Home | History | Annotate | Download | only in CodeGen
      1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TargetRegisterInfo interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetRegisterInfo.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/VirtRegMap.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 
     21 using namespace llvm;
     22 
     23 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
     24                              regclass_iterator RCB, regclass_iterator RCE,
     25                              const char *const *SRINames,
     26                              const unsigned *SRILaneMasks)
     27   : InfoDesc(ID), SubRegIndexNames(SRINames),
     28     SubRegIndexLaneMasks(SRILaneMasks),
     29     RegClassBegin(RCB), RegClassEnd(RCE) {
     30 }
     31 
     32 TargetRegisterInfo::~TargetRegisterInfo() {}
     33 
     34 void PrintReg::print(raw_ostream &OS) const {
     35   if (!Reg)
     36     OS << "%noreg";
     37   else if (TargetRegisterInfo::isStackSlot(Reg))
     38     OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
     39   else if (TargetRegisterInfo::isVirtualRegister(Reg))
     40     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
     41   else if (TRI && Reg < TRI->getNumRegs())
     42     OS << '%' << TRI->getName(Reg);
     43   else
     44     OS << "%physreg" << Reg;
     45   if (SubIdx) {
     46     if (TRI)
     47       OS << ':' << TRI->getSubRegIndexName(SubIdx);
     48     else
     49       OS << ":sub(" << SubIdx << ')';
     50   }
     51 }
     52 
     53 void PrintRegUnit::print(raw_ostream &OS) const {
     54   // Generic printout when TRI is missing.
     55   if (!TRI) {
     56     OS << "Unit~" << Unit;
     57     return;
     58   }
     59 
     60   // Check for invalid register units.
     61   if (Unit >= TRI->getNumRegUnits()) {
     62     OS << "BadUnit~" << Unit;
     63     return;
     64   }
     65 
     66   // Normal units have at least one root.
     67   MCRegUnitRootIterator Roots(Unit, TRI);
     68   assert(Roots.isValid() && "Unit has no roots.");
     69   OS << TRI->getName(*Roots);
     70   for (++Roots; Roots.isValid(); ++Roots)
     71     OS << '~' << TRI->getName(*Roots);
     72 }
     73 
     74 /// getAllocatableClass - Return the maximal subclass of the given register
     75 /// class that is alloctable, or NULL.
     76 const TargetRegisterClass *
     77 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
     78   if (!RC || RC->isAllocatable())
     79     return RC;
     80 
     81   const unsigned *SubClass = RC->getSubClassMask();
     82   for (unsigned Base = 0, BaseE = getNumRegClasses();
     83        Base < BaseE; Base += 32) {
     84     unsigned Idx = Base;
     85     for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
     86       unsigned Offset = CountTrailingZeros_32(Mask);
     87       const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
     88       if (SubRC->isAllocatable())
     89         return SubRC;
     90       Mask >>= Offset;
     91       Idx += Offset + 1;
     92     }
     93   }
     94   return NULL;
     95 }
     96 
     97 /// getMinimalPhysRegClass - Returns the Register Class of a physical
     98 /// register of the given type, picking the most sub register class of
     99 /// the right type that contains this physreg.
    100 const TargetRegisterClass *
    101 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
    102   assert(isPhysicalRegister(reg) && "reg must be a physical register");
    103 
    104   // Pick the most sub register class of the right type that contains
    105   // this physreg.
    106   const TargetRegisterClass* BestRC = 0;
    107   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
    108     const TargetRegisterClass* RC = *I;
    109     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
    110         (!BestRC || BestRC->hasSubClass(RC)))
    111       BestRC = RC;
    112   }
    113 
    114   assert(BestRC && "Couldn't find the register class");
    115   return BestRC;
    116 }
    117 
    118 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
    119 /// registers for the specific register class.
    120 static void getAllocatableSetForRC(const MachineFunction &MF,
    121                                    const TargetRegisterClass *RC, BitVector &R){
    122   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
    123   ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF);
    124   for (unsigned i = 0; i != Order.size(); ++i)
    125     R.set(Order[i]);
    126 }
    127 
    128 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
    129                                           const TargetRegisterClass *RC) const {
    130   BitVector Allocatable(getNumRegs());
    131   if (RC) {
    132     // A register class with no allocatable subclass returns an empty set.
    133     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
    134     if (SubClass)
    135       getAllocatableSetForRC(MF, SubClass, Allocatable);
    136   } else {
    137     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
    138          E = regclass_end(); I != E; ++I)
    139       if ((*I)->isAllocatable())
    140         getAllocatableSetForRC(MF, *I, Allocatable);
    141   }
    142 
    143   // Mask out the reserved registers
    144   BitVector Reserved = getReservedRegs(MF);
    145   Allocatable &= Reserved.flip();
    146 
    147   return Allocatable;
    148 }
    149 
    150 static inline
    151 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
    152                                             const uint32_t *B,
    153                                             const TargetRegisterInfo *TRI) {
    154   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
    155     if (unsigned Common = *A++ & *B++)
    156       return TRI->getRegClass(I + CountTrailingZeros_32(Common));
    157   return 0;
    158 }
    159 
    160 const TargetRegisterClass *
    161 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
    162                                       const TargetRegisterClass *B) const {
    163   // First take care of the trivial cases.
    164   if (A == B)
    165     return A;
    166   if (!A || !B)
    167     return 0;
    168 
    169   // Register classes are ordered topologically, so the largest common
    170   // sub-class it the common sub-class with the smallest ID.
    171   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
    172 }
    173 
    174 const TargetRegisterClass *
    175 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
    176                                              const TargetRegisterClass *B,
    177                                              unsigned Idx) const {
    178   assert(A && B && "Missing register class");
    179   assert(Idx && "Bad sub-register index");
    180 
    181   // Find Idx in the list of super-register indices.
    182   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
    183     if (RCI.getSubReg() == Idx)
    184       // The bit mask contains all register classes that are projected into B
    185       // by Idx. Find a class that is also a sub-class of A.
    186       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
    187   return 0;
    188 }
    189 
    190 const TargetRegisterClass *TargetRegisterInfo::
    191 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    192                        const TargetRegisterClass *RCB, unsigned SubB,
    193                        unsigned &PreA, unsigned &PreB) const {
    194   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
    195 
    196   // Search all pairs of sub-register indices that project into RCA and RCB
    197   // respectively. This is quadratic, but usually the sets are very small. On
    198   // most targets like X86, there will only be a single sub-register index
    199   // (e.g., sub_16bit projecting into GR16).
    200   //
    201   // The worst case is a register class like DPR on ARM.
    202   // We have indices dsub_0..dsub_7 projecting into that class.
    203   //
    204   // It is very common that one register class is a sub-register of the other.
    205   // Arrange for RCA to be the larger register so the answer will be found in
    206   // the first iteration. This makes the search linear for the most common
    207   // case.
    208   const TargetRegisterClass *BestRC = 0;
    209   unsigned *BestPreA = &PreA;
    210   unsigned *BestPreB = &PreB;
    211   if (RCA->getSize() < RCB->getSize()) {
    212     std::swap(RCA, RCB);
    213     std::swap(SubA, SubB);
    214     std::swap(BestPreA, BestPreB);
    215   }
    216 
    217   // Also terminate the search one we have found a register class as small as
    218   // RCA.
    219   unsigned MinSize = RCA->getSize();
    220 
    221   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
    222     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
    223     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
    224       // Check if a common super-register class exists for this index pair.
    225       const TargetRegisterClass *RC =
    226         firstCommonClass(IA.getMask(), IB.getMask(), this);
    227       if (!RC || RC->getSize() < MinSize)
    228         continue;
    229 
    230       // The indexes must compose identically: PreA+SubA == PreB+SubB.
    231       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
    232       if (FinalA != FinalB)
    233         continue;
    234 
    235       // Is RC a better candidate than BestRC?
    236       if (BestRC && RC->getSize() >= BestRC->getSize())
    237         continue;
    238 
    239       // Yes, RC is the smallest super-register seen so far.
    240       BestRC = RC;
    241       *BestPreA = IA.getSubReg();
    242       *BestPreB = IB.getSubReg();
    243 
    244       // Bail early if we reached MinSize. We won't find a better candidate.
    245       if (BestRC->getSize() == MinSize)
    246         return BestRC;
    247     }
    248   }
    249   return BestRC;
    250 }
    251 
    252 // Compute target-independent register allocator hints to help eliminate copies.
    253 void
    254 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
    255                                           ArrayRef<MCPhysReg> Order,
    256                                           SmallVectorImpl<MCPhysReg> &Hints,
    257                                           const MachineFunction &MF,
    258                                           const VirtRegMap *VRM) const {
    259   const MachineRegisterInfo &MRI = MF.getRegInfo();
    260   std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
    261 
    262   // Hints with HintType != 0 were set by target-dependent code.
    263   // Such targets must provide their own implementation of
    264   // TRI::getRegAllocationHints to interpret those hint types.
    265   assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
    266 
    267   // Target-independent hints are either a physical or a virtual register.
    268   unsigned Phys = Hint.second;
    269   if (VRM && isVirtualRegister(Phys))
    270     Phys = VRM->getPhys(Phys);
    271 
    272   // Check that Phys is a valid hint in VirtReg's register class.
    273   if (!isPhysicalRegister(Phys))
    274     return;
    275   if (MRI.isReserved(Phys))
    276     return;
    277   // Check that Phys is in the allocation order. We shouldn't heed hints
    278   // from VirtReg's register class if they aren't in the allocation order. The
    279   // target probably has a reason for removing the register.
    280   if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
    281     return;
    282 
    283   // All clear, tell the register allocator to prefer this register.
    284   Hints.push_back(Phys);
    285 }
    286