 2510 } 2511 2512 // Process debug event. 2513 ProcessDebugEvent(v8::Exception, Handle<JSObject>::cast(event_data), false); 2514 // Return to continue execution from where the exception was thrown. 2515 } 2516 2517 2518 void Debugger::OnDebugBreak(Handle<Object> break_points_hit, 2519 bool auto_continue) { 2520 HandleScope scope(isolate_); 2521 2522 // Debugger has already been entered by caller. 2523 ASSERT(isolate_->context() == *isolate_->debug()->debug_context()); 2524 2525 // Bail out if there is no listener for this event 2526 if (!Debugger::EventActive(v8::Break)) return; 2527 2528 // Debugger must be entered in advance. 2529 ASSERT(isolate_->context() == *isolate_->debug()->debug_context()); 2530 2531 // Create the event data object. 2532 bool caught_exception = false; 2533 Handle<Object> exec_state = MakeExecutionState(&caught_exception); 2534 Handle<Object> event_data; 2535 if (!caught_exception) { 2536 event_data = MakeBreakEvent(exec_state, break_points_hit, 2537 &caught_exception); 2538 } 2539 // Bail out and don't call debugger if exception. 2540 if (caught_exception) { 2541 return; 2542 } 2543 2544 // Process debug event. 2545 ProcessDebugEvent(v8::Break, 2546 Handle<JSObject>::cast(event_data), 2547 auto_continue); 2548 } 2549 2550 2551 void Debugger::OnBeforeCompile(Handle<Script> script) { 2552 HandleScope scope(isolate_); 2553 2554 // Bail out based on state or if there is no listener for this event 2555 if (isolate_->debug()->InDebugger()) return; 2556 if (compiling_natives()) return; 2557 if (!EventActive(v8::BeforeCompile)) return; 2558 2559 // Enter the debugger. 2560 EnterDebugger debugger; 2561 if (debugger.FailedToEnter()) return; 2562 2563 // Create the event data object. 2564 bool caught_exception = false; 2565 Handle<Object> event_data = MakeCompileEvent(script, true, &caught_exception); 2566 // Bail out and don't call debugger if exception. 2567 if (caught_exception) { 2568 return; 2569 } 2570 2571 // Process debug event. 2572 ProcessDebugEvent(v8::BeforeCompile, 2573 Handle<JSObject>::cast(event_data), 2574 true); 2575 } 2576 2577 2578 // Handle debugger actions when a new script is compiled. 2579 void Debugger::OnAfterCompile(Handle<Script> script, 2580 AfterCompileFlags after_compile_flags) { 2581 HandleScope scope(isolate_); 2582 Debug* debug = isolate_->debug(); 2583 2584 // Add the newly compiled script to the script cache. 2585 debug->AddScriptToScriptCache(script); 2586 2587 // No more to do if not debugging. 2588 if (!IsDebuggerActive()) return; 2589 2590 // No compile events while compiling natives. 2591 if (compiling_natives()) return; 2592 2593 // Store whether in debugger before entering debugger. 2594 bool in_debugger = debug->InDebugger(); 2595 2596 // Enter the debugger. 2597 EnterDebugger debugger; 2598 if (debugger.FailedToEnter()) return; 2599 2600 // If debugging there might be script break points registered for this 2601 // script. Make sure that these break points are set. 2602 2603 // Get the function UpdateScriptBreakPoints (defined in debug-debugger.js). 2604 Handle<String> update_script_break_points_symbol = 2605 isolate_->factory()->LookupAsciiSymbol("UpdateScriptBreakPoints"); 2606 Handle<Object> update_script_break_points = 2607 Handle<Object>(debug->debug_context()->global()-> 2608 GetPropertyNoExceptionThrown(*update_script_break_points_symbol)); 2609 if (!update_script_break_points->IsJSFunction()) { 2610 return; 2611 } 2612 ASSERT(update_script_break_points->IsJSFunction()); 2613 2614 // Wrap the script object in a proper JS object before passing it 2615 // to JavaScript. 2616 Handle<JSValue> wrapper = GetScriptWrapper(script); 2617 2618 // Call UpdateScriptBreakPoints expect no exceptions. 2619 bool caught_exception; 2620 Handle<Object> argv[] = { wrapper }; 2621 Execution::TryCall(Handle<JSFunction>::cast(update_script_break_points), 2622 Isolate::Current()->js_builtins_object(), 2623 ARRAY_SIZE(argv), 2624 argv, 2625 &caught_exception); 2626 if (caught_exception) { 2627 return; 2628 } 2629 // Bail out based on state or if there is no listener for this event 2630 if (in_debugger && (after_compile_flags & SEND_WHEN_DEBUGGING) == 0) return; 2631 if (!Debugger::EventActive(v8::AfterCompile)) return; 2632 2633 // Create the compile state object. 2634 Handle<Object> event_data = MakeCompileEvent(script, 2635 false, 2636 &caught_exception); 2637 // Bail out and don't call debugger if exception. 2638 if (caught_exception) { 2639 return; 2640 } 2641 // Process debug event. 2642 ProcessDebugEvent(v8::AfterCompile, 2643 Handle<JSObject>::cast(event_data), 2644 true); 2645 } 2646 2647 2648 void Debugger::OnScriptCollected(int id) { 2649 HandleScope scope(isolate_); 2650 2651 // No more to do if not debugging. 2652 if (!IsDebuggerActive()) return; 2653 if (!Debugger::EventActive(v8::ScriptCollected)) return; 2654 2655 // Enter the debugger. 2656 EnterDebugger debugger; 2657 if (debugger.FailedToEnter()) return; 2658 2659 // Create the script collected state object. 2660 bool caught_exception = false; 2661 Handle<Object> event_data = MakeScriptCollectedEvent(id, 2662 &caught_exception); 2663 // Bail out and don't call debugger if exception. 2664 if (caught_exception) { 2665 return; 2666 } 2667 2668 // Process debug event. 2669 ProcessDebugEvent(v8::ScriptCollected, 2670 Handle<JSObject>::cast(event_data), 2671 true); 2672 } 2673 2674 2675 void Debugger::ProcessDebugEvent(v8::DebugEvent event, 2676 Handle<JSObject> event_data, 2677 bool auto_continue) { 2678 HandleScope scope(isolate_); 2679 2680 // Clear any pending debug break if this is a real break. 2681 if (!auto_continue) { 2682 isolate_->debug()->clear_interrupt_pending(DEBUGBREAK); 2683 } 2684 2685 // Create the execution state. 2686 bool caught_exception = false; 2687 Handle<Object> exec_state = MakeExecutionState(&caught_exception); 2688 if (caught_exception) { 2689 return; 2690 } 2691 // First notify the message handler if any. 2692 if (message_handler_ != NULL) { 2693 NotifyMessageHandler(event, 2694 Handle<JSObject>::cast(exec_state), 2695 event_data, 2696 auto_continue); 2697 } 2698 // Notify registered debug event listener. This can be either a C or 2699 // a JavaScript function. Don't call event listener for v8::Break 2700 // here, if it's only a debug command -- they will be processed later. 2701 if ((event != v8::Break || !auto_continue) && !event_listener_.is_null()) { 2702 CallEventCallback(event, exec_state, event_data, NULL); 2703 } 2704 // Process pending debug commands. 2705 if (event == v8::Break) { 2706 while (!event_command_queue_.IsEmpty()) { 2707 CommandMessage command = event_command_queue_.Get(); 2708 if (!event_listener_.is_null()) { 2709 CallEventCallback(v8::BreakForCommand, 2710 exec_state, 2711 event_data, 2712 command.client_data()); 2713 } 2714 command.Dispose(); 2715 } 2716 } 2717 } 2718 2719 2720 void Debugger::CallEventCallback(v8::DebugEvent event, 2721 Handle<Object> exec_state, 2722 Handle<Object> event_data, 2723 v8::Debug::ClientData* client_data) { 2724 if (event_listener_->IsForeign()) { 2725 CallCEventCallback(event, exec_state, event_data, client_data); 2726 } else { 2727 CallJSEventCallback(event, exec_state, event_data); 2728 } 2729 } 2730 2731 2732 void Debugger::CallCEventCallback(v8::DebugEvent event, 2733 Handle<Object> exec_state, 2734 Handle<Object> event_data, 2735 v8::Debug::ClientData* client_data) { 2736 Handle<Foreign> callback_obj(Handle<Foreign>::cast(event_listener_)); 2737 v8::Debug::EventCallback2 callback = 2738 FUNCTION_CAST<v8::Debug::EventCallback2>( 2739 callback_obj->foreign_address()); 2740 EventDetailsImpl event_details( 2741 event, 2742 Handle<JSObject>::cast(exec_state), 2743 Handle<JSObject>::cast(event_data), 2744 event_listener_data_, 2745 client_data); 2746 callback(event_details); 2747 } 2748 2749 2750 void Debugger::CallJSEventCallback(v8::DebugEvent event, 2751 Handle<Object> exec_state, 2752 Handle<Object> event_data) { 2753 ASSERT(event_listener_->IsJSFunction()); 2754 Handle<JSFunction> fun(Handle<JSFunction>::cast(event_listener_)); 2755 2756 // Invoke the JavaScript debug event listener. 2757 Handle<Object> argv[] = { Handle<Object>(Smi::FromInt(event)), 2758 exec_state, 2759 event_data, 2760 event_listener_data_ }; 2761 bool caught_exception; 2762 Execution::TryCall(fun, 2763 isolate_->global(), 2764 ARRAY_SIZE(argv), 2765 argv, 2766 &caught_exception); 2767 // Silently ignore exceptions from debug event listeners. 2768 } 2769 2770 2771 Handle<Context> Debugger::GetDebugContext() { 2772 never_unload_debugger_ = true; 2773 EnterDebugger debugger; 2774 return isolate_->debug()->debug_context(); 2775 } 2776 2777 2778 void Debugger::UnloadDebugger() { 2779 Debug* debug = isolate_->debug(); 2780 2781 // Make sure that there are no breakpoints left. 2782 debug->ClearAllBreakPoints(); 2783 2784 // Unload the debugger if feasible. 2785 if (!never_unload_debugger_) { 2786 debug->Unload(); 2787 } 2788 2789 // Clear the flag indicating that the debugger should be unloaded. 2790 debugger_unload_pending_ = false; 2791 } 2792 2793 2794 void Debugger::NotifyMessageHandler(v8::DebugEvent event, 2795 Handle<JSObject> exec_state, 2796 Handle<JSObject> event_data, 2797 bool auto_continue) { 2798 HandleScope scope(isolate_); 2799 2800 if (!isolate_->debug()->Load()) return; 2801 2802 // Process the individual events. 2803 bool sendEventMessage = false; 2804 switch (event) { 2805 case v8::Break: 2806 case v8::BreakForCommand: 2807 sendEventMessage = !auto_continue; 2808 break; 2809 case v8::Exception: 2810 sendEventMessage = true; 2811 break; 2812 case v8::BeforeCompile: 2813 break; 2814 case v8::AfterCompile: 2815 sendEventMessage = true; 2816 break; 2817 case v8::ScriptCollected: 2818 sendEventMessage = true; 2819 break; 2820 case v8::NewFunction: 2821 break; 2822 default: 2823 UNREACHABLE(); 2824 } 2825 2826 // The debug command interrupt flag might have been set when the command was 2827 // added. It should be enough to clear the flag only once while we are in the 2828 // debugger. 2829 ASSERT(isolate_->debug()->InDebugger()); 2830 isolate_->stack_guard()->Continue(DEBUGCOMMAND); 2831 2832 // Notify the debugger that a debug event has occurred unless auto continue is 2833 // active in which case no event is send. 2834 if (sendEventMessage) { 2835 MessageImpl message = MessageImpl::NewEvent( 2836 event, 2837 auto_continue, 2838 Handle<JSObject>::cast(exec_state), 2839 Handle<JSObject>::cast(event_data)); 2840 InvokeMessageHandler(message); 2841 } 2842 2843 // If auto continue don't make the event cause a break, but process messages 2844 // in the queue if any. For script collected events don't even process 2845 // messages in the queue as the execution state might not be what is expected 2846 // by the client. 2847 if ((auto_continue && !HasCommands()) || event == v8::ScriptCollected) { 2848 return; 2849 } 2850 2851 v8::TryCatch try_catch; 2852 2853 // DebugCommandProcessor goes here. 2854 v8::Local<v8::Object> cmd_processor; 2855 { 2856 v8::Local<v8::Object> api_exec_state = 2857 v8::Utils::ToLocal(Handle<JSObject>::cast(exec_state)); 2858 v8::Local<v8::String> fun_name = 2859 v8::String::New("debugCommandProcessor"); 2860 v8::Local<v8::Function> fun = 2861 v8::Function::Cast(*api_exec_state->Get(fun_name)); 2862 2863 v8::Handle<v8::Boolean> running = 2864 auto_continue ? v8::True() : v8::False(); 2865 static const int kArgc = 1; 2866 v8::Handle<Value> argv[kArgc] = { running }; 2867 cmd_processor = v8::Object::Cast(*fun->Call(api_exec_state, kArgc, argv)); 2868 if (try_catch.HasCaught()) { 2869 PrintLn(try_catch.Exception()); 2870 return; 2871 } 2872 } 2873 2874 bool running = auto_continue; 2875 2876 // Process requests from the debugger. 2877 while (true) { 2878 // Wait for new command in the queue. 2879 if (Debugger::host_dispatch_handler_) { 2880 // In case there is a host dispatch - do periodic dispatches. 2881 if (!command_received_->Wait(host_dispatch_micros_)) { 2882 // Timout expired, do the dispatch. 2883 Debugger::host_dispatch_handler_(); 2884 continue; 2885 } 2886 } else { 2887 // In case there is no host dispatch - just wait. 2888 command_received_->Wait(); 2889 } 2890 2891 // Get the command from the queue. 2892 CommandMessage command = command_queue_.Get(); 2893 isolate_->logger()->DebugTag( 2894 "Got request from command queue, in interactive loop."); 2895 if (!Debugger::IsDebuggerActive()) { 2896 // Delete command text and user data. 2897 command.Dispose(); 2898 return; 2899 } 2900 2901 // Invoke JavaScript to process the debug request. 2902 v8::Local<v8::String> fun_name; 2903 v8::Local<v8::Function> fun; 2904 v8::Local<v8::Value> request; 2905 v8::TryCatch try_catch; 2906 fun_name = v8::String::New("processDebugRequest"); 2907 fun = v8::Function::Cast(*cmd_processor->Get(fun_name)); 2908 2909 request = v8::String::New(command.text().start(), 2910 command.text().length()); 2911 static const int kArgc = 1; 2912 v8::Handle<Value> argv[kArgc] = { request }; 2913 v8::Local<v8::Value> response_val = fun->Call(cmd_processor, kArgc, argv); 2914 2915 // Get the response. 2916 v8::Local<v8::String> response; 2917 if (!try_catch.HasCaught()) { 2918 // Get response string. 2919 if (!response_val->IsUndefined()) { 2920 response = v8::String::Cast(*response_val); 2921 } else { 2922 response = v8::String::New(""); 2923 } 2924 2925 // Log the JSON request/response. 2926 if (FLAG_trace_debug_json) { 2927 PrintLn(request); 2928 PrintLn(response); 2929 } 2930 2931 // Get the running state. 2932 fun_name = v8::String::New("isRunning"); 2933 fun = v8::Function::Cast(*cmd_processor->Get(fun_name)); 2934 static const int kArgc = 1; 2935 v8::Handle<Value> argv[kArgc] = { response }; 2936 v8::Local<v8::Value> running_val = fun->Call(cmd_processor, kArgc, argv); 2937 if (!try_catch.HasCaught()) { 2938 running = running_val->ToBoolean()->Value(); 2939 } 2940 } else { 2941 // In case of failure the result text is the exception text. 2942 response = try_catch.Exception()->ToString(); 2943 } 2944 2945 // Return the result. 2946 MessageImpl message = MessageImpl::NewResponse( 2947 event, 2948 running, 2949 Handle<JSObject>::cast(exec_state), 2950 Handle<JSObject>::cast(event_data), 2951 Handle<String>(Utils::OpenHandle(*response)), 2952 command.client_data()); 2953 InvokeMessageHandler(message); 2954 command.Dispose(); 2955 2956 // Return from debug event processing if either the VM is put into the 2957 // running state (through a continue command) or auto continue is active 2958 // and there are no more commands queued. 2959 if (running && !HasCommands()) { 2960 return; 2961 } 2962 } 2963 } 2964 2965 2966 void Debugger::SetEventListener(Handle<Object> callback, 2967 Handle<Object> data) { 2968 HandleScope scope(isolate_); 2969 GlobalHandles* global_handles = isolate_->global_handles(); 2970 2971 // Clear the global handles for the event listener and the event listener data 2972 // object. 2973 if (!event_listener_.is_null()) { 2974 global_handles->Destroy( 2975 reinterpret_cast<Object**>(event_listener_.location())); 2976 event_listener_ = Handle<Object>(); 2977 } 2978 if (!event_listener_data_.is_null()) { 2979 global_handles->Destroy( 2980 reinterpret_cast<Object**>(event_listener_data_.location())); 2981 event_listener_data_ = Handle<Object>(); 2982 } 2983 2984 // If there is a new debug event listener register it together with its data 2985 // object. 2986 if (!callback->IsUndefined() && !callback->IsNull()) { 2987 event_listener_ = Handle<Object>::cast( 2988 global_handles->Create(*callback)); 2989 if (data.is_null()) { 2990 data = isolate_->factory()->undefined_value(); 2991 } 2992 event_listener_data_ = Handle<Object>::cast( 2993 global_handles->Create(*data)); 2994 } 2995 2996 ListenersChanged(); 2997 } 2998 2999 3000 void Debugger::SetMessageHandler(v8::Debug::MessageHandler2 handler) { 3001 ScopedLock with(debugger_access_); 3002 3003 message_handler_ = handler; 3004 ListenersChanged(); 3005 if (handler == NULL) { 3006 // Send an empty command to the debugger if in a break to make JavaScript 3007 // run again if the debugger is closed. 3008 if (isolate_->debug()->InDebugger()) { 3009 ProcessCommand(Vector<const uint16_t>::empty()); 3010 } 3011 } 3012 } 3013 3014 3015 void Debugger::ListenersChanged() { 3016 if (IsDebuggerActive()) { 3017 // Disable the compilation cache when the debugger is active. 3018 isolate_->compilation_cache()->Disable(); 3019 debugger_unload_pending_ = false; 3020 } else { 3021 isolate_->compilation_cache()->Enable(); 3022 // Unload the debugger if event listener and message handler cleared. 3023 // Schedule this for later, because we may be in non-V8 thread. 3024 debugger_unload_pending_ = true; 3025 } 3026 } 3027 3028 3029 void Debugger::SetHostDispatchHandler(v8::Debug::HostDispatchHandler handler, 3030 int period) { 3031 host_dispatch_handler_ = handler; 3032 host_dispatch_micros_ = period * 1000; 3033 } 3034 3035 3036 void Debugger::SetDebugMessageDispatchHandler( 3037 v8::Debug::DebugMessageDispatchHandler handler, bool provide_locker) { 3038 ScopedLock with(dispatch_handler_access_); 3039 debug_message_dispatch_handler_ = handler; 3040 3041 if (provide_locker && message_dispatch_helper_thread_ == NULL) { 3042 message_dispatch_helper_thread_ = new MessageDispatchHelperThread(isolate_); 3043 message_dispatch_helper_thread_->Start(); 3044 } 3045 } 3046 3047 3048 // Calls the registered debug message handler. This callback is part of the 3049 // public API. 3050 void Debugger::InvokeMessageHandler(MessageImpl message) { 3051 ScopedLock with(debugger_access_); 3052 3053 if (message_handler_ != NULL) { 3054 message_handler_(message); 3055 } 3056 } 3057 3058 3059 // Puts a command coming from the public API on the queue. Creates 3060 // a copy of the command string managed by the debugger. Up to this 3061 // point, the command data was managed by the API client. Called 3062 // by the API client thread. 3063 void Debugger::ProcessCommand(Vector<const uint16_t> command, 3064 v8::Debug::ClientData* client_data) { 3065 // Need to cast away const. 3066 CommandMessage message = CommandMessage::New( 3067 Vector<uint16_t>(const_cast<uint16_t*>(command.start()), 3068 command.length()), 3069 client_data); 3070 isolate_->logger()->DebugTag("Put command on command_queue."); 3071 command_queue_.Put(message); 3072 command_received_->Signal(); 3073 3074 // Set the debug command break flag to have the command processed. 3075 if (!isolate_->debug()->InDebugger()) { 3076 isolate_->stack_guard()->DebugCommand(); 3077 } 3078 3079 MessageDispatchHelperThread* dispatch_thread; 3080 { 3081 ScopedLock with(dispatch_handler_access_); 3082 dispatch_thread = message_dispatch_helper_thread_; 3083 } 3084 3085 if (dispatch_thread == NULL) { 3086 CallMessageDispatchHandler(); 3087 } else { 3088 dispatch_thread->Schedule(); 3089 } 3090 } 3091 3092 3093 bool Debugger::HasCommands() { 3094 return !command_queue_.IsEmpty(); 3095 } 3096 3097 3098 void Debugger::EnqueueDebugCommand(v8::Debug::ClientData* client_data) { 3099 CommandMessage message = CommandMessage::New(Vector<uint16_t>(), client_data); 3100 event_command_queue_.Put(message); 3101 3102 // Set the debug command break flag to have the command processed. 3103 if (!isolate_->debug()->InDebugger()) { 3104 isolate_->stack_guard()->DebugCommand(); 3105 } 3106 } 3107 3108 3109 bool Debugger::IsDebuggerActive() { 3110 ScopedLock with(debugger_access_); 3111 3112 return message_handler_ != NULL || 3113 !event_listener_.is_null() || 3114 force_debugger_active_; 3115 } 3116 3117 3118 Handle<Object> Debugger::Call(Handle<JSFunction> fun, 3119 Handle<Object> data, 3120 bool* pending_exception) { 3121 // When calling functions in the debugger prevent it from beeing unloaded. 3122 Debugger::never_unload_debugger_ = true; 3123 3124 // Enter the debugger. 3125 EnterDebugger debugger; 3126 if (debugger.FailedToEnter()) { 3127 return isolate_->factory()->undefined_value(); 3128 } 3129 3130 // Create the execution state. 3131 bool caught_exception = false; 3132 Handle<Object> exec_state = MakeExecutionState(&caught_exception); 3133 if (caught_exception) { 3134 return isolate_->factory()->undefined_value(); 3135 } 3136 3137 Handle<Object> argv[] = { exec_state, data }; 3138 Handle<Object> result = Execution::Call( 3139 fun, 3140 Handle<Object>(isolate_->debug()->debug_context_->global_proxy()), 3141 ARRAY_SIZE(argv), 3142 argv, 3143 pending_exception); 3144 return result; 3145 } 3146 3147 3148 static void StubMessageHandler2(const v8::Debug::Message& message) { 3149 // Simply ignore message. 3150 } 3151 3152 3153 bool Debugger::StartAgent(const char* name, int port, 3154 bool wait_for_connection) { 3155 ASSERT(Isolate::Current() == isolate_); 3156 if (wait_for_connection) { 3157 // Suspend V8 if it is already running or set V8 to suspend whenever 3158 // it starts. 3159 // Provide stub message handler; V8 auto-continues each suspend 3160 // when there is no message handler; we doesn't need it. 3161 // Once become suspended, V8 will stay so indefinitely long, until remote 3162 // debugger connects and issues "continue" command. 3163 Debugger::message_handler_ = StubMessageHandler2; 3164 v8::Debug::DebugBreak(); 3165 } 3166 3167 if (Socket::SetUp()) { 3168 if (agent_ == NULL) { 3169 agent_ = new DebuggerAgent(name, port); 3170 agent_->Start(); 3171 } 3172 return true; 3173 } 3174 3175 return false; 3176 } 3177 3178 3179 void Debugger::StopAgent() { 3180 ASSERT(Isolate::Current() == isolate_); 3181 if (agent_ != NULL) { 3182 agent_->Shutdown(); 3183 agent_->Join(); 3184 delete agent_; 3185 agent_ = NULL; 3186 } 3187 } 3188 3189 3190 void Debugger::WaitForAgent() { 3191 ASSERT(Isolate::Current() == isolate_); 3192 if (agent_ != NULL) 3193 agent_->WaitUntilListening(); 3194 } 3195 3196 3197 void Debugger::CallMessageDispatchHandler() { 3198 v8::Debug::DebugMessageDispatchHandler handler; 3199 { 3200 ScopedLock with(dispatch_handler_access_); 3201 handler = Debugger::debug_message_dispatch_handler_; 3202 } 3203 if (handler != NULL) { 3204 handler(); 3205 } 3206 } 3207 3208 3209 EnterDebugger::EnterDebugger() 3210 : isolate_(Isolate::Current()), 3211 prev_(isolate_->debug()->debugger_entry()), 3212 it_(isolate_), 3213 has_js_frames_(!it_.done()), 3214 save_(isolate_) { 3215 Debug* debug = isolate_->debug(); 3216 ASSERT(prev_ != NULL || !debug->is_interrupt_pending(PREEMPT)); 3217 ASSERT(prev_ != NULL || !debug->is_interrupt_pending(DEBUGBREAK)); 3218 3219 // Link recursive debugger entry. 3220 debug->set_debugger_entry(this); 3221 3222 // Store the previous break id and frame id. 3223 break_id_ = debug->break_id(); 3224 break_frame_id_ = debug->break_frame_id(); 3225 3226 // Create the new break info. If there is no JavaScript frames there is no 3227 // break frame id. 3228 if (has_js_frames_) { 3229 debug->NewBreak(it_.frame()->id()); 3230 } else { 3231 debug->NewBreak(StackFrame::NO_ID); 3232 } 3233 3234 // Make sure that debugger is loaded and enter the debugger context. 3235 load_failed_ = !debug->Load(); 3236 if (!load_failed_) { 3237 // NOTE the member variable save which saves the previous context before 3238 // this change. 3239 isolate_->set_context(*debug->debug_context()); 3240 } 3241 } 3242 3243 3244 EnterDebugger::~EnterDebugger() { 3245 ASSERT(Isolate::Current() == isolate_); 3246 Debug* debug = isolate_->debug(); 3247 3248 // Restore to the previous break state. 3249 debug->SetBreak(break_frame_id_, break_id_); 3250 3251 // Check for leaving the debugger. 3252 if (!load_failed_ && prev_ == NULL) { 3253 // Clear mirror cache when leaving the debugger. Skip this if there is a 3254 // pending exception as clearing the mirror cache calls back into 3255 // JavaScript. This can happen if the v8::Debug::Call is used in which 3256 // case the exception should end up in the calling code. 3257 if (!isolate_->has_pending_exception()) { 3258 // Try to avoid any pending debug break breaking in the clear mirror 3259 // cache JavaScript code. 3260 if (isolate_->stack_guard()->IsDebugBreak()) { 3261 debug->set_interrupts_pending(DEBUGBREAK); 3262 isolate_->stack_guard()->Continue(DEBUGBREAK); 3263 } 3264 debug->ClearMirrorCache(); 3265 } 3266 3267 // Request preemption and debug break when leaving the last debugger entry 3268 // if any of these where recorded while debugging. 3269 if (debug->is_interrupt_pending(PREEMPT)) { 3270 // This re-scheduling of preemption is to avoid starvation in some 3271 // debugging scenarios. 3272 debug->clear_interrupt_pending(PREEMPT); 3273 isolate_->stack_guard()->Preempt(); 3274 } 3275 if (debug->is_interrupt_pending(DEBUGBREAK)) { 3276 debug->clear_interrupt_pending(DEBUGBREAK); 3277 isolate_->stack_guard()->DebugBreak(); 3278 } 3279 3280 // If there are commands in the queue when leaving the debugger request 3281 // that these commands are processed. 3282 if (isolate_->debugger()->HasCommands()) { 3283 isolate_->stack_guard()->DebugCommand(); 3284 } 3285 3286 // If leaving the debugger with the debugger no longer active unload it. 3287 if (!isolate_->debugger()->IsDebuggerActive()) { 3288 isolate_->debugger()->UnloadDebugger(); 3289 } 3290 } 3291 3292 // Leaving this debugger entry. 3293 debug->set_debugger_entry(prev_); 3294 } 3295 3296 3297 MessageImpl MessageImpl::NewEvent(DebugEvent event, 3298 bool running, 3299 Handle<JSObject> exec_state, 3300 Handle<JSObject> event_data) { 3301 MessageImpl message(true, event, running, 3302 exec_state, event_data, Handle<String>(), NULL); 3303 return message; 3304 } 3305 3306 3307 MessageImpl MessageImpl::NewResponse(DebugEvent event, 3308 bool running, 3309 Handle<JSObject> exec_state, 3310 Handle<JSObject> event_data, 3311 Handle<String> response_json, 3312 v8::Debug::ClientData* client_data) { 3313 MessageImpl message(false, event, running, 3314 exec_state, event_data, response_json, client_data); 3315 return message; 3316 } 3317 3318 3319 MessageImpl::MessageImpl(bool is_event, 3320 DebugEvent event, 3321 bool running, 3322 Handle<JSObject> exec_state, 3323 Handle<JSObject> event_data, 3324 Handle<String> response_json, 3325 v8::Debug::ClientData* client_data) 3326 : is_event_(is_event), 3327 event_(event), 3328 running_(running), 3329 exec_state_(exec_state), 3330 event_data_(event_data), 3331 response_json_(response_json), 3332 client_data_(client_data) {} 3333 3334 3335 bool MessageImpl::IsEvent() const { 3336 return is_event_; 3337 } 3338 3339 3340 bool MessageImpl::IsResponse() const { 3341 return !is_event_; 3342 } 3343 3344 3345 DebugEvent MessageImpl::GetEvent() const { 3346 return event_; 3347 } 3348 3349 3350 bool MessageImpl::WillStartRunning() const { 3351 return running_; 3352 } 3353 3354 3355 v8::Handle<v8::Object> MessageImpl::GetExecutionState() const { 3356 return v8::Utils::ToLocal(exec_state_); 3357 } 3358 3359 3360 v8::Handle<v8::Object> MessageImpl::GetEventData() const { 3361 return v8::Utils::ToLocal(event_data_); 3362 } 3363 3364 3365 v8::Handle<v8::String> MessageImpl::GetJSON() const { 3366 v8::HandleScope scope; 3367 3368 if (IsEvent()) { 3369 // Call toJSONProtocol on the debug event object. 3370 Handle<Object> fun = GetProperty(event_data_, "toJSONProtocol"); 3371 if (!fun->IsJSFunction()) { 3372 return v8::Handle<v8::String>(); 3373 } 3374 bool caught_exception; 3375 Handle<Object> json = Execution::TryCall(Handle<JSFunction>::cast(fun), 3376 event_data_, 3377 0, NULL, &caught_exception); 3378 if (caught_exception || !json->IsString()) { 3379 return v8::Handle<v8::String>(); 3380 } 3381 return scope.Close(v8::Utils::ToLocal(Handle<String>::cast(json))); 3382 } else { 3383 return v8::Utils::ToLocal(response_json_); 3384 } 3385 } 3386 3387 3388 v8::Handle<v8::Context> MessageImpl::GetEventContext() const { 3389 Isolate* isolate = Isolate::Current(); 3390 v8::Handle<v8::Context> context = GetDebugEventContext(isolate); 3391 // Isolate::context() may be NULL when "script collected" event occures. 3392 ASSERT(!context.IsEmpty() || event_ == v8::ScriptCollected); 3393 return context; 3394 } 3395 3396 3397 v8::Debug::ClientData* MessageImpl::GetClientData() const { 3398 return client_data_; 3399 } 3400 3401 3402 EventDetailsImpl::EventDetailsImpl(DebugEvent event, 3403 Handle<JSObject> exec_state, 3404 Handle<JSObject> event_data, 3405 Handle<Object> callback_data, 3406 v8::Debug::ClientData* client_data) 3407 : event_(event), 3408 exec_state_(exec_state), 3409 event_data_(event_data), 3410 callback_data_(callback_data), 3411 client_data_(client_data) {} 3412 3413 3414 DebugEvent EventDetailsImpl::GetEvent() const { 3415 return event_; 3416 } 3417 3418 3419 v8::Handle<v8::Object> EventDetailsImpl::GetExecutionState() const { 3420 return v8::Utils::ToLocal(exec_state_); 3421 } 3422 3423 3424 v8::Handle<v8::Object> EventDetailsImpl::GetEventData() const { 3425 return v8::Utils::ToLocal(event_data_); 3426 } 3427 3428 3429 v8::Handle<v8::Context> EventDetailsImpl::GetEventContext() const { 3430 return GetDebugEventContext(Isolate::Current()); 3431 } 3432 3433 3434 v8::Handle<v8::Value> EventDetailsImpl::GetCallbackData() const { 3435 return v8::Utils::ToLocal(callback_data_); 3436 } 3437 3438 3439 v8::Debug::ClientData* EventDetailsImpl::GetClientData() const { 3440 return client_data_; 3441 } 3442 3443 3444 CommandMessage::CommandMessage() : text_(Vector<uint16_t>::empty()), 3445 client_data_(NULL) { 3446 } 3447 3448 3449 CommandMessage::CommandMessage(const Vector<uint16_t>& text, 3450 v8::Debug::ClientData* data) 3451 : text_(text), 3452 client_data_(data) { 3453 } 3454 3455 3456 CommandMessage::~CommandMessage() { 3457 } 3458 3459 3460 void CommandMessage::Dispose() { 3461 text_.Dispose(); 3462 delete client_data_; 3463 client_data_ = NULL; 3464 } 3465 3466 3467 CommandMessage CommandMessage::New(const Vector<uint16_t>& command, 3468 v8::Debug::ClientData* data) { 3469 return CommandMessage(command.Clone(), data); 3470 } 3471 3472 3473 CommandMessageQueue::CommandMessageQueue(int size) : start_(0), end_(0), 3474 size_(size) { 3475 messages_ = NewArray<CommandMessage>(size); 3476 } 3477 3478 3479 CommandMessageQueue::~CommandMessageQueue() { 3480 while (!IsEmpty()) { 3481 CommandMessage m = Get(); 3482 m.Dispose(); 3483 } 3484 DeleteArray(messages_); 3485 } 3486 3487 3488 CommandMessage CommandMessageQueue::Get() { 3489 ASSERT(!IsEmpty()); 3490 int result = start_; 3491 start_ = (start_ + 1) % size_; 3492 return messages_[result]; 3493 } 3494 3495 3496 void CommandMessageQueue::Put(const CommandMessage& message) { 3497 if ((end_ + 1) % size_ == start_) { 3498 Expand(); 3499 } 3500 messages_[end_] = message; 3501 end_ = (end_ + 1) % size_; 3502 } 3503 3504 3505 void CommandMessageQueue::Expand() { 3506 CommandMessageQueue new_queue(size_ * 2); 3507 while (!IsEmpty()) { 3508 new_queue.Put(Get()); 3509 } 3510 CommandMessage* array_to_free = messages_; 3511 *this = new_queue; 3512 new_queue.messages_ = array_to_free; 3513 // Make the new_queue empty so that it doesn't call Dispose on any messages. 3514 new_queue.start_ = new_queue.end_; 3515 // Automatic destructor called on new_queue, freeing array_to_free. 3516 } 3517 3518 3519 LockingCommandMessageQueue::LockingCommandMessageQueue(Logger* logger, int size) 3520 : logger_(logger), queue_(size) { 3521 lock_ = OS::CreateMutex(); 3522 } 3523 3524 3525 LockingCommandMessageQueue::~LockingCommandMessageQueue() { 3526 delete lock_; 3527 } 3528 3529 3530 bool LockingCommandMessageQueue::IsEmpty() const { 3531 ScopedLock sl(lock_); 3532 return queue_.IsEmpty(); 3533 } 3534 3535 3536 CommandMessage LockingCommandMessageQueue::Get() { 3537 ScopedLock sl(lock_); 3538 CommandMessage result = queue_.Get(); 3539 logger_->DebugEvent("Get", result.text()); 3540 return result; 3541 } 3542 3543 3544 void LockingCommandMessageQueue::Put(const CommandMessage& message) { 3545 ScopedLock sl(lock_); 3546 queue_.Put(message); 3547 logger_->DebugEvent("Put", message.text()); 3548 } 3549 3550 3551 void LockingCommandMessageQueue::Clear() { 3552 ScopedLock sl(lock_); 3553 queue_.Clear(); 3554 } 3555 3556 3557 MessageDispatchHelperThread::MessageDispatchHelperThread(Isolate* isolate) 3558 : Thread("v8:MsgDispHelpr"), 3559 sem_(OS::CreateSemaphore(0)), mutex_(OS::CreateMutex()), 3560 already_signalled_(false) { 3561 } 3562 3563 3564 MessageDispatchHelperThread::~MessageDispatchHelperThread() { 3565 delete mutex_; 3566 delete sem_; 3567 } 3568 3569 3570 void MessageDispatchHelperThread::Schedule() { 3571 { 3572 ScopedLock lock(mutex_); 3573 if (already_signalled_) { 3574 return; 3575 } 3576 already_signalled_ = true; 3577 } 3578 sem_->Signal(); 3579 } 3580 3581 3582 void MessageDispatchHelperThread::Run() { 3583 while (true) { 3584 sem_->Wait(); 3585 { 3586 ScopedLock lock(mutex_); 3587 already_signalled_ = false; 3588 } 3589 { 3590 Locker locker; 3591 Isolate::Current()->debugger()->CallMessageDispatchHandler(); 3592 } 3593 } 3594 } 3595 3596 #endif // ENABLE_DEBUGGER_SUPPORT 3597 3598 } } // namespace v8::internal 3599