Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a wrapper around MCSchedModel that allows the interface
     11 // to benefit from information currently only available in TargetInstrInfo.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/TargetSchedule.h"
     16 #include "llvm/Support/CommandLine.h"
     17 #include "llvm/Support/raw_ostream.h"
     18 #include "llvm/Target/TargetInstrInfo.h"
     19 #include "llvm/Target/TargetMachine.h"
     20 #include "llvm/Target/TargetRegisterInfo.h"
     21 #include "llvm/Target/TargetSubtargetInfo.h"
     22 
     23 using namespace llvm;
     24 
     25 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
     26   cl::desc("Use TargetSchedModel for latency lookup"));
     27 
     28 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
     29   cl::desc("Use InstrItineraryData for latency lookup"));
     30 
     31 bool TargetSchedModel::hasInstrSchedModel() const {
     32   return EnableSchedModel && SchedModel.hasInstrSchedModel();
     33 }
     34 
     35 bool TargetSchedModel::hasInstrItineraries() const {
     36   return EnableSchedItins && !InstrItins.isEmpty();
     37 }
     38 
     39 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
     40   // Dividend and Divisor will be naturally swapped as needed.
     41   while(Divisor) {
     42     unsigned Rem = Dividend % Divisor;
     43     Dividend = Divisor;
     44     Divisor = Rem;
     45   };
     46   return Dividend;
     47 }
     48 static unsigned lcm(unsigned A, unsigned B) {
     49   unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
     50   assert((LCM >= A && LCM >= B) && "LCM overflow");
     51   return LCM;
     52 }
     53 
     54 void TargetSchedModel::init(const MCSchedModel &sm,
     55                             const TargetSubtargetInfo *sti,
     56                             const TargetInstrInfo *tii) {
     57   SchedModel = sm;
     58   STI = sti;
     59   TII = tii;
     60   STI->initInstrItins(InstrItins);
     61 
     62   unsigned NumRes = SchedModel.getNumProcResourceKinds();
     63   ResourceFactors.resize(NumRes);
     64   ResourceLCM = SchedModel.IssueWidth;
     65   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
     66     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
     67     if (NumUnits > 0)
     68       ResourceLCM = lcm(ResourceLCM, NumUnits);
     69   }
     70   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
     71   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
     72     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
     73     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
     74   }
     75 }
     76 
     77 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
     78                                           const MCSchedClassDesc *SC) const {
     79   if (hasInstrItineraries()) {
     80     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
     81     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
     82   }
     83   if (hasInstrSchedModel()) {
     84     if (!SC)
     85       SC = resolveSchedClass(MI);
     86     if (SC->isValid())
     87       return SC->NumMicroOps;
     88   }
     89   return MI->isTransient() ? 0 : 1;
     90 }
     91 
     92 // The machine model may explicitly specify an invalid latency, which
     93 // effectively means infinite latency. Since users of the TargetSchedule API
     94 // don't know how to handle this, we convert it to a very large latency that is
     95 // easy to distinguish when debugging the DAG but won't induce overflow.
     96 static unsigned convertLatency(int Cycles) {
     97   return Cycles >= 0 ? Cycles : 1000;
     98 }
     99 
    100 /// If we can determine the operand latency from the def only, without machine
    101 /// model or itinerary lookup, do so. Otherwise return -1.
    102 int TargetSchedModel::getDefLatency(const MachineInstr *DefMI,
    103                                     bool FindMin) const {
    104 
    105   // Return a latency based on the itinerary properties and defining instruction
    106   // if possible. Some common subtargets don't require per-operand latency,
    107   // especially for minimum latencies.
    108   if (FindMin) {
    109     // If MinLatency is invalid, then use the itinerary for MinLatency. If no
    110     // itinerary exists either, then use single cycle latency.
    111     if (SchedModel.MinLatency < 0 && !hasInstrItineraries()) {
    112       return 1;
    113     }
    114     return SchedModel.MinLatency;
    115   }
    116   else if (!hasInstrSchedModel() && !hasInstrItineraries()) {
    117     return TII->defaultDefLatency(&SchedModel, DefMI);
    118   }
    119   // ...operand lookup required
    120   return -1;
    121 }
    122 
    123 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
    124 /// evaluation of predicates that depend on instruction operands or flags.
    125 const MCSchedClassDesc *TargetSchedModel::
    126 resolveSchedClass(const MachineInstr *MI) const {
    127 
    128   // Get the definition's scheduling class descriptor from this machine model.
    129   unsigned SchedClass = MI->getDesc().getSchedClass();
    130   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
    131 
    132 #ifndef NDEBUG
    133   unsigned NIter = 0;
    134 #endif
    135   while (SCDesc->isVariant()) {
    136     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
    137 
    138     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
    139     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
    140   }
    141   return SCDesc;
    142 }
    143 
    144 /// Find the def index of this operand. This index maps to the machine model and
    145 /// is independent of use operands. Def operands may be reordered with uses or
    146 /// merged with uses without affecting the def index (e.g. before/after
    147 /// regalloc). However, an instruction's def operands must never be reordered
    148 /// with respect to each other.
    149 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
    150   unsigned DefIdx = 0;
    151   for (unsigned i = 0; i != DefOperIdx; ++i) {
    152     const MachineOperand &MO = MI->getOperand(i);
    153     if (MO.isReg() && MO.isDef())
    154       ++DefIdx;
    155   }
    156   return DefIdx;
    157 }
    158 
    159 /// Find the use index of this operand. This is independent of the instruction's
    160 /// def operands.
    161 ///
    162 /// Note that uses are not determined by the operand's isUse property, which
    163 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
    164 /// a "use". The machine model allows an operand to be both a Def and Use.
    165 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
    166   unsigned UseIdx = 0;
    167   for (unsigned i = 0; i != UseOperIdx; ++i) {
    168     const MachineOperand &MO = MI->getOperand(i);
    169     if (MO.isReg() && MO.readsReg())
    170       ++UseIdx;
    171   }
    172   return UseIdx;
    173 }
    174 
    175 // Top-level API for clients that know the operand indices.
    176 unsigned TargetSchedModel::computeOperandLatency(
    177   const MachineInstr *DefMI, unsigned DefOperIdx,
    178   const MachineInstr *UseMI, unsigned UseOperIdx,
    179   bool FindMin) const {
    180 
    181   int DefLatency = getDefLatency(DefMI, FindMin);
    182   if (DefLatency >= 0)
    183     return DefLatency;
    184 
    185   if (hasInstrItineraries()) {
    186     int OperLatency = 0;
    187     if (UseMI) {
    188       OperLatency =
    189         TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, UseMI, UseOperIdx);
    190     }
    191     else {
    192       unsigned DefClass = DefMI->getDesc().getSchedClass();
    193       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
    194     }
    195     if (OperLatency >= 0)
    196       return OperLatency;
    197 
    198     // No operand latency was found.
    199     unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
    200 
    201     // Expected latency is the max of the stage latency and itinerary props.
    202     // Rather than directly querying InstrItins stage latency, we call a TII
    203     // hook to allow subtargets to specialize latency. This hook is only
    204     // applicable to the InstrItins model. InstrSchedModel should model all
    205     // special cases without TII hooks.
    206     if (!FindMin)
    207       InstrLatency = std::max(InstrLatency,
    208                               TII->defaultDefLatency(&SchedModel, DefMI));
    209     return InstrLatency;
    210   }
    211   assert(!FindMin && hasInstrSchedModel() &&
    212          "Expected a SchedModel for this cpu");
    213   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
    214   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
    215   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
    216     // Lookup the definition's write latency in SubtargetInfo.
    217     const MCWriteLatencyEntry *WLEntry =
    218       STI->getWriteLatencyEntry(SCDesc, DefIdx);
    219     unsigned WriteID = WLEntry->WriteResourceID;
    220     unsigned Latency = convertLatency(WLEntry->Cycles);
    221     if (!UseMI)
    222       return Latency;
    223 
    224     // Lookup the use's latency adjustment in SubtargetInfo.
    225     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
    226     if (UseDesc->NumReadAdvanceEntries == 0)
    227       return Latency;
    228     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
    229     return Latency - STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
    230   }
    231   // If DefIdx does not exist in the model (e.g. implicit defs), then return
    232   // unit latency (defaultDefLatency may be too conservative).
    233 #ifndef NDEBUG
    234   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
    235       && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) {
    236     std::string Err;
    237     raw_string_ostream ss(Err);
    238     ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
    239        << *DefMI;
    240     report_fatal_error(ss.str());
    241   }
    242 #endif
    243   // FIXME: Automatically giving all implicit defs defaultDefLatency is
    244   // undesirable. We should only do it for defs that are known to the MC
    245   // desc like flags. Truly implicit defs should get 1 cycle latency.
    246   return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI);
    247 }
    248 
    249 unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const {
    250   // For the itinerary model, fall back to the old subtarget hook.
    251   // Allow subtargets to compute Bundle latencies outside the machine model.
    252   if (hasInstrItineraries() || MI->isBundle())
    253     return TII->getInstrLatency(&InstrItins, MI);
    254 
    255   if (hasInstrSchedModel()) {
    256     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
    257     if (SCDesc->isValid()) {
    258       unsigned Latency = 0;
    259       for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
    260            DefIdx != DefEnd; ++DefIdx) {
    261         // Lookup the definition's write latency in SubtargetInfo.
    262         const MCWriteLatencyEntry *WLEntry =
    263           STI->getWriteLatencyEntry(SCDesc, DefIdx);
    264         Latency = std::max(Latency, convertLatency(WLEntry->Cycles));
    265       }
    266       return Latency;
    267     }
    268   }
    269   return TII->defaultDefLatency(&SchedModel, MI);
    270 }
    271 
    272 unsigned TargetSchedModel::
    273 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
    274                      const MachineInstr *DepMI) const {
    275   // MinLatency == -1 is for in-order processors that always have unit
    276   // MinLatency. MinLatency > 0 is for in-order processors with varying min
    277   // latencies, but since this is not a RAW dep, we always use unit latency.
    278   if (SchedModel.MinLatency != 0)
    279     return 1;
    280 
    281   // MinLatency == 0 indicates an out-of-order processor that can dispatch
    282   // WAW dependencies in the same cycle.
    283 
    284   // Treat predication as a data dependency for out-of-order cpus. In-order
    285   // cpus do not need to treat predicated writes specially.
    286   //
    287   // TODO: The following hack exists because predication passes do not
    288   // correctly append imp-use operands, and readsReg() strangely returns false
    289   // for predicated defs.
    290   unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
    291   const MachineFunction &MF = *DefMI->getParent()->getParent();
    292   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
    293   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
    294     return computeInstrLatency(DefMI);
    295 
    296   // If we have a per operand scheduling model, check if this def is writing
    297   // an unbuffered resource. If so, it treated like an in-order cpu.
    298   if (hasInstrSchedModel()) {
    299     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
    300     if (SCDesc->isValid()) {
    301       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
    302              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
    303         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->IsBuffered)
    304           return 1;
    305       }
    306     }
    307   }
    308   return 0;
    309 }
    310