Home | History | Annotate | Download | only in MC
      1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
     11 // are used to describe target instructions and their operands.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_MC_MCINSTRDESC_H
     16 #define LLVM_MC_MCINSTRDESC_H
     17 
     18 #include "llvm/MC/MCInst.h"
     19 #include "llvm/MC/MCRegisterInfo.h"
     20 #include "llvm/Support/DataTypes.h"
     21 
     22 namespace llvm {
     23 
     24 //===----------------------------------------------------------------------===//
     25 // Machine Operand Flags and Description
     26 //===----------------------------------------------------------------------===//
     27 
     28 namespace MCOI {
     29   // Operand constraints
     30   enum OperandConstraint {
     31     TIED_TO = 0,    // Must be allocated the same register as.
     32     EARLY_CLOBBER   // Operand is an early clobber register operand
     33   };
     34 
     35   /// OperandFlags - These are flags set on operands, but should be considered
     36   /// private, all access should go through the MCOperandInfo accessors.
     37   /// See the accessors for a description of what these are.
     38   enum OperandFlags {
     39     LookupPtrRegClass = 0,
     40     Predicate,
     41     OptionalDef
     42   };
     43 
     44   /// Operand Type - Operands are tagged with one of the values of this enum.
     45   enum OperandType {
     46     OPERAND_UNKNOWN,
     47     OPERAND_IMMEDIATE,
     48     OPERAND_REGISTER,
     49     OPERAND_MEMORY,
     50     OPERAND_PCREL
     51   };
     52 }
     53 
     54 /// MCOperandInfo - This holds information about one operand of a machine
     55 /// instruction, indicating the register class for register operands, etc.
     56 ///
     57 class MCOperandInfo {
     58 public:
     59   /// RegClass - This specifies the register class enumeration of the operand
     60   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
     61   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
     62   /// get a dynamic register class.
     63   int16_t RegClass;
     64 
     65   /// Flags - These are flags from the MCOI::OperandFlags enum.
     66   uint8_t Flags;
     67 
     68   /// OperandType - Information about the type of the operand.
     69   uint8_t OperandType;
     70 
     71   /// Lower 16 bits are used to specify which constraints are set. The higher 16
     72   /// bits are used to specify the value of constraints (4 bits each).
     73   uint32_t Constraints;
     74   /// Currently no other information.
     75 
     76   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
     77   /// requires a callback to look up its register class.
     78   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
     79 
     80   /// isPredicate - Set if this is one of the operands that made up of
     81   /// the predicate operand that controls an isPredicable() instruction.
     82   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
     83 
     84   /// isOptionalDef - Set if this operand is a optional def.
     85   ///
     86   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
     87 };
     88 
     89 
     90 //===----------------------------------------------------------------------===//
     91 // Machine Instruction Flags and Description
     92 //===----------------------------------------------------------------------===//
     93 
     94 /// MCInstrDesc flags - These should be considered private to the
     95 /// implementation of the MCInstrDesc class.  Clients should use the predicate
     96 /// methods on MCInstrDesc, not use these directly.  These all correspond to
     97 /// bitfields in the MCInstrDesc::Flags field.
     98 namespace MCID {
     99   enum {
    100     Variadic = 0,
    101     HasOptionalDef,
    102     Pseudo,
    103     Return,
    104     Call,
    105     Barrier,
    106     Terminator,
    107     Branch,
    108     IndirectBranch,
    109     Compare,
    110     MoveImm,
    111     Bitcast,
    112     Select,
    113     DelaySlot,
    114     FoldableAsLoad,
    115     MayLoad,
    116     MayStore,
    117     Predicable,
    118     NotDuplicable,
    119     UnmodeledSideEffects,
    120     Commutable,
    121     ConvertibleTo3Addr,
    122     UsesCustomInserter,
    123     HasPostISelHook,
    124     Rematerializable,
    125     CheapAsAMove,
    126     ExtraSrcRegAllocReq,
    127     ExtraDefRegAllocReq
    128   };
    129 }
    130 
    131 /// MCInstrDesc - Describe properties that are true of each instruction in the
    132 /// target description file.  This captures information about side effects,
    133 /// register use and many other things.  There is one instance of this struct
    134 /// for each target instruction class, and the MachineInstr class points to
    135 /// this struct directly to describe itself.
    136 class MCInstrDesc {
    137 public:
    138   unsigned short  Opcode;        // The opcode number
    139   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
    140   unsigned short  NumDefs;       // Num of args that are definitions
    141   unsigned short  SchedClass;    // enum identifying instr sched class
    142   unsigned short  Size;          // Number of bytes in encoding.
    143   unsigned        Flags;         // Flags identifying machine instr class
    144   uint64_t        TSFlags;       // Target Specific Flag values
    145   const uint16_t *ImplicitUses;  // Registers implicitly read by this instr
    146   const uint16_t *ImplicitDefs;  // Registers implicitly defined by this instr
    147   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
    148 
    149   /// \brief Returns the value of the specific constraint if
    150   /// it is set. Returns -1 if it is not set.
    151   int getOperandConstraint(unsigned OpNum,
    152                            MCOI::OperandConstraint Constraint) const {
    153     if (OpNum < NumOperands &&
    154         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
    155       unsigned Pos = 16 + Constraint * 4;
    156       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
    157     }
    158     return -1;
    159   }
    160 
    161   /// \brief Return the opcode number for this descriptor.
    162   unsigned getOpcode() const {
    163     return Opcode;
    164   }
    165 
    166   /// \brief Return the number of declared MachineOperands for this
    167   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
    168   /// instructions may have additional operands at the end of the list, and note
    169   /// that the machine instruction may include implicit register def/uses as
    170   /// well.
    171   unsigned getNumOperands() const {
    172     return NumOperands;
    173   }
    174 
    175   /// \brief Return the number of MachineOperands that are register
    176   /// definitions.  Register definitions always occur at the start of the
    177   /// machine operand list.  This is the number of "outs" in the .td file,
    178   /// and does not include implicit defs.
    179   unsigned getNumDefs() const {
    180     return NumDefs;
    181   }
    182 
    183   /// \brief Return flags of this instruction.
    184   unsigned getFlags() const { return Flags; }
    185 
    186   /// \brief Return true if this instruction can have a variable number of
    187   /// operands.  In this case, the variable operands will be after the normal
    188   /// operands but before the implicit definitions and uses (if any are
    189   /// present).
    190   bool isVariadic() const {
    191     return Flags & (1 << MCID::Variadic);
    192   }
    193 
    194   /// \brief Set if this instruction has an optional definition, e.g.
    195   /// ARM instructions which can set condition code if 's' bit is set.
    196   bool hasOptionalDef() const {
    197     return Flags & (1 << MCID::HasOptionalDef);
    198   }
    199 
    200   /// \brief Return true if this is a pseudo instruction that doesn't
    201   /// correspond to a real machine instruction.
    202   ///
    203   bool isPseudo() const {
    204     return Flags & (1 << MCID::Pseudo);
    205   }
    206 
    207   /// \brief Return true if the instruction is a return.
    208   bool isReturn() const {
    209     return Flags & (1 << MCID::Return);
    210   }
    211 
    212   /// \brief  Return true if the instruction is a call.
    213   bool isCall() const {
    214     return Flags & (1 << MCID::Call);
    215   }
    216 
    217   /// \brief Returns true if the specified instruction stops control flow
    218   /// from executing the instruction immediately following it.  Examples include
    219   /// unconditional branches and return instructions.
    220   bool isBarrier() const {
    221     return Flags & (1 << MCID::Barrier);
    222   }
    223 
    224   /// \brief Returns true if this instruction part of the terminator for
    225   /// a basic block.  Typically this is things like return and branch
    226   /// instructions.
    227   ///
    228   /// Various passes use this to insert code into the bottom of a basic block,
    229   /// but before control flow occurs.
    230   bool isTerminator() const {
    231     return Flags & (1 << MCID::Terminator);
    232   }
    233 
    234   /// \brief Returns true if this is a conditional, unconditional, or
    235   /// indirect branch.  Predicates below can be used to discriminate between
    236   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    237   /// get more information.
    238   bool isBranch() const {
    239     return Flags & (1 << MCID::Branch);
    240   }
    241 
    242   /// \brief Return true if this is an indirect branch, such as a
    243   /// branch through a register.
    244   bool isIndirectBranch() const {
    245     return Flags & (1 << MCID::IndirectBranch);
    246   }
    247 
    248   /// \brief Return true if this is a branch which may fall
    249   /// through to the next instruction or may transfer control flow to some other
    250   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    251   /// information about this branch.
    252   bool isConditionalBranch() const {
    253     return isBranch() & !isBarrier() & !isIndirectBranch();
    254   }
    255 
    256   /// \brief Return true if this is a branch which always
    257   /// transfers control flow to some other block.  The
    258   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    259   /// about this branch.
    260   bool isUnconditionalBranch() const {
    261     return isBranch() & isBarrier() & !isIndirectBranch();
    262   }
    263 
    264   /// \brief Return true if this is a branch or an instruction which directly
    265   /// writes to the program counter. Considered 'may' affect rather than
    266   /// 'does' affect as things like predication are not taken into account.
    267   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const {
    268     if (isBranch() || isCall() || isReturn() || isIndirectBranch())
    269       return true;
    270     unsigned PC = RI.getProgramCounter();
    271     if (PC == 0) return false;
    272     return hasDefOfPhysReg(MI, PC, RI);
    273   }
    274 
    275   /// \brief Return true if this instruction has a predicate operand
    276   /// that controls execution. It may be set to 'always', or may be set to other
    277   /// values. There are various methods in TargetInstrInfo that can be used to
    278   /// control and modify the predicate in this instruction.
    279   bool isPredicable() const {
    280     return Flags & (1 << MCID::Predicable);
    281   }
    282 
    283   /// \brief Return true if this instruction is a comparison.
    284   bool isCompare() const {
    285     return Flags & (1 << MCID::Compare);
    286   }
    287 
    288   /// \brief Return true if this instruction is a move immediate
    289   /// (including conditional moves) instruction.
    290   bool isMoveImmediate() const {
    291     return Flags & (1 << MCID::MoveImm);
    292   }
    293 
    294   /// \brief Return true if this instruction is a bitcast instruction.
    295   bool isBitcast() const {
    296     return Flags & (1 << MCID::Bitcast);
    297   }
    298 
    299   /// \brief Return true if this is a select instruction.
    300   bool isSelect() const {
    301     return Flags & (1 << MCID::Select);
    302   }
    303 
    304   /// \brief Return true if this instruction cannot be safely
    305   /// duplicated.  For example, if the instruction has a unique labels attached
    306   /// to it, duplicating it would cause multiple definition errors.
    307   bool isNotDuplicable() const {
    308     return Flags & (1 << MCID::NotDuplicable);
    309   }
    310 
    311   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
    312   /// which must be filled by the code generator.
    313   bool hasDelaySlot() const {
    314     return Flags & (1 << MCID::DelaySlot);
    315   }
    316 
    317   /// canFoldAsLoad - Return true for instructions that can be folded as
    318   /// memory operands in other instructions. The most common use for this
    319   /// is instructions that are simple loads from memory that don't modify
    320   /// the loaded value in any way, but it can also be used for instructions
    321   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    322   /// on x86, to allow them to be folded when it is beneficial.
    323   /// This should only be set on instructions that return a value in their
    324   /// only virtual register definition.
    325   bool canFoldAsLoad() const {
    326     return Flags & (1 << MCID::FoldableAsLoad);
    327   }
    328 
    329   //===--------------------------------------------------------------------===//
    330   // Side Effect Analysis
    331   //===--------------------------------------------------------------------===//
    332 
    333   /// \brief Return true if this instruction could possibly read memory.
    334   /// Instructions with this flag set are not necessarily simple load
    335   /// instructions, they may load a value and modify it, for example.
    336   bool mayLoad() const {
    337     return Flags & (1 << MCID::MayLoad);
    338   }
    339 
    340 
    341   /// \brief Return true if this instruction could possibly modify memory.
    342   /// Instructions with this flag set are not necessarily simple store
    343   /// instructions, they may store a modified value based on their operands, or
    344   /// may not actually modify anything, for example.
    345   bool mayStore() const {
    346     return Flags & (1 << MCID::MayStore);
    347   }
    348 
    349   /// hasUnmodeledSideEffects - Return true if this instruction has side
    350   /// effects that are not modeled by other flags.  This does not return true
    351   /// for instructions whose effects are captured by:
    352   ///
    353   ///  1. Their operand list and implicit definition/use list.  Register use/def
    354   ///     info is explicit for instructions.
    355   ///  2. Memory accesses.  Use mayLoad/mayStore.
    356   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
    357   ///
    358   /// Examples of side effects would be modifying 'invisible' machine state like
    359   /// a control register, flushing a cache, modifying a register invisible to
    360   /// LLVM, etc.
    361   ///
    362   bool hasUnmodeledSideEffects() const {
    363     return Flags & (1 << MCID::UnmodeledSideEffects);
    364   }
    365 
    366   //===--------------------------------------------------------------------===//
    367   // Flags that indicate whether an instruction can be modified by a method.
    368   //===--------------------------------------------------------------------===//
    369 
    370   /// isCommutable - Return true if this may be a 2- or 3-address
    371   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    372   /// result if Y and Z are exchanged.  If this flag is set, then the
    373   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    374   /// instruction.
    375   ///
    376   /// Note that this flag may be set on instructions that are only commutable
    377   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    378   /// Also note that some instructions require non-trivial modification to
    379   /// commute them.
    380   bool isCommutable() const {
    381     return Flags & (1 << MCID::Commutable);
    382   }
    383 
    384   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
    385   /// which can be changed into a 3-address instruction if needed.  Doing this
    386   /// transformation can be profitable in the register allocator, because it
    387   /// means that the instruction can use a 2-address form if possible, but
    388   /// degrade into a less efficient form if the source and dest register cannot
    389   /// be assigned to the same register.  For example, this allows the x86
    390   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    391   /// is the same speed as the shift but has bigger code size.
    392   ///
    393   /// If this returns true, then the target must implement the
    394   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    395   /// is allowed to fail if the transformation isn't valid for this specific
    396   /// instruction (e.g. shl reg, 4 on x86).
    397   ///
    398   bool isConvertibleTo3Addr() const {
    399     return Flags & (1 << MCID::ConvertibleTo3Addr);
    400   }
    401 
    402   /// usesCustomInsertionHook - Return true if this instruction requires
    403   /// custom insertion support when the DAG scheduler is inserting it into a
    404   /// machine basic block.  If this is true for the instruction, it basically
    405   /// means that it is a pseudo instruction used at SelectionDAG time that is
    406   /// expanded out into magic code by the target when MachineInstrs are formed.
    407   ///
    408   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    409   /// is used to insert this into the MachineBasicBlock.
    410   bool usesCustomInsertionHook() const {
    411     return Flags & (1 << MCID::UsesCustomInserter);
    412   }
    413 
    414   /// hasPostISelHook - Return true if this instruction requires *adjustment*
    415   /// after instruction selection by calling a target hook. For example, this
    416   /// can be used to fill in ARM 's' optional operand depending on whether
    417   /// the conditional flag register is used.
    418   bool hasPostISelHook() const {
    419     return Flags & (1 << MCID::HasPostISelHook);
    420   }
    421 
    422   /// isRematerializable - Returns true if this instruction is a candidate for
    423   /// remat.  This flag is deprecated, please don't use it anymore.  If this
    424   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    425   /// verify the instruction is really rematable.
    426   bool isRematerializable() const {
    427     return Flags & (1 << MCID::Rematerializable);
    428   }
    429 
    430   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
    431   /// less) than a move instruction. This is useful during certain types of
    432   /// optimizations (e.g., remat during two-address conversion or machine licm)
    433   /// where we would like to remat or hoist the instruction, but not if it costs
    434   /// more than moving the instruction into the appropriate register. Note, we
    435   /// are not marking copies from and to the same register class with this flag.
    436   bool isAsCheapAsAMove() const {
    437     return Flags & (1 << MCID::CheapAsAMove);
    438   }
    439 
    440   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
    441   /// have special register allocation requirements that are not captured by the
    442   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    443   /// even / odd pair, ARM::STM registers have to be in ascending order.
    444   /// Post-register allocation passes should not attempt to change allocations
    445   /// for sources of instructions with this flag.
    446   bool hasExtraSrcRegAllocReq() const {
    447     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
    448   }
    449 
    450   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
    451   /// have special register allocation requirements that are not captured by the
    452   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    453   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    454   /// Post-register allocation passes should not attempt to change allocations
    455   /// for definitions of instructions with this flag.
    456   bool hasExtraDefRegAllocReq() const {
    457     return Flags & (1 << MCID::ExtraDefRegAllocReq);
    458   }
    459 
    460 
    461   /// getImplicitUses - Return a list of registers that are potentially
    462   /// read by any instance of this machine instruction.  For example, on X86,
    463   /// the "adc" instruction adds two register operands and adds the carry bit in
    464   /// from the flags register.  In this case, the instruction is marked as
    465   /// implicitly reading the flags.  Likewise, the variable shift instruction on
    466   /// X86 is marked as implicitly reading the 'CL' register, which it always
    467   /// does.
    468   ///
    469   /// This method returns null if the instruction has no implicit uses.
    470   const uint16_t *getImplicitUses() const {
    471     return ImplicitUses;
    472   }
    473 
    474   /// \brief Return the number of implicit uses this instruction has.
    475   unsigned getNumImplicitUses() const {
    476     if (ImplicitUses == 0) return 0;
    477     unsigned i = 0;
    478     for (; ImplicitUses[i]; ++i) /*empty*/;
    479     return i;
    480   }
    481 
    482   /// getImplicitDefs - Return a list of registers that are potentially
    483   /// written by any instance of this machine instruction.  For example, on X86,
    484   /// many instructions implicitly set the flags register.  In this case, they
    485   /// are marked as setting the FLAGS.  Likewise, many instructions always
    486   /// deposit their result in a physical register.  For example, the X86 divide
    487   /// instruction always deposits the quotient and remainder in the EAX/EDX
    488   /// registers.  For that instruction, this will return a list containing the
    489   /// EAX/EDX/EFLAGS registers.
    490   ///
    491   /// This method returns null if the instruction has no implicit defs.
    492   const uint16_t *getImplicitDefs() const {
    493     return ImplicitDefs;
    494   }
    495 
    496   /// \brief Return the number of implicit defs this instruct has.
    497   unsigned getNumImplicitDefs() const {
    498     if (ImplicitDefs == 0) return 0;
    499     unsigned i = 0;
    500     for (; ImplicitDefs[i]; ++i) /*empty*/;
    501     return i;
    502   }
    503 
    504   /// \brief Return true if this instruction implicitly
    505   /// uses the specified physical register.
    506   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
    507     if (const uint16_t *ImpUses = ImplicitUses)
    508       for (; *ImpUses; ++ImpUses)
    509         if (*ImpUses == Reg) return true;
    510     return false;
    511   }
    512 
    513   /// \brief Return true if this instruction implicitly
    514   /// defines the specified physical register.
    515   bool hasImplicitDefOfPhysReg(unsigned Reg,
    516                                const MCRegisterInfo *MRI = 0) const {
    517     if (const uint16_t *ImpDefs = ImplicitDefs)
    518       for (; *ImpDefs; ++ImpDefs)
    519         if (*ImpDefs == Reg || (MRI && MRI->isSubRegister(Reg, *ImpDefs)))
    520             return true;
    521     return false;
    522   }
    523 
    524   /// \brief Return true if this instruction defines the specified physical
    525   /// register, either explicitly or implicitly.
    526   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
    527                        const MCRegisterInfo &RI) const {
    528     for (int i = 0, e = NumDefs; i != e; ++i)
    529       if (MI.getOperand(i).isReg() &&
    530           RI.isSubRegisterEq(Reg, MI.getOperand(i).getReg()))
    531         return true;
    532     return hasImplicitDefOfPhysReg(Reg, &RI);
    533   }
    534 
    535   /// \brief Return the scheduling class for this instruction.  The
    536   /// scheduling class is an index into the InstrItineraryData table.  This
    537   /// returns zero if there is no known scheduling information for the
    538   /// instruction.
    539   unsigned getSchedClass() const {
    540     return SchedClass;
    541   }
    542 
    543   /// \brief Return the number of bytes in the encoding of this instruction,
    544   /// or zero if the encoding size cannot be known from the opcode.
    545   unsigned getSize() const {
    546     return Size;
    547   }
    548 
    549   /// \brief Find the index of the first operand in the
    550   /// operand list that is used to represent the predicate. It returns -1 if
    551   /// none is found.
    552   int findFirstPredOperandIdx() const {
    553     if (isPredicable()) {
    554       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    555         if (OpInfo[i].isPredicate())
    556           return i;
    557     }
    558     return -1;
    559   }
    560 };
    561 
    562 } // end namespace llvm
    563 
    564 #endif
    565