Home | History | Annotate | Download | only in CodeGen
      1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates machine instruction PHI nodes by inserting copy
     11 // instructions.  This destroys SSA information, but is the desired input for
     12 // some register allocators.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "phielim"
     17 #include "llvm/CodeGen/Passes.h"
     18 #include "PHIEliminationUtils.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     23 #include "llvm/CodeGen/LiveVariables.h"
     24 #include "llvm/CodeGen/MachineDominators.h"
     25 #include "llvm/CodeGen/MachineInstr.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Compiler.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetMachine.h"
     35 #include <algorithm>
     36 using namespace llvm;
     37 
     38 static cl::opt<bool>
     39 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
     40                      cl::Hidden, cl::desc("Disable critical edge splitting "
     41                                           "during PHI elimination"));
     42 
     43 static cl::opt<bool>
     44 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
     45                       cl::Hidden, cl::desc("Split all critical edges during "
     46                                            "PHI elimination"));
     47 
     48 namespace {
     49   class PHIElimination : public MachineFunctionPass {
     50     MachineRegisterInfo *MRI; // Machine register information
     51     LiveVariables *LV;
     52     LiveIntervals *LIS;
     53 
     54   public:
     55     static char ID; // Pass identification, replacement for typeid
     56     PHIElimination() : MachineFunctionPass(ID) {
     57       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     58     }
     59 
     60     virtual bool runOnMachineFunction(MachineFunction &Fn);
     61     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     62 
     63   private:
     64     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
     65     /// in predecessor basic blocks.
     66     ///
     67     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
     68     void LowerPHINode(MachineBasicBlock &MBB,
     69                       MachineBasicBlock::iterator AfterPHIsIt);
     70 
     71     /// analyzePHINodes - Gather information about the PHI nodes in
     72     /// here. In particular, we want to map the number of uses of a virtual
     73     /// register which is used in a PHI node. We map that to the BB the
     74     /// vreg is coming from. This is used later to determine when the vreg
     75     /// is killed in the BB.
     76     ///
     77     void analyzePHINodes(const MachineFunction& Fn);
     78 
     79     /// Split critical edges where necessary for good coalescer performance.
     80     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
     81                        MachineLoopInfo *MLI);
     82 
     83     // These functions are temporary abstractions around LiveVariables and
     84     // LiveIntervals, so they can go away when LiveVariables does.
     85     bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
     86     bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
     87 
     88     typedef std::pair<unsigned, unsigned> BBVRegPair;
     89     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
     90 
     91     VRegPHIUse VRegPHIUseCount;
     92 
     93     // Defs of PHI sources which are implicit_def.
     94     SmallPtrSet<MachineInstr*, 4> ImpDefs;
     95 
     96     // Map reusable lowered PHI node -> incoming join register.
     97     typedef DenseMap<MachineInstr*, unsigned,
     98                      MachineInstrExpressionTrait> LoweredPHIMap;
     99     LoweredPHIMap LoweredPHIs;
    100   };
    101 }
    102 
    103 STATISTIC(NumLowered, "Number of phis lowered");
    104 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
    105 STATISTIC(NumReused, "Number of reused lowered phis");
    106 
    107 char PHIElimination::ID = 0;
    108 char& llvm::PHIEliminationID = PHIElimination::ID;
    109 
    110 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
    111                       "Eliminate PHI nodes for register allocation",
    112                       false, false)
    113 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
    114 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
    115                     "Eliminate PHI nodes for register allocation", false, false)
    116 
    117 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    118   AU.addPreserved<LiveVariables>();
    119   AU.addPreserved<SlotIndexes>();
    120   AU.addPreserved<LiveIntervals>();
    121   AU.addPreserved<MachineDominatorTree>();
    122   AU.addPreserved<MachineLoopInfo>();
    123   MachineFunctionPass::getAnalysisUsage(AU);
    124 }
    125 
    126 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
    127   MRI = &MF.getRegInfo();
    128   LV = getAnalysisIfAvailable<LiveVariables>();
    129   LIS = getAnalysisIfAvailable<LiveIntervals>();
    130 
    131   bool Changed = false;
    132 
    133   // This pass takes the function out of SSA form.
    134   MRI->leaveSSA();
    135 
    136   // Split critical edges to help the coalescer. This does not yet support
    137   // updating LiveIntervals, so we disable it.
    138   if (!DisableEdgeSplitting && (LV || LIS)) {
    139     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    140     for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    141       Changed |= SplitPHIEdges(MF, *I, MLI);
    142   }
    143 
    144   // Populate VRegPHIUseCount
    145   analyzePHINodes(MF);
    146 
    147   // Eliminate PHI instructions by inserting copies into predecessor blocks.
    148   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    149     Changed |= EliminatePHINodes(MF, *I);
    150 
    151   // Remove dead IMPLICIT_DEF instructions.
    152   for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
    153          E = ImpDefs.end(); I != E; ++I) {
    154     MachineInstr *DefMI = *I;
    155     unsigned DefReg = DefMI->getOperand(0).getReg();
    156     if (MRI->use_nodbg_empty(DefReg)) {
    157       if (LIS)
    158         LIS->RemoveMachineInstrFromMaps(DefMI);
    159       DefMI->eraseFromParent();
    160     }
    161   }
    162 
    163   // Clean up the lowered PHI instructions.
    164   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
    165        I != E; ++I) {
    166     if (LIS)
    167       LIS->RemoveMachineInstrFromMaps(I->first);
    168     MF.DeleteMachineInstr(I->first);
    169   }
    170 
    171   LoweredPHIs.clear();
    172   ImpDefs.clear();
    173   VRegPHIUseCount.clear();
    174 
    175   return Changed;
    176 }
    177 
    178 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
    179 /// predecessor basic blocks.
    180 ///
    181 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
    182                                              MachineBasicBlock &MBB) {
    183   if (MBB.empty() || !MBB.front().isPHI())
    184     return false;   // Quick exit for basic blocks without PHIs.
    185 
    186   // Get an iterator to the first instruction after the last PHI node (this may
    187   // also be the end of the basic block).
    188   MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
    189 
    190   while (MBB.front().isPHI())
    191     LowerPHINode(MBB, AfterPHIsIt);
    192 
    193   return true;
    194 }
    195 
    196 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
    197 /// This includes registers with no defs.
    198 static bool isImplicitlyDefined(unsigned VirtReg,
    199                                 const MachineRegisterInfo *MRI) {
    200   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
    201        DE = MRI->def_end(); DI != DE; ++DI)
    202     if (!DI->isImplicitDef())
    203       return false;
    204   return true;
    205 }
    206 
    207 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
    208 /// are implicit_def's.
    209 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
    210                                          const MachineRegisterInfo *MRI) {
    211   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    212     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
    213       return false;
    214   return true;
    215 }
    216 
    217 
    218 /// LowerPHINode - Lower the PHI node at the top of the specified block,
    219 ///
    220 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
    221                                   MachineBasicBlock::iterator AfterPHIsIt) {
    222   ++NumLowered;
    223   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    224   MachineInstr *MPhi = MBB.remove(MBB.begin());
    225 
    226   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    227   unsigned DestReg = MPhi->getOperand(0).getReg();
    228   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    229   bool isDead = MPhi->getOperand(0).isDead();
    230 
    231   // Create a new register for the incoming PHI arguments.
    232   MachineFunction &MF = *MBB.getParent();
    233   unsigned IncomingReg = 0;
    234   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
    235 
    236   // Insert a register to register copy at the top of the current block (but
    237   // after any remaining phi nodes) which copies the new incoming register
    238   // into the phi node destination.
    239   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
    240   if (isSourceDefinedByImplicitDef(MPhi, MRI))
    241     // If all sources of a PHI node are implicit_def, just emit an
    242     // implicit_def instead of a copy.
    243     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    244             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    245   else {
    246     // Can we reuse an earlier PHI node? This only happens for critical edges,
    247     // typically those created by tail duplication.
    248     unsigned &entry = LoweredPHIs[MPhi];
    249     if (entry) {
    250       // An identical PHI node was already lowered. Reuse the incoming register.
    251       IncomingReg = entry;
    252       reusedIncoming = true;
    253       ++NumReused;
    254       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    255     } else {
    256       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
    257       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    258     }
    259     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    260             TII->get(TargetOpcode::COPY), DestReg)
    261       .addReg(IncomingReg);
    262   }
    263 
    264   // Update live variable information if there is any.
    265   if (LV) {
    266     MachineInstr *PHICopy = prior(AfterPHIsIt);
    267 
    268     if (IncomingReg) {
    269       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
    270 
    271       // Increment use count of the newly created virtual register.
    272       LV->setPHIJoin(IncomingReg);
    273 
    274       // When we are reusing the incoming register, it may already have been
    275       // killed in this block. The old kill will also have been inserted at
    276       // AfterPHIsIt, so it appears before the current PHICopy.
    277       if (reusedIncoming)
    278         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
    279           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
    280           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
    281           DEBUG(MBB.dump());
    282         }
    283 
    284       // Add information to LiveVariables to know that the incoming value is
    285       // killed.  Note that because the value is defined in several places (once
    286       // each for each incoming block), the "def" block and instruction fields
    287       // for the VarInfo is not filled in.
    288       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    289     }
    290 
    291     // Since we are going to be deleting the PHI node, if it is the last use of
    292     // any registers, or if the value itself is dead, we need to move this
    293     // information over to the new copy we just inserted.
    294     LV->removeVirtualRegistersKilled(MPhi);
    295 
    296     // If the result is dead, update LV.
    297     if (isDead) {
    298       LV->addVirtualRegisterDead(DestReg, PHICopy);
    299       LV->removeVirtualRegisterDead(DestReg, MPhi);
    300     }
    301   }
    302 
    303   // Update LiveIntervals for the new copy or implicit def.
    304   if (LIS) {
    305     MachineInstr *NewInstr = prior(AfterPHIsIt);
    306     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
    307 
    308     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
    309     if (IncomingReg) {
    310       // Add the region from the beginning of MBB to the copy instruction to
    311       // IncomingReg's live interval.
    312       LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
    313       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
    314       if (!IncomingVNI)
    315         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
    316                                               LIS->getVNInfoAllocator());
    317       IncomingLI.addRange(LiveRange(MBBStartIndex,
    318                                     DestCopyIndex.getRegSlot(),
    319                                     IncomingVNI));
    320     }
    321 
    322     LiveInterval &DestLI = LIS->getInterval(DestReg);
    323     assert(DestLI.begin() != DestLI.end() &&
    324            "PHIs should have nonempty LiveIntervals.");
    325     if (DestLI.endIndex().isDead()) {
    326       // A dead PHI's live range begins and ends at the start of the MBB, but
    327       // the lowered copy, which will still be dead, needs to begin and end at
    328       // the copy instruction.
    329       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
    330       assert(OrigDestVNI && "PHI destination should be live at block entry.");
    331       DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
    332       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
    333                            LIS->getVNInfoAllocator());
    334       DestLI.removeValNo(OrigDestVNI);
    335     } else {
    336       // Otherwise, remove the region from the beginning of MBB to the copy
    337       // instruction from DestReg's live interval.
    338       DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
    339       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
    340       assert(DestVNI && "PHI destination should be live at its definition.");
    341       DestVNI->def = DestCopyIndex.getRegSlot();
    342     }
    343   }
    344 
    345   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
    346   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    347     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
    348                                  MPhi->getOperand(i).getReg())];
    349 
    350   // Now loop over all of the incoming arguments, changing them to copy into the
    351   // IncomingReg register in the corresponding predecessor basic block.
    352   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
    353   for (int i = NumSrcs - 1; i >= 0; --i) {
    354     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    355     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    356     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
    357       isImplicitlyDefined(SrcReg, MRI);
    358     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    359            "Machine PHI Operands must all be virtual registers!");
    360 
    361     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    362     // path the PHI.
    363     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
    364 
    365     // Check to make sure we haven't already emitted the copy for this block.
    366     // This can happen because PHI nodes may have multiple entries for the same
    367     // basic block.
    368     if (!MBBsInsertedInto.insert(&opBlock))
    369       continue;  // If the copy has already been emitted, we're done.
    370 
    371     // Find a safe location to insert the copy, this may be the first terminator
    372     // in the block (or end()).
    373     MachineBasicBlock::iterator InsertPos =
    374       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
    375 
    376     // Insert the copy.
    377     MachineInstr *NewSrcInstr = 0;
    378     if (!reusedIncoming && IncomingReg) {
    379       if (SrcUndef) {
    380         // The source register is undefined, so there is no need for a real
    381         // COPY, but we still need to ensure joint dominance by defs.
    382         // Insert an IMPLICIT_DEF instruction.
    383         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    384                               TII->get(TargetOpcode::IMPLICIT_DEF),
    385                               IncomingReg);
    386 
    387         // Clean up the old implicit-def, if there even was one.
    388         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
    389           if (DefMI->isImplicitDef())
    390             ImpDefs.insert(DefMI);
    391       } else {
    392         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    393                             TII->get(TargetOpcode::COPY), IncomingReg)
    394                         .addReg(SrcReg, 0, SrcSubReg);
    395       }
    396     }
    397 
    398     // We only need to update the LiveVariables kill of SrcReg if this was the
    399     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
    400     // out of the predecessor. We can also ignore undef sources.
    401     if (LV && !SrcUndef &&
    402         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
    403         !LV->isLiveOut(SrcReg, opBlock)) {
    404       // We want to be able to insert a kill of the register if this PHI (aka,
    405       // the copy we just inserted) is the last use of the source value. Live
    406       // variable analysis conservatively handles this by saying that the value
    407       // is live until the end of the block the PHI entry lives in. If the value
    408       // really is dead at the PHI copy, there will be no successor blocks which
    409       // have the value live-in.
    410 
    411       // Okay, if we now know that the value is not live out of the block, we
    412       // can add a kill marker in this block saying that it kills the incoming
    413       // value!
    414 
    415       // In our final twist, we have to decide which instruction kills the
    416       // register.  In most cases this is the copy, however, terminator
    417       // instructions at the end of the block may also use the value. In this
    418       // case, we should mark the last such terminator as being the killing
    419       // block, not the copy.
    420       MachineBasicBlock::iterator KillInst = opBlock.end();
    421       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    422       for (MachineBasicBlock::iterator Term = FirstTerm;
    423           Term != opBlock.end(); ++Term) {
    424         if (Term->readsRegister(SrcReg))
    425           KillInst = Term;
    426       }
    427 
    428       if (KillInst == opBlock.end()) {
    429         // No terminator uses the register.
    430 
    431         if (reusedIncoming || !IncomingReg) {
    432           // We may have to rewind a bit if we didn't insert a copy this time.
    433           KillInst = FirstTerm;
    434           while (KillInst != opBlock.begin()) {
    435             --KillInst;
    436             if (KillInst->isDebugValue())
    437               continue;
    438             if (KillInst->readsRegister(SrcReg))
    439               break;
    440           }
    441         } else {
    442           // We just inserted this copy.
    443           KillInst = prior(InsertPos);
    444         }
    445       }
    446       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
    447 
    448       // Finally, mark it killed.
    449       LV->addVirtualRegisterKilled(SrcReg, KillInst);
    450 
    451       // This vreg no longer lives all of the way through opBlock.
    452       unsigned opBlockNum = opBlock.getNumber();
    453       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    454     }
    455 
    456     if (LIS) {
    457       if (NewSrcInstr) {
    458         LIS->InsertMachineInstrInMaps(NewSrcInstr);
    459         LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
    460       }
    461 
    462       if (!SrcUndef &&
    463           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
    464         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
    465 
    466         bool isLiveOut = false;
    467         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
    468              SE = opBlock.succ_end(); SI != SE; ++SI) {
    469           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
    470           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
    471 
    472           // Definitions by other PHIs are not truly live-in for our purposes.
    473           if (VNI && VNI->def != startIdx) {
    474             isLiveOut = true;
    475             break;
    476           }
    477         }
    478 
    479         if (!isLiveOut) {
    480           MachineBasicBlock::iterator KillInst = opBlock.end();
    481           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    482           for (MachineBasicBlock::iterator Term = FirstTerm;
    483               Term != opBlock.end(); ++Term) {
    484             if (Term->readsRegister(SrcReg))
    485               KillInst = Term;
    486           }
    487 
    488           if (KillInst == opBlock.end()) {
    489             // No terminator uses the register.
    490 
    491             if (reusedIncoming || !IncomingReg) {
    492               // We may have to rewind a bit if we didn't just insert a copy.
    493               KillInst = FirstTerm;
    494               while (KillInst != opBlock.begin()) {
    495                 --KillInst;
    496                 if (KillInst->isDebugValue())
    497                   continue;
    498                 if (KillInst->readsRegister(SrcReg))
    499                   break;
    500               }
    501             } else {
    502               // We just inserted this copy.
    503               KillInst = prior(InsertPos);
    504             }
    505           }
    506           assert(KillInst->readsRegister(SrcReg) &&
    507                  "Cannot find kill instruction");
    508 
    509           SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
    510           SrcLI.removeRange(LastUseIndex.getRegSlot(),
    511                             LIS->getMBBEndIdx(&opBlock));
    512         }
    513       }
    514     }
    515   }
    516 
    517   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
    518   if (reusedIncoming || !IncomingReg) {
    519     if (LIS)
    520       LIS->RemoveMachineInstrFromMaps(MPhi);
    521     MF.DeleteMachineInstr(MPhi);
    522   }
    523 }
    524 
    525 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    526 /// particular, we want to map the number of uses of a virtual register which is
    527 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
    528 /// used later to determine when the vreg is killed in the BB.
    529 ///
    530 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
    531   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
    532        I != E; ++I)
    533     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
    534          BBI != BBE && BBI->isPHI(); ++BBI)
    535       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
    536         ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
    537                                      BBI->getOperand(i).getReg())];
    538 }
    539 
    540 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
    541                                    MachineBasicBlock &MBB,
    542                                    MachineLoopInfo *MLI) {
    543   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
    544     return false;   // Quick exit for basic blocks without PHIs.
    545 
    546   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
    547   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
    548 
    549   bool Changed = false;
    550   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
    551        BBI != BBE && BBI->isPHI(); ++BBI) {
    552     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    553       unsigned Reg = BBI->getOperand(i).getReg();
    554       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
    555       // Is there a critical edge from PreMBB to MBB?
    556       if (PreMBB->succ_size() == 1)
    557         continue;
    558 
    559       // Avoid splitting backedges of loops. It would introduce small
    560       // out-of-line blocks into the loop which is very bad for code placement.
    561       if (PreMBB == &MBB && !SplitAllCriticalEdges)
    562         continue;
    563       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
    564       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
    565         continue;
    566 
    567       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
    568       // when the source register is live-out for some other reason than a phi
    569       // use. That means the copy we will insert in PreMBB won't be a kill, and
    570       // there is a risk it may not be coalesced away.
    571       //
    572       // If the copy would be a kill, there is no need to split the edge.
    573       if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
    574         continue;
    575 
    576       DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
    577                    << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
    578                    << ": " << *BBI);
    579 
    580       // If Reg is not live-in to MBB, it means it must be live-in to some
    581       // other PreMBB successor, and we can avoid the interference by splitting
    582       // the edge.
    583       //
    584       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
    585       // is likely to be left after coalescing. If we are looking at a loop
    586       // exiting edge, split it so we won't insert code in the loop, otherwise
    587       // don't bother.
    588       bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
    589 
    590       // Check for a loop exiting edge.
    591       if (!ShouldSplit && CurLoop != PreLoop) {
    592         DEBUG({
    593           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
    594           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
    595           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
    596         });
    597         // This edge could be entering a loop, exiting a loop, or it could be
    598         // both: Jumping directly form one loop to the header of a sibling
    599         // loop.
    600         // Split unless this edge is entering CurLoop from an outer loop.
    601         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
    602       }
    603       if (!ShouldSplit)
    604         continue;
    605       if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
    606         DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
    607         continue;
    608       }
    609       Changed = true;
    610       ++NumCriticalEdgesSplit;
    611     }
    612   }
    613   return Changed;
    614 }
    615 
    616 bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
    617   assert((LV || LIS) &&
    618          "isLiveIn() requires either LiveVariables or LiveIntervals");
    619   if (LIS)
    620     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
    621   else
    622     return LV->isLiveIn(Reg, *MBB);
    623 }
    624 
    625 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
    626   assert((LV || LIS) &&
    627          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
    628   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
    629   // so that a register used only in a PHI is not live out of the block. In
    630   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
    631   // in the predecessor basic block, so that a register used only in a PHI is live
    632   // out of the block.
    633   if (LIS) {
    634     const LiveInterval &LI = LIS->getInterval(Reg);
    635     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
    636          SE = MBB->succ_end(); SI != SE; ++SI) {
    637       if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
    638         return true;
    639     }
    640     return false;
    641   } else {
    642     return LV->isLiveOut(Reg, *MBB);
    643   }
    644 }
    645