Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTMutationListener.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/DeclTemplate.h"
     22 #include "clang/AST/EvaluatedExprVisitor.h"
     23 #include "clang/AST/Expr.h"
     24 #include "clang/AST/ExprCXX.h"
     25 #include "clang/AST/ExprObjC.h"
     26 #include "clang/AST/RecursiveASTVisitor.h"
     27 #include "clang/AST/TypeLoc.h"
     28 #include "clang/Basic/PartialDiagnostic.h"
     29 #include "clang/Basic/SourceManager.h"
     30 #include "clang/Basic/TargetInfo.h"
     31 #include "clang/Lex/LiteralSupport.h"
     32 #include "clang/Lex/Preprocessor.h"
     33 #include "clang/Sema/AnalysisBasedWarnings.h"
     34 #include "clang/Sema/DeclSpec.h"
     35 #include "clang/Sema/DelayedDiagnostic.h"
     36 #include "clang/Sema/Designator.h"
     37 #include "clang/Sema/Initialization.h"
     38 #include "clang/Sema/Lookup.h"
     39 #include "clang/Sema/ParsedTemplate.h"
     40 #include "clang/Sema/Scope.h"
     41 #include "clang/Sema/ScopeInfo.h"
     42 #include "clang/Sema/SemaFixItUtils.h"
     43 #include "clang/Sema/Template.h"
     44 using namespace clang;
     45 using namespace sema;
     46 
     47 /// \brief Determine whether the use of this declaration is valid, without
     48 /// emitting diagnostics.
     49 bool Sema::CanUseDecl(NamedDecl *D) {
     50   // See if this is an auto-typed variable whose initializer we are parsing.
     51   if (ParsingInitForAutoVars.count(D))
     52     return false;
     53 
     54   // See if this is a deleted function.
     55   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     56     if (FD->isDeleted())
     57       return false;
     58   }
     59 
     60   // See if this function is unavailable.
     61   if (D->getAvailability() == AR_Unavailable &&
     62       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     63     return false;
     64 
     65   return true;
     66 }
     67 
     68 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     69   // Warn if this is used but marked unused.
     70   if (D->hasAttr<UnusedAttr>()) {
     71     const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
     72     if (!DC->hasAttr<UnusedAttr>())
     73       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     74   }
     75 }
     76 
     77 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
     78                               NamedDecl *D, SourceLocation Loc,
     79                               const ObjCInterfaceDecl *UnknownObjCClass) {
     80   // See if this declaration is unavailable or deprecated.
     81   std::string Message;
     82   AvailabilityResult Result = D->getAvailability(&Message);
     83   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
     84     if (Result == AR_Available) {
     85       const DeclContext *DC = ECD->getDeclContext();
     86       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
     87         Result = TheEnumDecl->getAvailability(&Message);
     88     }
     89 
     90   const ObjCPropertyDecl *ObjCPDecl = 0;
     91   if (Result == AR_Deprecated || Result == AR_Unavailable) {
     92     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
     93       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
     94         AvailabilityResult PDeclResult = PD->getAvailability(0);
     95         if (PDeclResult == Result)
     96           ObjCPDecl = PD;
     97       }
     98     }
     99   }
    100 
    101   switch (Result) {
    102     case AR_Available:
    103     case AR_NotYetIntroduced:
    104       break;
    105 
    106     case AR_Deprecated:
    107       S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
    108       break;
    109 
    110     case AR_Unavailable:
    111       if (S.getCurContextAvailability() != AR_Unavailable) {
    112         if (Message.empty()) {
    113           if (!UnknownObjCClass) {
    114             S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
    115             if (ObjCPDecl)
    116               S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
    117                 << ObjCPDecl->getDeclName() << 1;
    118           }
    119           else
    120             S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
    121               << D->getDeclName();
    122         }
    123         else
    124           S.Diag(Loc, diag::err_unavailable_message)
    125             << D->getDeclName() << Message;
    126         S.Diag(D->getLocation(), diag::note_unavailable_here)
    127                   << isa<FunctionDecl>(D) << false;
    128         if (ObjCPDecl)
    129           S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
    130           << ObjCPDecl->getDeclName() << 1;
    131       }
    132       break;
    133     }
    134     return Result;
    135 }
    136 
    137 /// \brief Emit a note explaining that this function is deleted or unavailable.
    138 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    139   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    140 
    141   if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
    142     // If the method was explicitly defaulted, point at that declaration.
    143     if (!Method->isImplicit())
    144       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    145 
    146     // Try to diagnose why this special member function was implicitly
    147     // deleted. This might fail, if that reason no longer applies.
    148     CXXSpecialMember CSM = getSpecialMember(Method);
    149     if (CSM != CXXInvalid)
    150       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
    151 
    152     return;
    153   }
    154 
    155   Diag(Decl->getLocation(), diag::note_unavailable_here)
    156     << 1 << Decl->isDeleted();
    157 }
    158 
    159 /// \brief Determine whether a FunctionDecl was ever declared with an
    160 /// explicit storage class.
    161 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    162   for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
    163                                      E = D->redecls_end();
    164        I != E; ++I) {
    165     if (I->getStorageClassAsWritten() != SC_None)
    166       return true;
    167   }
    168   return false;
    169 }
    170 
    171 /// \brief Check whether we're in an extern inline function and referring to a
    172 /// variable or function with internal linkage (C11 6.7.4p3).
    173 ///
    174 /// This is only a warning because we used to silently accept this code, but
    175 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    176 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    177 /// and so while there may still be user mistakes, most of the time we can't
    178 /// prove that there are errors.
    179 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    180                                                       const NamedDecl *D,
    181                                                       SourceLocation Loc) {
    182   // This is disabled under C++; there are too many ways for this to fire in
    183   // contexts where the warning is a false positive, or where it is technically
    184   // correct but benign.
    185   if (S.getLangOpts().CPlusPlus)
    186     return;
    187 
    188   // Check if this is an inlined function or method.
    189   FunctionDecl *Current = S.getCurFunctionDecl();
    190   if (!Current)
    191     return;
    192   if (!Current->isInlined())
    193     return;
    194   if (Current->getLinkage() != ExternalLinkage)
    195     return;
    196 
    197   // Check if the decl has internal linkage.
    198   if (D->getLinkage() != InternalLinkage)
    199     return;
    200 
    201   // Downgrade from ExtWarn to Extension if
    202   //  (1) the supposedly external inline function is in the main file,
    203   //      and probably won't be included anywhere else.
    204   //  (2) the thing we're referencing is a pure function.
    205   //  (3) the thing we're referencing is another inline function.
    206   // This last can give us false negatives, but it's better than warning on
    207   // wrappers for simple C library functions.
    208   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    209   bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
    210   if (!DowngradeWarning && UsedFn)
    211     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    212 
    213   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
    214                                : diag::warn_internal_in_extern_inline)
    215     << /*IsVar=*/!UsedFn << D;
    216 
    217   // Suggest "static" on the inline function, if possible.
    218   if (!hasAnyExplicitStorageClass(Current)) {
    219     const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
    220     SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
    221     S.Diag(DeclBegin, diag::note_convert_inline_to_static)
    222       << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
    223   }
    224 
    225   S.Diag(D->getCanonicalDecl()->getLocation(),
    226          diag::note_internal_decl_declared_here)
    227     << D;
    228 }
    229 
    230 /// \brief Determine whether the use of this declaration is valid, and
    231 /// emit any corresponding diagnostics.
    232 ///
    233 /// This routine diagnoses various problems with referencing
    234 /// declarations that can occur when using a declaration. For example,
    235 /// it might warn if a deprecated or unavailable declaration is being
    236 /// used, or produce an error (and return true) if a C++0x deleted
    237 /// function is being used.
    238 ///
    239 /// \returns true if there was an error (this declaration cannot be
    240 /// referenced), false otherwise.
    241 ///
    242 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    243                              const ObjCInterfaceDecl *UnknownObjCClass) {
    244   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    245     // If there were any diagnostics suppressed by template argument deduction,
    246     // emit them now.
    247     llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
    248       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    249     if (Pos != SuppressedDiagnostics.end()) {
    250       SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
    251       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
    252         Diag(Suppressed[I].first, Suppressed[I].second);
    253 
    254       // Clear out the list of suppressed diagnostics, so that we don't emit
    255       // them again for this specialization. However, we don't obsolete this
    256       // entry from the table, because we want to avoid ever emitting these
    257       // diagnostics again.
    258       Suppressed.clear();
    259     }
    260   }
    261 
    262   // See if this is an auto-typed variable whose initializer we are parsing.
    263   if (ParsingInitForAutoVars.count(D)) {
    264     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    265       << D->getDeclName();
    266     return true;
    267   }
    268 
    269   // See if this is a deleted function.
    270   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    271     if (FD->isDeleted()) {
    272       Diag(Loc, diag::err_deleted_function_use);
    273       NoteDeletedFunction(FD);
    274       return true;
    275     }
    276   }
    277   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
    278 
    279   DiagnoseUnusedOfDecl(*this, D, Loc);
    280 
    281   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    282 
    283   return false;
    284 }
    285 
    286 /// \brief Retrieve the message suffix that should be added to a
    287 /// diagnostic complaining about the given function being deleted or
    288 /// unavailable.
    289 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    290   std::string Message;
    291   if (FD->getAvailability(&Message))
    292     return ": " + Message;
    293 
    294   return std::string();
    295 }
    296 
    297 /// DiagnoseSentinelCalls - This routine checks whether a call or
    298 /// message-send is to a declaration with the sentinel attribute, and
    299 /// if so, it checks that the requirements of the sentinel are
    300 /// satisfied.
    301 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    302                                  Expr **args, unsigned numArgs) {
    303   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    304   if (!attr)
    305     return;
    306 
    307   // The number of formal parameters of the declaration.
    308   unsigned numFormalParams;
    309 
    310   // The kind of declaration.  This is also an index into a %select in
    311   // the diagnostic.
    312   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    313 
    314   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    315     numFormalParams = MD->param_size();
    316     calleeType = CT_Method;
    317   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    318     numFormalParams = FD->param_size();
    319     calleeType = CT_Function;
    320   } else if (isa<VarDecl>(D)) {
    321     QualType type = cast<ValueDecl>(D)->getType();
    322     const FunctionType *fn = 0;
    323     if (const PointerType *ptr = type->getAs<PointerType>()) {
    324       fn = ptr->getPointeeType()->getAs<FunctionType>();
    325       if (!fn) return;
    326       calleeType = CT_Function;
    327     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    328       fn = ptr->getPointeeType()->castAs<FunctionType>();
    329       calleeType = CT_Block;
    330     } else {
    331       return;
    332     }
    333 
    334     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    335       numFormalParams = proto->getNumArgs();
    336     } else {
    337       numFormalParams = 0;
    338     }
    339   } else {
    340     return;
    341   }
    342 
    343   // "nullPos" is the number of formal parameters at the end which
    344   // effectively count as part of the variadic arguments.  This is
    345   // useful if you would prefer to not have *any* formal parameters,
    346   // but the language forces you to have at least one.
    347   unsigned nullPos = attr->getNullPos();
    348   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    349   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    350 
    351   // The number of arguments which should follow the sentinel.
    352   unsigned numArgsAfterSentinel = attr->getSentinel();
    353 
    354   // If there aren't enough arguments for all the formal parameters,
    355   // the sentinel, and the args after the sentinel, complain.
    356   if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
    357     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    358     Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
    359     return;
    360   }
    361 
    362   // Otherwise, find the sentinel expression.
    363   Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
    364   if (!sentinelExpr) return;
    365   if (sentinelExpr->isValueDependent()) return;
    366   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    367 
    368   // Pick a reasonable string to insert.  Optimistically use 'nil' or
    369   // 'NULL' if those are actually defined in the context.  Only use
    370   // 'nil' for ObjC methods, where it's much more likely that the
    371   // variadic arguments form a list of object pointers.
    372   SourceLocation MissingNilLoc
    373     = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
    374   std::string NullValue;
    375   if (calleeType == CT_Method &&
    376       PP.getIdentifierInfo("nil")->hasMacroDefinition())
    377     NullValue = "nil";
    378   else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
    379     NullValue = "NULL";
    380   else
    381     NullValue = "(void*) 0";
    382 
    383   if (MissingNilLoc.isInvalid())
    384     Diag(Loc, diag::warn_missing_sentinel) << calleeType;
    385   else
    386     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    387       << calleeType
    388       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    389   Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
    390 }
    391 
    392 SourceRange Sema::getExprRange(Expr *E) const {
    393   return E ? E->getSourceRange() : SourceRange();
    394 }
    395 
    396 //===----------------------------------------------------------------------===//
    397 //  Standard Promotions and Conversions
    398 //===----------------------------------------------------------------------===//
    399 
    400 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    401 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
    402   // Handle any placeholder expressions which made it here.
    403   if (E->getType()->isPlaceholderType()) {
    404     ExprResult result = CheckPlaceholderExpr(E);
    405     if (result.isInvalid()) return ExprError();
    406     E = result.take();
    407   }
    408 
    409   QualType Ty = E->getType();
    410   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    411 
    412   if (Ty->isFunctionType())
    413     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    414                           CK_FunctionToPointerDecay).take();
    415   else if (Ty->isArrayType()) {
    416     // In C90 mode, arrays only promote to pointers if the array expression is
    417     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    418     // type 'array of type' is converted to an expression that has type 'pointer
    419     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    420     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    421     // (C90) to "an expression" (C99).
    422     //
    423     // C++ 4.2p1:
    424     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    425     // T" can be converted to an rvalue of type "pointer to T".
    426     //
    427     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    428       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    429                             CK_ArrayToPointerDecay).take();
    430   }
    431   return Owned(E);
    432 }
    433 
    434 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    435   // Check to see if we are dereferencing a null pointer.  If so,
    436   // and if not volatile-qualified, this is undefined behavior that the
    437   // optimizer will delete, so warn about it.  People sometimes try to use this
    438   // to get a deterministic trap and are surprised by clang's behavior.  This
    439   // only handles the pattern "*null", which is a very syntactic check.
    440   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    441     if (UO->getOpcode() == UO_Deref &&
    442         UO->getSubExpr()->IgnoreParenCasts()->
    443           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    444         !UO->getType().isVolatileQualified()) {
    445     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    446                           S.PDiag(diag::warn_indirection_through_null)
    447                             << UO->getSubExpr()->getSourceRange());
    448     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    449                         S.PDiag(diag::note_indirection_through_null));
    450   }
    451 }
    452 
    453 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    454   // Handle any placeholder expressions which made it here.
    455   if (E->getType()->isPlaceholderType()) {
    456     ExprResult result = CheckPlaceholderExpr(E);
    457     if (result.isInvalid()) return ExprError();
    458     E = result.take();
    459   }
    460 
    461   // C++ [conv.lval]p1:
    462   //   A glvalue of a non-function, non-array type T can be
    463   //   converted to a prvalue.
    464   if (!E->isGLValue()) return Owned(E);
    465 
    466   QualType T = E->getType();
    467   assert(!T.isNull() && "r-value conversion on typeless expression?");
    468 
    469   // We don't want to throw lvalue-to-rvalue casts on top of
    470   // expressions of certain types in C++.
    471   if (getLangOpts().CPlusPlus &&
    472       (E->getType() == Context.OverloadTy ||
    473        T->isDependentType() ||
    474        T->isRecordType()))
    475     return Owned(E);
    476 
    477   // The C standard is actually really unclear on this point, and
    478   // DR106 tells us what the result should be but not why.  It's
    479   // generally best to say that void types just doesn't undergo
    480   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    481   // 'void' type are never l-values, but qualified void can be.
    482   if (T->isVoidType())
    483     return Owned(E);
    484 
    485   // OpenCL usually rejects direct accesses to values of 'half' type.
    486   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    487       T->isHalfType()) {
    488     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    489       << 0 << T;
    490     return ExprError();
    491   }
    492 
    493   CheckForNullPointerDereference(*this, E);
    494 
    495   // C++ [conv.lval]p1:
    496   //   [...] If T is a non-class type, the type of the prvalue is the
    497   //   cv-unqualified version of T. Otherwise, the type of the
    498   //   rvalue is T.
    499   //
    500   // C99 6.3.2.1p2:
    501   //   If the lvalue has qualified type, the value has the unqualified
    502   //   version of the type of the lvalue; otherwise, the value has the
    503   //   type of the lvalue.
    504   if (T.hasQualifiers())
    505     T = T.getUnqualifiedType();
    506 
    507   UpdateMarkingForLValueToRValue(E);
    508 
    509   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    510   // balance that.
    511   if (getLangOpts().ObjCAutoRefCount &&
    512       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    513     ExprNeedsCleanups = true;
    514 
    515   ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
    516                                                   E, 0, VK_RValue));
    517 
    518   // C11 6.3.2.1p2:
    519   //   ... if the lvalue has atomic type, the value has the non-atomic version
    520   //   of the type of the lvalue ...
    521   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    522     T = Atomic->getValueType().getUnqualifiedType();
    523     Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
    524                                          Res.get(), 0, VK_RValue));
    525   }
    526 
    527   return Res;
    528 }
    529 
    530 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
    531   ExprResult Res = DefaultFunctionArrayConversion(E);
    532   if (Res.isInvalid())
    533     return ExprError();
    534   Res = DefaultLvalueConversion(Res.take());
    535   if (Res.isInvalid())
    536     return ExprError();
    537   return Res;
    538 }
    539 
    540 
    541 /// UsualUnaryConversions - Performs various conversions that are common to most
    542 /// operators (C99 6.3). The conversions of array and function types are
    543 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    544 /// apply if the array is an argument to the sizeof or address (&) operators.
    545 /// In these instances, this routine should *not* be called.
    546 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    547   // First, convert to an r-value.
    548   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    549   if (Res.isInvalid())
    550     return ExprError();
    551   E = Res.take();
    552 
    553   QualType Ty = E->getType();
    554   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    555 
    556   // Half FP have to be promoted to float unless it is natively supported
    557   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    558     return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
    559 
    560   // Try to perform integral promotions if the object has a theoretically
    561   // promotable type.
    562   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    563     // C99 6.3.1.1p2:
    564     //
    565     //   The following may be used in an expression wherever an int or
    566     //   unsigned int may be used:
    567     //     - an object or expression with an integer type whose integer
    568     //       conversion rank is less than or equal to the rank of int
    569     //       and unsigned int.
    570     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    571     //
    572     //   If an int can represent all values of the original type, the
    573     //   value is converted to an int; otherwise, it is converted to an
    574     //   unsigned int. These are called the integer promotions. All
    575     //   other types are unchanged by the integer promotions.
    576 
    577     QualType PTy = Context.isPromotableBitField(E);
    578     if (!PTy.isNull()) {
    579       E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
    580       return Owned(E);
    581     }
    582     if (Ty->isPromotableIntegerType()) {
    583       QualType PT = Context.getPromotedIntegerType(Ty);
    584       E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
    585       return Owned(E);
    586     }
    587   }
    588   return Owned(E);
    589 }
    590 
    591 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    592 /// do not have a prototype. Arguments that have type float or __fp16
    593 /// are promoted to double. All other argument types are converted by
    594 /// UsualUnaryConversions().
    595 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    596   QualType Ty = E->getType();
    597   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    598 
    599   ExprResult Res = UsualUnaryConversions(E);
    600   if (Res.isInvalid())
    601     return ExprError();
    602   E = Res.take();
    603 
    604   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    605   // double.
    606   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    607   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    608               BTy->getKind() == BuiltinType::Float))
    609     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
    610 
    611   // C++ performs lvalue-to-rvalue conversion as a default argument
    612   // promotion, even on class types, but note:
    613   //   C++11 [conv.lval]p2:
    614   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    615   //     operand or a subexpression thereof the value contained in the
    616   //     referenced object is not accessed. Otherwise, if the glvalue
    617   //     has a class type, the conversion copy-initializes a temporary
    618   //     of type T from the glvalue and the result of the conversion
    619   //     is a prvalue for the temporary.
    620   // FIXME: add some way to gate this entire thing for correctness in
    621   // potentially potentially evaluated contexts.
    622   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    623     ExprResult Temp = PerformCopyInitialization(
    624                        InitializedEntity::InitializeTemporary(E->getType()),
    625                                                 E->getExprLoc(),
    626                                                 Owned(E));
    627     if (Temp.isInvalid())
    628       return ExprError();
    629     E = Temp.get();
    630   }
    631 
    632   return Owned(E);
    633 }
    634 
    635 /// Determine the degree of POD-ness for an expression.
    636 /// Incomplete types are considered POD, since this check can be performed
    637 /// when we're in an unevaluated context.
    638 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    639   if (Ty->isIncompleteType()) {
    640     if (Ty->isObjCObjectType())
    641       return VAK_Invalid;
    642     return VAK_Valid;
    643   }
    644 
    645   if (Ty.isCXX98PODType(Context))
    646     return VAK_Valid;
    647 
    648   // C++11 [expr.call]p7:
    649   //   Passing a potentially-evaluated argument of class type (Clause 9)
    650   //   having a non-trivial copy constructor, a non-trivial move constructor,
    651   //   or a non-trivial destructor, with no corresponding parameter,
    652   //   is conditionally-supported with implementation-defined semantics.
    653   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    654     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    655       if (!Record->hasNonTrivialCopyConstructor() &&
    656           !Record->hasNonTrivialMoveConstructor() &&
    657           !Record->hasNonTrivialDestructor())
    658         return VAK_ValidInCXX11;
    659 
    660   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    661     return VAK_Valid;
    662   return VAK_Invalid;
    663 }
    664 
    665 bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
    666   // Don't allow one to pass an Objective-C interface to a vararg.
    667   const QualType & Ty = E->getType();
    668 
    669   // Complain about passing non-POD types through varargs.
    670   switch (isValidVarArgType(Ty)) {
    671   case VAK_Valid:
    672     break;
    673   case VAK_ValidInCXX11:
    674     DiagRuntimeBehavior(E->getLocStart(), 0,
    675         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    676         << E->getType() << CT);
    677     break;
    678   case VAK_Invalid: {
    679     if (Ty->isObjCObjectType())
    680       return DiagRuntimeBehavior(E->getLocStart(), 0,
    681                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    682                             << Ty << CT);
    683 
    684     return DiagRuntimeBehavior(E->getLocStart(), 0,
    685                    PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    686                    << getLangOpts().CPlusPlus11 << Ty << CT);
    687   }
    688   }
    689   // c++ rules are enforced elsewhere.
    690   return false;
    691 }
    692 
    693 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    694 /// will create a trap if the resulting type is not a POD type.
    695 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    696                                                   FunctionDecl *FDecl) {
    697   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    698     // Strip the unbridged-cast placeholder expression off, if applicable.
    699     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    700         (CT == VariadicMethod ||
    701          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    702       E = stripARCUnbridgedCast(E);
    703 
    704     // Otherwise, do normal placeholder checking.
    705     } else {
    706       ExprResult ExprRes = CheckPlaceholderExpr(E);
    707       if (ExprRes.isInvalid())
    708         return ExprError();
    709       E = ExprRes.take();
    710     }
    711   }
    712 
    713   ExprResult ExprRes = DefaultArgumentPromotion(E);
    714   if (ExprRes.isInvalid())
    715     return ExprError();
    716   E = ExprRes.take();
    717 
    718   // Diagnostics regarding non-POD argument types are
    719   // emitted along with format string checking in Sema::CheckFunctionCall().
    720   if (isValidVarArgType(E->getType()) == VAK_Invalid) {
    721     // Turn this into a trap.
    722     CXXScopeSpec SS;
    723     SourceLocation TemplateKWLoc;
    724     UnqualifiedId Name;
    725     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    726                        E->getLocStart());
    727     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    728                                           Name, true, false);
    729     if (TrapFn.isInvalid())
    730       return ExprError();
    731 
    732     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    733                                     E->getLocStart(), MultiExprArg(),
    734                                     E->getLocEnd());
    735     if (Call.isInvalid())
    736       return ExprError();
    737 
    738     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    739                                   Call.get(), E);
    740     if (Comma.isInvalid())
    741       return ExprError();
    742     return Comma.get();
    743   }
    744 
    745   if (!getLangOpts().CPlusPlus &&
    746       RequireCompleteType(E->getExprLoc(), E->getType(),
    747                           diag::err_call_incomplete_argument))
    748     return ExprError();
    749 
    750   return Owned(E);
    751 }
    752 
    753 /// \brief Converts an integer to complex float type.  Helper function of
    754 /// UsualArithmeticConversions()
    755 ///
    756 /// \return false if the integer expression is an integer type and is
    757 /// successfully converted to the complex type.
    758 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
    759                                                   ExprResult &ComplexExpr,
    760                                                   QualType IntTy,
    761                                                   QualType ComplexTy,
    762                                                   bool SkipCast) {
    763   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
    764   if (SkipCast) return false;
    765   if (IntTy->isIntegerType()) {
    766     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
    767     IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
    768     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
    769                                   CK_FloatingRealToComplex);
    770   } else {
    771     assert(IntTy->isComplexIntegerType());
    772     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
    773                                   CK_IntegralComplexToFloatingComplex);
    774   }
    775   return false;
    776 }
    777 
    778 /// \brief Takes two complex float types and converts them to the same type.
    779 /// Helper function of UsualArithmeticConversions()
    780 static QualType
    781 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
    782                                             ExprResult &RHS, QualType LHSType,
    783                                             QualType RHSType,
    784                                             bool IsCompAssign) {
    785   int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
    786 
    787   if (order < 0) {
    788     // _Complex float -> _Complex double
    789     if (!IsCompAssign)
    790       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
    791     return RHSType;
    792   }
    793   if (order > 0)
    794     // _Complex float -> _Complex double
    795     RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
    796   return LHSType;
    797 }
    798 
    799 /// \brief Converts otherExpr to complex float and promotes complexExpr if
    800 /// necessary.  Helper function of UsualArithmeticConversions()
    801 static QualType handleOtherComplexFloatConversion(Sema &S,
    802                                                   ExprResult &ComplexExpr,
    803                                                   ExprResult &OtherExpr,
    804                                                   QualType ComplexTy,
    805                                                   QualType OtherTy,
    806                                                   bool ConvertComplexExpr,
    807                                                   bool ConvertOtherExpr) {
    808   int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
    809 
    810   // If just the complexExpr is complex, the otherExpr needs to be converted,
    811   // and the complexExpr might need to be promoted.
    812   if (order > 0) { // complexExpr is wider
    813     // float -> _Complex double
    814     if (ConvertOtherExpr) {
    815       QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
    816       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
    817       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
    818                                       CK_FloatingRealToComplex);
    819     }
    820     return ComplexTy;
    821   }
    822 
    823   // otherTy is at least as wide.  Find its corresponding complex type.
    824   QualType result = (order == 0 ? ComplexTy :
    825                                   S.Context.getComplexType(OtherTy));
    826 
    827   // double -> _Complex double
    828   if (ConvertOtherExpr)
    829     OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
    830                                     CK_FloatingRealToComplex);
    831 
    832   // _Complex float -> _Complex double
    833   if (ConvertComplexExpr && order < 0)
    834     ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
    835                                       CK_FloatingComplexCast);
    836 
    837   return result;
    838 }
    839 
    840 /// \brief Handle arithmetic conversion with complex types.  Helper function of
    841 /// UsualArithmeticConversions()
    842 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
    843                                              ExprResult &RHS, QualType LHSType,
    844                                              QualType RHSType,
    845                                              bool IsCompAssign) {
    846   // if we have an integer operand, the result is the complex type.
    847   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
    848                                              /*skipCast*/false))
    849     return LHSType;
    850   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
    851                                              /*skipCast*/IsCompAssign))
    852     return RHSType;
    853 
    854   // This handles complex/complex, complex/float, or float/complex.
    855   // When both operands are complex, the shorter operand is converted to the
    856   // type of the longer, and that is the type of the result. This corresponds
    857   // to what is done when combining two real floating-point operands.
    858   // The fun begins when size promotion occur across type domains.
    859   // From H&S 6.3.4: When one operand is complex and the other is a real
    860   // floating-point type, the less precise type is converted, within it's
    861   // real or complex domain, to the precision of the other type. For example,
    862   // when combining a "long double" with a "double _Complex", the
    863   // "double _Complex" is promoted to "long double _Complex".
    864 
    865   bool LHSComplexFloat = LHSType->isComplexType();
    866   bool RHSComplexFloat = RHSType->isComplexType();
    867 
    868   // If both are complex, just cast to the more precise type.
    869   if (LHSComplexFloat && RHSComplexFloat)
    870     return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
    871                                                        LHSType, RHSType,
    872                                                        IsCompAssign);
    873 
    874   // If only one operand is complex, promote it if necessary and convert the
    875   // other operand to complex.
    876   if (LHSComplexFloat)
    877     return handleOtherComplexFloatConversion(
    878         S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
    879         /*convertOtherExpr*/ true);
    880 
    881   assert(RHSComplexFloat);
    882   return handleOtherComplexFloatConversion(
    883       S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
    884       /*convertOtherExpr*/ !IsCompAssign);
    885 }
    886 
    887 /// \brief Hande arithmetic conversion from integer to float.  Helper function
    888 /// of UsualArithmeticConversions()
    889 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
    890                                            ExprResult &IntExpr,
    891                                            QualType FloatTy, QualType IntTy,
    892                                            bool ConvertFloat, bool ConvertInt) {
    893   if (IntTy->isIntegerType()) {
    894     if (ConvertInt)
    895       // Convert intExpr to the lhs floating point type.
    896       IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
    897                                     CK_IntegralToFloating);
    898     return FloatTy;
    899   }
    900 
    901   // Convert both sides to the appropriate complex float.
    902   assert(IntTy->isComplexIntegerType());
    903   QualType result = S.Context.getComplexType(FloatTy);
    904 
    905   // _Complex int -> _Complex float
    906   if (ConvertInt)
    907     IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
    908                                   CK_IntegralComplexToFloatingComplex);
    909 
    910   // float -> _Complex float
    911   if (ConvertFloat)
    912     FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
    913                                     CK_FloatingRealToComplex);
    914 
    915   return result;
    916 }
    917 
    918 /// \brief Handle arithmethic conversion with floating point types.  Helper
    919 /// function of UsualArithmeticConversions()
    920 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
    921                                       ExprResult &RHS, QualType LHSType,
    922                                       QualType RHSType, bool IsCompAssign) {
    923   bool LHSFloat = LHSType->isRealFloatingType();
    924   bool RHSFloat = RHSType->isRealFloatingType();
    925 
    926   // If we have two real floating types, convert the smaller operand
    927   // to the bigger result.
    928   if (LHSFloat && RHSFloat) {
    929     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
    930     if (order > 0) {
    931       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
    932       return LHSType;
    933     }
    934 
    935     assert(order < 0 && "illegal float comparison");
    936     if (!IsCompAssign)
    937       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
    938     return RHSType;
    939   }
    940 
    941   if (LHSFloat)
    942     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
    943                                       /*convertFloat=*/!IsCompAssign,
    944                                       /*convertInt=*/ true);
    945   assert(RHSFloat);
    946   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
    947                                     /*convertInt=*/ true,
    948                                     /*convertFloat=*/!IsCompAssign);
    949 }
    950 
    951 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
    952 
    953 namespace {
    954 /// These helper callbacks are placed in an anonymous namespace to
    955 /// permit their use as function template parameters.
    956 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
    957   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
    958 }
    959 
    960 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
    961   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
    962                              CK_IntegralComplexCast);
    963 }
    964 }
    965 
    966 /// \brief Handle integer arithmetic conversions.  Helper function of
    967 /// UsualArithmeticConversions()
    968 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
    969 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
    970                                         ExprResult &RHS, QualType LHSType,
    971                                         QualType RHSType, bool IsCompAssign) {
    972   // The rules for this case are in C99 6.3.1.8
    973   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
    974   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
    975   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
    976   if (LHSSigned == RHSSigned) {
    977     // Same signedness; use the higher-ranked type
    978     if (order >= 0) {
    979       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
    980       return LHSType;
    981     } else if (!IsCompAssign)
    982       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
    983     return RHSType;
    984   } else if (order != (LHSSigned ? 1 : -1)) {
    985     // The unsigned type has greater than or equal rank to the
    986     // signed type, so use the unsigned type
    987     if (RHSSigned) {
    988       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
    989       return LHSType;
    990     } else if (!IsCompAssign)
    991       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
    992     return RHSType;
    993   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
    994     // The two types are different widths; if we are here, that
    995     // means the signed type is larger than the unsigned type, so
    996     // use the signed type.
    997     if (LHSSigned) {
    998       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
    999       return LHSType;
   1000     } else if (!IsCompAssign)
   1001       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
   1002     return RHSType;
   1003   } else {
   1004     // The signed type is higher-ranked than the unsigned type,
   1005     // but isn't actually any bigger (like unsigned int and long
   1006     // on most 32-bit systems).  Use the unsigned type corresponding
   1007     // to the signed type.
   1008     QualType result =
   1009       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1010     RHS = (*doRHSCast)(S, RHS.take(), result);
   1011     if (!IsCompAssign)
   1012       LHS = (*doLHSCast)(S, LHS.take(), result);
   1013     return result;
   1014   }
   1015 }
   1016 
   1017 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1018 /// of UsualArithmeticConversions()
   1019 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1020                                            ExprResult &RHS, QualType LHSType,
   1021                                            QualType RHSType,
   1022                                            bool IsCompAssign) {
   1023   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1024   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1025 
   1026   if (LHSComplexInt && RHSComplexInt) {
   1027     QualType LHSEltType = LHSComplexInt->getElementType();
   1028     QualType RHSEltType = RHSComplexInt->getElementType();
   1029     QualType ScalarType =
   1030       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1031         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1032 
   1033     return S.Context.getComplexType(ScalarType);
   1034   }
   1035 
   1036   if (LHSComplexInt) {
   1037     QualType LHSEltType = LHSComplexInt->getElementType();
   1038     QualType ScalarType =
   1039       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1040         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1041     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1042     RHS = S.ImpCastExprToType(RHS.take(), ComplexType,
   1043                               CK_IntegralRealToComplex);
   1044 
   1045     return ComplexType;
   1046   }
   1047 
   1048   assert(RHSComplexInt);
   1049 
   1050   QualType RHSEltType = RHSComplexInt->getElementType();
   1051   QualType ScalarType =
   1052     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1053       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1054   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1055 
   1056   if (!IsCompAssign)
   1057     LHS = S.ImpCastExprToType(LHS.take(), ComplexType,
   1058                               CK_IntegralRealToComplex);
   1059   return ComplexType;
   1060 }
   1061 
   1062 /// UsualArithmeticConversions - Performs various conversions that are common to
   1063 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1064 /// routine returns the first non-arithmetic type found. The client is
   1065 /// responsible for emitting appropriate error diagnostics.
   1066 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1067                                           bool IsCompAssign) {
   1068   if (!IsCompAssign) {
   1069     LHS = UsualUnaryConversions(LHS.take());
   1070     if (LHS.isInvalid())
   1071       return QualType();
   1072   }
   1073 
   1074   RHS = UsualUnaryConversions(RHS.take());
   1075   if (RHS.isInvalid())
   1076     return QualType();
   1077 
   1078   // For conversion purposes, we ignore any qualifiers.
   1079   // For example, "const float" and "float" are equivalent.
   1080   QualType LHSType =
   1081     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1082   QualType RHSType =
   1083     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1084 
   1085   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1086   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1087     LHSType = AtomicLHS->getValueType();
   1088 
   1089   // If both types are identical, no conversion is needed.
   1090   if (LHSType == RHSType)
   1091     return LHSType;
   1092 
   1093   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1094   // The caller can deal with this (e.g. pointer + int).
   1095   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1096     return QualType();
   1097 
   1098   // Apply unary and bitfield promotions to the LHS's type.
   1099   QualType LHSUnpromotedType = LHSType;
   1100   if (LHSType->isPromotableIntegerType())
   1101     LHSType = Context.getPromotedIntegerType(LHSType);
   1102   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1103   if (!LHSBitfieldPromoteTy.isNull())
   1104     LHSType = LHSBitfieldPromoteTy;
   1105   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1106     LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
   1107 
   1108   // If both types are identical, no conversion is needed.
   1109   if (LHSType == RHSType)
   1110     return LHSType;
   1111 
   1112   // At this point, we have two different arithmetic types.
   1113 
   1114   // Handle complex types first (C99 6.3.1.8p1).
   1115   if (LHSType->isComplexType() || RHSType->isComplexType())
   1116     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1117                                         IsCompAssign);
   1118 
   1119   // Now handle "real" floating types (i.e. float, double, long double).
   1120   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1121     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1122                                  IsCompAssign);
   1123 
   1124   // Handle GCC complex int extension.
   1125   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1126     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1127                                       IsCompAssign);
   1128 
   1129   // Finally, we have two differing integer types.
   1130   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1131            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1132 }
   1133 
   1134 
   1135 //===----------------------------------------------------------------------===//
   1136 //  Semantic Analysis for various Expression Types
   1137 //===----------------------------------------------------------------------===//
   1138 
   1139 
   1140 ExprResult
   1141 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1142                                 SourceLocation DefaultLoc,
   1143                                 SourceLocation RParenLoc,
   1144                                 Expr *ControllingExpr,
   1145                                 MultiTypeArg ArgTypes,
   1146                                 MultiExprArg ArgExprs) {
   1147   unsigned NumAssocs = ArgTypes.size();
   1148   assert(NumAssocs == ArgExprs.size());
   1149 
   1150   ParsedType *ParsedTypes = ArgTypes.data();
   1151   Expr **Exprs = ArgExprs.data();
   1152 
   1153   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1154   for (unsigned i = 0; i < NumAssocs; ++i) {
   1155     if (ParsedTypes[i])
   1156       (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
   1157     else
   1158       Types[i] = 0;
   1159   }
   1160 
   1161   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1162                                              ControllingExpr, Types, Exprs,
   1163                                              NumAssocs);
   1164   delete [] Types;
   1165   return ER;
   1166 }
   1167 
   1168 ExprResult
   1169 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1170                                  SourceLocation DefaultLoc,
   1171                                  SourceLocation RParenLoc,
   1172                                  Expr *ControllingExpr,
   1173                                  TypeSourceInfo **Types,
   1174                                  Expr **Exprs,
   1175                                  unsigned NumAssocs) {
   1176   if (ControllingExpr->getType()->isPlaceholderType()) {
   1177     ExprResult result = CheckPlaceholderExpr(ControllingExpr);
   1178     if (result.isInvalid()) return ExprError();
   1179     ControllingExpr = result.take();
   1180   }
   1181 
   1182   bool TypeErrorFound = false,
   1183        IsResultDependent = ControllingExpr->isTypeDependent(),
   1184        ContainsUnexpandedParameterPack
   1185          = ControllingExpr->containsUnexpandedParameterPack();
   1186 
   1187   for (unsigned i = 0; i < NumAssocs; ++i) {
   1188     if (Exprs[i]->containsUnexpandedParameterPack())
   1189       ContainsUnexpandedParameterPack = true;
   1190 
   1191     if (Types[i]) {
   1192       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1193         ContainsUnexpandedParameterPack = true;
   1194 
   1195       if (Types[i]->getType()->isDependentType()) {
   1196         IsResultDependent = true;
   1197       } else {
   1198         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1199         // complete object type other than a variably modified type."
   1200         unsigned D = 0;
   1201         if (Types[i]->getType()->isIncompleteType())
   1202           D = diag::err_assoc_type_incomplete;
   1203         else if (!Types[i]->getType()->isObjectType())
   1204           D = diag::err_assoc_type_nonobject;
   1205         else if (Types[i]->getType()->isVariablyModifiedType())
   1206           D = diag::err_assoc_type_variably_modified;
   1207 
   1208         if (D != 0) {
   1209           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1210             << Types[i]->getTypeLoc().getSourceRange()
   1211             << Types[i]->getType();
   1212           TypeErrorFound = true;
   1213         }
   1214 
   1215         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1216         // selection shall specify compatible types."
   1217         for (unsigned j = i+1; j < NumAssocs; ++j)
   1218           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1219               Context.typesAreCompatible(Types[i]->getType(),
   1220                                          Types[j]->getType())) {
   1221             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1222                  diag::err_assoc_compatible_types)
   1223               << Types[j]->getTypeLoc().getSourceRange()
   1224               << Types[j]->getType()
   1225               << Types[i]->getType();
   1226             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1227                  diag::note_compat_assoc)
   1228               << Types[i]->getTypeLoc().getSourceRange()
   1229               << Types[i]->getType();
   1230             TypeErrorFound = true;
   1231           }
   1232       }
   1233     }
   1234   }
   1235   if (TypeErrorFound)
   1236     return ExprError();
   1237 
   1238   // If we determined that the generic selection is result-dependent, don't
   1239   // try to compute the result expression.
   1240   if (IsResultDependent)
   1241     return Owned(new (Context) GenericSelectionExpr(
   1242                    Context, KeyLoc, ControllingExpr,
   1243                    llvm::makeArrayRef(Types, NumAssocs),
   1244                    llvm::makeArrayRef(Exprs, NumAssocs),
   1245                    DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
   1246 
   1247   SmallVector<unsigned, 1> CompatIndices;
   1248   unsigned DefaultIndex = -1U;
   1249   for (unsigned i = 0; i < NumAssocs; ++i) {
   1250     if (!Types[i])
   1251       DefaultIndex = i;
   1252     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1253                                         Types[i]->getType()))
   1254       CompatIndices.push_back(i);
   1255   }
   1256 
   1257   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1258   // type compatible with at most one of the types named in its generic
   1259   // association list."
   1260   if (CompatIndices.size() > 1) {
   1261     // We strip parens here because the controlling expression is typically
   1262     // parenthesized in macro definitions.
   1263     ControllingExpr = ControllingExpr->IgnoreParens();
   1264     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1265       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1266       << (unsigned) CompatIndices.size();
   1267     for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
   1268          E = CompatIndices.end(); I != E; ++I) {
   1269       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
   1270            diag::note_compat_assoc)
   1271         << Types[*I]->getTypeLoc().getSourceRange()
   1272         << Types[*I]->getType();
   1273     }
   1274     return ExprError();
   1275   }
   1276 
   1277   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1278   // its controlling expression shall have type compatible with exactly one of
   1279   // the types named in its generic association list."
   1280   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1281     // We strip parens here because the controlling expression is typically
   1282     // parenthesized in macro definitions.
   1283     ControllingExpr = ControllingExpr->IgnoreParens();
   1284     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1285       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1286     return ExprError();
   1287   }
   1288 
   1289   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1290   // type name that is compatible with the type of the controlling expression,
   1291   // then the result expression of the generic selection is the expression
   1292   // in that generic association. Otherwise, the result expression of the
   1293   // generic selection is the expression in the default generic association."
   1294   unsigned ResultIndex =
   1295     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1296 
   1297   return Owned(new (Context) GenericSelectionExpr(
   1298                  Context, KeyLoc, ControllingExpr,
   1299                  llvm::makeArrayRef(Types, NumAssocs),
   1300                  llvm::makeArrayRef(Exprs, NumAssocs),
   1301                  DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
   1302                  ResultIndex));
   1303 }
   1304 
   1305 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1306 /// location of the token and the offset of the ud-suffix within it.
   1307 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1308                                      unsigned Offset) {
   1309   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1310                                         S.getLangOpts());
   1311 }
   1312 
   1313 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1314 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1315 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1316                                                  IdentifierInfo *UDSuffix,
   1317                                                  SourceLocation UDSuffixLoc,
   1318                                                  ArrayRef<Expr*> Args,
   1319                                                  SourceLocation LitEndLoc) {
   1320   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1321 
   1322   QualType ArgTy[2];
   1323   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1324     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1325     if (ArgTy[ArgIdx]->isArrayType())
   1326       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1327   }
   1328 
   1329   DeclarationName OpName =
   1330     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1331   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1332   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1333 
   1334   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1335   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1336                               /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
   1337     return ExprError();
   1338 
   1339   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1340 }
   1341 
   1342 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1343 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1344 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1345 /// multiple tokens.  However, the common case is that StringToks points to one
   1346 /// string.
   1347 ///
   1348 ExprResult
   1349 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
   1350                          Scope *UDLScope) {
   1351   assert(NumStringToks && "Must have at least one string!");
   1352 
   1353   StringLiteralParser Literal(StringToks, NumStringToks, PP);
   1354   if (Literal.hadError)
   1355     return ExprError();
   1356 
   1357   SmallVector<SourceLocation, 4> StringTokLocs;
   1358   for (unsigned i = 0; i != NumStringToks; ++i)
   1359     StringTokLocs.push_back(StringToks[i].getLocation());
   1360 
   1361   QualType StrTy = Context.CharTy;
   1362   if (Literal.isWide())
   1363     StrTy = Context.getWCharType();
   1364   else if (Literal.isUTF16())
   1365     StrTy = Context.Char16Ty;
   1366   else if (Literal.isUTF32())
   1367     StrTy = Context.Char32Ty;
   1368   else if (Literal.isPascal())
   1369     StrTy = Context.UnsignedCharTy;
   1370 
   1371   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1372   if (Literal.isWide())
   1373     Kind = StringLiteral::Wide;
   1374   else if (Literal.isUTF8())
   1375     Kind = StringLiteral::UTF8;
   1376   else if (Literal.isUTF16())
   1377     Kind = StringLiteral::UTF16;
   1378   else if (Literal.isUTF32())
   1379     Kind = StringLiteral::UTF32;
   1380 
   1381   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1382   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1383     StrTy.addConst();
   1384 
   1385   // Get an array type for the string, according to C99 6.4.5.  This includes
   1386   // the nul terminator character as well as the string length for pascal
   1387   // strings.
   1388   StrTy = Context.getConstantArrayType(StrTy,
   1389                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1390                                        ArrayType::Normal, 0);
   1391 
   1392   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1393   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1394                                              Kind, Literal.Pascal, StrTy,
   1395                                              &StringTokLocs[0],
   1396                                              StringTokLocs.size());
   1397   if (Literal.getUDSuffix().empty())
   1398     return Owned(Lit);
   1399 
   1400   // We're building a user-defined literal.
   1401   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1402   SourceLocation UDSuffixLoc =
   1403     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1404                    Literal.getUDSuffixOffset());
   1405 
   1406   // Make sure we're allowed user-defined literals here.
   1407   if (!UDLScope)
   1408     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1409 
   1410   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1411   //   operator "" X (str, len)
   1412   QualType SizeType = Context.getSizeType();
   1413   llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1414   IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1415                                                   StringTokLocs[0]);
   1416   Expr *Args[] = { Lit, LenArg };
   1417   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   1418                                         Args, StringTokLocs.back());
   1419 }
   1420 
   1421 ExprResult
   1422 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1423                        SourceLocation Loc,
   1424                        const CXXScopeSpec *SS) {
   1425   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1426   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1427 }
   1428 
   1429 /// BuildDeclRefExpr - Build an expression that references a
   1430 /// declaration that does not require a closure capture.
   1431 ExprResult
   1432 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1433                        const DeclarationNameInfo &NameInfo,
   1434                        const CXXScopeSpec *SS) {
   1435   if (getLangOpts().CUDA)
   1436     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1437       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1438         CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
   1439                            CalleeTarget = IdentifyCUDATarget(Callee);
   1440         if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
   1441           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1442             << CalleeTarget << D->getIdentifier() << CallerTarget;
   1443           Diag(D->getLocation(), diag::note_previous_decl)
   1444             << D->getIdentifier();
   1445           return ExprError();
   1446         }
   1447       }
   1448 
   1449   bool refersToEnclosingScope =
   1450     (CurContext != D->getDeclContext() &&
   1451      D->getDeclContext()->isFunctionOrMethod());
   1452 
   1453   DeclRefExpr *E = DeclRefExpr::Create(Context,
   1454                                        SS ? SS->getWithLocInContext(Context)
   1455                                               : NestedNameSpecifierLoc(),
   1456                                        SourceLocation(),
   1457                                        D, refersToEnclosingScope,
   1458                                        NameInfo, Ty, VK);
   1459 
   1460   MarkDeclRefReferenced(E);
   1461 
   1462   if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
   1463       Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
   1464     DiagnosticsEngine::Level Level =
   1465       Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
   1466                                E->getLocStart());
   1467     if (Level != DiagnosticsEngine::Ignored)
   1468       getCurFunction()->recordUseOfWeak(E);
   1469   }
   1470 
   1471   // Just in case we're building an illegal pointer-to-member.
   1472   FieldDecl *FD = dyn_cast<FieldDecl>(D);
   1473   if (FD && FD->isBitField())
   1474     E->setObjectKind(OK_BitField);
   1475 
   1476   return Owned(E);
   1477 }
   1478 
   1479 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1480 /// possibly a list of template arguments.
   1481 ///
   1482 /// If this produces template arguments, it is permitted to call
   1483 /// DecomposeTemplateName.
   1484 ///
   1485 /// This actually loses a lot of source location information for
   1486 /// non-standard name kinds; we should consider preserving that in
   1487 /// some way.
   1488 void
   1489 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1490                              TemplateArgumentListInfo &Buffer,
   1491                              DeclarationNameInfo &NameInfo,
   1492                              const TemplateArgumentListInfo *&TemplateArgs) {
   1493   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1494     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1495     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1496 
   1497     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1498                                        Id.TemplateId->NumArgs);
   1499     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1500 
   1501     TemplateName TName = Id.TemplateId->Template.get();
   1502     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1503     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1504     TemplateArgs = &Buffer;
   1505   } else {
   1506     NameInfo = GetNameFromUnqualifiedId(Id);
   1507     TemplateArgs = 0;
   1508   }
   1509 }
   1510 
   1511 /// Diagnose an empty lookup.
   1512 ///
   1513 /// \return false if new lookup candidates were found
   1514 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1515                                CorrectionCandidateCallback &CCC,
   1516                                TemplateArgumentListInfo *ExplicitTemplateArgs,
   1517                                llvm::ArrayRef<Expr *> Args) {
   1518   DeclarationName Name = R.getLookupName();
   1519 
   1520   unsigned diagnostic = diag::err_undeclared_var_use;
   1521   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1522   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1523       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1524       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1525     diagnostic = diag::err_undeclared_use;
   1526     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1527   }
   1528 
   1529   // If the original lookup was an unqualified lookup, fake an
   1530   // unqualified lookup.  This is useful when (for example) the
   1531   // original lookup would not have found something because it was a
   1532   // dependent name.
   1533   DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
   1534     ? CurContext : 0;
   1535   while (DC) {
   1536     if (isa<CXXRecordDecl>(DC)) {
   1537       LookupQualifiedName(R, DC);
   1538 
   1539       if (!R.empty()) {
   1540         // Don't give errors about ambiguities in this lookup.
   1541         R.suppressDiagnostics();
   1542 
   1543         // During a default argument instantiation the CurContext points
   1544         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1545         // function parameter list, hence add an explicit check.
   1546         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1547                               ActiveTemplateInstantiations.back().Kind ==
   1548             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1549         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1550         bool isInstance = CurMethod &&
   1551                           CurMethod->isInstance() &&
   1552                           DC == CurMethod->getParent() && !isDefaultArgument;
   1553 
   1554 
   1555         // Give a code modification hint to insert 'this->'.
   1556         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1557         // Actually quite difficult!
   1558         if (getLangOpts().MicrosoftMode)
   1559           diagnostic = diag::warn_found_via_dependent_bases_lookup;
   1560         if (isInstance) {
   1561           Diag(R.getNameLoc(), diagnostic) << Name
   1562             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1563           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
   1564               CallsUndergoingInstantiation.back()->getCallee());
   1565 
   1566 
   1567           CXXMethodDecl *DepMethod;
   1568           if (CurMethod->getTemplatedKind() ==
   1569               FunctionDecl::TK_FunctionTemplateSpecialization)
   1570             DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
   1571                 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
   1572           else
   1573             DepMethod = cast<CXXMethodDecl>(
   1574                 CurMethod->getInstantiatedFromMemberFunction());
   1575           assert(DepMethod && "No template pattern found");
   1576 
   1577           QualType DepThisType = DepMethod->getThisType(Context);
   1578           CheckCXXThisCapture(R.getNameLoc());
   1579           CXXThisExpr *DepThis = new (Context) CXXThisExpr(
   1580                                      R.getNameLoc(), DepThisType, false);
   1581           TemplateArgumentListInfo TList;
   1582           if (ULE->hasExplicitTemplateArgs())
   1583             ULE->copyTemplateArgumentsInto(TList);
   1584 
   1585           CXXScopeSpec SS;
   1586           SS.Adopt(ULE->getQualifierLoc());
   1587           CXXDependentScopeMemberExpr *DepExpr =
   1588               CXXDependentScopeMemberExpr::Create(
   1589                   Context, DepThis, DepThisType, true, SourceLocation(),
   1590                   SS.getWithLocInContext(Context),
   1591                   ULE->getTemplateKeywordLoc(), 0,
   1592                   R.getLookupNameInfo(),
   1593                   ULE->hasExplicitTemplateArgs() ? &TList : 0);
   1594           CallsUndergoingInstantiation.back()->setCallee(DepExpr);
   1595         } else {
   1596           Diag(R.getNameLoc(), diagnostic) << Name;
   1597         }
   1598 
   1599         // Do we really want to note all of these?
   1600         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   1601           Diag((*I)->getLocation(), diag::note_dependent_var_use);
   1602 
   1603         // Return true if we are inside a default argument instantiation
   1604         // and the found name refers to an instance member function, otherwise
   1605         // the function calling DiagnoseEmptyLookup will try to create an
   1606         // implicit member call and this is wrong for default argument.
   1607         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1608           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1609           return true;
   1610         }
   1611 
   1612         // Tell the callee to try to recover.
   1613         return false;
   1614       }
   1615 
   1616       R.clear();
   1617     }
   1618 
   1619     // In Microsoft mode, if we are performing lookup from within a friend
   1620     // function definition declared at class scope then we must set
   1621     // DC to the lexical parent to be able to search into the parent
   1622     // class.
   1623     if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
   1624         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1625         DC->getLexicalParent()->isRecord())
   1626       DC = DC->getLexicalParent();
   1627     else
   1628       DC = DC->getParent();
   1629   }
   1630 
   1631   // We didn't find anything, so try to correct for a typo.
   1632   TypoCorrection Corrected;
   1633   if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
   1634                                     S, &SS, CCC))) {
   1635     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1636     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
   1637     R.setLookupName(Corrected.getCorrection());
   1638 
   1639     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   1640       if (Corrected.isOverloaded()) {
   1641         OverloadCandidateSet OCS(R.getNameLoc());
   1642         OverloadCandidateSet::iterator Best;
   1643         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   1644                                         CDEnd = Corrected.end();
   1645              CD != CDEnd; ++CD) {
   1646           if (FunctionTemplateDecl *FTD =
   1647                    dyn_cast<FunctionTemplateDecl>(*CD))
   1648             AddTemplateOverloadCandidate(
   1649                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1650                 Args, OCS);
   1651           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   1652             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1653               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1654                                    Args, OCS);
   1655         }
   1656         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1657           case OR_Success:
   1658             ND = Best->Function;
   1659             break;
   1660           default:
   1661             break;
   1662         }
   1663       }
   1664       R.addDecl(ND);
   1665       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   1666         if (SS.isEmpty())
   1667           Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
   1668             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
   1669         else
   1670           Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1671             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
   1672             << SS.getRange()
   1673             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
   1674                                             CorrectedStr);
   1675 
   1676         unsigned diag = isa<ImplicitParamDecl>(ND)
   1677           ? diag::note_implicit_param_decl
   1678           : diag::note_previous_decl;
   1679 
   1680         Diag(ND->getLocation(), diag)
   1681           << CorrectedQuotedStr;
   1682 
   1683         // Tell the callee to try to recover.
   1684         return false;
   1685       }
   1686 
   1687       if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
   1688         // FIXME: If we ended up with a typo for a type name or
   1689         // Objective-C class name, we're in trouble because the parser
   1690         // is in the wrong place to recover. Suggest the typo
   1691         // correction, but don't make it a fix-it since we're not going
   1692         // to recover well anyway.
   1693         if (SS.isEmpty())
   1694           Diag(R.getNameLoc(), diagnostic_suggest)
   1695             << Name << CorrectedQuotedStr;
   1696         else
   1697           Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1698             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
   1699             << SS.getRange();
   1700 
   1701         // Don't try to recover; it won't work.
   1702         return true;
   1703       }
   1704     } else {
   1705       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   1706       // because we aren't able to recover.
   1707       if (SS.isEmpty())
   1708         Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
   1709       else
   1710         Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1711         << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
   1712         << SS.getRange();
   1713       return true;
   1714     }
   1715   }
   1716   R.clear();
   1717 
   1718   // Emit a special diagnostic for failed member lookups.
   1719   // FIXME: computing the declaration context might fail here (?)
   1720   if (!SS.isEmpty()) {
   1721     Diag(R.getNameLoc(), diag::err_no_member)
   1722       << Name << computeDeclContext(SS, false)
   1723       << SS.getRange();
   1724     return true;
   1725   }
   1726 
   1727   // Give up, we can't recover.
   1728   Diag(R.getNameLoc(), diagnostic) << Name;
   1729   return true;
   1730 }
   1731 
   1732 ExprResult Sema::ActOnIdExpression(Scope *S,
   1733                                    CXXScopeSpec &SS,
   1734                                    SourceLocation TemplateKWLoc,
   1735                                    UnqualifiedId &Id,
   1736                                    bool HasTrailingLParen,
   1737                                    bool IsAddressOfOperand,
   1738                                    CorrectionCandidateCallback *CCC) {
   1739   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   1740          "cannot be direct & operand and have a trailing lparen");
   1741 
   1742   if (SS.isInvalid())
   1743     return ExprError();
   1744 
   1745   TemplateArgumentListInfo TemplateArgsBuffer;
   1746 
   1747   // Decompose the UnqualifiedId into the following data.
   1748   DeclarationNameInfo NameInfo;
   1749   const TemplateArgumentListInfo *TemplateArgs;
   1750   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   1751 
   1752   DeclarationName Name = NameInfo.getName();
   1753   IdentifierInfo *II = Name.getAsIdentifierInfo();
   1754   SourceLocation NameLoc = NameInfo.getLoc();
   1755 
   1756   // C++ [temp.dep.expr]p3:
   1757   //   An id-expression is type-dependent if it contains:
   1758   //     -- an identifier that was declared with a dependent type,
   1759   //        (note: handled after lookup)
   1760   //     -- a template-id that is dependent,
   1761   //        (note: handled in BuildTemplateIdExpr)
   1762   //     -- a conversion-function-id that specifies a dependent type,
   1763   //     -- a nested-name-specifier that contains a class-name that
   1764   //        names a dependent type.
   1765   // Determine whether this is a member of an unknown specialization;
   1766   // we need to handle these differently.
   1767   bool DependentID = false;
   1768   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   1769       Name.getCXXNameType()->isDependentType()) {
   1770     DependentID = true;
   1771   } else if (SS.isSet()) {
   1772     if (DeclContext *DC = computeDeclContext(SS, false)) {
   1773       if (RequireCompleteDeclContext(SS, DC))
   1774         return ExprError();
   1775     } else {
   1776       DependentID = true;
   1777     }
   1778   }
   1779 
   1780   if (DependentID)
   1781     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   1782                                       IsAddressOfOperand, TemplateArgs);
   1783 
   1784   // Perform the required lookup.
   1785   LookupResult R(*this, NameInfo,
   1786                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   1787                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   1788   if (TemplateArgs) {
   1789     // Lookup the template name again to correctly establish the context in
   1790     // which it was found. This is really unfortunate as we already did the
   1791     // lookup to determine that it was a template name in the first place. If
   1792     // this becomes a performance hit, we can work harder to preserve those
   1793     // results until we get here but it's likely not worth it.
   1794     bool MemberOfUnknownSpecialization;
   1795     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   1796                        MemberOfUnknownSpecialization);
   1797 
   1798     if (MemberOfUnknownSpecialization ||
   1799         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   1800       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   1801                                         IsAddressOfOperand, TemplateArgs);
   1802   } else {
   1803     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   1804     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   1805 
   1806     // If the result might be in a dependent base class, this is a dependent
   1807     // id-expression.
   1808     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   1809       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   1810                                         IsAddressOfOperand, TemplateArgs);
   1811 
   1812     // If this reference is in an Objective-C method, then we need to do
   1813     // some special Objective-C lookup, too.
   1814     if (IvarLookupFollowUp) {
   1815       ExprResult E(LookupInObjCMethod(R, S, II, true));
   1816       if (E.isInvalid())
   1817         return ExprError();
   1818 
   1819       if (Expr *Ex = E.takeAs<Expr>())
   1820         return Owned(Ex);
   1821     }
   1822   }
   1823 
   1824   if (R.isAmbiguous())
   1825     return ExprError();
   1826 
   1827   // Determine whether this name might be a candidate for
   1828   // argument-dependent lookup.
   1829   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   1830 
   1831   if (R.empty() && !ADL) {
   1832     // Otherwise, this could be an implicitly declared function reference (legal
   1833     // in C90, extension in C99, forbidden in C++).
   1834     if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   1835       NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   1836       if (D) R.addDecl(D);
   1837     }
   1838 
   1839     // If this name wasn't predeclared and if this is not a function
   1840     // call, diagnose the problem.
   1841     if (R.empty()) {
   1842 
   1843       // In Microsoft mode, if we are inside a template class member function
   1844       // and we can't resolve an identifier then assume the identifier is type
   1845       // dependent. The goal is to postpone name lookup to instantiation time
   1846       // to be able to search into type dependent base classes.
   1847       if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
   1848           isa<CXXMethodDecl>(CurContext))
   1849         return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   1850                                           IsAddressOfOperand, TemplateArgs);
   1851 
   1852       CorrectionCandidateCallback DefaultValidator;
   1853       if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
   1854         return ExprError();
   1855 
   1856       assert(!R.empty() &&
   1857              "DiagnoseEmptyLookup returned false but added no results");
   1858 
   1859       // If we found an Objective-C instance variable, let
   1860       // LookupInObjCMethod build the appropriate expression to
   1861       // reference the ivar.
   1862       if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   1863         R.clear();
   1864         ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   1865         // In a hopelessly buggy code, Objective-C instance variable
   1866         // lookup fails and no expression will be built to reference it.
   1867         if (!E.isInvalid() && !E.get())
   1868           return ExprError();
   1869         return E;
   1870       }
   1871     }
   1872   }
   1873 
   1874   // This is guaranteed from this point on.
   1875   assert(!R.empty() || ADL);
   1876 
   1877   // Check whether this might be a C++ implicit instance member access.
   1878   // C++ [class.mfct.non-static]p3:
   1879   //   When an id-expression that is not part of a class member access
   1880   //   syntax and not used to form a pointer to member is used in the
   1881   //   body of a non-static member function of class X, if name lookup
   1882   //   resolves the name in the id-expression to a non-static non-type
   1883   //   member of some class C, the id-expression is transformed into a
   1884   //   class member access expression using (*this) as the
   1885   //   postfix-expression to the left of the . operator.
   1886   //
   1887   // But we don't actually need to do this for '&' operands if R
   1888   // resolved to a function or overloaded function set, because the
   1889   // expression is ill-formed if it actually works out to be a
   1890   // non-static member function:
   1891   //
   1892   // C++ [expr.ref]p4:
   1893   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   1894   //   [t]he expression can be used only as the left-hand operand of a
   1895   //   member function call.
   1896   //
   1897   // There are other safeguards against such uses, but it's important
   1898   // to get this right here so that we don't end up making a
   1899   // spuriously dependent expression if we're inside a dependent
   1900   // instance method.
   1901   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   1902     bool MightBeImplicitMember;
   1903     if (!IsAddressOfOperand)
   1904       MightBeImplicitMember = true;
   1905     else if (!SS.isEmpty())
   1906       MightBeImplicitMember = false;
   1907     else if (R.isOverloadedResult())
   1908       MightBeImplicitMember = false;
   1909     else if (R.isUnresolvableResult())
   1910       MightBeImplicitMember = true;
   1911     else
   1912       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   1913                               isa<IndirectFieldDecl>(R.getFoundDecl());
   1914 
   1915     if (MightBeImplicitMember)
   1916       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   1917                                              R, TemplateArgs);
   1918   }
   1919 
   1920   if (TemplateArgs || TemplateKWLoc.isValid())
   1921     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   1922 
   1923   return BuildDeclarationNameExpr(SS, R, ADL);
   1924 }
   1925 
   1926 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   1927 /// declaration name, generally during template instantiation.
   1928 /// There's a large number of things which don't need to be done along
   1929 /// this path.
   1930 ExprResult
   1931 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
   1932                                         const DeclarationNameInfo &NameInfo,
   1933                                         bool IsAddressOfOperand) {
   1934   DeclContext *DC = computeDeclContext(SS, false);
   1935   if (!DC)
   1936     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   1937                                      NameInfo, /*TemplateArgs=*/0);
   1938 
   1939   if (RequireCompleteDeclContext(SS, DC))
   1940     return ExprError();
   1941 
   1942   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   1943   LookupQualifiedName(R, DC);
   1944 
   1945   if (R.isAmbiguous())
   1946     return ExprError();
   1947 
   1948   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   1949     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   1950                                      NameInfo, /*TemplateArgs=*/0);
   1951 
   1952   if (R.empty()) {
   1953     Diag(NameInfo.getLoc(), diag::err_no_member)
   1954       << NameInfo.getName() << DC << SS.getRange();
   1955     return ExprError();
   1956   }
   1957 
   1958   // Defend against this resolving to an implicit member access. We usually
   1959   // won't get here if this might be a legitimate a class member (we end up in
   1960   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   1961   // a pointer-to-member or in an unevaluated context in C++11.
   1962   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   1963     return BuildPossibleImplicitMemberExpr(SS,
   1964                                            /*TemplateKWLoc=*/SourceLocation(),
   1965                                            R, /*TemplateArgs=*/0);
   1966 
   1967   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   1968 }
   1969 
   1970 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   1971 /// detected that we're currently inside an ObjC method.  Perform some
   1972 /// additional lookup.
   1973 ///
   1974 /// Ideally, most of this would be done by lookup, but there's
   1975 /// actually quite a lot of extra work involved.
   1976 ///
   1977 /// Returns a null sentinel to indicate trivial success.
   1978 ExprResult
   1979 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   1980                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   1981   SourceLocation Loc = Lookup.getNameLoc();
   1982   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   1983 
   1984   // Check for error condition which is already reported.
   1985   if (!CurMethod)
   1986     return ExprError();
   1987 
   1988   // There are two cases to handle here.  1) scoped lookup could have failed,
   1989   // in which case we should look for an ivar.  2) scoped lookup could have
   1990   // found a decl, but that decl is outside the current instance method (i.e.
   1991   // a global variable).  In these two cases, we do a lookup for an ivar with
   1992   // this name, if the lookup sucedes, we replace it our current decl.
   1993 
   1994   // If we're in a class method, we don't normally want to look for
   1995   // ivars.  But if we don't find anything else, and there's an
   1996   // ivar, that's an error.
   1997   bool IsClassMethod = CurMethod->isClassMethod();
   1998 
   1999   bool LookForIvars;
   2000   if (Lookup.empty())
   2001     LookForIvars = true;
   2002   else if (IsClassMethod)
   2003     LookForIvars = false;
   2004   else
   2005     LookForIvars = (Lookup.isSingleResult() &&
   2006                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2007   ObjCInterfaceDecl *IFace = 0;
   2008   if (LookForIvars) {
   2009     IFace = CurMethod->getClassInterface();
   2010     ObjCInterfaceDecl *ClassDeclared;
   2011     ObjCIvarDecl *IV = 0;
   2012     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2013       // Diagnose using an ivar in a class method.
   2014       if (IsClassMethod)
   2015         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2016                          << IV->getDeclName());
   2017 
   2018       // If we're referencing an invalid decl, just return this as a silent
   2019       // error node.  The error diagnostic was already emitted on the decl.
   2020       if (IV->isInvalidDecl())
   2021         return ExprError();
   2022 
   2023       // Check if referencing a field with __attribute__((deprecated)).
   2024       if (DiagnoseUseOfDecl(IV, Loc))
   2025         return ExprError();
   2026 
   2027       // Diagnose the use of an ivar outside of the declaring class.
   2028       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2029           !declaresSameEntity(ClassDeclared, IFace) &&
   2030           !getLangOpts().DebuggerSupport)
   2031         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2032 
   2033       // FIXME: This should use a new expr for a direct reference, don't
   2034       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2035       IdentifierInfo &II = Context.Idents.get("self");
   2036       UnqualifiedId SelfName;
   2037       SelfName.setIdentifier(&II, SourceLocation());
   2038       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2039       CXXScopeSpec SelfScopeSpec;
   2040       SourceLocation TemplateKWLoc;
   2041       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2042                                               SelfName, false, false);
   2043       if (SelfExpr.isInvalid())
   2044         return ExprError();
   2045 
   2046       SelfExpr = DefaultLvalueConversion(SelfExpr.take());
   2047       if (SelfExpr.isInvalid())
   2048         return ExprError();
   2049 
   2050       MarkAnyDeclReferenced(Loc, IV, true);
   2051 
   2052       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2053       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2054           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2055         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2056 
   2057       ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
   2058                                                               Loc,
   2059                                                               SelfExpr.take(),
   2060                                                               true, true);
   2061 
   2062       if (getLangOpts().ObjCAutoRefCount) {
   2063         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2064           DiagnosticsEngine::Level Level =
   2065             Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
   2066           if (Level != DiagnosticsEngine::Ignored)
   2067             getCurFunction()->recordUseOfWeak(Result);
   2068         }
   2069         if (CurContext->isClosure())
   2070           Diag(Loc, diag::warn_implicitly_retains_self)
   2071             << FixItHint::CreateInsertion(Loc, "self->");
   2072       }
   2073 
   2074       return Owned(Result);
   2075     }
   2076   } else if (CurMethod->isInstanceMethod()) {
   2077     // We should warn if a local variable hides an ivar.
   2078     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2079       ObjCInterfaceDecl *ClassDeclared;
   2080       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2081         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2082             declaresSameEntity(IFace, ClassDeclared))
   2083           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2084       }
   2085     }
   2086   } else if (Lookup.isSingleResult() &&
   2087              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2088     // If accessing a stand-alone ivar in a class method, this is an error.
   2089     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2090       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2091                        << IV->getDeclName());
   2092   }
   2093 
   2094   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2095     // FIXME. Consolidate this with similar code in LookupName.
   2096     if (unsigned BuiltinID = II->getBuiltinID()) {
   2097       if (!(getLangOpts().CPlusPlus &&
   2098             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2099         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2100                                            S, Lookup.isForRedeclaration(),
   2101                                            Lookup.getNameLoc());
   2102         if (D) Lookup.addDecl(D);
   2103       }
   2104     }
   2105   }
   2106   // Sentinel value saying that we didn't do anything special.
   2107   return Owned((Expr*) 0);
   2108 }
   2109 
   2110 /// \brief Cast a base object to a member's actual type.
   2111 ///
   2112 /// Logically this happens in three phases:
   2113 ///
   2114 /// * First we cast from the base type to the naming class.
   2115 ///   The naming class is the class into which we were looking
   2116 ///   when we found the member;  it's the qualifier type if a
   2117 ///   qualifier was provided, and otherwise it's the base type.
   2118 ///
   2119 /// * Next we cast from the naming class to the declaring class.
   2120 ///   If the member we found was brought into a class's scope by
   2121 ///   a using declaration, this is that class;  otherwise it's
   2122 ///   the class declaring the member.
   2123 ///
   2124 /// * Finally we cast from the declaring class to the "true"
   2125 ///   declaring class of the member.  This conversion does not
   2126 ///   obey access control.
   2127 ExprResult
   2128 Sema::PerformObjectMemberConversion(Expr *From,
   2129                                     NestedNameSpecifier *Qualifier,
   2130                                     NamedDecl *FoundDecl,
   2131                                     NamedDecl *Member) {
   2132   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2133   if (!RD)
   2134     return Owned(From);
   2135 
   2136   QualType DestRecordType;
   2137   QualType DestType;
   2138   QualType FromRecordType;
   2139   QualType FromType = From->getType();
   2140   bool PointerConversions = false;
   2141   if (isa<FieldDecl>(Member)) {
   2142     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2143 
   2144     if (FromType->getAs<PointerType>()) {
   2145       DestType = Context.getPointerType(DestRecordType);
   2146       FromRecordType = FromType->getPointeeType();
   2147       PointerConversions = true;
   2148     } else {
   2149       DestType = DestRecordType;
   2150       FromRecordType = FromType;
   2151     }
   2152   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2153     if (Method->isStatic())
   2154       return Owned(From);
   2155 
   2156     DestType = Method->getThisType(Context);
   2157     DestRecordType = DestType->getPointeeType();
   2158 
   2159     if (FromType->getAs<PointerType>()) {
   2160       FromRecordType = FromType->getPointeeType();
   2161       PointerConversions = true;
   2162     } else {
   2163       FromRecordType = FromType;
   2164       DestType = DestRecordType;
   2165     }
   2166   } else {
   2167     // No conversion necessary.
   2168     return Owned(From);
   2169   }
   2170 
   2171   if (DestType->isDependentType() || FromType->isDependentType())
   2172     return Owned(From);
   2173 
   2174   // If the unqualified types are the same, no conversion is necessary.
   2175   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2176     return Owned(From);
   2177 
   2178   SourceRange FromRange = From->getSourceRange();
   2179   SourceLocation FromLoc = FromRange.getBegin();
   2180 
   2181   ExprValueKind VK = From->getValueKind();
   2182 
   2183   // C++ [class.member.lookup]p8:
   2184   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2185   //   class name.
   2186   //
   2187   // If the member was a qualified name and the qualified referred to a
   2188   // specific base subobject type, we'll cast to that intermediate type
   2189   // first and then to the object in which the member is declared. That allows
   2190   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2191   //
   2192   //   class Base { public: int x; };
   2193   //   class Derived1 : public Base { };
   2194   //   class Derived2 : public Base { };
   2195   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2196   //
   2197   //   void VeryDerived::f() {
   2198   //     x = 17; // error: ambiguous base subobjects
   2199   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2200   //   }
   2201   if (Qualifier) {
   2202     QualType QType = QualType(Qualifier->getAsType(), 0);
   2203     assert(!QType.isNull() && "lookup done with dependent qualifier?");
   2204     assert(QType->isRecordType() && "lookup done with non-record type");
   2205 
   2206     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2207 
   2208     // In C++98, the qualifier type doesn't actually have to be a base
   2209     // type of the object type, in which case we just ignore it.
   2210     // Otherwise build the appropriate casts.
   2211     if (IsDerivedFrom(FromRecordType, QRecordType)) {
   2212       CXXCastPath BasePath;
   2213       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2214                                        FromLoc, FromRange, &BasePath))
   2215         return ExprError();
   2216 
   2217       if (PointerConversions)
   2218         QType = Context.getPointerType(QType);
   2219       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2220                                VK, &BasePath).take();
   2221 
   2222       FromType = QType;
   2223       FromRecordType = QRecordType;
   2224 
   2225       // If the qualifier type was the same as the destination type,
   2226       // we're done.
   2227       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2228         return Owned(From);
   2229     }
   2230   }
   2231 
   2232   bool IgnoreAccess = false;
   2233 
   2234   // If we actually found the member through a using declaration, cast
   2235   // down to the using declaration's type.
   2236   //
   2237   // Pointer equality is fine here because only one declaration of a
   2238   // class ever has member declarations.
   2239   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2240     assert(isa<UsingShadowDecl>(FoundDecl));
   2241     QualType URecordType = Context.getTypeDeclType(
   2242                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2243 
   2244     // We only need to do this if the naming-class to declaring-class
   2245     // conversion is non-trivial.
   2246     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2247       assert(IsDerivedFrom(FromRecordType, URecordType));
   2248       CXXCastPath BasePath;
   2249       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2250                                        FromLoc, FromRange, &BasePath))
   2251         return ExprError();
   2252 
   2253       QualType UType = URecordType;
   2254       if (PointerConversions)
   2255         UType = Context.getPointerType(UType);
   2256       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2257                                VK, &BasePath).take();
   2258       FromType = UType;
   2259       FromRecordType = URecordType;
   2260     }
   2261 
   2262     // We don't do access control for the conversion from the
   2263     // declaring class to the true declaring class.
   2264     IgnoreAccess = true;
   2265   }
   2266 
   2267   CXXCastPath BasePath;
   2268   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2269                                    FromLoc, FromRange, &BasePath,
   2270                                    IgnoreAccess))
   2271     return ExprError();
   2272 
   2273   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2274                            VK, &BasePath);
   2275 }
   2276 
   2277 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2278                                       const LookupResult &R,
   2279                                       bool HasTrailingLParen) {
   2280   // Only when used directly as the postfix-expression of a call.
   2281   if (!HasTrailingLParen)
   2282     return false;
   2283 
   2284   // Never if a scope specifier was provided.
   2285   if (SS.isSet())
   2286     return false;
   2287 
   2288   // Only in C++ or ObjC++.
   2289   if (!getLangOpts().CPlusPlus)
   2290     return false;
   2291 
   2292   // Turn off ADL when we find certain kinds of declarations during
   2293   // normal lookup:
   2294   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   2295     NamedDecl *D = *I;
   2296 
   2297     // C++0x [basic.lookup.argdep]p3:
   2298     //     -- a declaration of a class member
   2299     // Since using decls preserve this property, we check this on the
   2300     // original decl.
   2301     if (D->isCXXClassMember())
   2302       return false;
   2303 
   2304     // C++0x [basic.lookup.argdep]p3:
   2305     //     -- a block-scope function declaration that is not a
   2306     //        using-declaration
   2307     // NOTE: we also trigger this for function templates (in fact, we
   2308     // don't check the decl type at all, since all other decl types
   2309     // turn off ADL anyway).
   2310     if (isa<UsingShadowDecl>(D))
   2311       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2312     else if (D->getDeclContext()->isFunctionOrMethod())
   2313       return false;
   2314 
   2315     // C++0x [basic.lookup.argdep]p3:
   2316     //     -- a declaration that is neither a function or a function
   2317     //        template
   2318     // And also for builtin functions.
   2319     if (isa<FunctionDecl>(D)) {
   2320       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2321 
   2322       // But also builtin functions.
   2323       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2324         return false;
   2325     } else if (!isa<FunctionTemplateDecl>(D))
   2326       return false;
   2327   }
   2328 
   2329   return true;
   2330 }
   2331 
   2332 
   2333 /// Diagnoses obvious problems with the use of the given declaration
   2334 /// as an expression.  This is only actually called for lookups that
   2335 /// were not overloaded, and it doesn't promise that the declaration
   2336 /// will in fact be used.
   2337 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2338   if (isa<TypedefNameDecl>(D)) {
   2339     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2340     return true;
   2341   }
   2342 
   2343   if (isa<ObjCInterfaceDecl>(D)) {
   2344     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2345     return true;
   2346   }
   2347 
   2348   if (isa<NamespaceDecl>(D)) {
   2349     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2350     return true;
   2351   }
   2352 
   2353   return false;
   2354 }
   2355 
   2356 ExprResult
   2357 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2358                                LookupResult &R,
   2359                                bool NeedsADL) {
   2360   // If this is a single, fully-resolved result and we don't need ADL,
   2361   // just build an ordinary singleton decl ref.
   2362   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2363     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
   2364                                     R.getFoundDecl());
   2365 
   2366   // We only need to check the declaration if there's exactly one
   2367   // result, because in the overloaded case the results can only be
   2368   // functions and function templates.
   2369   if (R.isSingleResult() &&
   2370       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2371     return ExprError();
   2372 
   2373   // Otherwise, just build an unresolved lookup expression.  Suppress
   2374   // any lookup-related diagnostics; we'll hash these out later, when
   2375   // we've picked a target.
   2376   R.suppressDiagnostics();
   2377 
   2378   UnresolvedLookupExpr *ULE
   2379     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2380                                    SS.getWithLocInContext(Context),
   2381                                    R.getLookupNameInfo(),
   2382                                    NeedsADL, R.isOverloadedResult(),
   2383                                    R.begin(), R.end());
   2384 
   2385   return Owned(ULE);
   2386 }
   2387 
   2388 /// \brief Complete semantic analysis for a reference to the given declaration.
   2389 ExprResult
   2390 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2391                                const DeclarationNameInfo &NameInfo,
   2392                                NamedDecl *D) {
   2393   assert(D && "Cannot refer to a NULL declaration");
   2394   assert(!isa<FunctionTemplateDecl>(D) &&
   2395          "Cannot refer unambiguously to a function template");
   2396 
   2397   SourceLocation Loc = NameInfo.getLoc();
   2398   if (CheckDeclInExpr(*this, Loc, D))
   2399     return ExprError();
   2400 
   2401   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2402     // Specifically diagnose references to class templates that are missing
   2403     // a template argument list.
   2404     Diag(Loc, diag::err_template_decl_ref)
   2405       << Template << SS.getRange();
   2406     Diag(Template->getLocation(), diag::note_template_decl_here);
   2407     return ExprError();
   2408   }
   2409 
   2410   // Make sure that we're referring to a value.
   2411   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2412   if (!VD) {
   2413     Diag(Loc, diag::err_ref_non_value)
   2414       << D << SS.getRange();
   2415     Diag(D->getLocation(), diag::note_declared_at);
   2416     return ExprError();
   2417   }
   2418 
   2419   // Check whether this declaration can be used. Note that we suppress
   2420   // this check when we're going to perform argument-dependent lookup
   2421   // on this function name, because this might not be the function
   2422   // that overload resolution actually selects.
   2423   if (DiagnoseUseOfDecl(VD, Loc))
   2424     return ExprError();
   2425 
   2426   // Only create DeclRefExpr's for valid Decl's.
   2427   if (VD->isInvalidDecl())
   2428     return ExprError();
   2429 
   2430   // Handle members of anonymous structs and unions.  If we got here,
   2431   // and the reference is to a class member indirect field, then this
   2432   // must be the subject of a pointer-to-member expression.
   2433   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2434     if (!indirectField->isCXXClassMember())
   2435       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2436                                                       indirectField);
   2437 
   2438   {
   2439     QualType type = VD->getType();
   2440     ExprValueKind valueKind = VK_RValue;
   2441 
   2442     switch (D->getKind()) {
   2443     // Ignore all the non-ValueDecl kinds.
   2444 #define ABSTRACT_DECL(kind)
   2445 #define VALUE(type, base)
   2446 #define DECL(type, base) \
   2447     case Decl::type:
   2448 #include "clang/AST/DeclNodes.inc"
   2449       llvm_unreachable("invalid value decl kind");
   2450 
   2451     // These shouldn't make it here.
   2452     case Decl::ObjCAtDefsField:
   2453     case Decl::ObjCIvar:
   2454       llvm_unreachable("forming non-member reference to ivar?");
   2455 
   2456     // Enum constants are always r-values and never references.
   2457     // Unresolved using declarations are dependent.
   2458     case Decl::EnumConstant:
   2459     case Decl::UnresolvedUsingValue:
   2460       valueKind = VK_RValue;
   2461       break;
   2462 
   2463     // Fields and indirect fields that got here must be for
   2464     // pointer-to-member expressions; we just call them l-values for
   2465     // internal consistency, because this subexpression doesn't really
   2466     // exist in the high-level semantics.
   2467     case Decl::Field:
   2468     case Decl::IndirectField:
   2469       assert(getLangOpts().CPlusPlus &&
   2470              "building reference to field in C?");
   2471 
   2472       // These can't have reference type in well-formed programs, but
   2473       // for internal consistency we do this anyway.
   2474       type = type.getNonReferenceType();
   2475       valueKind = VK_LValue;
   2476       break;
   2477 
   2478     // Non-type template parameters are either l-values or r-values
   2479     // depending on the type.
   2480     case Decl::NonTypeTemplateParm: {
   2481       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2482         type = reftype->getPointeeType();
   2483         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2484         break;
   2485       }
   2486 
   2487       // For non-references, we need to strip qualifiers just in case
   2488       // the template parameter was declared as 'const int' or whatever.
   2489       valueKind = VK_RValue;
   2490       type = type.getUnqualifiedType();
   2491       break;
   2492     }
   2493 
   2494     case Decl::Var:
   2495       // In C, "extern void blah;" is valid and is an r-value.
   2496       if (!getLangOpts().CPlusPlus &&
   2497           !type.hasQualifiers() &&
   2498           type->isVoidType()) {
   2499         valueKind = VK_RValue;
   2500         break;
   2501       }
   2502       // fallthrough
   2503 
   2504     case Decl::ImplicitParam:
   2505     case Decl::ParmVar: {
   2506       // These are always l-values.
   2507       valueKind = VK_LValue;
   2508       type = type.getNonReferenceType();
   2509 
   2510       // FIXME: Does the addition of const really only apply in
   2511       // potentially-evaluated contexts? Since the variable isn't actually
   2512       // captured in an unevaluated context, it seems that the answer is no.
   2513       if (!isUnevaluatedContext()) {
   2514         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2515         if (!CapturedType.isNull())
   2516           type = CapturedType;
   2517       }
   2518 
   2519       break;
   2520     }
   2521 
   2522     case Decl::Function: {
   2523       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2524         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2525           type = Context.BuiltinFnTy;
   2526           valueKind = VK_RValue;
   2527           break;
   2528         }
   2529       }
   2530 
   2531       const FunctionType *fty = type->castAs<FunctionType>();
   2532 
   2533       // If we're referring to a function with an __unknown_anytype
   2534       // result type, make the entire expression __unknown_anytype.
   2535       if (fty->getResultType() == Context.UnknownAnyTy) {
   2536         type = Context.UnknownAnyTy;
   2537         valueKind = VK_RValue;
   2538         break;
   2539       }
   2540 
   2541       // Functions are l-values in C++.
   2542       if (getLangOpts().CPlusPlus) {
   2543         valueKind = VK_LValue;
   2544         break;
   2545       }
   2546 
   2547       // C99 DR 316 says that, if a function type comes from a
   2548       // function definition (without a prototype), that type is only
   2549       // used for checking compatibility. Therefore, when referencing
   2550       // the function, we pretend that we don't have the full function
   2551       // type.
   2552       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   2553           isa<FunctionProtoType>(fty))
   2554         type = Context.getFunctionNoProtoType(fty->getResultType(),
   2555                                               fty->getExtInfo());
   2556 
   2557       // Functions are r-values in C.
   2558       valueKind = VK_RValue;
   2559       break;
   2560     }
   2561 
   2562     case Decl::CXXMethod:
   2563       // If we're referring to a method with an __unknown_anytype
   2564       // result type, make the entire expression __unknown_anytype.
   2565       // This should only be possible with a type written directly.
   2566       if (const FunctionProtoType *proto
   2567             = dyn_cast<FunctionProtoType>(VD->getType()))
   2568         if (proto->getResultType() == Context.UnknownAnyTy) {
   2569           type = Context.UnknownAnyTy;
   2570           valueKind = VK_RValue;
   2571           break;
   2572         }
   2573 
   2574       // C++ methods are l-values if static, r-values if non-static.
   2575       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   2576         valueKind = VK_LValue;
   2577         break;
   2578       }
   2579       // fallthrough
   2580 
   2581     case Decl::CXXConversion:
   2582     case Decl::CXXDestructor:
   2583     case Decl::CXXConstructor:
   2584       valueKind = VK_RValue;
   2585       break;
   2586     }
   2587 
   2588     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
   2589   }
   2590 }
   2591 
   2592 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   2593   PredefinedExpr::IdentType IT;
   2594 
   2595   switch (Kind) {
   2596   default: llvm_unreachable("Unknown simple primary expr!");
   2597   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   2598   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   2599   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   2600   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   2601   }
   2602 
   2603   // Pre-defined identifiers are of type char[x], where x is the length of the
   2604   // string.
   2605 
   2606   Decl *currentDecl = getCurFunctionOrMethodDecl();
   2607   // Blocks and lambdas can occur at global scope. Don't emit a warning.
   2608   if (!currentDecl) {
   2609     if (const BlockScopeInfo *BSI = getCurBlock())
   2610       currentDecl = BSI->TheDecl;
   2611     else if (const LambdaScopeInfo *LSI = getCurLambda())
   2612       currentDecl = LSI->CallOperator;
   2613   }
   2614 
   2615   if (!currentDecl) {
   2616     Diag(Loc, diag::ext_predef_outside_function);
   2617     currentDecl = Context.getTranslationUnitDecl();
   2618   }
   2619 
   2620   QualType ResTy;
   2621   if (cast<DeclContext>(currentDecl)->isDependentContext()) {
   2622     ResTy = Context.DependentTy;
   2623   } else {
   2624     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
   2625 
   2626     llvm::APInt LengthI(32, Length + 1);
   2627     if (IT == PredefinedExpr::LFunction)
   2628       ResTy = Context.WCharTy.withConst();
   2629     else
   2630       ResTy = Context.CharTy.withConst();
   2631     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
   2632   }
   2633   return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
   2634 }
   2635 
   2636 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   2637   SmallString<16> CharBuffer;
   2638   bool Invalid = false;
   2639   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   2640   if (Invalid)
   2641     return ExprError();
   2642 
   2643   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   2644                             PP, Tok.getKind());
   2645   if (Literal.hadError())
   2646     return ExprError();
   2647 
   2648   QualType Ty;
   2649   if (Literal.isWide())
   2650     Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
   2651   else if (Literal.isUTF16())
   2652     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   2653   else if (Literal.isUTF32())
   2654     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   2655   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   2656     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   2657   else
   2658     Ty = Context.CharTy;  // 'x' -> char in C++
   2659 
   2660   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   2661   if (Literal.isWide())
   2662     Kind = CharacterLiteral::Wide;
   2663   else if (Literal.isUTF16())
   2664     Kind = CharacterLiteral::UTF16;
   2665   else if (Literal.isUTF32())
   2666     Kind = CharacterLiteral::UTF32;
   2667 
   2668   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   2669                                              Tok.getLocation());
   2670 
   2671   if (Literal.getUDSuffix().empty())
   2672     return Owned(Lit);
   2673 
   2674   // We're building a user-defined literal.
   2675   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   2676   SourceLocation UDSuffixLoc =
   2677     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   2678 
   2679   // Make sure we're allowed user-defined literals here.
   2680   if (!UDLScope)
   2681     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   2682 
   2683   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   2684   //   operator "" X (ch)
   2685   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   2686                                         llvm::makeArrayRef(&Lit, 1),
   2687                                         Tok.getLocation());
   2688 }
   2689 
   2690 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   2691   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   2692   return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   2693                                       Context.IntTy, Loc));
   2694 }
   2695 
   2696 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   2697                                   QualType Ty, SourceLocation Loc) {
   2698   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   2699 
   2700   using llvm::APFloat;
   2701   APFloat Val(Format);
   2702 
   2703   APFloat::opStatus result = Literal.GetFloatValue(Val);
   2704 
   2705   // Overflow is always an error, but underflow is only an error if
   2706   // we underflowed to zero (APFloat reports denormals as underflow).
   2707   if ((result & APFloat::opOverflow) ||
   2708       ((result & APFloat::opUnderflow) && Val.isZero())) {
   2709     unsigned diagnostic;
   2710     SmallString<20> buffer;
   2711     if (result & APFloat::opOverflow) {
   2712       diagnostic = diag::warn_float_overflow;
   2713       APFloat::getLargest(Format).toString(buffer);
   2714     } else {
   2715       diagnostic = diag::warn_float_underflow;
   2716       APFloat::getSmallest(Format).toString(buffer);
   2717     }
   2718 
   2719     S.Diag(Loc, diagnostic)
   2720       << Ty
   2721       << StringRef(buffer.data(), buffer.size());
   2722   }
   2723 
   2724   bool isExact = (result == APFloat::opOK);
   2725   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   2726 }
   2727 
   2728 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   2729   // Fast path for a single digit (which is quite common).  A single digit
   2730   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   2731   if (Tok.getLength() == 1) {
   2732     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   2733     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   2734   }
   2735 
   2736   SmallString<128> SpellingBuffer;
   2737   // NumericLiteralParser wants to overread by one character.  Add padding to
   2738   // the buffer in case the token is copied to the buffer.  If getSpelling()
   2739   // returns a StringRef to the memory buffer, it should have a null char at
   2740   // the EOF, so it is also safe.
   2741   SpellingBuffer.resize(Tok.getLength() + 1);
   2742 
   2743   // Get the spelling of the token, which eliminates trigraphs, etc.
   2744   bool Invalid = false;
   2745   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   2746   if (Invalid)
   2747     return ExprError();
   2748 
   2749   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   2750   if (Literal.hadError)
   2751     return ExprError();
   2752 
   2753   if (Literal.hasUDSuffix()) {
   2754     // We're building a user-defined literal.
   2755     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   2756     SourceLocation UDSuffixLoc =
   2757       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   2758 
   2759     // Make sure we're allowed user-defined literals here.
   2760     if (!UDLScope)
   2761       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   2762 
   2763     QualType CookedTy;
   2764     if (Literal.isFloatingLiteral()) {
   2765       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   2766       // long double, the literal is treated as a call of the form
   2767       //   operator "" X (f L)
   2768       CookedTy = Context.LongDoubleTy;
   2769     } else {
   2770       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   2771       // unsigned long long, the literal is treated as a call of the form
   2772       //   operator "" X (n ULL)
   2773       CookedTy = Context.UnsignedLongLongTy;
   2774     }
   2775 
   2776     DeclarationName OpName =
   2777       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   2778     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   2779     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   2780 
   2781     // Perform literal operator lookup to determine if we're building a raw
   2782     // literal or a cooked one.
   2783     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   2784     switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
   2785                                   /*AllowRawAndTemplate*/true)) {
   2786     case LOLR_Error:
   2787       return ExprError();
   2788 
   2789     case LOLR_Cooked: {
   2790       Expr *Lit;
   2791       if (Literal.isFloatingLiteral()) {
   2792         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   2793       } else {
   2794         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   2795         if (Literal.GetIntegerValue(ResultVal))
   2796           Diag(Tok.getLocation(), diag::warn_integer_too_large);
   2797         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   2798                                      Tok.getLocation());
   2799       }
   2800       return BuildLiteralOperatorCall(R, OpNameInfo,
   2801                                       llvm::makeArrayRef(&Lit, 1),
   2802                                       Tok.getLocation());
   2803     }
   2804 
   2805     case LOLR_Raw: {
   2806       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   2807       // literal is treated as a call of the form
   2808       //   operator "" X ("n")
   2809       SourceLocation TokLoc = Tok.getLocation();
   2810       unsigned Length = Literal.getUDSuffixOffset();
   2811       QualType StrTy = Context.getConstantArrayType(
   2812           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   2813           ArrayType::Normal, 0);
   2814       Expr *Lit = StringLiteral::Create(
   2815           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   2816           /*Pascal*/false, StrTy, &TokLoc, 1);
   2817       return BuildLiteralOperatorCall(R, OpNameInfo,
   2818                                       llvm::makeArrayRef(&Lit, 1), TokLoc);
   2819     }
   2820 
   2821     case LOLR_Template:
   2822       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   2823       // template), L is treated as a call fo the form
   2824       //   operator "" X <'c1', 'c2', ... 'ck'>()
   2825       // where n is the source character sequence c1 c2 ... ck.
   2826       TemplateArgumentListInfo ExplicitArgs;
   2827       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   2828       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   2829       llvm::APSInt Value(CharBits, CharIsUnsigned);
   2830       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   2831         Value = TokSpelling[I];
   2832         TemplateArgument Arg(Context, Value, Context.CharTy);
   2833         TemplateArgumentLocInfo ArgInfo;
   2834         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   2835       }
   2836       return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
   2837                                       Tok.getLocation(), &ExplicitArgs);
   2838     }
   2839 
   2840     llvm_unreachable("unexpected literal operator lookup result");
   2841   }
   2842 
   2843   Expr *Res;
   2844 
   2845   if (Literal.isFloatingLiteral()) {
   2846     QualType Ty;
   2847     if (Literal.isFloat)
   2848       Ty = Context.FloatTy;
   2849     else if (!Literal.isLong)
   2850       Ty = Context.DoubleTy;
   2851     else
   2852       Ty = Context.LongDoubleTy;
   2853 
   2854     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   2855 
   2856     if (Ty == Context.DoubleTy) {
   2857       if (getLangOpts().SinglePrecisionConstants) {
   2858         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
   2859       } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
   2860         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   2861         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
   2862       }
   2863     }
   2864   } else if (!Literal.isIntegerLiteral()) {
   2865     return ExprError();
   2866   } else {
   2867     QualType Ty;
   2868 
   2869     // 'long long' is a C99 or C++11 feature.
   2870     if (!getLangOpts().C99 && Literal.isLongLong) {
   2871       if (getLangOpts().CPlusPlus)
   2872         Diag(Tok.getLocation(),
   2873              getLangOpts().CPlusPlus11 ?
   2874              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   2875       else
   2876         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   2877     }
   2878 
   2879     // Get the value in the widest-possible width.
   2880     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   2881     // The microsoft literal suffix extensions support 128-bit literals, which
   2882     // may be wider than [u]intmax_t.
   2883     // FIXME: Actually, they don't. We seem to have accidentally invented the
   2884     //        i128 suffix.
   2885     if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
   2886         PP.getTargetInfo().hasInt128Type())
   2887       MaxWidth = 128;
   2888     llvm::APInt ResultVal(MaxWidth, 0);
   2889 
   2890     if (Literal.GetIntegerValue(ResultVal)) {
   2891       // If this value didn't fit into uintmax_t, warn and force to ull.
   2892       Diag(Tok.getLocation(), diag::warn_integer_too_large);
   2893       Ty = Context.UnsignedLongLongTy;
   2894       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   2895              "long long is not intmax_t?");
   2896     } else {
   2897       // If this value fits into a ULL, try to figure out what else it fits into
   2898       // according to the rules of C99 6.4.4.1p5.
   2899 
   2900       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   2901       // be an unsigned int.
   2902       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   2903 
   2904       // Check from smallest to largest, picking the smallest type we can.
   2905       unsigned Width = 0;
   2906       if (!Literal.isLong && !Literal.isLongLong) {
   2907         // Are int/unsigned possibilities?
   2908         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   2909 
   2910         // Does it fit in a unsigned int?
   2911         if (ResultVal.isIntN(IntSize)) {
   2912           // Does it fit in a signed int?
   2913           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   2914             Ty = Context.IntTy;
   2915           else if (AllowUnsigned)
   2916             Ty = Context.UnsignedIntTy;
   2917           Width = IntSize;
   2918         }
   2919       }
   2920 
   2921       // Are long/unsigned long possibilities?
   2922       if (Ty.isNull() && !Literal.isLongLong) {
   2923         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   2924 
   2925         // Does it fit in a unsigned long?
   2926         if (ResultVal.isIntN(LongSize)) {
   2927           // Does it fit in a signed long?
   2928           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   2929             Ty = Context.LongTy;
   2930           else if (AllowUnsigned)
   2931             Ty = Context.UnsignedLongTy;
   2932           Width = LongSize;
   2933         }
   2934       }
   2935 
   2936       // Check long long if needed.
   2937       if (Ty.isNull()) {
   2938         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   2939 
   2940         // Does it fit in a unsigned long long?
   2941         if (ResultVal.isIntN(LongLongSize)) {
   2942           // Does it fit in a signed long long?
   2943           // To be compatible with MSVC, hex integer literals ending with the
   2944           // LL or i64 suffix are always signed in Microsoft mode.
   2945           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   2946               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   2947             Ty = Context.LongLongTy;
   2948           else if (AllowUnsigned)
   2949             Ty = Context.UnsignedLongLongTy;
   2950           Width = LongLongSize;
   2951         }
   2952       }
   2953 
   2954       // If it doesn't fit in unsigned long long, and we're using Microsoft
   2955       // extensions, then its a 128-bit integer literal.
   2956       if (Ty.isNull() && Literal.isMicrosoftInteger &&
   2957           PP.getTargetInfo().hasInt128Type()) {
   2958         if (Literal.isUnsigned)
   2959           Ty = Context.UnsignedInt128Ty;
   2960         else
   2961           Ty = Context.Int128Ty;
   2962         Width = 128;
   2963       }
   2964 
   2965       // If we still couldn't decide a type, we probably have something that
   2966       // does not fit in a signed long long, but has no U suffix.
   2967       if (Ty.isNull()) {
   2968         Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
   2969         Ty = Context.UnsignedLongLongTy;
   2970         Width = Context.getTargetInfo().getLongLongWidth();
   2971       }
   2972 
   2973       if (ResultVal.getBitWidth() != Width)
   2974         ResultVal = ResultVal.trunc(Width);
   2975     }
   2976     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   2977   }
   2978 
   2979   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   2980   if (Literal.isImaginary)
   2981     Res = new (Context) ImaginaryLiteral(Res,
   2982                                         Context.getComplexType(Res->getType()));
   2983 
   2984   return Owned(Res);
   2985 }
   2986 
   2987 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   2988   assert((E != 0) && "ActOnParenExpr() missing expr");
   2989   return Owned(new (Context) ParenExpr(L, R, E));
   2990 }
   2991 
   2992 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   2993                                          SourceLocation Loc,
   2994                                          SourceRange ArgRange) {
   2995   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   2996   // scalar or vector data type argument..."
   2997   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   2998   // type (C99 6.2.5p18) or void.
   2999   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3000     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3001       << T << ArgRange;
   3002     return true;
   3003   }
   3004 
   3005   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3006          "Scalar types should always be complete");
   3007   return false;
   3008 }
   3009 
   3010 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3011                                            SourceLocation Loc,
   3012                                            SourceRange ArgRange,
   3013                                            UnaryExprOrTypeTrait TraitKind) {
   3014   // C99 6.5.3.4p1:
   3015   if (T->isFunctionType()) {
   3016     // alignof(function) is allowed as an extension.
   3017     if (TraitKind == UETT_SizeOf)
   3018       S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
   3019     return false;
   3020   }
   3021 
   3022   // Allow sizeof(void)/alignof(void) as an extension.
   3023   if (T->isVoidType()) {
   3024     S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
   3025     return false;
   3026   }
   3027 
   3028   return true;
   3029 }
   3030 
   3031 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3032                                              SourceLocation Loc,
   3033                                              SourceRange ArgRange,
   3034                                              UnaryExprOrTypeTrait TraitKind) {
   3035   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3036   // runtime doesn't allow it.
   3037   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3038     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3039       << T << (TraitKind == UETT_SizeOf)
   3040       << ArgRange;
   3041     return true;
   3042   }
   3043 
   3044   return false;
   3045 }
   3046 
   3047 /// \brief Check the constrains on expression operands to unary type expression
   3048 /// and type traits.
   3049 ///
   3050 /// Completes any types necessary and validates the constraints on the operand
   3051 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3052 /// the expression as it completes the type for that expression through template
   3053 /// instantiation, etc.
   3054 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3055                                             UnaryExprOrTypeTrait ExprKind) {
   3056   QualType ExprTy = E->getType();
   3057 
   3058   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   3059   //   the result is the size of the referenced type."
   3060   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
   3061   //   result shall be the alignment of the referenced type."
   3062   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
   3063     ExprTy = Ref->getPointeeType();
   3064 
   3065   if (ExprKind == UETT_VecStep)
   3066     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3067                                         E->getSourceRange());
   3068 
   3069   // Whitelist some types as extensions
   3070   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3071                                       E->getSourceRange(), ExprKind))
   3072     return false;
   3073 
   3074   if (RequireCompleteExprType(E,
   3075                               diag::err_sizeof_alignof_incomplete_type,
   3076                               ExprKind, E->getSourceRange()))
   3077     return true;
   3078 
   3079   // Completeing the expression's type may have changed it.
   3080   ExprTy = E->getType();
   3081   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
   3082     ExprTy = Ref->getPointeeType();
   3083 
   3084   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3085                                        E->getSourceRange(), ExprKind))
   3086     return true;
   3087 
   3088   if (ExprKind == UETT_SizeOf) {
   3089     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3090       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3091         QualType OType = PVD->getOriginalType();
   3092         QualType Type = PVD->getType();
   3093         if (Type->isPointerType() && OType->isArrayType()) {
   3094           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3095             << Type << OType;
   3096           Diag(PVD->getLocation(), diag::note_declared_at);
   3097         }
   3098       }
   3099     }
   3100   }
   3101 
   3102   return false;
   3103 }
   3104 
   3105 /// \brief Check the constraints on operands to unary expression and type
   3106 /// traits.
   3107 ///
   3108 /// This will complete any types necessary, and validate the various constraints
   3109 /// on those operands.
   3110 ///
   3111 /// The UsualUnaryConversions() function is *not* called by this routine.
   3112 /// C99 6.3.2.1p[2-4] all state:
   3113 ///   Except when it is the operand of the sizeof operator ...
   3114 ///
   3115 /// C++ [expr.sizeof]p4
   3116 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3117 ///   standard conversions are not applied to the operand of sizeof.
   3118 ///
   3119 /// This policy is followed for all of the unary trait expressions.
   3120 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3121                                             SourceLocation OpLoc,
   3122                                             SourceRange ExprRange,
   3123                                             UnaryExprOrTypeTrait ExprKind) {
   3124   if (ExprType->isDependentType())
   3125     return false;
   3126 
   3127   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   3128   //   the result is the size of the referenced type."
   3129   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
   3130   //   result shall be the alignment of the referenced type."
   3131   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3132     ExprType = Ref->getPointeeType();
   3133 
   3134   if (ExprKind == UETT_VecStep)
   3135     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3136 
   3137   // Whitelist some types as extensions
   3138   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3139                                       ExprKind))
   3140     return false;
   3141 
   3142   if (RequireCompleteType(OpLoc, ExprType,
   3143                           diag::err_sizeof_alignof_incomplete_type,
   3144                           ExprKind, ExprRange))
   3145     return true;
   3146 
   3147   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3148                                        ExprKind))
   3149     return true;
   3150 
   3151   return false;
   3152 }
   3153 
   3154 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3155   E = E->IgnoreParens();
   3156 
   3157   // alignof decl is always ok.
   3158   if (isa<DeclRefExpr>(E))
   3159     return false;
   3160 
   3161   // Cannot know anything else if the expression is dependent.
   3162   if (E->isTypeDependent())
   3163     return false;
   3164 
   3165   if (E->getBitField()) {
   3166     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
   3167        << 1 << E->getSourceRange();
   3168     return true;
   3169   }
   3170 
   3171   // Alignment of a field access is always okay, so long as it isn't a
   3172   // bit-field.
   3173   if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
   3174     if (isa<FieldDecl>(ME->getMemberDecl()))
   3175       return false;
   3176 
   3177   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3178 }
   3179 
   3180 bool Sema::CheckVecStepExpr(Expr *E) {
   3181   E = E->IgnoreParens();
   3182 
   3183   // Cannot know anything else if the expression is dependent.
   3184   if (E->isTypeDependent())
   3185     return false;
   3186 
   3187   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3188 }
   3189 
   3190 /// \brief Build a sizeof or alignof expression given a type operand.
   3191 ExprResult
   3192 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3193                                      SourceLocation OpLoc,
   3194                                      UnaryExprOrTypeTrait ExprKind,
   3195                                      SourceRange R) {
   3196   if (!TInfo)
   3197     return ExprError();
   3198 
   3199   QualType T = TInfo->getType();
   3200 
   3201   if (!T->isDependentType() &&
   3202       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3203     return ExprError();
   3204 
   3205   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3206   return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
   3207                                                       Context.getSizeType(),
   3208                                                       OpLoc, R.getEnd()));
   3209 }
   3210 
   3211 /// \brief Build a sizeof or alignof expression given an expression
   3212 /// operand.
   3213 ExprResult
   3214 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3215                                      UnaryExprOrTypeTrait ExprKind) {
   3216   ExprResult PE = CheckPlaceholderExpr(E);
   3217   if (PE.isInvalid())
   3218     return ExprError();
   3219 
   3220   E = PE.get();
   3221 
   3222   // Verify that the operand is valid.
   3223   bool isInvalid = false;
   3224   if (E->isTypeDependent()) {
   3225     // Delay type-checking for type-dependent expressions.
   3226   } else if (ExprKind == UETT_AlignOf) {
   3227     isInvalid = CheckAlignOfExpr(*this, E);
   3228   } else if (ExprKind == UETT_VecStep) {
   3229     isInvalid = CheckVecStepExpr(E);
   3230   } else if (E->getBitField()) {  // C99 6.5.3.4p1.
   3231     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
   3232     isInvalid = true;
   3233   } else {
   3234     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   3235   }
   3236 
   3237   if (isInvalid)
   3238     return ExprError();
   3239 
   3240   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   3241     PE = TransformToPotentiallyEvaluated(E);
   3242     if (PE.isInvalid()) return ExprError();
   3243     E = PE.take();
   3244   }
   3245 
   3246   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3247   return Owned(new (Context) UnaryExprOrTypeTraitExpr(
   3248       ExprKind, E, Context.getSizeType(), OpLoc,
   3249       E->getSourceRange().getEnd()));
   3250 }
   3251 
   3252 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   3253 /// expr and the same for @c alignof and @c __alignof
   3254 /// Note that the ArgRange is invalid if isType is false.
   3255 ExprResult
   3256 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   3257                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   3258                                     void *TyOrEx, const SourceRange &ArgRange) {
   3259   // If error parsing type, ignore.
   3260   if (TyOrEx == 0) return ExprError();
   3261 
   3262   if (IsType) {
   3263     TypeSourceInfo *TInfo;
   3264     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   3265     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   3266   }
   3267 
   3268   Expr *ArgEx = (Expr *)TyOrEx;
   3269   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   3270   return Result;
   3271 }
   3272 
   3273 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   3274                                      bool IsReal) {
   3275   if (V.get()->isTypeDependent())
   3276     return S.Context.DependentTy;
   3277 
   3278   // _Real and _Imag are only l-values for normal l-values.
   3279   if (V.get()->getObjectKind() != OK_Ordinary) {
   3280     V = S.DefaultLvalueConversion(V.take());
   3281     if (V.isInvalid())
   3282       return QualType();
   3283   }
   3284 
   3285   // These operators return the element type of a complex type.
   3286   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   3287     return CT->getElementType();
   3288 
   3289   // Otherwise they pass through real integer and floating point types here.
   3290   if (V.get()->getType()->isArithmeticType())
   3291     return V.get()->getType();
   3292 
   3293   // Test for placeholders.
   3294   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   3295   if (PR.isInvalid()) return QualType();
   3296   if (PR.get() != V.get()) {
   3297     V = PR;
   3298     return CheckRealImagOperand(S, V, Loc, IsReal);
   3299   }
   3300 
   3301   // Reject anything else.
   3302   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   3303     << (IsReal ? "__real" : "__imag");
   3304   return QualType();
   3305 }
   3306 
   3307 
   3308 
   3309 ExprResult
   3310 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   3311                           tok::TokenKind Kind, Expr *Input) {
   3312   UnaryOperatorKind Opc;
   3313   switch (Kind) {
   3314   default: llvm_unreachable("Unknown unary op!");
   3315   case tok::plusplus:   Opc = UO_PostInc; break;
   3316   case tok::minusminus: Opc = UO_PostDec; break;
   3317   }
   3318 
   3319   // Since this might is a postfix expression, get rid of ParenListExprs.
   3320   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   3321   if (Result.isInvalid()) return ExprError();
   3322   Input = Result.take();
   3323 
   3324   return BuildUnaryOp(S, OpLoc, Opc, Input);
   3325 }
   3326 
   3327 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   3328 ///
   3329 /// \return true on error
   3330 static bool checkArithmeticOnObjCPointer(Sema &S,
   3331                                          SourceLocation opLoc,
   3332                                          Expr *op) {
   3333   assert(op->getType()->isObjCObjectPointerType());
   3334   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
   3335     return false;
   3336 
   3337   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   3338     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   3339     << op->getSourceRange();
   3340   return true;
   3341 }
   3342 
   3343 ExprResult
   3344 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   3345                               Expr *idx, SourceLocation rbLoc) {
   3346   // Since this might be a postfix expression, get rid of ParenListExprs.
   3347   if (isa<ParenListExpr>(base)) {
   3348     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   3349     if (result.isInvalid()) return ExprError();
   3350     base = result.take();
   3351   }
   3352 
   3353   // Handle any non-overload placeholder types in the base and index
   3354   // expressions.  We can't handle overloads here because the other
   3355   // operand might be an overloadable type, in which case the overload
   3356   // resolution for the operator overload should get the first crack
   3357   // at the overload.
   3358   if (base->getType()->isNonOverloadPlaceholderType()) {
   3359     ExprResult result = CheckPlaceholderExpr(base);
   3360     if (result.isInvalid()) return ExprError();
   3361     base = result.take();
   3362   }
   3363   if (idx->getType()->isNonOverloadPlaceholderType()) {
   3364     ExprResult result = CheckPlaceholderExpr(idx);
   3365     if (result.isInvalid()) return ExprError();
   3366     idx = result.take();
   3367   }
   3368 
   3369   // Build an unanalyzed expression if either operand is type-dependent.
   3370   if (getLangOpts().CPlusPlus &&
   3371       (base->isTypeDependent() || idx->isTypeDependent())) {
   3372     return Owned(new (Context) ArraySubscriptExpr(base, idx,
   3373                                                   Context.DependentTy,
   3374                                                   VK_LValue, OK_Ordinary,
   3375                                                   rbLoc));
   3376   }
   3377 
   3378   // Use C++ overloaded-operator rules if either operand has record
   3379   // type.  The spec says to do this if either type is *overloadable*,
   3380   // but enum types can't declare subscript operators or conversion
   3381   // operators, so there's nothing interesting for overload resolution
   3382   // to do if there aren't any record types involved.
   3383   //
   3384   // ObjC pointers have their own subscripting logic that is not tied
   3385   // to overload resolution and so should not take this path.
   3386   if (getLangOpts().CPlusPlus &&
   3387       (base->getType()->isRecordType() ||
   3388        (!base->getType()->isObjCObjectPointerType() &&
   3389         idx->getType()->isRecordType()))) {
   3390     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   3391   }
   3392 
   3393   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   3394 }
   3395 
   3396 ExprResult
   3397 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   3398                                       Expr *Idx, SourceLocation RLoc) {
   3399   Expr *LHSExp = Base;
   3400   Expr *RHSExp = Idx;
   3401 
   3402   // Perform default conversions.
   3403   if (!LHSExp->getType()->getAs<VectorType>()) {
   3404     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   3405     if (Result.isInvalid())
   3406       return ExprError();
   3407     LHSExp = Result.take();
   3408   }
   3409   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   3410   if (Result.isInvalid())
   3411     return ExprError();
   3412   RHSExp = Result.take();
   3413 
   3414   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   3415   ExprValueKind VK = VK_LValue;
   3416   ExprObjectKind OK = OK_Ordinary;
   3417 
   3418   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   3419   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   3420   // in the subscript position. As a result, we need to derive the array base
   3421   // and index from the expression types.
   3422   Expr *BaseExpr, *IndexExpr;
   3423   QualType ResultType;
   3424   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   3425     BaseExpr = LHSExp;
   3426     IndexExpr = RHSExp;
   3427     ResultType = Context.DependentTy;
   3428   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   3429     BaseExpr = LHSExp;
   3430     IndexExpr = RHSExp;
   3431     ResultType = PTy->getPointeeType();
   3432   } else if (const ObjCObjectPointerType *PTy =
   3433                LHSTy->getAs<ObjCObjectPointerType>()) {
   3434     BaseExpr = LHSExp;
   3435     IndexExpr = RHSExp;
   3436 
   3437     // Use custom logic if this should be the pseudo-object subscript
   3438     // expression.
   3439     if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
   3440       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
   3441 
   3442     ResultType = PTy->getPointeeType();
   3443     if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
   3444       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   3445         << ResultType << BaseExpr->getSourceRange();
   3446       return ExprError();
   3447     }
   3448   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   3449      // Handle the uncommon case of "123[Ptr]".
   3450     BaseExpr = RHSExp;
   3451     IndexExpr = LHSExp;
   3452     ResultType = PTy->getPointeeType();
   3453   } else if (const ObjCObjectPointerType *PTy =
   3454                RHSTy->getAs<ObjCObjectPointerType>()) {
   3455      // Handle the uncommon case of "123[Ptr]".
   3456     BaseExpr = RHSExp;
   3457     IndexExpr = LHSExp;
   3458     ResultType = PTy->getPointeeType();
   3459     if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
   3460       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   3461         << ResultType << BaseExpr->getSourceRange();
   3462       return ExprError();
   3463     }
   3464   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   3465     BaseExpr = LHSExp;    // vectors: V[123]
   3466     IndexExpr = RHSExp;
   3467     VK = LHSExp->getValueKind();
   3468     if (VK != VK_RValue)
   3469       OK = OK_VectorComponent;
   3470 
   3471     // FIXME: need to deal with const...
   3472     ResultType = VTy->getElementType();
   3473   } else if (LHSTy->isArrayType()) {
   3474     // If we see an array that wasn't promoted by
   3475     // DefaultFunctionArrayLvalueConversion, it must be an array that
   3476     // wasn't promoted because of the C90 rule that doesn't
   3477     // allow promoting non-lvalue arrays.  Warn, then
   3478     // force the promotion here.
   3479     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3480         LHSExp->getSourceRange();
   3481     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   3482                                CK_ArrayToPointerDecay).take();
   3483     LHSTy = LHSExp->getType();
   3484 
   3485     BaseExpr = LHSExp;
   3486     IndexExpr = RHSExp;
   3487     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   3488   } else if (RHSTy->isArrayType()) {
   3489     // Same as previous, except for 123[f().a] case
   3490     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3491         RHSExp->getSourceRange();
   3492     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   3493                                CK_ArrayToPointerDecay).take();
   3494     RHSTy = RHSExp->getType();
   3495 
   3496     BaseExpr = RHSExp;
   3497     IndexExpr = LHSExp;
   3498     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   3499   } else {
   3500     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   3501        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   3502   }
   3503   // C99 6.5.2.1p1
   3504   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   3505     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   3506                      << IndexExpr->getSourceRange());
   3507 
   3508   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   3509        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   3510          && !IndexExpr->isTypeDependent())
   3511     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   3512 
   3513   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   3514   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   3515   // type. Note that Functions are not objects, and that (in C99 parlance)
   3516   // incomplete types are not object types.
   3517   if (ResultType->isFunctionType()) {
   3518     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   3519       << ResultType << BaseExpr->getSourceRange();
   3520     return ExprError();
   3521   }
   3522 
   3523   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   3524     // GNU extension: subscripting on pointer to void
   3525     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   3526       << BaseExpr->getSourceRange();
   3527 
   3528     // C forbids expressions of unqualified void type from being l-values.
   3529     // See IsCForbiddenLValueType.
   3530     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   3531   } else if (!ResultType->isDependentType() &&
   3532       RequireCompleteType(LLoc, ResultType,
   3533                           diag::err_subscript_incomplete_type, BaseExpr))
   3534     return ExprError();
   3535 
   3536   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   3537          !ResultType.isCForbiddenLValueType());
   3538 
   3539   return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
   3540                                                 ResultType, VK, OK, RLoc));
   3541 }
   3542 
   3543 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   3544                                         FunctionDecl *FD,
   3545                                         ParmVarDecl *Param) {
   3546   if (Param->hasUnparsedDefaultArg()) {
   3547     Diag(CallLoc,
   3548          diag::err_use_of_default_argument_to_function_declared_later) <<
   3549       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   3550     Diag(UnparsedDefaultArgLocs[Param],
   3551          diag::note_default_argument_declared_here);
   3552     return ExprError();
   3553   }
   3554 
   3555   if (Param->hasUninstantiatedDefaultArg()) {
   3556     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   3557 
   3558     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   3559                                                  Param);
   3560 
   3561     // Instantiate the expression.
   3562     MultiLevelTemplateArgumentList ArgList
   3563       = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
   3564 
   3565     std::pair<const TemplateArgument *, unsigned> Innermost
   3566       = ArgList.getInnermost();
   3567     InstantiatingTemplate Inst(*this, CallLoc, Param,
   3568                                ArrayRef<TemplateArgument>(Innermost.first,
   3569                                                           Innermost.second));
   3570     if (Inst)
   3571       return ExprError();
   3572 
   3573     ExprResult Result;
   3574     {
   3575       // C++ [dcl.fct.default]p5:
   3576       //   The names in the [default argument] expression are bound, and
   3577       //   the semantic constraints are checked, at the point where the
   3578       //   default argument expression appears.
   3579       ContextRAII SavedContext(*this, FD);
   3580       LocalInstantiationScope Local(*this);
   3581       Result = SubstExpr(UninstExpr, ArgList);
   3582     }
   3583     if (Result.isInvalid())
   3584       return ExprError();
   3585 
   3586     // Check the expression as an initializer for the parameter.
   3587     InitializedEntity Entity
   3588       = InitializedEntity::InitializeParameter(Context, Param);
   3589     InitializationKind Kind
   3590       = InitializationKind::CreateCopy(Param->getLocation(),
   3591              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   3592     Expr *ResultE = Result.takeAs<Expr>();
   3593 
   3594     InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
   3595     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   3596     if (Result.isInvalid())
   3597       return ExprError();
   3598 
   3599     Expr *Arg = Result.takeAs<Expr>();
   3600     CheckCompletedExpr(Arg, Param->getOuterLocStart());
   3601     // Build the default argument expression.
   3602     return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
   3603   }
   3604 
   3605   // If the default expression creates temporaries, we need to
   3606   // push them to the current stack of expression temporaries so they'll
   3607   // be properly destroyed.
   3608   // FIXME: We should really be rebuilding the default argument with new
   3609   // bound temporaries; see the comment in PR5810.
   3610   // We don't need to do that with block decls, though, because
   3611   // blocks in default argument expression can never capture anything.
   3612   if (isa<ExprWithCleanups>(Param->getInit())) {
   3613     // Set the "needs cleanups" bit regardless of whether there are
   3614     // any explicit objects.
   3615     ExprNeedsCleanups = true;
   3616 
   3617     // Append all the objects to the cleanup list.  Right now, this
   3618     // should always be a no-op, because blocks in default argument
   3619     // expressions should never be able to capture anything.
   3620     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
   3621            "default argument expression has capturing blocks?");
   3622   }
   3623 
   3624   // We already type-checked the argument, so we know it works.
   3625   // Just mark all of the declarations in this potentially-evaluated expression
   3626   // as being "referenced".
   3627   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   3628                                    /*SkipLocalVariables=*/true);
   3629   return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
   3630 }
   3631 
   3632 
   3633 Sema::VariadicCallType
   3634 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   3635                           Expr *Fn) {
   3636   if (Proto && Proto->isVariadic()) {
   3637     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   3638       return VariadicConstructor;
   3639     else if (Fn && Fn->getType()->isBlockPointerType())
   3640       return VariadicBlock;
   3641     else if (FDecl) {
   3642       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   3643         if (Method->isInstance())
   3644           return VariadicMethod;
   3645     }
   3646     return VariadicFunction;
   3647   }
   3648   return VariadicDoesNotApply;
   3649 }
   3650 
   3651 /// ConvertArgumentsForCall - Converts the arguments specified in
   3652 /// Args/NumArgs to the parameter types of the function FDecl with
   3653 /// function prototype Proto. Call is the call expression itself, and
   3654 /// Fn is the function expression. For a C++ member function, this
   3655 /// routine does not attempt to convert the object argument. Returns
   3656 /// true if the call is ill-formed.
   3657 bool
   3658 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   3659                               FunctionDecl *FDecl,
   3660                               const FunctionProtoType *Proto,
   3661                               Expr **Args, unsigned NumArgs,
   3662                               SourceLocation RParenLoc,
   3663                               bool IsExecConfig) {
   3664   // Bail out early if calling a builtin with custom typechecking.
   3665   // We don't need to do this in the
   3666   if (FDecl)
   3667     if (unsigned ID = FDecl->getBuiltinID())
   3668       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   3669         return false;
   3670 
   3671   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   3672   // assignment, to the types of the corresponding parameter, ...
   3673   unsigned NumArgsInProto = Proto->getNumArgs();
   3674   bool Invalid = false;
   3675   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
   3676   unsigned FnKind = Fn->getType()->isBlockPointerType()
   3677                        ? 1 /* block */
   3678                        : (IsExecConfig ? 3 /* kernel function (exec config) */
   3679                                        : 0 /* function */);
   3680 
   3681   // If too few arguments are available (and we don't have default
   3682   // arguments for the remaining parameters), don't make the call.
   3683   if (NumArgs < NumArgsInProto) {
   3684     if (NumArgs < MinArgs) {
   3685       if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   3686         Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
   3687                           ? diag::err_typecheck_call_too_few_args_one
   3688                           : diag::err_typecheck_call_too_few_args_at_least_one)
   3689           << FnKind
   3690           << FDecl->getParamDecl(0) << Fn->getSourceRange();
   3691       else
   3692         Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
   3693                           ? diag::err_typecheck_call_too_few_args
   3694                           : diag::err_typecheck_call_too_few_args_at_least)
   3695           << FnKind
   3696           << MinArgs << NumArgs << Fn->getSourceRange();
   3697 
   3698       // Emit the location of the prototype.
   3699       if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   3700         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   3701           << FDecl;
   3702 
   3703       return true;
   3704     }
   3705     Call->setNumArgs(Context, NumArgsInProto);
   3706   }
   3707 
   3708   // If too many are passed and not variadic, error on the extras and drop
   3709   // them.
   3710   if (NumArgs > NumArgsInProto) {
   3711     if (!Proto->isVariadic()) {
   3712       if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   3713         Diag(Args[NumArgsInProto]->getLocStart(),
   3714              MinArgs == NumArgsInProto
   3715                ? diag::err_typecheck_call_too_many_args_one
   3716                : diag::err_typecheck_call_too_many_args_at_most_one)
   3717           << FnKind
   3718           << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
   3719           << SourceRange(Args[NumArgsInProto]->getLocStart(),
   3720                          Args[NumArgs-1]->getLocEnd());
   3721       else
   3722         Diag(Args[NumArgsInProto]->getLocStart(),
   3723              MinArgs == NumArgsInProto
   3724                ? diag::err_typecheck_call_too_many_args
   3725                : diag::err_typecheck_call_too_many_args_at_most)
   3726           << FnKind
   3727           << NumArgsInProto << NumArgs << Fn->getSourceRange()
   3728           << SourceRange(Args[NumArgsInProto]->getLocStart(),
   3729                          Args[NumArgs-1]->getLocEnd());
   3730 
   3731       // Emit the location of the prototype.
   3732       if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   3733         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   3734           << FDecl;
   3735 
   3736       // This deletes the extra arguments.
   3737       Call->setNumArgs(Context, NumArgsInProto);
   3738       return true;
   3739     }
   3740   }
   3741   SmallVector<Expr *, 8> AllArgs;
   3742   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
   3743 
   3744   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
   3745                                    Proto, 0, Args, NumArgs, AllArgs, CallType);
   3746   if (Invalid)
   3747     return true;
   3748   unsigned TotalNumArgs = AllArgs.size();
   3749   for (unsigned i = 0; i < TotalNumArgs; ++i)
   3750     Call->setArg(i, AllArgs[i]);
   3751 
   3752   return false;
   3753 }
   3754 
   3755 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
   3756                                   FunctionDecl *FDecl,
   3757                                   const FunctionProtoType *Proto,
   3758                                   unsigned FirstProtoArg,
   3759                                   Expr **Args, unsigned NumArgs,
   3760                                   SmallVector<Expr *, 8> &AllArgs,
   3761                                   VariadicCallType CallType,
   3762                                   bool AllowExplicit,
   3763                                   bool IsListInitialization) {
   3764   unsigned NumArgsInProto = Proto->getNumArgs();
   3765   unsigned NumArgsToCheck = NumArgs;
   3766   bool Invalid = false;
   3767   if (NumArgs != NumArgsInProto)
   3768     // Use default arguments for missing arguments
   3769     NumArgsToCheck = NumArgsInProto;
   3770   unsigned ArgIx = 0;
   3771   // Continue to check argument types (even if we have too few/many args).
   3772   for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
   3773     QualType ProtoArgType = Proto->getArgType(i);
   3774 
   3775     Expr *Arg;
   3776     ParmVarDecl *Param;
   3777     if (ArgIx < NumArgs) {
   3778       Arg = Args[ArgIx++];
   3779 
   3780       if (RequireCompleteType(Arg->getLocStart(),
   3781                               ProtoArgType,
   3782                               diag::err_call_incomplete_argument, Arg))
   3783         return true;
   3784 
   3785       // Pass the argument
   3786       Param = 0;
   3787       if (FDecl && i < FDecl->getNumParams())
   3788         Param = FDecl->getParamDecl(i);
   3789 
   3790       // Strip the unbridged-cast placeholder expression off, if applicable.
   3791       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
   3792           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   3793           (!Param || !Param->hasAttr<CFConsumedAttr>()))
   3794         Arg = stripARCUnbridgedCast(Arg);
   3795 
   3796       InitializedEntity Entity = Param ?
   3797           InitializedEntity::InitializeParameter(Context, Param, ProtoArgType)
   3798         : InitializedEntity::InitializeParameter(Context, ProtoArgType,
   3799                                                  Proto->isArgConsumed(i));
   3800       ExprResult ArgE = PerformCopyInitialization(Entity,
   3801                                                   SourceLocation(),
   3802                                                   Owned(Arg),
   3803                                                   IsListInitialization,
   3804                                                   AllowExplicit);
   3805       if (ArgE.isInvalid())
   3806         return true;
   3807 
   3808       Arg = ArgE.takeAs<Expr>();
   3809     } else {
   3810       assert(FDecl && "can't use default arguments without a known callee");
   3811       Param = FDecl->getParamDecl(i);
   3812 
   3813       ExprResult ArgExpr =
   3814         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   3815       if (ArgExpr.isInvalid())
   3816         return true;
   3817 
   3818       Arg = ArgExpr.takeAs<Expr>();
   3819     }
   3820 
   3821     // Check for array bounds violations for each argument to the call. This
   3822     // check only triggers warnings when the argument isn't a more complex Expr
   3823     // with its own checking, such as a BinaryOperator.
   3824     CheckArrayAccess(Arg);
   3825 
   3826     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
   3827     CheckStaticArrayArgument(CallLoc, Param, Arg);
   3828 
   3829     AllArgs.push_back(Arg);
   3830   }
   3831 
   3832   // If this is a variadic call, handle args passed through "...".
   3833   if (CallType != VariadicDoesNotApply) {
   3834     // Assume that extern "C" functions with variadic arguments that
   3835     // return __unknown_anytype aren't *really* variadic.
   3836     if (Proto->getResultType() == Context.UnknownAnyTy &&
   3837         FDecl && FDecl->isExternC()) {
   3838       for (unsigned i = ArgIx; i != NumArgs; ++i) {
   3839         QualType paramType; // ignored
   3840         ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
   3841         Invalid |= arg.isInvalid();
   3842         AllArgs.push_back(arg.take());
   3843       }
   3844 
   3845     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   3846     } else {
   3847       for (unsigned i = ArgIx; i != NumArgs; ++i) {
   3848         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
   3849                                                           FDecl);
   3850         Invalid |= Arg.isInvalid();
   3851         AllArgs.push_back(Arg.take());
   3852       }
   3853     }
   3854 
   3855     // Check for array bounds violations.
   3856     for (unsigned i = ArgIx; i != NumArgs; ++i)
   3857       CheckArrayAccess(Args[i]);
   3858   }
   3859   return Invalid;
   3860 }
   3861 
   3862 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
   3863   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
   3864   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
   3865     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
   3866       << ATL.getLocalSourceRange();
   3867 }
   3868 
   3869 /// CheckStaticArrayArgument - If the given argument corresponds to a static
   3870 /// array parameter, check that it is non-null, and that if it is formed by
   3871 /// array-to-pointer decay, the underlying array is sufficiently large.
   3872 ///
   3873 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
   3874 /// array type derivation, then for each call to the function, the value of the
   3875 /// corresponding actual argument shall provide access to the first element of
   3876 /// an array with at least as many elements as specified by the size expression.
   3877 void
   3878 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
   3879                                ParmVarDecl *Param,
   3880                                const Expr *ArgExpr) {
   3881   // Static array parameters are not supported in C++.
   3882   if (!Param || getLangOpts().CPlusPlus)
   3883     return;
   3884 
   3885   QualType OrigTy = Param->getOriginalType();
   3886 
   3887   const ArrayType *AT = Context.getAsArrayType(OrigTy);
   3888   if (!AT || AT->getSizeModifier() != ArrayType::Static)
   3889     return;
   3890 
   3891   if (ArgExpr->isNullPointerConstant(Context,
   3892                                      Expr::NPC_NeverValueDependent)) {
   3893     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   3894     DiagnoseCalleeStaticArrayParam(*this, Param);
   3895     return;
   3896   }
   3897 
   3898   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
   3899   if (!CAT)
   3900     return;
   3901 
   3902   const ConstantArrayType *ArgCAT =
   3903     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
   3904   if (!ArgCAT)
   3905     return;
   3906 
   3907   if (ArgCAT->getSize().ult(CAT->getSize())) {
   3908     Diag(CallLoc, diag::warn_static_array_too_small)
   3909       << ArgExpr->getSourceRange()
   3910       << (unsigned) ArgCAT->getSize().getZExtValue()
   3911       << (unsigned) CAT->getSize().getZExtValue();
   3912     DiagnoseCalleeStaticArrayParam(*this, Param);
   3913   }
   3914 }
   3915 
   3916 /// Given a function expression of unknown-any type, try to rebuild it
   3917 /// to have a function type.
   3918 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
   3919 
   3920 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
   3921 /// This provides the location of the left/right parens and a list of comma
   3922 /// locations.
   3923 ExprResult
   3924 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
   3925                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
   3926                     Expr *ExecConfig, bool IsExecConfig) {
   3927   // Since this might be a postfix expression, get rid of ParenListExprs.
   3928   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
   3929   if (Result.isInvalid()) return ExprError();
   3930   Fn = Result.take();
   3931 
   3932   if (getLangOpts().CPlusPlus) {
   3933     // If this is a pseudo-destructor expression, build the call immediately.
   3934     if (isa<CXXPseudoDestructorExpr>(Fn)) {
   3935       if (!ArgExprs.empty()) {
   3936         // Pseudo-destructor calls should not have any arguments.
   3937         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
   3938           << FixItHint::CreateRemoval(
   3939                                     SourceRange(ArgExprs[0]->getLocStart(),
   3940                                                 ArgExprs.back()->getLocEnd()));
   3941       }
   3942 
   3943       return Owned(new (Context) CallExpr(Context, Fn, MultiExprArg(),
   3944                                           Context.VoidTy, VK_RValue,
   3945                                           RParenLoc));
   3946     }
   3947 
   3948     // Determine whether this is a dependent call inside a C++ template,
   3949     // in which case we won't do any semantic analysis now.
   3950     // FIXME: Will need to cache the results of name lookup (including ADL) in
   3951     // Fn.
   3952     bool Dependent = false;
   3953     if (Fn->isTypeDependent())
   3954       Dependent = true;
   3955     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
   3956       Dependent = true;
   3957 
   3958     if (Dependent) {
   3959       if (ExecConfig) {
   3960         return Owned(new (Context) CUDAKernelCallExpr(
   3961             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
   3962             Context.DependentTy, VK_RValue, RParenLoc));
   3963       } else {
   3964         return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
   3965                                             Context.DependentTy, VK_RValue,
   3966                                             RParenLoc));
   3967       }
   3968     }
   3969 
   3970     // Determine whether this is a call to an object (C++ [over.call.object]).
   3971     if (Fn->getType()->isRecordType())
   3972       return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
   3973                                                 ArgExprs.data(),
   3974                                                 ArgExprs.size(), RParenLoc));
   3975 
   3976     if (Fn->getType() == Context.UnknownAnyTy) {
   3977       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   3978       if (result.isInvalid()) return ExprError();
   3979       Fn = result.take();
   3980     }
   3981 
   3982     if (Fn->getType() == Context.BoundMemberTy) {
   3983       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
   3984                                        ArgExprs.size(), RParenLoc);
   3985     }
   3986   }
   3987 
   3988   // Check for overloaded calls.  This can happen even in C due to extensions.
   3989   if (Fn->getType() == Context.OverloadTy) {
   3990     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
   3991 
   3992     // We aren't supposed to apply this logic for if there's an '&' involved.
   3993     if (!find.HasFormOfMemberPointer) {
   3994       OverloadExpr *ovl = find.Expression;
   3995       if (isa<UnresolvedLookupExpr>(ovl)) {
   3996         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
   3997         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs.data(),
   3998                                        ArgExprs.size(), RParenLoc, ExecConfig);
   3999       } else {
   4000         return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
   4001                                          ArgExprs.size(), RParenLoc);
   4002       }
   4003     }
   4004   }
   4005 
   4006   // If we're directly calling a function, get the appropriate declaration.
   4007   if (Fn->getType() == Context.UnknownAnyTy) {
   4008     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4009     if (result.isInvalid()) return ExprError();
   4010     Fn = result.take();
   4011   }
   4012 
   4013   Expr *NakedFn = Fn->IgnoreParens();
   4014 
   4015   NamedDecl *NDecl = 0;
   4016   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
   4017     if (UnOp->getOpcode() == UO_AddrOf)
   4018       NakedFn = UnOp->getSubExpr()->IgnoreParens();
   4019 
   4020   if (isa<DeclRefExpr>(NakedFn))
   4021     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
   4022   else if (isa<MemberExpr>(NakedFn))
   4023     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
   4024 
   4025   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs.data(),
   4026                                ArgExprs.size(), RParenLoc, ExecConfig,
   4027                                IsExecConfig);
   4028 }
   4029 
   4030 ExprResult
   4031 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
   4032                               MultiExprArg ExecConfig, SourceLocation GGGLoc) {
   4033   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
   4034   if (!ConfigDecl)
   4035     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
   4036                           << "cudaConfigureCall");
   4037   QualType ConfigQTy = ConfigDecl->getType();
   4038 
   4039   DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
   4040       ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
   4041   MarkFunctionReferenced(LLLLoc, ConfigDecl);
   4042 
   4043   return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
   4044                        /*IsExecConfig=*/true);
   4045 }
   4046 
   4047 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
   4048 ///
   4049 /// __builtin_astype( value, dst type )
   4050 ///
   4051 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
   4052                                  SourceLocation BuiltinLoc,
   4053                                  SourceLocation RParenLoc) {
   4054   ExprValueKind VK = VK_RValue;
   4055   ExprObjectKind OK = OK_Ordinary;
   4056   QualType DstTy = GetTypeFromParser(ParsedDestTy);
   4057   QualType SrcTy = E->getType();
   4058   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
   4059     return ExprError(Diag(BuiltinLoc,
   4060                           diag::err_invalid_astype_of_different_size)
   4061                      << DstTy
   4062                      << SrcTy
   4063                      << E->getSourceRange());
   4064   return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
   4065                RParenLoc));
   4066 }
   4067 
   4068 /// BuildResolvedCallExpr - Build a call to a resolved expression,
   4069 /// i.e. an expression not of \p OverloadTy.  The expression should
   4070 /// unary-convert to an expression of function-pointer or
   4071 /// block-pointer type.
   4072 ///
   4073 /// \param NDecl the declaration being called, if available
   4074 ExprResult
   4075 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
   4076                             SourceLocation LParenLoc,
   4077                             Expr **Args, unsigned NumArgs,
   4078                             SourceLocation RParenLoc,
   4079                             Expr *Config, bool IsExecConfig) {
   4080   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
   4081   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
   4082 
   4083   // Promote the function operand.
   4084   // We special-case function promotion here because we only allow promoting
   4085   // builtin functions to function pointers in the callee of a call.
   4086   ExprResult Result;
   4087   if (BuiltinID &&
   4088       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
   4089     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
   4090                                CK_BuiltinFnToFnPtr).take();
   4091   } else {
   4092     Result = UsualUnaryConversions(Fn);
   4093   }
   4094   if (Result.isInvalid())
   4095     return ExprError();
   4096   Fn = Result.take();
   4097 
   4098   // Make the call expr early, before semantic checks.  This guarantees cleanup
   4099   // of arguments and function on error.
   4100   CallExpr *TheCall;
   4101   if (Config)
   4102     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
   4103                                                cast<CallExpr>(Config),
   4104                                                llvm::makeArrayRef(Args,NumArgs),
   4105                                                Context.BoolTy,
   4106                                                VK_RValue,
   4107                                                RParenLoc);
   4108   else
   4109     TheCall = new (Context) CallExpr(Context, Fn,
   4110                                      llvm::makeArrayRef(Args, NumArgs),
   4111                                      Context.BoolTy,
   4112                                      VK_RValue,
   4113                                      RParenLoc);
   4114 
   4115   // Bail out early if calling a builtin with custom typechecking.
   4116   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
   4117     return CheckBuiltinFunctionCall(BuiltinID, TheCall);
   4118 
   4119  retry:
   4120   const FunctionType *FuncT;
   4121   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
   4122     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
   4123     // have type pointer to function".
   4124     FuncT = PT->getPointeeType()->getAs<FunctionType>();
   4125     if (FuncT == 0)
   4126       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   4127                          << Fn->getType() << Fn->getSourceRange());
   4128   } else if (const BlockPointerType *BPT =
   4129                Fn->getType()->getAs<BlockPointerType>()) {
   4130     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
   4131   } else {
   4132     // Handle calls to expressions of unknown-any type.
   4133     if (Fn->getType() == Context.UnknownAnyTy) {
   4134       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
   4135       if (rewrite.isInvalid()) return ExprError();
   4136       Fn = rewrite.take();
   4137       TheCall->setCallee(Fn);
   4138       goto retry;
   4139     }
   4140 
   4141     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   4142       << Fn->getType() << Fn->getSourceRange());
   4143   }
   4144 
   4145   if (getLangOpts().CUDA) {
   4146     if (Config) {
   4147       // CUDA: Kernel calls must be to global functions
   4148       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
   4149         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
   4150             << FDecl->getName() << Fn->getSourceRange());
   4151 
   4152       // CUDA: Kernel function must have 'void' return type
   4153       if (!FuncT->getResultType()->isVoidType())
   4154         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
   4155             << Fn->getType() << Fn->getSourceRange());
   4156     } else {
   4157       // CUDA: Calls to global functions must be configured
   4158       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
   4159         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
   4160             << FDecl->getName() << Fn->getSourceRange());
   4161     }
   4162   }
   4163 
   4164   // Check for a valid return type
   4165   if (CheckCallReturnType(FuncT->getResultType(),
   4166                           Fn->getLocStart(), TheCall,
   4167                           FDecl))
   4168     return ExprError();
   4169 
   4170   // We know the result type of the call, set it.
   4171   TheCall->setType(FuncT->getCallResultType(Context));
   4172   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
   4173 
   4174   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
   4175   if (Proto) {
   4176     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
   4177                                 RParenLoc, IsExecConfig))
   4178       return ExprError();
   4179   } else {
   4180     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
   4181 
   4182     if (FDecl) {
   4183       // Check if we have too few/too many template arguments, based
   4184       // on our knowledge of the function definition.
   4185       const FunctionDecl *Def = 0;
   4186       if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
   4187         Proto = Def->getType()->getAs<FunctionProtoType>();
   4188         if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
   4189           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
   4190             << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
   4191       }
   4192 
   4193       // If the function we're calling isn't a function prototype, but we have
   4194       // a function prototype from a prior declaratiom, use that prototype.
   4195       if (!FDecl->hasPrototype())
   4196         Proto = FDecl->getType()->getAs<FunctionProtoType>();
   4197     }
   4198 
   4199     // Promote the arguments (C99 6.5.2.2p6).
   4200     for (unsigned i = 0; i != NumArgs; i++) {
   4201       Expr *Arg = Args[i];
   4202 
   4203       if (Proto && i < Proto->getNumArgs()) {
   4204         InitializedEntity Entity
   4205           = InitializedEntity::InitializeParameter(Context,
   4206                                                    Proto->getArgType(i),
   4207                                                    Proto->isArgConsumed(i));
   4208         ExprResult ArgE = PerformCopyInitialization(Entity,
   4209                                                     SourceLocation(),
   4210                                                     Owned(Arg));
   4211         if (ArgE.isInvalid())
   4212           return true;
   4213 
   4214         Arg = ArgE.takeAs<Expr>();
   4215 
   4216       } else {
   4217         ExprResult ArgE = DefaultArgumentPromotion(Arg);
   4218 
   4219         if (ArgE.isInvalid())
   4220           return true;
   4221 
   4222         Arg = ArgE.takeAs<Expr>();
   4223       }
   4224 
   4225       if (RequireCompleteType(Arg->getLocStart(),
   4226                               Arg->getType(),
   4227                               diag::err_call_incomplete_argument, Arg))
   4228         return ExprError();
   4229 
   4230       TheCall->setArg(i, Arg);
   4231     }
   4232   }
   4233 
   4234   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4235     if (!Method->isStatic())
   4236       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
   4237         << Fn->getSourceRange());
   4238 
   4239   // Check for sentinels
   4240   if (NDecl)
   4241     DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
   4242 
   4243   // Do special checking on direct calls to functions.
   4244   if (FDecl) {
   4245     if (CheckFunctionCall(FDecl, TheCall, Proto))
   4246       return ExprError();
   4247 
   4248     if (BuiltinID)
   4249       return CheckBuiltinFunctionCall(BuiltinID, TheCall);
   4250   } else if (NDecl) {
   4251     if (CheckBlockCall(NDecl, TheCall, Proto))
   4252       return ExprError();
   4253   }
   4254 
   4255   return MaybeBindToTemporary(TheCall);
   4256 }
   4257 
   4258 ExprResult
   4259 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
   4260                            SourceLocation RParenLoc, Expr *InitExpr) {
   4261   assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
   4262   // FIXME: put back this assert when initializers are worked out.
   4263   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
   4264 
   4265   TypeSourceInfo *TInfo;
   4266   QualType literalType = GetTypeFromParser(Ty, &TInfo);
   4267   if (!TInfo)
   4268     TInfo = Context.getTrivialTypeSourceInfo(literalType);
   4269 
   4270   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
   4271 }
   4272 
   4273 ExprResult
   4274 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
   4275                                SourceLocation RParenLoc, Expr *LiteralExpr) {
   4276   QualType literalType = TInfo->getType();
   4277 
   4278   if (literalType->isArrayType()) {
   4279     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
   4280           diag::err_illegal_decl_array_incomplete_type,
   4281           SourceRange(LParenLoc,
   4282                       LiteralExpr->getSourceRange().getEnd())))
   4283       return ExprError();
   4284     if (literalType->isVariableArrayType())
   4285       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
   4286         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
   4287   } else if (!literalType->isDependentType() &&
   4288              RequireCompleteType(LParenLoc, literalType,
   4289                diag::err_typecheck_decl_incomplete_type,
   4290                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
   4291     return ExprError();
   4292 
   4293   InitializedEntity Entity
   4294     = InitializedEntity::InitializeTemporary(literalType);
   4295   InitializationKind Kind
   4296     = InitializationKind::CreateCStyleCast(LParenLoc,
   4297                                            SourceRange(LParenLoc, RParenLoc),
   4298                                            /*InitList=*/true);
   4299   InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
   4300   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
   4301                                       &literalType);
   4302   if (Result.isInvalid())
   4303     return ExprError();
   4304   LiteralExpr = Result.get();
   4305 
   4306   bool isFileScope = getCurFunctionOrMethodDecl() == 0;
   4307   if (isFileScope) { // 6.5.2.5p3
   4308     if (CheckForConstantInitializer(LiteralExpr, literalType))
   4309       return ExprError();
   4310   }
   4311 
   4312   // In C, compound literals are l-values for some reason.
   4313   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
   4314 
   4315   return MaybeBindToTemporary(
   4316            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
   4317                                              VK, LiteralExpr, isFileScope));
   4318 }
   4319 
   4320 ExprResult
   4321 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
   4322                     SourceLocation RBraceLoc) {
   4323   // Immediately handle non-overload placeholders.  Overloads can be
   4324   // resolved contextually, but everything else here can't.
   4325   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
   4326     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
   4327       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
   4328 
   4329       // Ignore failures; dropping the entire initializer list because
   4330       // of one failure would be terrible for indexing/etc.
   4331       if (result.isInvalid()) continue;
   4332 
   4333       InitArgList[I] = result.take();
   4334     }
   4335   }
   4336 
   4337   // Semantic analysis for initializers is done by ActOnDeclarator() and
   4338   // CheckInitializer() - it requires knowledge of the object being intialized.
   4339 
   4340   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
   4341                                                RBraceLoc);
   4342   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
   4343   return Owned(E);
   4344 }
   4345 
   4346 /// Do an explicit extend of the given block pointer if we're in ARC.
   4347 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
   4348   assert(E.get()->getType()->isBlockPointerType());
   4349   assert(E.get()->isRValue());
   4350 
   4351   // Only do this in an r-value context.
   4352   if (!S.getLangOpts().ObjCAutoRefCount) return;
   4353 
   4354   E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
   4355                                CK_ARCExtendBlockObject, E.get(),
   4356                                /*base path*/ 0, VK_RValue);
   4357   S.ExprNeedsCleanups = true;
   4358 }
   4359 
   4360 /// Prepare a conversion of the given expression to an ObjC object
   4361 /// pointer type.
   4362 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
   4363   QualType type = E.get()->getType();
   4364   if (type->isObjCObjectPointerType()) {
   4365     return CK_BitCast;
   4366   } else if (type->isBlockPointerType()) {
   4367     maybeExtendBlockObject(*this, E);
   4368     return CK_BlockPointerToObjCPointerCast;
   4369   } else {
   4370     assert(type->isPointerType());
   4371     return CK_CPointerToObjCPointerCast;
   4372   }
   4373 }
   4374 
   4375 /// Prepares for a scalar cast, performing all the necessary stages
   4376 /// except the final cast and returning the kind required.
   4377 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
   4378   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
   4379   // Also, callers should have filtered out the invalid cases with
   4380   // pointers.  Everything else should be possible.
   4381 
   4382   QualType SrcTy = Src.get()->getType();
   4383   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
   4384     return CK_NoOp;
   4385 
   4386   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
   4387   case Type::STK_MemberPointer:
   4388     llvm_unreachable("member pointer type in C");
   4389 
   4390   case Type::STK_CPointer:
   4391   case Type::STK_BlockPointer:
   4392   case Type::STK_ObjCObjectPointer:
   4393     switch (DestTy->getScalarTypeKind()) {
   4394     case Type::STK_CPointer:
   4395       return CK_BitCast;
   4396     case Type::STK_BlockPointer:
   4397       return (SrcKind == Type::STK_BlockPointer
   4398                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
   4399     case Type::STK_ObjCObjectPointer:
   4400       if (SrcKind == Type::STK_ObjCObjectPointer)
   4401         return CK_BitCast;
   4402       if (SrcKind == Type::STK_CPointer)
   4403         return CK_CPointerToObjCPointerCast;
   4404       maybeExtendBlockObject(*this, Src);
   4405       return CK_BlockPointerToObjCPointerCast;
   4406     case Type::STK_Bool:
   4407       return CK_PointerToBoolean;
   4408     case Type::STK_Integral:
   4409       return CK_PointerToIntegral;
   4410     case Type::STK_Floating:
   4411     case Type::STK_FloatingComplex:
   4412     case Type::STK_IntegralComplex:
   4413     case Type::STK_MemberPointer:
   4414       llvm_unreachable("illegal cast from pointer");
   4415     }
   4416     llvm_unreachable("Should have returned before this");
   4417 
   4418   case Type::STK_Bool: // casting from bool is like casting from an integer
   4419   case Type::STK_Integral:
   4420     switch (DestTy->getScalarTypeKind()) {
   4421     case Type::STK_CPointer:
   4422     case Type::STK_ObjCObjectPointer:
   4423     case Type::STK_BlockPointer:
   4424       if (Src.get()->isNullPointerConstant(Context,
   4425                                            Expr::NPC_ValueDependentIsNull))
   4426         return CK_NullToPointer;
   4427       return CK_IntegralToPointer;
   4428     case Type::STK_Bool:
   4429       return CK_IntegralToBoolean;
   4430     case Type::STK_Integral:
   4431       return CK_IntegralCast;
   4432     case Type::STK_Floating:
   4433       return CK_IntegralToFloating;
   4434     case Type::STK_IntegralComplex:
   4435       Src = ImpCastExprToType(Src.take(),
   4436                               DestTy->castAs<ComplexType>()->getElementType(),
   4437                               CK_IntegralCast);
   4438       return CK_IntegralRealToComplex;
   4439     case Type::STK_FloatingComplex:
   4440       Src = ImpCastExprToType(Src.take(),
   4441                               DestTy->castAs<ComplexType>()->getElementType(),
   4442                               CK_IntegralToFloating);
   4443       return CK_FloatingRealToComplex;
   4444     case Type::STK_MemberPointer:
   4445       llvm_unreachable("member pointer type in C");
   4446     }
   4447     llvm_unreachable("Should have returned before this");
   4448 
   4449   case Type::STK_Floating:
   4450     switch (DestTy->getScalarTypeKind()) {
   4451     case Type::STK_Floating:
   4452       return CK_FloatingCast;
   4453     case Type::STK_Bool:
   4454       return CK_FloatingToBoolean;
   4455     case Type::STK_Integral:
   4456       return CK_FloatingToIntegral;
   4457     case Type::STK_FloatingComplex:
   4458       Src = ImpCastExprToType(Src.take(),
   4459                               DestTy->castAs<ComplexType>()->getElementType(),
   4460                               CK_FloatingCast);
   4461       return CK_FloatingRealToComplex;
   4462     case Type::STK_IntegralComplex:
   4463       Src = ImpCastExprToType(Src.take(),
   4464                               DestTy->castAs<ComplexType>()->getElementType(),
   4465                               CK_FloatingToIntegral);
   4466       return CK_IntegralRealToComplex;
   4467     case Type::STK_CPointer:
   4468     case Type::STK_ObjCObjectPointer:
   4469     case Type::STK_BlockPointer:
   4470       llvm_unreachable("valid float->pointer cast?");
   4471     case Type::STK_MemberPointer:
   4472       llvm_unreachable("member pointer type in C");
   4473     }
   4474     llvm_unreachable("Should have returned before this");
   4475 
   4476   case Type::STK_FloatingComplex:
   4477     switch (DestTy->getScalarTypeKind()) {
   4478     case Type::STK_FloatingComplex:
   4479       return CK_FloatingComplexCast;
   4480     case Type::STK_IntegralComplex:
   4481       return CK_FloatingComplexToIntegralComplex;
   4482     case Type::STK_Floating: {
   4483       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   4484       if (Context.hasSameType(ET, DestTy))
   4485         return CK_FloatingComplexToReal;
   4486       Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
   4487       return CK_FloatingCast;
   4488     }
   4489     case Type::STK_Bool:
   4490       return CK_FloatingComplexToBoolean;
   4491     case Type::STK_Integral:
   4492       Src = ImpCastExprToType(Src.take(),
   4493                               SrcTy->castAs<ComplexType>()->getElementType(),
   4494                               CK_FloatingComplexToReal);
   4495       return CK_FloatingToIntegral;
   4496     case Type::STK_CPointer:
   4497     case Type::STK_ObjCObjectPointer:
   4498     case Type::STK_BlockPointer:
   4499       llvm_unreachable("valid complex float->pointer cast?");
   4500     case Type::STK_MemberPointer:
   4501       llvm_unreachable("member pointer type in C");
   4502     }
   4503     llvm_unreachable("Should have returned before this");
   4504 
   4505   case Type::STK_IntegralComplex:
   4506     switch (DestTy->getScalarTypeKind()) {
   4507     case Type::STK_FloatingComplex:
   4508       return CK_IntegralComplexToFloatingComplex;
   4509     case Type::STK_IntegralComplex:
   4510       return CK_IntegralComplexCast;
   4511     case Type::STK_Integral: {
   4512       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   4513       if (Context.hasSameType(ET, DestTy))
   4514         return CK_IntegralComplexToReal;
   4515       Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
   4516       return CK_IntegralCast;
   4517     }
   4518     case Type::STK_Bool:
   4519       return CK_IntegralComplexToBoolean;
   4520     case Type::STK_Floating:
   4521       Src = ImpCastExprToType(Src.take(),
   4522                               SrcTy->castAs<ComplexType>()->getElementType(),
   4523                               CK_IntegralComplexToReal);
   4524       return CK_IntegralToFloating;
   4525     case Type::STK_CPointer:
   4526     case Type::STK_ObjCObjectPointer:
   4527     case Type::STK_BlockPointer:
   4528       llvm_unreachable("valid complex int->pointer cast?");
   4529     case Type::STK_MemberPointer:
   4530       llvm_unreachable("member pointer type in C");
   4531     }
   4532     llvm_unreachable("Should have returned before this");
   4533   }
   4534 
   4535   llvm_unreachable("Unhandled scalar cast");
   4536 }
   4537 
   4538 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
   4539                            CastKind &Kind) {
   4540   assert(VectorTy->isVectorType() && "Not a vector type!");
   4541 
   4542   if (Ty->isVectorType() || Ty->isIntegerType()) {
   4543     if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
   4544       return Diag(R.getBegin(),
   4545                   Ty->isVectorType() ?
   4546                   diag::err_invalid_conversion_between_vectors :
   4547                   diag::err_invalid_conversion_between_vector_and_integer)
   4548         << VectorTy << Ty << R;
   4549   } else
   4550     return Diag(R.getBegin(),
   4551                 diag::err_invalid_conversion_between_vector_and_scalar)
   4552       << VectorTy << Ty << R;
   4553 
   4554   Kind = CK_BitCast;
   4555   return false;
   4556 }
   4557 
   4558 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
   4559                                     Expr *CastExpr, CastKind &Kind) {
   4560   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
   4561 
   4562   QualType SrcTy = CastExpr->getType();
   4563 
   4564   // If SrcTy is a VectorType, the total size must match to explicitly cast to
   4565   // an ExtVectorType.
   4566   // In OpenCL, casts between vectors of different types are not allowed.
   4567   // (See OpenCL 6.2).
   4568   if (SrcTy->isVectorType()) {
   4569     if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
   4570         || (getLangOpts().OpenCL &&
   4571             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
   4572       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
   4573         << DestTy << SrcTy << R;
   4574       return ExprError();
   4575     }
   4576     Kind = CK_BitCast;
   4577     return Owned(CastExpr);
   4578   }
   4579 
   4580   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
   4581   // conversion will take place first from scalar to elt type, and then
   4582   // splat from elt type to vector.
   4583   if (SrcTy->isPointerType())
   4584     return Diag(R.getBegin(),
   4585                 diag::err_invalid_conversion_between_vector_and_scalar)
   4586       << DestTy << SrcTy << R;
   4587 
   4588   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
   4589   ExprResult CastExprRes = Owned(CastExpr);
   4590   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
   4591   if (CastExprRes.isInvalid())
   4592     return ExprError();
   4593   CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
   4594 
   4595   Kind = CK_VectorSplat;
   4596   return Owned(CastExpr);
   4597 }
   4598 
   4599 ExprResult
   4600 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
   4601                     Declarator &D, ParsedType &Ty,
   4602                     SourceLocation RParenLoc, Expr *CastExpr) {
   4603   assert(!D.isInvalidType() && (CastExpr != 0) &&
   4604          "ActOnCastExpr(): missing type or expr");
   4605 
   4606   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
   4607   if (D.isInvalidType())
   4608     return ExprError();
   4609 
   4610   if (getLangOpts().CPlusPlus) {
   4611     // Check that there are no default arguments (C++ only).
   4612     CheckExtraCXXDefaultArguments(D);
   4613   }
   4614 
   4615   checkUnusedDeclAttributes(D);
   4616 
   4617   QualType castType = castTInfo->getType();
   4618   Ty = CreateParsedType(castType, castTInfo);
   4619 
   4620   bool isVectorLiteral = false;
   4621 
   4622   // Check for an altivec or OpenCL literal,
   4623   // i.e. all the elements are integer constants.
   4624   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
   4625   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
   4626   if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
   4627        && castType->isVectorType() && (PE || PLE)) {
   4628     if (PLE && PLE->getNumExprs() == 0) {
   4629       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
   4630       return ExprError();
   4631     }
   4632     if (PE || PLE->getNumExprs() == 1) {
   4633       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
   4634       if (!E->getType()->isVectorType())
   4635         isVectorLiteral = true;
   4636     }
   4637     else
   4638       isVectorLiteral = true;
   4639   }
   4640 
   4641   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
   4642   // then handle it as such.
   4643   if (isVectorLiteral)
   4644     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
   4645 
   4646   // If the Expr being casted is a ParenListExpr, handle it specially.
   4647   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
   4648   // sequence of BinOp comma operators.
   4649   if (isa<ParenListExpr>(CastExpr)) {
   4650     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
   4651     if (Result.isInvalid()) return ExprError();
   4652     CastExpr = Result.take();
   4653   }
   4654 
   4655   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
   4656 }
   4657 
   4658 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
   4659                                     SourceLocation RParenLoc, Expr *E,
   4660                                     TypeSourceInfo *TInfo) {
   4661   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
   4662          "Expected paren or paren list expression");
   4663 
   4664   Expr **exprs;
   4665   unsigned numExprs;
   4666   Expr *subExpr;
   4667   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
   4668   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
   4669     LiteralLParenLoc = PE->getLParenLoc();
   4670     LiteralRParenLoc = PE->getRParenLoc();
   4671     exprs = PE->getExprs();
   4672     numExprs = PE->getNumExprs();
   4673   } else { // isa<ParenExpr> by assertion at function entrance
   4674     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
   4675     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
   4676     subExpr = cast<ParenExpr>(E)->getSubExpr();
   4677     exprs = &subExpr;
   4678     numExprs = 1;
   4679   }
   4680 
   4681   QualType Ty = TInfo->getType();
   4682   assert(Ty->isVectorType() && "Expected vector type");
   4683 
   4684   SmallVector<Expr *, 8> initExprs;
   4685   const VectorType *VTy = Ty->getAs<VectorType>();
   4686   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
   4687 
   4688   // '(...)' form of vector initialization in AltiVec: the number of
   4689   // initializers must be one or must match the size of the vector.
   4690   // If a single value is specified in the initializer then it will be
   4691   // replicated to all the components of the vector
   4692   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
   4693     // The number of initializers must be one or must match the size of the
   4694     // vector. If a single value is specified in the initializer then it will
   4695     // be replicated to all the components of the vector
   4696     if (numExprs == 1) {
   4697       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   4698       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   4699       if (Literal.isInvalid())
   4700         return ExprError();
   4701       Literal = ImpCastExprToType(Literal.take(), ElemTy,
   4702                                   PrepareScalarCast(Literal, ElemTy));
   4703       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
   4704     }
   4705     else if (numExprs < numElems) {
   4706       Diag(E->getExprLoc(),
   4707            diag::err_incorrect_number_of_vector_initializers);
   4708       return ExprError();
   4709     }
   4710     else
   4711       initExprs.append(exprs, exprs + numExprs);
   4712   }
   4713   else {
   4714     // For OpenCL, when the number of initializers is a single value,
   4715     // it will be replicated to all components of the vector.
   4716     if (getLangOpts().OpenCL &&
   4717         VTy->getVectorKind() == VectorType::GenericVector &&
   4718         numExprs == 1) {
   4719         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   4720         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   4721         if (Literal.isInvalid())
   4722           return ExprError();
   4723         Literal = ImpCastExprToType(Literal.take(), ElemTy,
   4724                                     PrepareScalarCast(Literal, ElemTy));
   4725         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
   4726     }
   4727 
   4728     initExprs.append(exprs, exprs + numExprs);
   4729   }
   4730   // FIXME: This means that pretty-printing the final AST will produce curly
   4731   // braces instead of the original commas.
   4732   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
   4733                                                    initExprs, LiteralRParenLoc);
   4734   initE->setType(Ty);
   4735   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
   4736 }
   4737 
   4738 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
   4739 /// the ParenListExpr into a sequence of comma binary operators.
   4740 ExprResult
   4741 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
   4742   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
   4743   if (!E)
   4744     return Owned(OrigExpr);
   4745 
   4746   ExprResult Result(E->getExpr(0));
   4747 
   4748   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
   4749     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
   4750                         E->getExpr(i));
   4751 
   4752   if (Result.isInvalid()) return ExprError();
   4753 
   4754   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
   4755 }
   4756 
   4757 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
   4758                                     SourceLocation R,
   4759                                     MultiExprArg Val) {
   4760   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
   4761   return Owned(expr);
   4762 }
   4763 
   4764 /// \brief Emit a specialized diagnostic when one expression is a null pointer
   4765 /// constant and the other is not a pointer.  Returns true if a diagnostic is
   4766 /// emitted.
   4767 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
   4768                                       SourceLocation QuestionLoc) {
   4769   Expr *NullExpr = LHSExpr;
   4770   Expr *NonPointerExpr = RHSExpr;
   4771   Expr::NullPointerConstantKind NullKind =
   4772       NullExpr->isNullPointerConstant(Context,
   4773                                       Expr::NPC_ValueDependentIsNotNull);
   4774 
   4775   if (NullKind == Expr::NPCK_NotNull) {
   4776     NullExpr = RHSExpr;
   4777     NonPointerExpr = LHSExpr;
   4778     NullKind =
   4779         NullExpr->isNullPointerConstant(Context,
   4780                                         Expr::NPC_ValueDependentIsNotNull);
   4781   }
   4782 
   4783   if (NullKind == Expr::NPCK_NotNull)
   4784     return false;
   4785 
   4786   if (NullKind == Expr::NPCK_ZeroExpression)
   4787     return false;
   4788 
   4789   if (NullKind == Expr::NPCK_ZeroLiteral) {
   4790     // In this case, check to make sure that we got here from a "NULL"
   4791     // string in the source code.
   4792     NullExpr = NullExpr->IgnoreParenImpCasts();
   4793     SourceLocation loc = NullExpr->getExprLoc();
   4794     if (!findMacroSpelling(loc, "NULL"))
   4795       return false;
   4796   }
   4797 
   4798   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
   4799   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
   4800       << NonPointerExpr->getType() << DiagType
   4801       << NonPointerExpr->getSourceRange();
   4802   return true;
   4803 }
   4804 
   4805 /// \brief Return false if the condition expression is valid, true otherwise.
   4806 static bool checkCondition(Sema &S, Expr *Cond) {
   4807   QualType CondTy = Cond->getType();
   4808 
   4809   // C99 6.5.15p2
   4810   if (CondTy->isScalarType()) return false;
   4811 
   4812   // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
   4813   if (S.getLangOpts().OpenCL && CondTy->isVectorType())
   4814     return false;
   4815 
   4816   // Emit the proper error message.
   4817   S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
   4818                               diag::err_typecheck_cond_expect_scalar :
   4819                               diag::err_typecheck_cond_expect_scalar_or_vector)
   4820     << CondTy;
   4821   return true;
   4822 }
   4823 
   4824 /// \brief Return false if the two expressions can be converted to a vector,
   4825 /// true otherwise
   4826 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
   4827                                                     ExprResult &RHS,
   4828                                                     QualType CondTy) {
   4829   // Both operands should be of scalar type.
   4830   if (!LHS.get()->getType()->isScalarType()) {
   4831     S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   4832       << CondTy;
   4833     return true;
   4834   }
   4835   if (!RHS.get()->getType()->isScalarType()) {
   4836     S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   4837       << CondTy;
   4838     return true;
   4839   }
   4840 
   4841   // Implicity convert these scalars to the type of the condition.
   4842   LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
   4843   RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
   4844   return false;
   4845 }
   4846 
   4847 /// \brief Handle when one or both operands are void type.
   4848 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
   4849                                          ExprResult &RHS) {
   4850     Expr *LHSExpr = LHS.get();
   4851     Expr *RHSExpr = RHS.get();
   4852 
   4853     if (!LHSExpr->getType()->isVoidType())
   4854       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   4855         << RHSExpr->getSourceRange();
   4856     if (!RHSExpr->getType()->isVoidType())
   4857       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   4858         << LHSExpr->getSourceRange();
   4859     LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
   4860     RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
   4861     return S.Context.VoidTy;
   4862 }
   4863 
   4864 /// \brief Return false if the NullExpr can be promoted to PointerTy,
   4865 /// true otherwise.
   4866 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
   4867                                         QualType PointerTy) {
   4868   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
   4869       !NullExpr.get()->isNullPointerConstant(S.Context,
   4870                                             Expr::NPC_ValueDependentIsNull))
   4871     return true;
   4872 
   4873   NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
   4874   return false;
   4875 }
   4876 
   4877 /// \brief Checks compatibility between two pointers and return the resulting
   4878 /// type.
   4879 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
   4880                                                      ExprResult &RHS,
   4881                                                      SourceLocation Loc) {
   4882   QualType LHSTy = LHS.get()->getType();
   4883   QualType RHSTy = RHS.get()->getType();
   4884 
   4885   if (S.Context.hasSameType(LHSTy, RHSTy)) {
   4886     // Two identical pointers types are always compatible.
   4887     return LHSTy;
   4888   }
   4889 
   4890   QualType lhptee, rhptee;
   4891 
   4892   // Get the pointee types.
   4893   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
   4894     lhptee = LHSBTy->getPointeeType();
   4895     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
   4896   } else {
   4897     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
   4898     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
   4899   }
   4900 
   4901   // C99 6.5.15p6: If both operands are pointers to compatible types or to
   4902   // differently qualified versions of compatible types, the result type is
   4903   // a pointer to an appropriately qualified version of the composite
   4904   // type.
   4905 
   4906   // Only CVR-qualifiers exist in the standard, and the differently-qualified
   4907   // clause doesn't make sense for our extensions. E.g. address space 2 should
   4908   // be incompatible with address space 3: they may live on different devices or
   4909   // anything.
   4910   Qualifiers lhQual = lhptee.getQualifiers();
   4911   Qualifiers rhQual = rhptee.getQualifiers();
   4912 
   4913   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
   4914   lhQual.removeCVRQualifiers();
   4915   rhQual.removeCVRQualifiers();
   4916 
   4917   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
   4918   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
   4919 
   4920   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
   4921 
   4922   if (CompositeTy.isNull()) {
   4923     S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
   4924       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   4925       << RHS.get()->getSourceRange();
   4926     // In this situation, we assume void* type. No especially good
   4927     // reason, but this is what gcc does, and we do have to pick
   4928     // to get a consistent AST.
   4929     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
   4930     LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
   4931     RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
   4932     return incompatTy;
   4933   }
   4934 
   4935   // The pointer types are compatible.
   4936   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
   4937   ResultTy = S.Context.getPointerType(ResultTy);
   4938 
   4939   LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
   4940   RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
   4941   return ResultTy;
   4942 }
   4943 
   4944 /// \brief Return the resulting type when the operands are both block pointers.
   4945 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
   4946                                                           ExprResult &LHS,
   4947                                                           ExprResult &RHS,
   4948                                                           SourceLocation Loc) {
   4949   QualType LHSTy = LHS.get()->getType();
   4950   QualType RHSTy = RHS.get()->getType();
   4951 
   4952   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
   4953     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
   4954       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
   4955       LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
   4956       RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
   4957       return destType;
   4958     }
   4959     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
   4960       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   4961       << RHS.get()->getSourceRange();
   4962     return QualType();
   4963   }
   4964 
   4965   // We have 2 block pointer types.
   4966   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   4967 }
   4968 
   4969 /// \brief Return the resulting type when the operands are both pointers.
   4970 static QualType
   4971 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
   4972                                             ExprResult &RHS,
   4973                                             SourceLocation Loc) {
   4974   // get the pointer types
   4975   QualType LHSTy = LHS.get()->getType();
   4976   QualType RHSTy = RHS.get()->getType();
   4977 
   4978   // get the "pointed to" types
   4979   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   4980   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   4981 
   4982   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
   4983   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
   4984     // Figure out necessary qualifiers (C99 6.5.15p6)
   4985     QualType destPointee
   4986       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   4987     QualType destType = S.Context.getPointerType(destPointee);
   4988     // Add qualifiers if necessary.
   4989     LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
   4990     // Promote to void*.
   4991     RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
   4992     return destType;
   4993   }
   4994   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
   4995     QualType destPointee
   4996       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   4997     QualType destType = S.Context.getPointerType(destPointee);
   4998     // Add qualifiers if necessary.
   4999     RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
   5000     // Promote to void*.
   5001     LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
   5002     return destType;
   5003   }
   5004 
   5005   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   5006 }
   5007 
   5008 /// \brief Return false if the first expression is not an integer and the second
   5009 /// expression is not a pointer, true otherwise.
   5010 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
   5011                                         Expr* PointerExpr, SourceLocation Loc,
   5012                                         bool IsIntFirstExpr) {
   5013   if (!PointerExpr->getType()->isPointerType() ||
   5014       !Int.get()->getType()->isIntegerType())
   5015     return false;
   5016 
   5017   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
   5018   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
   5019 
   5020   S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
   5021     << Expr1->getType() << Expr2->getType()
   5022     << Expr1->getSourceRange() << Expr2->getSourceRange();
   5023   Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
   5024                             CK_IntegralToPointer);
   5025   return true;
   5026 }
   5027 
   5028 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
   5029 /// In that case, LHS = cond.
   5030 /// C99 6.5.15
   5031 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   5032                                         ExprResult &RHS, ExprValueKind &VK,
   5033                                         ExprObjectKind &OK,
   5034                                         SourceLocation QuestionLoc) {
   5035 
   5036   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
   5037   if (!LHSResult.isUsable()) return QualType();
   5038   LHS = LHSResult;
   5039 
   5040   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
   5041   if (!RHSResult.isUsable()) return QualType();
   5042   RHS = RHSResult;
   5043 
   5044   // C++ is sufficiently different to merit its own checker.
   5045   if (getLangOpts().CPlusPlus)
   5046     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
   5047 
   5048   VK = VK_RValue;
   5049   OK = OK_Ordinary;
   5050 
   5051   Cond = UsualUnaryConversions(Cond.take());
   5052   if (Cond.isInvalid())
   5053     return QualType();
   5054   LHS = UsualUnaryConversions(LHS.take());
   5055   if (LHS.isInvalid())
   5056     return QualType();
   5057   RHS = UsualUnaryConversions(RHS.take());
   5058   if (RHS.isInvalid())
   5059     return QualType();
   5060 
   5061   QualType CondTy = Cond.get()->getType();
   5062   QualType LHSTy = LHS.get()->getType();
   5063   QualType RHSTy = RHS.get()->getType();
   5064 
   5065   // first, check the condition.
   5066   if (checkCondition(*this, Cond.get()))
   5067     return QualType();
   5068 
   5069   // Now check the two expressions.
   5070   if (LHSTy->isVectorType() || RHSTy->isVectorType())
   5071     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   5072 
   5073   // OpenCL: If the condition is a vector, and both operands are scalar,
   5074   // attempt to implicity convert them to the vector type to act like the
   5075   // built in select.
   5076   if (getLangOpts().OpenCL && CondTy->isVectorType())
   5077     if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
   5078       return QualType();
   5079 
   5080   // If both operands have arithmetic type, do the usual arithmetic conversions
   5081   // to find a common type: C99 6.5.15p3,5.
   5082   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
   5083     UsualArithmeticConversions(LHS, RHS);
   5084     if (LHS.isInvalid() || RHS.isInvalid())
   5085       return QualType();
   5086     return LHS.get()->getType();
   5087   }
   5088 
   5089   // If both operands are the same structure or union type, the result is that
   5090   // type.
   5091   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
   5092     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
   5093       if (LHSRT->getDecl() == RHSRT->getDecl())
   5094         // "If both the operands have structure or union type, the result has
   5095         // that type."  This implies that CV qualifiers are dropped.
   5096         return LHSTy.getUnqualifiedType();
   5097     // FIXME: Type of conditional expression must be complete in C mode.
   5098   }
   5099 
   5100   // C99 6.5.15p5: "If both operands have void type, the result has void type."
   5101   // The following || allows only one side to be void (a GCC-ism).
   5102   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
   5103     return checkConditionalVoidType(*this, LHS, RHS);
   5104   }
   5105 
   5106   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
   5107   // the type of the other operand."
   5108   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
   5109   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
   5110 
   5111   // All objective-c pointer type analysis is done here.
   5112   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
   5113                                                         QuestionLoc);
   5114   if (LHS.isInvalid() || RHS.isInvalid())
   5115     return QualType();
   5116   if (!compositeType.isNull())
   5117     return compositeType;
   5118 
   5119 
   5120   // Handle block pointer types.
   5121   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
   5122     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
   5123                                                      QuestionLoc);
   5124 
   5125   // Check constraints for C object pointers types (C99 6.5.15p3,6).
   5126   if (LHSTy->isPointerType() && RHSTy->isPointerType())
   5127     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
   5128                                                        QuestionLoc);
   5129 
   5130   // GCC compatibility: soften pointer/integer mismatch.  Note that
   5131   // null pointers have been filtered out by this point.
   5132   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
   5133       /*isIntFirstExpr=*/true))
   5134     return RHSTy;
   5135   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
   5136       /*isIntFirstExpr=*/false))
   5137     return LHSTy;
   5138 
   5139   // Emit a better diagnostic if one of the expressions is a null pointer
   5140   // constant and the other is not a pointer type. In this case, the user most
   5141   // likely forgot to take the address of the other expression.
   5142   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   5143     return QualType();
   5144 
   5145   // Otherwise, the operands are not compatible.
   5146   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   5147     << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5148     << RHS.get()->getSourceRange();
   5149   return QualType();
   5150 }
   5151 
   5152 /// FindCompositeObjCPointerType - Helper method to find composite type of
   5153 /// two objective-c pointer types of the two input expressions.
   5154 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
   5155                                             SourceLocation QuestionLoc) {
   5156   QualType LHSTy = LHS.get()->getType();
   5157   QualType RHSTy = RHS.get()->getType();
   5158 
   5159   // Handle things like Class and struct objc_class*.  Here we case the result
   5160   // to the pseudo-builtin, because that will be implicitly cast back to the
   5161   // redefinition type if an attempt is made to access its fields.
   5162   if (LHSTy->isObjCClassType() &&
   5163       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
   5164     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
   5165     return LHSTy;
   5166   }
   5167   if (RHSTy->isObjCClassType() &&
   5168       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
   5169     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
   5170     return RHSTy;
   5171   }
   5172   // And the same for struct objc_object* / id
   5173   if (LHSTy->isObjCIdType() &&
   5174       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
   5175     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
   5176     return LHSTy;
   5177   }
   5178   if (RHSTy->isObjCIdType() &&
   5179       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
   5180     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
   5181     return RHSTy;
   5182   }
   5183   // And the same for struct objc_selector* / SEL
   5184   if (Context.isObjCSelType(LHSTy) &&
   5185       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
   5186     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
   5187     return LHSTy;
   5188   }
   5189   if (Context.isObjCSelType(RHSTy) &&
   5190       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
   5191     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
   5192     return RHSTy;
   5193   }
   5194   // Check constraints for Objective-C object pointers types.
   5195   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
   5196 
   5197     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
   5198       // Two identical object pointer types are always compatible.
   5199       return LHSTy;
   5200     }
   5201     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
   5202     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
   5203     QualType compositeType = LHSTy;
   5204 
   5205     // If both operands are interfaces and either operand can be
   5206     // assigned to the other, use that type as the composite
   5207     // type. This allows
   5208     //   xxx ? (A*) a : (B*) b
   5209     // where B is a subclass of A.
   5210     //
   5211     // Additionally, as for assignment, if either type is 'id'
   5212     // allow silent coercion. Finally, if the types are
   5213     // incompatible then make sure to use 'id' as the composite
   5214     // type so the result is acceptable for sending messages to.
   5215 
   5216     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
   5217     // It could return the composite type.
   5218     if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
   5219       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
   5220     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
   5221       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
   5222     } else if ((LHSTy->isObjCQualifiedIdType() ||
   5223                 RHSTy->isObjCQualifiedIdType()) &&
   5224                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
   5225       // Need to handle "id<xx>" explicitly.
   5226       // GCC allows qualified id and any Objective-C type to devolve to
   5227       // id. Currently localizing to here until clear this should be
   5228       // part of ObjCQualifiedIdTypesAreCompatible.
   5229       compositeType = Context.getObjCIdType();
   5230     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
   5231       compositeType = Context.getObjCIdType();
   5232     } else if (!(compositeType =
   5233                  Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
   5234       ;
   5235     else {
   5236       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
   5237       << LHSTy << RHSTy
   5238       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   5239       QualType incompatTy = Context.getObjCIdType();
   5240       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
   5241       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
   5242       return incompatTy;
   5243     }
   5244     // The object pointer types are compatible.
   5245     LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
   5246     RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
   5247     return compositeType;
   5248   }
   5249   // Check Objective-C object pointer types and 'void *'
   5250   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
   5251     if (getLangOpts().ObjCAutoRefCount) {
   5252       // ARC forbids the implicit conversion of object pointers to 'void *',
   5253       // so these types are not compatible.
   5254       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   5255           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   5256       LHS = RHS = true;
   5257       return QualType();
   5258     }
   5259     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   5260     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   5261     QualType destPointee
   5262     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   5263     QualType destType = Context.getPointerType(destPointee);
   5264     // Add qualifiers if necessary.
   5265     LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
   5266     // Promote to void*.
   5267     RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
   5268     return destType;
   5269   }
   5270   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
   5271     if (getLangOpts().ObjCAutoRefCount) {
   5272       // ARC forbids the implicit conversion of object pointers to 'void *',
   5273       // so these types are not compatible.
   5274       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   5275           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   5276       LHS = RHS = true;
   5277       return QualType();
   5278     }
   5279     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   5280     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   5281     QualType destPointee
   5282     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   5283     QualType destType = Context.getPointerType(destPointee);
   5284     // Add qualifiers if necessary.
   5285     RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
   5286     // Promote to void*.
   5287     LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
   5288     return destType;
   5289   }
   5290   return QualType();
   5291 }
   5292 
   5293 /// SuggestParentheses - Emit a note with a fixit hint that wraps
   5294 /// ParenRange in parentheses.
   5295 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
   5296                                const PartialDiagnostic &Note,
   5297                                SourceRange ParenRange) {
   5298   SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
   5299   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
   5300       EndLoc.isValid()) {
   5301     Self.Diag(Loc, Note)
   5302       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
   5303       << FixItHint::CreateInsertion(EndLoc, ")");
   5304   } else {
   5305     // We can't display the parentheses, so just show the bare note.
   5306     Self.Diag(Loc, Note) << ParenRange;
   5307   }
   5308 }
   5309 
   5310 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
   5311   return Opc >= BO_Mul && Opc <= BO_Shr;
   5312 }
   5313 
   5314 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
   5315 /// expression, either using a built-in or overloaded operator,
   5316 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
   5317 /// expression.
   5318 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
   5319                                    Expr **RHSExprs) {
   5320   // Don't strip parenthesis: we should not warn if E is in parenthesis.
   5321   E = E->IgnoreImpCasts();
   5322   E = E->IgnoreConversionOperator();
   5323   E = E->IgnoreImpCasts();
   5324 
   5325   // Built-in binary operator.
   5326   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
   5327     if (IsArithmeticOp(OP->getOpcode())) {
   5328       *Opcode = OP->getOpcode();
   5329       *RHSExprs = OP->getRHS();
   5330       return true;
   5331     }
   5332   }
   5333 
   5334   // Overloaded operator.
   5335   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
   5336     if (Call->getNumArgs() != 2)
   5337       return false;
   5338 
   5339     // Make sure this is really a binary operator that is safe to pass into
   5340     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
   5341     OverloadedOperatorKind OO = Call->getOperator();
   5342     if (OO < OO_Plus || OO > OO_Arrow)
   5343       return false;
   5344 
   5345     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
   5346     if (IsArithmeticOp(OpKind)) {
   5347       *Opcode = OpKind;
   5348       *RHSExprs = Call->getArg(1);
   5349       return true;
   5350     }
   5351   }
   5352 
   5353   return false;
   5354 }
   5355 
   5356 static bool IsLogicOp(BinaryOperatorKind Opc) {
   5357   return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
   5358 }
   5359 
   5360 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
   5361 /// or is a logical expression such as (x==y) which has int type, but is
   5362 /// commonly interpreted as boolean.
   5363 static bool ExprLooksBoolean(Expr *E) {
   5364   E = E->IgnoreParenImpCasts();
   5365 
   5366   if (E->getType()->isBooleanType())
   5367     return true;
   5368   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
   5369     return IsLogicOp(OP->getOpcode());
   5370   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
   5371     return OP->getOpcode() == UO_LNot;
   5372 
   5373   return false;
   5374 }
   5375 
   5376 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
   5377 /// and binary operator are mixed in a way that suggests the programmer assumed
   5378 /// the conditional operator has higher precedence, for example:
   5379 /// "int x = a + someBinaryCondition ? 1 : 2".
   5380 static void DiagnoseConditionalPrecedence(Sema &Self,
   5381                                           SourceLocation OpLoc,
   5382                                           Expr *Condition,
   5383                                           Expr *LHSExpr,
   5384                                           Expr *RHSExpr) {
   5385   BinaryOperatorKind CondOpcode;
   5386   Expr *CondRHS;
   5387 
   5388   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
   5389     return;
   5390   if (!ExprLooksBoolean(CondRHS))
   5391     return;
   5392 
   5393   // The condition is an arithmetic binary expression, with a right-
   5394   // hand side that looks boolean, so warn.
   5395 
   5396   Self.Diag(OpLoc, diag::warn_precedence_conditional)
   5397       << Condition->getSourceRange()
   5398       << BinaryOperator::getOpcodeStr(CondOpcode);
   5399 
   5400   SuggestParentheses(Self, OpLoc,
   5401     Self.PDiag(diag::note_precedence_silence)
   5402       << BinaryOperator::getOpcodeStr(CondOpcode),
   5403     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
   5404 
   5405   SuggestParentheses(Self, OpLoc,
   5406     Self.PDiag(diag::note_precedence_conditional_first),
   5407     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
   5408 }
   5409 
   5410 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
   5411 /// in the case of a the GNU conditional expr extension.
   5412 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
   5413                                     SourceLocation ColonLoc,
   5414                                     Expr *CondExpr, Expr *LHSExpr,
   5415                                     Expr *RHSExpr) {
   5416   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
   5417   // was the condition.
   5418   OpaqueValueExpr *opaqueValue = 0;
   5419   Expr *commonExpr = 0;
   5420   if (LHSExpr == 0) {
   5421     commonExpr = CondExpr;
   5422 
   5423     // We usually want to apply unary conversions *before* saving, except
   5424     // in the special case of a C++ l-value conditional.
   5425     if (!(getLangOpts().CPlusPlus
   5426           && !commonExpr->isTypeDependent()
   5427           && commonExpr->getValueKind() == RHSExpr->getValueKind()
   5428           && commonExpr->isGLValue()
   5429           && commonExpr->isOrdinaryOrBitFieldObject()
   5430           && RHSExpr->isOrdinaryOrBitFieldObject()
   5431           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
   5432       ExprResult commonRes = UsualUnaryConversions(commonExpr);
   5433       if (commonRes.isInvalid())
   5434         return ExprError();
   5435       commonExpr = commonRes.take();
   5436     }
   5437 
   5438     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
   5439                                                 commonExpr->getType(),
   5440                                                 commonExpr->getValueKind(),
   5441                                                 commonExpr->getObjectKind(),
   5442                                                 commonExpr);
   5443     LHSExpr = CondExpr = opaqueValue;
   5444   }
   5445 
   5446   ExprValueKind VK = VK_RValue;
   5447   ExprObjectKind OK = OK_Ordinary;
   5448   ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
   5449   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
   5450                                              VK, OK, QuestionLoc);
   5451   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
   5452       RHS.isInvalid())
   5453     return ExprError();
   5454 
   5455   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
   5456                                 RHS.get());
   5457 
   5458   if (!commonExpr)
   5459     return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
   5460                                                    LHS.take(), ColonLoc,
   5461                                                    RHS.take(), result, VK, OK));
   5462 
   5463   return Owned(new (Context)
   5464     BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
   5465                               RHS.take(), QuestionLoc, ColonLoc, result, VK,
   5466                               OK));
   5467 }
   5468 
   5469 // checkPointerTypesForAssignment - This is a very tricky routine (despite
   5470 // being closely modeled after the C99 spec:-). The odd characteristic of this
   5471 // routine is it effectively iqnores the qualifiers on the top level pointee.
   5472 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
   5473 // FIXME: add a couple examples in this comment.
   5474 static Sema::AssignConvertType
   5475 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
   5476   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   5477   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   5478 
   5479   // get the "pointed to" type (ignoring qualifiers at the top level)
   5480   const Type *lhptee, *rhptee;
   5481   Qualifiers lhq, rhq;
   5482   llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
   5483   llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
   5484 
   5485   Sema::AssignConvertType ConvTy = Sema::Compatible;
   5486 
   5487   // C99 6.5.16.1p1: This following citation is common to constraints
   5488   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
   5489   // qualifiers of the type *pointed to* by the right;
   5490   Qualifiers lq;
   5491 
   5492   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
   5493   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
   5494       lhq.compatiblyIncludesObjCLifetime(rhq)) {
   5495     // Ignore lifetime for further calculation.
   5496     lhq.removeObjCLifetime();
   5497     rhq.removeObjCLifetime();
   5498   }
   5499 
   5500   if (!lhq.compatiblyIncludes(rhq)) {
   5501     // Treat address-space mismatches as fatal.  TODO: address subspaces
   5502     if (lhq.getAddressSpace() != rhq.getAddressSpace())
   5503       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   5504 
   5505     // It's okay to add or remove GC or lifetime qualifiers when converting to
   5506     // and from void*.
   5507     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
   5508                         .compatiblyIncludes(
   5509                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
   5510              && (lhptee->isVoidType() || rhptee->isVoidType()))
   5511       ; // keep old
   5512 
   5513     // Treat lifetime mismatches as fatal.
   5514     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
   5515       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   5516 
   5517     // For GCC compatibility, other qualifier mismatches are treated
   5518     // as still compatible in C.
   5519     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   5520   }
   5521 
   5522   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
   5523   // incomplete type and the other is a pointer to a qualified or unqualified
   5524   // version of void...
   5525   if (lhptee->isVoidType()) {
   5526     if (rhptee->isIncompleteOrObjectType())
   5527       return ConvTy;
   5528 
   5529     // As an extension, we allow cast to/from void* to function pointer.
   5530     assert(rhptee->isFunctionType());
   5531     return Sema::FunctionVoidPointer;
   5532   }
   5533 
   5534   if (rhptee->isVoidType()) {
   5535     if (lhptee->isIncompleteOrObjectType())
   5536       return ConvTy;
   5537 
   5538     // As an extension, we allow cast to/from void* to function pointer.
   5539     assert(lhptee->isFunctionType());
   5540     return Sema::FunctionVoidPointer;
   5541   }
   5542 
   5543   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
   5544   // unqualified versions of compatible types, ...
   5545   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
   5546   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
   5547     // Check if the pointee types are compatible ignoring the sign.
   5548     // We explicitly check for char so that we catch "char" vs
   5549     // "unsigned char" on systems where "char" is unsigned.
   5550     if (lhptee->isCharType())
   5551       ltrans = S.Context.UnsignedCharTy;
   5552     else if (lhptee->hasSignedIntegerRepresentation())
   5553       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
   5554 
   5555     if (rhptee->isCharType())
   5556       rtrans = S.Context.UnsignedCharTy;
   5557     else if (rhptee->hasSignedIntegerRepresentation())
   5558       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
   5559 
   5560     if (ltrans == rtrans) {
   5561       // Types are compatible ignoring the sign. Qualifier incompatibility
   5562       // takes priority over sign incompatibility because the sign
   5563       // warning can be disabled.
   5564       if (ConvTy != Sema::Compatible)
   5565         return ConvTy;
   5566 
   5567       return Sema::IncompatiblePointerSign;
   5568     }
   5569 
   5570     // If we are a multi-level pointer, it's possible that our issue is simply
   5571     // one of qualification - e.g. char ** -> const char ** is not allowed. If
   5572     // the eventual target type is the same and the pointers have the same
   5573     // level of indirection, this must be the issue.
   5574     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
   5575       do {
   5576         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
   5577         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
   5578       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
   5579 
   5580       if (lhptee == rhptee)
   5581         return Sema::IncompatibleNestedPointerQualifiers;
   5582     }
   5583 
   5584     // General pointer incompatibility takes priority over qualifiers.
   5585     return Sema::IncompatiblePointer;
   5586   }
   5587   if (!S.getLangOpts().CPlusPlus &&
   5588       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
   5589     return Sema::IncompatiblePointer;
   5590   return ConvTy;
   5591 }
   5592 
   5593 /// checkBlockPointerTypesForAssignment - This routine determines whether two
   5594 /// block pointer types are compatible or whether a block and normal pointer
   5595 /// are compatible. It is more restrict than comparing two function pointer
   5596 // types.
   5597 static Sema::AssignConvertType
   5598 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
   5599                                     QualType RHSType) {
   5600   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   5601   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   5602 
   5603   QualType lhptee, rhptee;
   5604 
   5605   // get the "pointed to" type (ignoring qualifiers at the top level)
   5606   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
   5607   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
   5608 
   5609   // In C++, the types have to match exactly.
   5610   if (S.getLangOpts().CPlusPlus)
   5611     return Sema::IncompatibleBlockPointer;
   5612 
   5613   Sema::AssignConvertType ConvTy = Sema::Compatible;
   5614 
   5615   // For blocks we enforce that qualifiers are identical.
   5616   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
   5617     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   5618 
   5619   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
   5620     return Sema::IncompatibleBlockPointer;
   5621 
   5622   return ConvTy;
   5623 }
   5624 
   5625 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
   5626 /// for assignment compatibility.
   5627 static Sema::AssignConvertType
   5628 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
   5629                                    QualType RHSType) {
   5630   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
   5631   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
   5632 
   5633   if (LHSType->isObjCBuiltinType()) {
   5634     // Class is not compatible with ObjC object pointers.
   5635     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
   5636         !RHSType->isObjCQualifiedClassType())
   5637       return Sema::IncompatiblePointer;
   5638     return Sema::Compatible;
   5639   }
   5640   if (RHSType->isObjCBuiltinType()) {
   5641     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
   5642         !LHSType->isObjCQualifiedClassType())
   5643       return Sema::IncompatiblePointer;
   5644     return Sema::Compatible;
   5645   }
   5646   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   5647   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   5648 
   5649   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
   5650       // make an exception for id<P>
   5651       !LHSType->isObjCQualifiedIdType())
   5652     return Sema::CompatiblePointerDiscardsQualifiers;
   5653 
   5654   if (S.Context.typesAreCompatible(LHSType, RHSType))
   5655     return Sema::Compatible;
   5656   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
   5657     return Sema::IncompatibleObjCQualifiedId;
   5658   return Sema::IncompatiblePointer;
   5659 }
   5660 
   5661 Sema::AssignConvertType
   5662 Sema::CheckAssignmentConstraints(SourceLocation Loc,
   5663                                  QualType LHSType, QualType RHSType) {
   5664   // Fake up an opaque expression.  We don't actually care about what
   5665   // cast operations are required, so if CheckAssignmentConstraints
   5666   // adds casts to this they'll be wasted, but fortunately that doesn't
   5667   // usually happen on valid code.
   5668   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
   5669   ExprResult RHSPtr = &RHSExpr;
   5670   CastKind K = CK_Invalid;
   5671 
   5672   return CheckAssignmentConstraints(LHSType, RHSPtr, K);
   5673 }
   5674 
   5675 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
   5676 /// has code to accommodate several GCC extensions when type checking
   5677 /// pointers. Here are some objectionable examples that GCC considers warnings:
   5678 ///
   5679 ///  int a, *pint;
   5680 ///  short *pshort;
   5681 ///  struct foo *pfoo;
   5682 ///
   5683 ///  pint = pshort; // warning: assignment from incompatible pointer type
   5684 ///  a = pint; // warning: assignment makes integer from pointer without a cast
   5685 ///  pint = a; // warning: assignment makes pointer from integer without a cast
   5686 ///  pint = pfoo; // warning: assignment from incompatible pointer type
   5687 ///
   5688 /// As a result, the code for dealing with pointers is more complex than the
   5689 /// C99 spec dictates.
   5690 ///
   5691 /// Sets 'Kind' for any result kind except Incompatible.
   5692 Sema::AssignConvertType
   5693 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
   5694                                  CastKind &Kind) {
   5695   QualType RHSType = RHS.get()->getType();
   5696   QualType OrigLHSType = LHSType;
   5697 
   5698   // Get canonical types.  We're not formatting these types, just comparing
   5699   // them.
   5700   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
   5701   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
   5702 
   5703   // Common case: no conversion required.
   5704   if (LHSType == RHSType) {
   5705     Kind = CK_NoOp;
   5706     return Compatible;
   5707   }
   5708 
   5709   // If we have an atomic type, try a non-atomic assignment, then just add an
   5710   // atomic qualification step.
   5711   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
   5712     Sema::AssignConvertType result =
   5713       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
   5714     if (result != Compatible)
   5715       return result;
   5716     if (Kind != CK_NoOp)
   5717       RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
   5718     Kind = CK_NonAtomicToAtomic;
   5719     return Compatible;
   5720   }
   5721 
   5722   // If the left-hand side is a reference type, then we are in a
   5723   // (rare!) case where we've allowed the use of references in C,
   5724   // e.g., as a parameter type in a built-in function. In this case,
   5725   // just make sure that the type referenced is compatible with the
   5726   // right-hand side type. The caller is responsible for adjusting
   5727   // LHSType so that the resulting expression does not have reference
   5728   // type.
   5729   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
   5730     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
   5731       Kind = CK_LValueBitCast;
   5732       return Compatible;
   5733     }
   5734     return Incompatible;
   5735   }
   5736 
   5737   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
   5738   // to the same ExtVector type.
   5739   if (LHSType->isExtVectorType()) {
   5740     if (RHSType->isExtVectorType())
   5741       return Incompatible;
   5742     if (RHSType->isArithmeticType()) {
   5743       // CK_VectorSplat does T -> vector T, so first cast to the
   5744       // element type.
   5745       QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
   5746       if (elType != RHSType) {
   5747         Kind = PrepareScalarCast(RHS, elType);
   5748         RHS = ImpCastExprToType(RHS.take(), elType, Kind);
   5749       }
   5750       Kind = CK_VectorSplat;
   5751       return Compatible;
   5752     }
   5753   }
   5754 
   5755   // Conversions to or from vector type.
   5756   if (LHSType->isVectorType() || RHSType->isVectorType()) {
   5757     if (LHSType->isVectorType() && RHSType->isVectorType()) {
   5758       // Allow assignments of an AltiVec vector type to an equivalent GCC
   5759       // vector type and vice versa
   5760       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   5761         Kind = CK_BitCast;
   5762         return Compatible;
   5763       }
   5764 
   5765       // If we are allowing lax vector conversions, and LHS and RHS are both
   5766       // vectors, the total size only needs to be the same. This is a bitcast;
   5767       // no bits are changed but the result type is different.
   5768       if (getLangOpts().LaxVectorConversions &&
   5769           (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
   5770         Kind = CK_BitCast;
   5771         return IncompatibleVectors;
   5772       }
   5773     }
   5774     return Incompatible;
   5775   }
   5776 
   5777   // Arithmetic conversions.
   5778   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
   5779       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
   5780     Kind = PrepareScalarCast(RHS, LHSType);
   5781     return Compatible;
   5782   }
   5783 
   5784   // Conversions to normal pointers.
   5785   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
   5786     // U* -> T*
   5787     if (isa<PointerType>(RHSType)) {
   5788       Kind = CK_BitCast;
   5789       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
   5790     }
   5791 
   5792     // int -> T*
   5793     if (RHSType->isIntegerType()) {
   5794       Kind = CK_IntegralToPointer; // FIXME: null?
   5795       return IntToPointer;
   5796     }
   5797 
   5798     // C pointers are not compatible with ObjC object pointers,
   5799     // with two exceptions:
   5800     if (isa<ObjCObjectPointerType>(RHSType)) {
   5801       //  - conversions to void*
   5802       if (LHSPointer->getPointeeType()->isVoidType()) {
   5803         Kind = CK_BitCast;
   5804         return Compatible;
   5805       }
   5806 
   5807       //  - conversions from 'Class' to the redefinition type
   5808       if (RHSType->isObjCClassType() &&
   5809           Context.hasSameType(LHSType,
   5810                               Context.getObjCClassRedefinitionType())) {
   5811         Kind = CK_BitCast;
   5812         return Compatible;
   5813       }
   5814 
   5815       Kind = CK_BitCast;
   5816       return IncompatiblePointer;
   5817     }
   5818 
   5819     // U^ -> void*
   5820     if (RHSType->getAs<BlockPointerType>()) {
   5821       if (LHSPointer->getPointeeType()->isVoidType()) {
   5822         Kind = CK_BitCast;
   5823         return Compatible;
   5824       }
   5825     }
   5826 
   5827     return Incompatible;
   5828   }
   5829 
   5830   // Conversions to block pointers.
   5831   if (isa<BlockPointerType>(LHSType)) {
   5832     // U^ -> T^
   5833     if (RHSType->isBlockPointerType()) {
   5834       Kind = CK_BitCast;
   5835       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
   5836     }
   5837 
   5838     // int or null -> T^
   5839     if (RHSType->isIntegerType()) {
   5840       Kind = CK_IntegralToPointer; // FIXME: null
   5841       return IntToBlockPointer;
   5842     }
   5843 
   5844     // id -> T^
   5845     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
   5846       Kind = CK_AnyPointerToBlockPointerCast;
   5847       return Compatible;
   5848     }
   5849 
   5850     // void* -> T^
   5851     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
   5852       if (RHSPT->getPointeeType()->isVoidType()) {
   5853         Kind = CK_AnyPointerToBlockPointerCast;
   5854         return Compatible;
   5855       }
   5856 
   5857     return Incompatible;
   5858   }
   5859 
   5860   // Conversions to Objective-C pointers.
   5861   if (isa<ObjCObjectPointerType>(LHSType)) {
   5862     // A* -> B*
   5863     if (RHSType->isObjCObjectPointerType()) {
   5864       Kind = CK_BitCast;
   5865       Sema::AssignConvertType result =
   5866         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
   5867       if (getLangOpts().ObjCAutoRefCount &&
   5868           result == Compatible &&
   5869           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
   5870         result = IncompatibleObjCWeakRef;
   5871       return result;
   5872     }
   5873 
   5874     // int or null -> A*
   5875     if (RHSType->isIntegerType()) {
   5876       Kind = CK_IntegralToPointer; // FIXME: null
   5877       return IntToPointer;
   5878     }
   5879 
   5880     // In general, C pointers are not compatible with ObjC object pointers,
   5881     // with two exceptions:
   5882     if (isa<PointerType>(RHSType)) {
   5883       Kind = CK_CPointerToObjCPointerCast;
   5884 
   5885       //  - conversions from 'void*'
   5886       if (RHSType->isVoidPointerType()) {
   5887         return Compatible;
   5888       }
   5889 
   5890       //  - conversions to 'Class' from its redefinition type
   5891       if (LHSType->isObjCClassType() &&
   5892           Context.hasSameType(RHSType,
   5893                               Context.getObjCClassRedefinitionType())) {
   5894         return Compatible;
   5895       }
   5896 
   5897       return IncompatiblePointer;
   5898     }
   5899 
   5900     // T^ -> A*
   5901     if (RHSType->isBlockPointerType()) {
   5902       maybeExtendBlockObject(*this, RHS);
   5903       Kind = CK_BlockPointerToObjCPointerCast;
   5904       return Compatible;
   5905     }
   5906 
   5907     return Incompatible;
   5908   }
   5909 
   5910   // Conversions from pointers that are not covered by the above.
   5911   if (isa<PointerType>(RHSType)) {
   5912     // T* -> _Bool
   5913     if (LHSType == Context.BoolTy) {
   5914       Kind = CK_PointerToBoolean;
   5915       return Compatible;
   5916     }
   5917 
   5918     // T* -> int
   5919     if (LHSType->isIntegerType()) {
   5920       Kind = CK_PointerToIntegral;
   5921       return PointerToInt;
   5922     }
   5923 
   5924     return Incompatible;
   5925   }
   5926 
   5927   // Conversions from Objective-C pointers that are not covered by the above.
   5928   if (isa<ObjCObjectPointerType>(RHSType)) {
   5929     // T* -> _Bool
   5930     if (LHSType == Context.BoolTy) {
   5931       Kind = CK_PointerToBoolean;
   5932       return Compatible;
   5933     }
   5934 
   5935     // T* -> int
   5936     if (LHSType->isIntegerType()) {
   5937       Kind = CK_PointerToIntegral;
   5938       return PointerToInt;
   5939     }
   5940 
   5941     return Incompatible;
   5942   }
   5943 
   5944   // struct A -> struct B
   5945   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
   5946     if (Context.typesAreCompatible(LHSType, RHSType)) {
   5947       Kind = CK_NoOp;
   5948       return Compatible;
   5949     }
   5950   }
   5951 
   5952   return Incompatible;
   5953 }
   5954 
   5955 /// \brief Constructs a transparent union from an expression that is
   5956 /// used to initialize the transparent union.
   5957 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
   5958                                       ExprResult &EResult, QualType UnionType,
   5959                                       FieldDecl *Field) {
   5960   // Build an initializer list that designates the appropriate member
   5961   // of the transparent union.
   5962   Expr *E = EResult.take();
   5963   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
   5964                                                    E, SourceLocation());
   5965   Initializer->setType(UnionType);
   5966   Initializer->setInitializedFieldInUnion(Field);
   5967 
   5968   // Build a compound literal constructing a value of the transparent
   5969   // union type from this initializer list.
   5970   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
   5971   EResult = S.Owned(
   5972     new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
   5973                                 VK_RValue, Initializer, false));
   5974 }
   5975 
   5976 Sema::AssignConvertType
   5977 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
   5978                                                ExprResult &RHS) {
   5979   QualType RHSType = RHS.get()->getType();
   5980 
   5981   // If the ArgType is a Union type, we want to handle a potential
   5982   // transparent_union GCC extension.
   5983   const RecordType *UT = ArgType->getAsUnionType();
   5984   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   5985     return Incompatible;
   5986 
   5987   // The field to initialize within the transparent union.
   5988   RecordDecl *UD = UT->getDecl();
   5989   FieldDecl *InitField = 0;
   5990   // It's compatible if the expression matches any of the fields.
   5991   for (RecordDecl::field_iterator it = UD->field_begin(),
   5992          itend = UD->field_end();
   5993        it != itend; ++it) {
   5994     if (it->getType()->isPointerType()) {
   5995       // If the transparent union contains a pointer type, we allow:
   5996       // 1) void pointer
   5997       // 2) null pointer constant
   5998       if (RHSType->isPointerType())
   5999         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
   6000           RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
   6001           InitField = *it;
   6002           break;
   6003         }
   6004 
   6005       if (RHS.get()->isNullPointerConstant(Context,
   6006                                            Expr::NPC_ValueDependentIsNull)) {
   6007         RHS = ImpCastExprToType(RHS.take(), it->getType(),
   6008                                 CK_NullToPointer);
   6009         InitField = *it;
   6010         break;
   6011       }
   6012     }
   6013 
   6014     CastKind Kind = CK_Invalid;
   6015     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
   6016           == Compatible) {
   6017       RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
   6018       InitField = *it;
   6019       break;
   6020     }
   6021   }
   6022 
   6023   if (!InitField)
   6024     return Incompatible;
   6025 
   6026   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
   6027   return Compatible;
   6028 }
   6029 
   6030 Sema::AssignConvertType
   6031 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
   6032                                        bool Diagnose) {
   6033   if (getLangOpts().CPlusPlus) {
   6034     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
   6035       // C++ 5.17p3: If the left operand is not of class type, the
   6036       // expression is implicitly converted (C++ 4) to the
   6037       // cv-unqualified type of the left operand.
   6038       ExprResult Res;
   6039       if (Diagnose) {
   6040         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   6041                                         AA_Assigning);
   6042       } else {
   6043         ImplicitConversionSequence ICS =
   6044             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   6045                                   /*SuppressUserConversions=*/false,
   6046                                   /*AllowExplicit=*/false,
   6047                                   /*InOverloadResolution=*/false,
   6048                                   /*CStyle=*/false,
   6049                                   /*AllowObjCWritebackConversion=*/false);
   6050         if (ICS.isFailure())
   6051           return Incompatible;
   6052         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   6053                                         ICS, AA_Assigning);
   6054       }
   6055       if (Res.isInvalid())
   6056         return Incompatible;
   6057       Sema::AssignConvertType result = Compatible;
   6058       if (getLangOpts().ObjCAutoRefCount &&
   6059           !CheckObjCARCUnavailableWeakConversion(LHSType,
   6060                                                  RHS.get()->getType()))
   6061         result = IncompatibleObjCWeakRef;
   6062       RHS = Res;
   6063       return result;
   6064     }
   6065 
   6066     // FIXME: Currently, we fall through and treat C++ classes like C
   6067     // structures.
   6068     // FIXME: We also fall through for atomics; not sure what should
   6069     // happen there, though.
   6070   }
   6071 
   6072   // C99 6.5.16.1p1: the left operand is a pointer and the right is
   6073   // a null pointer constant.
   6074   if ((LHSType->isPointerType() ||
   6075        LHSType->isObjCObjectPointerType() ||
   6076        LHSType->isBlockPointerType())
   6077       && RHS.get()->isNullPointerConstant(Context,
   6078                                           Expr::NPC_ValueDependentIsNull)) {
   6079     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
   6080     return Compatible;
   6081   }
   6082 
   6083   // This check seems unnatural, however it is necessary to ensure the proper
   6084   // conversion of functions/arrays. If the conversion were done for all
   6085   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
   6086   // expressions that suppress this implicit conversion (&, sizeof).
   6087   //
   6088   // Suppress this for references: C++ 8.5.3p5.
   6089   if (!LHSType->isReferenceType()) {
   6090     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   6091     if (RHS.isInvalid())
   6092       return Incompatible;
   6093   }
   6094 
   6095   CastKind Kind = CK_Invalid;
   6096   Sema::AssignConvertType result =
   6097     CheckAssignmentConstraints(LHSType, RHS, Kind);
   6098 
   6099   // C99 6.5.16.1p2: The value of the right operand is converted to the
   6100   // type of the assignment expression.
   6101   // CheckAssignmentConstraints allows the left-hand side to be a reference,
   6102   // so that we can use references in built-in functions even in C.
   6103   // The getNonReferenceType() call makes sure that the resulting expression
   6104   // does not have reference type.
   6105   if (result != Incompatible && RHS.get()->getType() != LHSType)
   6106     RHS = ImpCastExprToType(RHS.take(),
   6107                             LHSType.getNonLValueExprType(Context), Kind);
   6108   return result;
   6109 }
   6110 
   6111 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
   6112                                ExprResult &RHS) {
   6113   Diag(Loc, diag::err_typecheck_invalid_operands)
   6114     << LHS.get()->getType() << RHS.get()->getType()
   6115     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6116   return QualType();
   6117 }
   6118 
   6119 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
   6120                                    SourceLocation Loc, bool IsCompAssign) {
   6121   if (!IsCompAssign) {
   6122     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   6123     if (LHS.isInvalid())
   6124       return QualType();
   6125   }
   6126   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   6127   if (RHS.isInvalid())
   6128     return QualType();
   6129 
   6130   // For conversion purposes, we ignore any qualifiers.
   6131   // For example, "const float" and "float" are equivalent.
   6132   QualType LHSType =
   6133     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   6134   QualType RHSType =
   6135     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   6136 
   6137   // If the vector types are identical, return.
   6138   if (LHSType == RHSType)
   6139     return LHSType;
   6140 
   6141   // Handle the case of equivalent AltiVec and GCC vector types
   6142   if (LHSType->isVectorType() && RHSType->isVectorType() &&
   6143       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   6144     if (LHSType->isExtVectorType()) {
   6145       RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
   6146       return LHSType;
   6147     }
   6148 
   6149     if (!IsCompAssign)
   6150       LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
   6151     return RHSType;
   6152   }
   6153 
   6154   if (getLangOpts().LaxVectorConversions &&
   6155       Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
   6156     // If we are allowing lax vector conversions, and LHS and RHS are both
   6157     // vectors, the total size only needs to be the same. This is a
   6158     // bitcast; no bits are changed but the result type is different.
   6159     // FIXME: Should we really be allowing this?
   6160     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
   6161     return LHSType;
   6162   }
   6163 
   6164   // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
   6165   // swap back (so that we don't reverse the inputs to a subtract, for instance.
   6166   bool swapped = false;
   6167   if (RHSType->isExtVectorType() && !IsCompAssign) {
   6168     swapped = true;
   6169     std::swap(RHS, LHS);
   6170     std::swap(RHSType, LHSType);
   6171   }
   6172 
   6173   // Handle the case of an ext vector and scalar.
   6174   if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
   6175     QualType EltTy = LV->getElementType();
   6176     if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
   6177       int order = Context.getIntegerTypeOrder(EltTy, RHSType);
   6178       if (order > 0)
   6179         RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
   6180       if (order >= 0) {
   6181         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
   6182         if (swapped) std::swap(RHS, LHS);
   6183         return LHSType;
   6184       }
   6185     }
   6186     if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
   6187         RHSType->isRealFloatingType()) {
   6188       int order = Context.getFloatingTypeOrder(EltTy, RHSType);
   6189       if (order > 0)
   6190         RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
   6191       if (order >= 0) {
   6192         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
   6193         if (swapped) std::swap(RHS, LHS);
   6194         return LHSType;
   6195       }
   6196     }
   6197   }
   6198 
   6199   // Vectors of different size or scalar and non-ext-vector are errors.
   6200   if (swapped) std::swap(RHS, LHS);
   6201   Diag(Loc, diag::err_typecheck_vector_not_convertable)
   6202     << LHS.get()->getType() << RHS.get()->getType()
   6203     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6204   return QualType();
   6205 }
   6206 
   6207 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
   6208 // expression.  These are mainly cases where the null pointer is used as an
   6209 // integer instead of a pointer.
   6210 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
   6211                                 SourceLocation Loc, bool IsCompare) {
   6212   // The canonical way to check for a GNU null is with isNullPointerConstant,
   6213   // but we use a bit of a hack here for speed; this is a relatively
   6214   // hot path, and isNullPointerConstant is slow.
   6215   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
   6216   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
   6217 
   6218   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
   6219 
   6220   // Avoid analyzing cases where the result will either be invalid (and
   6221   // diagnosed as such) or entirely valid and not something to warn about.
   6222   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
   6223       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
   6224     return;
   6225 
   6226   // Comparison operations would not make sense with a null pointer no matter
   6227   // what the other expression is.
   6228   if (!IsCompare) {
   6229     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
   6230         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
   6231         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
   6232     return;
   6233   }
   6234 
   6235   // The rest of the operations only make sense with a null pointer
   6236   // if the other expression is a pointer.
   6237   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
   6238       NonNullType->canDecayToPointerType())
   6239     return;
   6240 
   6241   S.Diag(Loc, diag::warn_null_in_comparison_operation)
   6242       << LHSNull /* LHS is NULL */ << NonNullType
   6243       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6244 }
   6245 
   6246 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
   6247                                            SourceLocation Loc,
   6248                                            bool IsCompAssign, bool IsDiv) {
   6249   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   6250 
   6251   if (LHS.get()->getType()->isVectorType() ||
   6252       RHS.get()->getType()->isVectorType())
   6253     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   6254 
   6255   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   6256   if (LHS.isInvalid() || RHS.isInvalid())
   6257     return QualType();
   6258 
   6259 
   6260   if (compType.isNull() || !compType->isArithmeticType())
   6261     return InvalidOperands(Loc, LHS, RHS);
   6262 
   6263   // Check for division by zero.
   6264   if (IsDiv &&
   6265       RHS.get()->isNullPointerConstant(Context,
   6266                                        Expr::NPC_ValueDependentIsNotNull))
   6267     DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
   6268                                           << RHS.get()->getSourceRange());
   6269 
   6270   return compType;
   6271 }
   6272 
   6273 QualType Sema::CheckRemainderOperands(
   6274   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   6275   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   6276 
   6277   if (LHS.get()->getType()->isVectorType() ||
   6278       RHS.get()->getType()->isVectorType()) {
   6279     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   6280         RHS.get()->getType()->hasIntegerRepresentation())
   6281       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   6282     return InvalidOperands(Loc, LHS, RHS);
   6283   }
   6284 
   6285   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   6286   if (LHS.isInvalid() || RHS.isInvalid())
   6287     return QualType();
   6288 
   6289   if (compType.isNull() || !compType->isIntegerType())
   6290     return InvalidOperands(Loc, LHS, RHS);
   6291 
   6292   // Check for remainder by zero.
   6293   if (RHS.get()->isNullPointerConstant(Context,
   6294                                        Expr::NPC_ValueDependentIsNotNull))
   6295     DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
   6296                                  << RHS.get()->getSourceRange());
   6297 
   6298   return compType;
   6299 }
   6300 
   6301 /// \brief Diagnose invalid arithmetic on two void pointers.
   6302 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
   6303                                                 Expr *LHSExpr, Expr *RHSExpr) {
   6304   S.Diag(Loc, S.getLangOpts().CPlusPlus
   6305                 ? diag::err_typecheck_pointer_arith_void_type
   6306                 : diag::ext_gnu_void_ptr)
   6307     << 1 /* two pointers */ << LHSExpr->getSourceRange()
   6308                             << RHSExpr->getSourceRange();
   6309 }
   6310 
   6311 /// \brief Diagnose invalid arithmetic on a void pointer.
   6312 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
   6313                                             Expr *Pointer) {
   6314   S.Diag(Loc, S.getLangOpts().CPlusPlus
   6315                 ? diag::err_typecheck_pointer_arith_void_type
   6316                 : diag::ext_gnu_void_ptr)
   6317     << 0 /* one pointer */ << Pointer->getSourceRange();
   6318 }
   6319 
   6320 /// \brief Diagnose invalid arithmetic on two function pointers.
   6321 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
   6322                                                     Expr *LHS, Expr *RHS) {
   6323   assert(LHS->getType()->isAnyPointerType());
   6324   assert(RHS->getType()->isAnyPointerType());
   6325   S.Diag(Loc, S.getLangOpts().CPlusPlus
   6326                 ? diag::err_typecheck_pointer_arith_function_type
   6327                 : diag::ext_gnu_ptr_func_arith)
   6328     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
   6329     // We only show the second type if it differs from the first.
   6330     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
   6331                                                    RHS->getType())
   6332     << RHS->getType()->getPointeeType()
   6333     << LHS->getSourceRange() << RHS->getSourceRange();
   6334 }
   6335 
   6336 /// \brief Diagnose invalid arithmetic on a function pointer.
   6337 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
   6338                                                 Expr *Pointer) {
   6339   assert(Pointer->getType()->isAnyPointerType());
   6340   S.Diag(Loc, S.getLangOpts().CPlusPlus
   6341                 ? diag::err_typecheck_pointer_arith_function_type
   6342                 : diag::ext_gnu_ptr_func_arith)
   6343     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
   6344     << 0 /* one pointer, so only one type */
   6345     << Pointer->getSourceRange();
   6346 }
   6347 
   6348 /// \brief Emit error if Operand is incomplete pointer type
   6349 ///
   6350 /// \returns True if pointer has incomplete type
   6351 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
   6352                                                  Expr *Operand) {
   6353   assert(Operand->getType()->isAnyPointerType() &&
   6354          !Operand->getType()->isDependentType());
   6355   QualType PointeeTy = Operand->getType()->getPointeeType();
   6356   return S.RequireCompleteType(Loc, PointeeTy,
   6357                                diag::err_typecheck_arithmetic_incomplete_type,
   6358                                PointeeTy, Operand->getSourceRange());
   6359 }
   6360 
   6361 /// \brief Check the validity of an arithmetic pointer operand.
   6362 ///
   6363 /// If the operand has pointer type, this code will check for pointer types
   6364 /// which are invalid in arithmetic operations. These will be diagnosed
   6365 /// appropriately, including whether or not the use is supported as an
   6366 /// extension.
   6367 ///
   6368 /// \returns True when the operand is valid to use (even if as an extension).
   6369 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
   6370                                             Expr *Operand) {
   6371   if (!Operand->getType()->isAnyPointerType()) return true;
   6372 
   6373   QualType PointeeTy = Operand->getType()->getPointeeType();
   6374   if (PointeeTy->isVoidType()) {
   6375     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
   6376     return !S.getLangOpts().CPlusPlus;
   6377   }
   6378   if (PointeeTy->isFunctionType()) {
   6379     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
   6380     return !S.getLangOpts().CPlusPlus;
   6381   }
   6382 
   6383   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
   6384 
   6385   return true;
   6386 }
   6387 
   6388 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
   6389 /// operands.
   6390 ///
   6391 /// This routine will diagnose any invalid arithmetic on pointer operands much
   6392 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
   6393 /// for emitting a single diagnostic even for operations where both LHS and RHS
   6394 /// are (potentially problematic) pointers.
   6395 ///
   6396 /// \returns True when the operand is valid to use (even if as an extension).
   6397 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
   6398                                                 Expr *LHSExpr, Expr *RHSExpr) {
   6399   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
   6400   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
   6401   if (!isLHSPointer && !isRHSPointer) return true;
   6402 
   6403   QualType LHSPointeeTy, RHSPointeeTy;
   6404   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
   6405   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
   6406 
   6407   // Check for arithmetic on pointers to incomplete types.
   6408   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
   6409   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
   6410   if (isLHSVoidPtr || isRHSVoidPtr) {
   6411     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
   6412     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
   6413     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
   6414 
   6415     return !S.getLangOpts().CPlusPlus;
   6416   }
   6417 
   6418   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
   6419   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
   6420   if (isLHSFuncPtr || isRHSFuncPtr) {
   6421     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
   6422     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
   6423                                                                 RHSExpr);
   6424     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
   6425 
   6426     return !S.getLangOpts().CPlusPlus;
   6427   }
   6428 
   6429   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
   6430     return false;
   6431   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
   6432     return false;
   6433 
   6434   return true;
   6435 }
   6436 
   6437 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
   6438 /// literal.
   6439 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
   6440                                   Expr *LHSExpr, Expr *RHSExpr) {
   6441   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
   6442   Expr* IndexExpr = RHSExpr;
   6443   if (!StrExpr) {
   6444     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
   6445     IndexExpr = LHSExpr;
   6446   }
   6447 
   6448   bool IsStringPlusInt = StrExpr &&
   6449       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
   6450   if (!IsStringPlusInt)
   6451     return;
   6452 
   6453   llvm::APSInt index;
   6454   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
   6455     unsigned StrLenWithNull = StrExpr->getLength() + 1;
   6456     if (index.isNonNegative() &&
   6457         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
   6458                               index.isUnsigned()))
   6459       return;
   6460   }
   6461 
   6462   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   6463   Self.Diag(OpLoc, diag::warn_string_plus_int)
   6464       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
   6465 
   6466   // Only print a fixit for "str" + int, not for int + "str".
   6467   if (IndexExpr == RHSExpr) {
   6468     SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
   6469     Self.Diag(OpLoc, diag::note_string_plus_int_silence)
   6470         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   6471         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   6472         << FixItHint::CreateInsertion(EndLoc, "]");
   6473   } else
   6474     Self.Diag(OpLoc, diag::note_string_plus_int_silence);
   6475 }
   6476 
   6477 /// \brief Emit error when two pointers are incompatible.
   6478 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
   6479                                            Expr *LHSExpr, Expr *RHSExpr) {
   6480   assert(LHSExpr->getType()->isAnyPointerType());
   6481   assert(RHSExpr->getType()->isAnyPointerType());
   6482   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
   6483     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
   6484     << RHSExpr->getSourceRange();
   6485 }
   6486 
   6487 QualType Sema::CheckAdditionOperands( // C99 6.5.6
   6488     ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
   6489     QualType* CompLHSTy) {
   6490   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   6491 
   6492   if (LHS.get()->getType()->isVectorType() ||
   6493       RHS.get()->getType()->isVectorType()) {
   6494     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
   6495     if (CompLHSTy) *CompLHSTy = compType;
   6496     return compType;
   6497   }
   6498 
   6499   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   6500   if (LHS.isInvalid() || RHS.isInvalid())
   6501     return QualType();
   6502 
   6503   // Diagnose "string literal" '+' int.
   6504   if (Opc == BO_Add)
   6505     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
   6506 
   6507   // handle the common case first (both operands are arithmetic).
   6508   if (!compType.isNull() && compType->isArithmeticType()) {
   6509     if (CompLHSTy) *CompLHSTy = compType;
   6510     return compType;
   6511   }
   6512 
   6513   // Type-checking.  Ultimately the pointer's going to be in PExp;
   6514   // note that we bias towards the LHS being the pointer.
   6515   Expr *PExp = LHS.get(), *IExp = RHS.get();
   6516 
   6517   bool isObjCPointer;
   6518   if (PExp->getType()->isPointerType()) {
   6519     isObjCPointer = false;
   6520   } else if (PExp->getType()->isObjCObjectPointerType()) {
   6521     isObjCPointer = true;
   6522   } else {
   6523     std::swap(PExp, IExp);
   6524     if (PExp->getType()->isPointerType()) {
   6525       isObjCPointer = false;
   6526     } else if (PExp->getType()->isObjCObjectPointerType()) {
   6527       isObjCPointer = true;
   6528     } else {
   6529       return InvalidOperands(Loc, LHS, RHS);
   6530     }
   6531   }
   6532   assert(PExp->getType()->isAnyPointerType());
   6533 
   6534   if (!IExp->getType()->isIntegerType())
   6535     return InvalidOperands(Loc, LHS, RHS);
   6536 
   6537   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
   6538     return QualType();
   6539 
   6540   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
   6541     return QualType();
   6542 
   6543   // Check array bounds for pointer arithemtic
   6544   CheckArrayAccess(PExp, IExp);
   6545 
   6546   if (CompLHSTy) {
   6547     QualType LHSTy = Context.isPromotableBitField(LHS.get());
   6548     if (LHSTy.isNull()) {
   6549       LHSTy = LHS.get()->getType();
   6550       if (LHSTy->isPromotableIntegerType())
   6551         LHSTy = Context.getPromotedIntegerType(LHSTy);
   6552     }
   6553     *CompLHSTy = LHSTy;
   6554   }
   6555 
   6556   return PExp->getType();
   6557 }
   6558 
   6559 // C99 6.5.6
   6560 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
   6561                                         SourceLocation Loc,
   6562                                         QualType* CompLHSTy) {
   6563   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   6564 
   6565   if (LHS.get()->getType()->isVectorType() ||
   6566       RHS.get()->getType()->isVectorType()) {
   6567     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
   6568     if (CompLHSTy) *CompLHSTy = compType;
   6569     return compType;
   6570   }
   6571 
   6572   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   6573   if (LHS.isInvalid() || RHS.isInvalid())
   6574     return QualType();
   6575 
   6576   // Enforce type constraints: C99 6.5.6p3.
   6577 
   6578   // Handle the common case first (both operands are arithmetic).
   6579   if (!compType.isNull() && compType->isArithmeticType()) {
   6580     if (CompLHSTy) *CompLHSTy = compType;
   6581     return compType;
   6582   }
   6583 
   6584   // Either ptr - int   or   ptr - ptr.
   6585   if (LHS.get()->getType()->isAnyPointerType()) {
   6586     QualType lpointee = LHS.get()->getType()->getPointeeType();
   6587 
   6588     // Diagnose bad cases where we step over interface counts.
   6589     if (LHS.get()->getType()->isObjCObjectPointerType() &&
   6590         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
   6591       return QualType();
   6592 
   6593     // The result type of a pointer-int computation is the pointer type.
   6594     if (RHS.get()->getType()->isIntegerType()) {
   6595       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
   6596         return QualType();
   6597 
   6598       // Check array bounds for pointer arithemtic
   6599       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
   6600                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
   6601 
   6602       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   6603       return LHS.get()->getType();
   6604     }
   6605 
   6606     // Handle pointer-pointer subtractions.
   6607     if (const PointerType *RHSPTy
   6608           = RHS.get()->getType()->getAs<PointerType>()) {
   6609       QualType rpointee = RHSPTy->getPointeeType();
   6610 
   6611       if (getLangOpts().CPlusPlus) {
   6612         // Pointee types must be the same: C++ [expr.add]
   6613         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
   6614           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   6615         }
   6616       } else {
   6617         // Pointee types must be compatible C99 6.5.6p3
   6618         if (!Context.typesAreCompatible(
   6619                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
   6620                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
   6621           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   6622           return QualType();
   6623         }
   6624       }
   6625 
   6626       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
   6627                                                LHS.get(), RHS.get()))
   6628         return QualType();
   6629 
   6630       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   6631       return Context.getPointerDiffType();
   6632     }
   6633   }
   6634 
   6635   return InvalidOperands(Loc, LHS, RHS);
   6636 }
   6637 
   6638 static bool isScopedEnumerationType(QualType T) {
   6639   if (const EnumType *ET = dyn_cast<EnumType>(T))
   6640     return ET->getDecl()->isScoped();
   6641   return false;
   6642 }
   6643 
   6644 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
   6645                                    SourceLocation Loc, unsigned Opc,
   6646                                    QualType LHSType) {
   6647   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
   6648   // so skip remaining warnings as we don't want to modify values within Sema.
   6649   if (S.getLangOpts().OpenCL)
   6650     return;
   6651 
   6652   llvm::APSInt Right;
   6653   // Check right/shifter operand
   6654   if (RHS.get()->isValueDependent() ||
   6655       !RHS.get()->isIntegerConstantExpr(Right, S.Context))
   6656     return;
   6657 
   6658   if (Right.isNegative()) {
   6659     S.DiagRuntimeBehavior(Loc, RHS.get(),
   6660                           S.PDiag(diag::warn_shift_negative)
   6661                             << RHS.get()->getSourceRange());
   6662     return;
   6663   }
   6664   llvm::APInt LeftBits(Right.getBitWidth(),
   6665                        S.Context.getTypeSize(LHS.get()->getType()));
   6666   if (Right.uge(LeftBits)) {
   6667     S.DiagRuntimeBehavior(Loc, RHS.get(),
   6668                           S.PDiag(diag::warn_shift_gt_typewidth)
   6669                             << RHS.get()->getSourceRange());
   6670     return;
   6671   }
   6672   if (Opc != BO_Shl)
   6673     return;
   6674 
   6675   // When left shifting an ICE which is signed, we can check for overflow which
   6676   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
   6677   // integers have defined behavior modulo one more than the maximum value
   6678   // representable in the result type, so never warn for those.
   6679   llvm::APSInt Left;
   6680   if (LHS.get()->isValueDependent() ||
   6681       !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
   6682       LHSType->hasUnsignedIntegerRepresentation())
   6683     return;
   6684   llvm::APInt ResultBits =
   6685       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
   6686   if (LeftBits.uge(ResultBits))
   6687     return;
   6688   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
   6689   Result = Result.shl(Right);
   6690 
   6691   // Print the bit representation of the signed integer as an unsigned
   6692   // hexadecimal number.
   6693   SmallString<40> HexResult;
   6694   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
   6695 
   6696   // If we are only missing a sign bit, this is less likely to result in actual
   6697   // bugs -- if the result is cast back to an unsigned type, it will have the
   6698   // expected value. Thus we place this behind a different warning that can be
   6699   // turned off separately if needed.
   6700   if (LeftBits == ResultBits - 1) {
   6701     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
   6702         << HexResult.str() << LHSType
   6703         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6704     return;
   6705   }
   6706 
   6707   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
   6708     << HexResult.str() << Result.getMinSignedBits() << LHSType
   6709     << Left.getBitWidth() << LHS.get()->getSourceRange()
   6710     << RHS.get()->getSourceRange();
   6711 }
   6712 
   6713 // C99 6.5.7
   6714 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
   6715                                   SourceLocation Loc, unsigned Opc,
   6716                                   bool IsCompAssign) {
   6717   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   6718 
   6719   // C99 6.5.7p2: Each of the operands shall have integer type.
   6720   if (!LHS.get()->getType()->hasIntegerRepresentation() ||
   6721       !RHS.get()->getType()->hasIntegerRepresentation())
   6722     return InvalidOperands(Loc, LHS, RHS);
   6723 
   6724   // C++0x: Don't allow scoped enums. FIXME: Use something better than
   6725   // hasIntegerRepresentation() above instead of this.
   6726   if (isScopedEnumerationType(LHS.get()->getType()) ||
   6727       isScopedEnumerationType(RHS.get()->getType())) {
   6728     return InvalidOperands(Loc, LHS, RHS);
   6729   }
   6730 
   6731   // Vector shifts promote their scalar inputs to vector type.
   6732   if (LHS.get()->getType()->isVectorType() ||
   6733       RHS.get()->getType()->isVectorType())
   6734     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   6735 
   6736   // Shifts don't perform usual arithmetic conversions, they just do integer
   6737   // promotions on each operand. C99 6.5.7p3
   6738 
   6739   // For the LHS, do usual unary conversions, but then reset them away
   6740   // if this is a compound assignment.
   6741   ExprResult OldLHS = LHS;
   6742   LHS = UsualUnaryConversions(LHS.take());
   6743   if (LHS.isInvalid())
   6744     return QualType();
   6745   QualType LHSType = LHS.get()->getType();
   6746   if (IsCompAssign) LHS = OldLHS;
   6747 
   6748   // The RHS is simpler.
   6749   RHS = UsualUnaryConversions(RHS.take());
   6750   if (RHS.isInvalid())
   6751     return QualType();
   6752 
   6753   // Sanity-check shift operands
   6754   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
   6755 
   6756   // "The type of the result is that of the promoted left operand."
   6757   return LHSType;
   6758 }
   6759 
   6760 static bool IsWithinTemplateSpecialization(Decl *D) {
   6761   if (DeclContext *DC = D->getDeclContext()) {
   6762     if (isa<ClassTemplateSpecializationDecl>(DC))
   6763       return true;
   6764     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
   6765       return FD->isFunctionTemplateSpecialization();
   6766   }
   6767   return false;
   6768 }
   6769 
   6770 /// If two different enums are compared, raise a warning.
   6771 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
   6772                                 Expr *RHS) {
   6773   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
   6774   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
   6775 
   6776   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
   6777   if (!LHSEnumType)
   6778     return;
   6779   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
   6780   if (!RHSEnumType)
   6781     return;
   6782 
   6783   // Ignore anonymous enums.
   6784   if (!LHSEnumType->getDecl()->getIdentifier())
   6785     return;
   6786   if (!RHSEnumType->getDecl()->getIdentifier())
   6787     return;
   6788 
   6789   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
   6790     return;
   6791 
   6792   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
   6793       << LHSStrippedType << RHSStrippedType
   6794       << LHS->getSourceRange() << RHS->getSourceRange();
   6795 }
   6796 
   6797 /// \brief Diagnose bad pointer comparisons.
   6798 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
   6799                                               ExprResult &LHS, ExprResult &RHS,
   6800                                               bool IsError) {
   6801   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
   6802                       : diag::ext_typecheck_comparison_of_distinct_pointers)
   6803     << LHS.get()->getType() << RHS.get()->getType()
   6804     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6805 }
   6806 
   6807 /// \brief Returns false if the pointers are converted to a composite type,
   6808 /// true otherwise.
   6809 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
   6810                                            ExprResult &LHS, ExprResult &RHS) {
   6811   // C++ [expr.rel]p2:
   6812   //   [...] Pointer conversions (4.10) and qualification
   6813   //   conversions (4.4) are performed on pointer operands (or on
   6814   //   a pointer operand and a null pointer constant) to bring
   6815   //   them to their composite pointer type. [...]
   6816   //
   6817   // C++ [expr.eq]p1 uses the same notion for (in)equality
   6818   // comparisons of pointers.
   6819 
   6820   // C++ [expr.eq]p2:
   6821   //   In addition, pointers to members can be compared, or a pointer to
   6822   //   member and a null pointer constant. Pointer to member conversions
   6823   //   (4.11) and qualification conversions (4.4) are performed to bring
   6824   //   them to a common type. If one operand is a null pointer constant,
   6825   //   the common type is the type of the other operand. Otherwise, the
   6826   //   common type is a pointer to member type similar (4.4) to the type
   6827   //   of one of the operands, with a cv-qualification signature (4.4)
   6828   //   that is the union of the cv-qualification signatures of the operand
   6829   //   types.
   6830 
   6831   QualType LHSType = LHS.get()->getType();
   6832   QualType RHSType = RHS.get()->getType();
   6833   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
   6834          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
   6835 
   6836   bool NonStandardCompositeType = false;
   6837   bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
   6838   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
   6839   if (T.isNull()) {
   6840     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
   6841     return true;
   6842   }
   6843 
   6844   if (NonStandardCompositeType)
   6845     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
   6846       << LHSType << RHSType << T << LHS.get()->getSourceRange()
   6847       << RHS.get()->getSourceRange();
   6848 
   6849   LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
   6850   RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
   6851   return false;
   6852 }
   6853 
   6854 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
   6855                                                     ExprResult &LHS,
   6856                                                     ExprResult &RHS,
   6857                                                     bool IsError) {
   6858   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
   6859                       : diag::ext_typecheck_comparison_of_fptr_to_void)
   6860     << LHS.get()->getType() << RHS.get()->getType()
   6861     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6862 }
   6863 
   6864 static bool isObjCObjectLiteral(ExprResult &E) {
   6865   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
   6866   case Stmt::ObjCArrayLiteralClass:
   6867   case Stmt::ObjCDictionaryLiteralClass:
   6868   case Stmt::ObjCStringLiteralClass:
   6869   case Stmt::ObjCBoxedExprClass:
   6870     return true;
   6871   default:
   6872     // Note that ObjCBoolLiteral is NOT an object literal!
   6873     return false;
   6874   }
   6875 }
   6876 
   6877 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
   6878   const ObjCObjectPointerType *Type =
   6879     LHS->getType()->getAs<ObjCObjectPointerType>();
   6880 
   6881   // If this is not actually an Objective-C object, bail out.
   6882   if (!Type)
   6883     return false;
   6884 
   6885   // Get the LHS object's interface type.
   6886   QualType InterfaceType = Type->getPointeeType();
   6887   if (const ObjCObjectType *iQFaceTy =
   6888       InterfaceType->getAsObjCQualifiedInterfaceType())
   6889     InterfaceType = iQFaceTy->getBaseType();
   6890 
   6891   // If the RHS isn't an Objective-C object, bail out.
   6892   if (!RHS->getType()->isObjCObjectPointerType())
   6893     return false;
   6894 
   6895   // Try to find the -isEqual: method.
   6896   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
   6897   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
   6898                                                       InterfaceType,
   6899                                                       /*instance=*/true);
   6900   if (!Method) {
   6901     if (Type->isObjCIdType()) {
   6902       // For 'id', just check the global pool.
   6903       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
   6904                                                   /*receiverId=*/true,
   6905                                                   /*warn=*/false);
   6906     } else {
   6907       // Check protocols.
   6908       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
   6909                                              /*instance=*/true);
   6910     }
   6911   }
   6912 
   6913   if (!Method)
   6914     return false;
   6915 
   6916   QualType T = Method->param_begin()[0]->getType();
   6917   if (!T->isObjCObjectPointerType())
   6918     return false;
   6919 
   6920   QualType R = Method->getResultType();
   6921   if (!R->isScalarType())
   6922     return false;
   6923 
   6924   return true;
   6925 }
   6926 
   6927 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
   6928   FromE = FromE->IgnoreParenImpCasts();
   6929   switch (FromE->getStmtClass()) {
   6930     default:
   6931       break;
   6932     case Stmt::ObjCStringLiteralClass:
   6933       // "string literal"
   6934       return LK_String;
   6935     case Stmt::ObjCArrayLiteralClass:
   6936       // "array literal"
   6937       return LK_Array;
   6938     case Stmt::ObjCDictionaryLiteralClass:
   6939       // "dictionary literal"
   6940       return LK_Dictionary;
   6941     case Stmt::BlockExprClass:
   6942       return LK_Block;
   6943     case Stmt::ObjCBoxedExprClass: {
   6944       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
   6945       switch (Inner->getStmtClass()) {
   6946         case Stmt::IntegerLiteralClass:
   6947         case Stmt::FloatingLiteralClass:
   6948         case Stmt::CharacterLiteralClass:
   6949         case Stmt::ObjCBoolLiteralExprClass:
   6950         case Stmt::CXXBoolLiteralExprClass:
   6951           // "numeric literal"
   6952           return LK_Numeric;
   6953         case Stmt::ImplicitCastExprClass: {
   6954           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
   6955           // Boolean literals can be represented by implicit casts.
   6956           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
   6957             return LK_Numeric;
   6958           break;
   6959         }
   6960         default:
   6961           break;
   6962       }
   6963       return LK_Boxed;
   6964     }
   6965   }
   6966   return LK_None;
   6967 }
   6968 
   6969 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
   6970                                           ExprResult &LHS, ExprResult &RHS,
   6971                                           BinaryOperator::Opcode Opc){
   6972   Expr *Literal;
   6973   Expr *Other;
   6974   if (isObjCObjectLiteral(LHS)) {
   6975     Literal = LHS.get();
   6976     Other = RHS.get();
   6977   } else {
   6978     Literal = RHS.get();
   6979     Other = LHS.get();
   6980   }
   6981 
   6982   // Don't warn on comparisons against nil.
   6983   Other = Other->IgnoreParenCasts();
   6984   if (Other->isNullPointerConstant(S.getASTContext(),
   6985                                    Expr::NPC_ValueDependentIsNotNull))
   6986     return;
   6987 
   6988   // This should be kept in sync with warn_objc_literal_comparison.
   6989   // LK_String should always be after the other literals, since it has its own
   6990   // warning flag.
   6991   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
   6992   assert(LiteralKind != Sema::LK_Block);
   6993   if (LiteralKind == Sema::LK_None) {
   6994     llvm_unreachable("Unknown Objective-C object literal kind");
   6995   }
   6996 
   6997   if (LiteralKind == Sema::LK_String)
   6998     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
   6999       << Literal->getSourceRange();
   7000   else
   7001     S.Diag(Loc, diag::warn_objc_literal_comparison)
   7002       << LiteralKind << Literal->getSourceRange();
   7003 
   7004   if (BinaryOperator::isEqualityOp(Opc) &&
   7005       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
   7006     SourceLocation Start = LHS.get()->getLocStart();
   7007     SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
   7008     CharSourceRange OpRange =
   7009       CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
   7010 
   7011     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
   7012       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
   7013       << FixItHint::CreateReplacement(OpRange, " isEqual:")
   7014       << FixItHint::CreateInsertion(End, "]");
   7015   }
   7016 }
   7017 
   7018 // C99 6.5.8, C++ [expr.rel]
   7019 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
   7020                                     SourceLocation Loc, unsigned OpaqueOpc,
   7021                                     bool IsRelational) {
   7022   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
   7023 
   7024   BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
   7025 
   7026   // Handle vector comparisons separately.
   7027   if (LHS.get()->getType()->isVectorType() ||
   7028       RHS.get()->getType()->isVectorType())
   7029     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
   7030 
   7031   QualType LHSType = LHS.get()->getType();
   7032   QualType RHSType = RHS.get()->getType();
   7033 
   7034   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
   7035   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
   7036 
   7037   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
   7038 
   7039   if (!LHSType->hasFloatingRepresentation() &&
   7040       !(LHSType->isBlockPointerType() && IsRelational) &&
   7041       !LHS.get()->getLocStart().isMacroID() &&
   7042       !RHS.get()->getLocStart().isMacroID()) {
   7043     // For non-floating point types, check for self-comparisons of the form
   7044     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   7045     // often indicate logic errors in the program.
   7046     //
   7047     // NOTE: Don't warn about comparison expressions resulting from macro
   7048     // expansion. Also don't warn about comparisons which are only self
   7049     // comparisons within a template specialization. The warnings should catch
   7050     // obvious cases in the definition of the template anyways. The idea is to
   7051     // warn when the typed comparison operator will always evaluate to the same
   7052     // result.
   7053     if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
   7054       if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
   7055         if (DRL->getDecl() == DRR->getDecl() &&
   7056             !IsWithinTemplateSpecialization(DRL->getDecl())) {
   7057           DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
   7058                               << 0 // self-
   7059                               << (Opc == BO_EQ
   7060                                   || Opc == BO_LE
   7061                                   || Opc == BO_GE));
   7062         } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
   7063                    !DRL->getDecl()->getType()->isReferenceType() &&
   7064                    !DRR->getDecl()->getType()->isReferenceType()) {
   7065             // what is it always going to eval to?
   7066             char always_evals_to;
   7067             switch(Opc) {
   7068             case BO_EQ: // e.g. array1 == array2
   7069               always_evals_to = 0; // false
   7070               break;
   7071             case BO_NE: // e.g. array1 != array2
   7072               always_evals_to = 1; // true
   7073               break;
   7074             default:
   7075               // best we can say is 'a constant'
   7076               always_evals_to = 2; // e.g. array1 <= array2
   7077               break;
   7078             }
   7079             DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
   7080                                 << 1 // array
   7081                                 << always_evals_to);
   7082         }
   7083       }
   7084     }
   7085 
   7086     if (isa<CastExpr>(LHSStripped))
   7087       LHSStripped = LHSStripped->IgnoreParenCasts();
   7088     if (isa<CastExpr>(RHSStripped))
   7089       RHSStripped = RHSStripped->IgnoreParenCasts();
   7090 
   7091     // Warn about comparisons against a string constant (unless the other
   7092     // operand is null), the user probably wants strcmp.
   7093     Expr *literalString = 0;
   7094     Expr *literalStringStripped = 0;
   7095     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
   7096         !RHSStripped->isNullPointerConstant(Context,
   7097                                             Expr::NPC_ValueDependentIsNull)) {
   7098       literalString = LHS.get();
   7099       literalStringStripped = LHSStripped;
   7100     } else if ((isa<StringLiteral>(RHSStripped) ||
   7101                 isa<ObjCEncodeExpr>(RHSStripped)) &&
   7102                !LHSStripped->isNullPointerConstant(Context,
   7103                                             Expr::NPC_ValueDependentIsNull)) {
   7104       literalString = RHS.get();
   7105       literalStringStripped = RHSStripped;
   7106     }
   7107 
   7108     if (literalString) {
   7109       std::string resultComparison;
   7110       switch (Opc) {
   7111       case BO_LT: resultComparison = ") < 0"; break;
   7112       case BO_GT: resultComparison = ") > 0"; break;
   7113       case BO_LE: resultComparison = ") <= 0"; break;
   7114       case BO_GE: resultComparison = ") >= 0"; break;
   7115       case BO_EQ: resultComparison = ") == 0"; break;
   7116       case BO_NE: resultComparison = ") != 0"; break;
   7117       default: llvm_unreachable("Invalid comparison operator");
   7118       }
   7119 
   7120       DiagRuntimeBehavior(Loc, 0,
   7121         PDiag(diag::warn_stringcompare)
   7122           << isa<ObjCEncodeExpr>(literalStringStripped)
   7123           << literalString->getSourceRange());
   7124     }
   7125   }
   7126 
   7127   // C99 6.5.8p3 / C99 6.5.9p4
   7128   if (LHS.get()->getType()->isArithmeticType() &&
   7129       RHS.get()->getType()->isArithmeticType()) {
   7130     UsualArithmeticConversions(LHS, RHS);
   7131     if (LHS.isInvalid() || RHS.isInvalid())
   7132       return QualType();
   7133   }
   7134   else {
   7135     LHS = UsualUnaryConversions(LHS.take());
   7136     if (LHS.isInvalid())
   7137       return QualType();
   7138 
   7139     RHS = UsualUnaryConversions(RHS.take());
   7140     if (RHS.isInvalid())
   7141       return QualType();
   7142   }
   7143 
   7144   LHSType = LHS.get()->getType();
   7145   RHSType = RHS.get()->getType();
   7146 
   7147   // The result of comparisons is 'bool' in C++, 'int' in C.
   7148   QualType ResultTy = Context.getLogicalOperationType();
   7149 
   7150   if (IsRelational) {
   7151     if (LHSType->isRealType() && RHSType->isRealType())
   7152       return ResultTy;
   7153   } else {
   7154     // Check for comparisons of floating point operands using != and ==.
   7155     if (LHSType->hasFloatingRepresentation())
   7156       CheckFloatComparison(Loc, LHS.get(), RHS.get());
   7157 
   7158     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
   7159       return ResultTy;
   7160   }
   7161 
   7162   bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
   7163                                               Expr::NPC_ValueDependentIsNull);
   7164   bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
   7165                                               Expr::NPC_ValueDependentIsNull);
   7166 
   7167   // All of the following pointer-related warnings are GCC extensions, except
   7168   // when handling null pointer constants.
   7169   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
   7170     QualType LCanPointeeTy =
   7171       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   7172     QualType RCanPointeeTy =
   7173       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   7174 
   7175     if (getLangOpts().CPlusPlus) {
   7176       if (LCanPointeeTy == RCanPointeeTy)
   7177         return ResultTy;
   7178       if (!IsRelational &&
   7179           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   7180         // Valid unless comparison between non-null pointer and function pointer
   7181         // This is a gcc extension compatibility comparison.
   7182         // In a SFINAE context, we treat this as a hard error to maintain
   7183         // conformance with the C++ standard.
   7184         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   7185             && !LHSIsNull && !RHSIsNull) {
   7186           diagnoseFunctionPointerToVoidComparison(
   7187               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
   7188 
   7189           if (isSFINAEContext())
   7190             return QualType();
   7191 
   7192           RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
   7193           return ResultTy;
   7194         }
   7195       }
   7196 
   7197       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   7198         return QualType();
   7199       else
   7200         return ResultTy;
   7201     }
   7202     // C99 6.5.9p2 and C99 6.5.8p2
   7203     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
   7204                                    RCanPointeeTy.getUnqualifiedType())) {
   7205       // Valid unless a relational comparison of function pointers
   7206       if (IsRelational && LCanPointeeTy->isFunctionType()) {
   7207         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
   7208           << LHSType << RHSType << LHS.get()->getSourceRange()
   7209           << RHS.get()->getSourceRange();
   7210       }
   7211     } else if (!IsRelational &&
   7212                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   7213       // Valid unless comparison between non-null pointer and function pointer
   7214       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   7215           && !LHSIsNull && !RHSIsNull)
   7216         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
   7217                                                 /*isError*/false);
   7218     } else {
   7219       // Invalid
   7220       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
   7221     }
   7222     if (LCanPointeeTy != RCanPointeeTy) {
   7223       if (LHSIsNull && !RHSIsNull)
   7224         LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
   7225       else
   7226         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
   7227     }
   7228     return ResultTy;
   7229   }
   7230 
   7231   if (getLangOpts().CPlusPlus) {
   7232     // Comparison of nullptr_t with itself.
   7233     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
   7234       return ResultTy;
   7235 
   7236     // Comparison of pointers with null pointer constants and equality
   7237     // comparisons of member pointers to null pointer constants.
   7238     if (RHSIsNull &&
   7239         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
   7240          (!IsRelational &&
   7241           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
   7242       RHS = ImpCastExprToType(RHS.take(), LHSType,
   7243                         LHSType->isMemberPointerType()
   7244                           ? CK_NullToMemberPointer
   7245                           : CK_NullToPointer);
   7246       return ResultTy;
   7247     }
   7248     if (LHSIsNull &&
   7249         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
   7250          (!IsRelational &&
   7251           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
   7252       LHS = ImpCastExprToType(LHS.take(), RHSType,
   7253                         RHSType->isMemberPointerType()
   7254                           ? CK_NullToMemberPointer
   7255                           : CK_NullToPointer);
   7256       return ResultTy;
   7257     }
   7258 
   7259     // Comparison of member pointers.
   7260     if (!IsRelational &&
   7261         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
   7262       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   7263         return QualType();
   7264       else
   7265         return ResultTy;
   7266     }
   7267 
   7268     // Handle scoped enumeration types specifically, since they don't promote
   7269     // to integers.
   7270     if (LHS.get()->getType()->isEnumeralType() &&
   7271         Context.hasSameUnqualifiedType(LHS.get()->getType(),
   7272                                        RHS.get()->getType()))
   7273       return ResultTy;
   7274   }
   7275 
   7276   // Handle block pointer types.
   7277   if (!IsRelational && LHSType->isBlockPointerType() &&
   7278       RHSType->isBlockPointerType()) {
   7279     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
   7280     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
   7281 
   7282     if (!LHSIsNull && !RHSIsNull &&
   7283         !Context.typesAreCompatible(lpointee, rpointee)) {
   7284       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   7285         << LHSType << RHSType << LHS.get()->getSourceRange()
   7286         << RHS.get()->getSourceRange();
   7287     }
   7288     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
   7289     return ResultTy;
   7290   }
   7291 
   7292   // Allow block pointers to be compared with null pointer constants.
   7293   if (!IsRelational
   7294       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
   7295           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
   7296     if (!LHSIsNull && !RHSIsNull) {
   7297       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
   7298              ->getPointeeType()->isVoidType())
   7299             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
   7300                 ->getPointeeType()->isVoidType())))
   7301         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   7302           << LHSType << RHSType << LHS.get()->getSourceRange()
   7303           << RHS.get()->getSourceRange();
   7304     }
   7305     if (LHSIsNull && !RHSIsNull)
   7306       LHS = ImpCastExprToType(LHS.take(), RHSType,
   7307                               RHSType->isPointerType() ? CK_BitCast
   7308                                 : CK_AnyPointerToBlockPointerCast);
   7309     else
   7310       RHS = ImpCastExprToType(RHS.take(), LHSType,
   7311                               LHSType->isPointerType() ? CK_BitCast
   7312                                 : CK_AnyPointerToBlockPointerCast);
   7313     return ResultTy;
   7314   }
   7315 
   7316   if (LHSType->isObjCObjectPointerType() ||
   7317       RHSType->isObjCObjectPointerType()) {
   7318     const PointerType *LPT = LHSType->getAs<PointerType>();
   7319     const PointerType *RPT = RHSType->getAs<PointerType>();
   7320     if (LPT || RPT) {
   7321       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
   7322       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
   7323 
   7324       if (!LPtrToVoid && !RPtrToVoid &&
   7325           !Context.typesAreCompatible(LHSType, RHSType)) {
   7326         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   7327                                           /*isError*/false);
   7328       }
   7329       if (LHSIsNull && !RHSIsNull)
   7330         LHS = ImpCastExprToType(LHS.take(), RHSType,
   7331                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   7332       else
   7333         RHS = ImpCastExprToType(RHS.take(), LHSType,
   7334                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   7335       return ResultTy;
   7336     }
   7337     if (LHSType->isObjCObjectPointerType() &&
   7338         RHSType->isObjCObjectPointerType()) {
   7339       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
   7340         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   7341                                           /*isError*/false);
   7342       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
   7343         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
   7344 
   7345       if (LHSIsNull && !RHSIsNull)
   7346         LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
   7347       else
   7348         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
   7349       return ResultTy;
   7350     }
   7351   }
   7352   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
   7353       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
   7354     unsigned DiagID = 0;
   7355     bool isError = false;
   7356     if (LangOpts.DebuggerSupport) {
   7357       // Under a debugger, allow the comparison of pointers to integers,
   7358       // since users tend to want to compare addresses.
   7359     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
   7360         (RHSIsNull && RHSType->isIntegerType())) {
   7361       if (IsRelational && !getLangOpts().CPlusPlus)
   7362         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
   7363     } else if (IsRelational && !getLangOpts().CPlusPlus)
   7364       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
   7365     else if (getLangOpts().CPlusPlus) {
   7366       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
   7367       isError = true;
   7368     } else
   7369       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
   7370 
   7371     if (DiagID) {
   7372       Diag(Loc, DiagID)
   7373         << LHSType << RHSType << LHS.get()->getSourceRange()
   7374         << RHS.get()->getSourceRange();
   7375       if (isError)
   7376         return QualType();
   7377     }
   7378 
   7379     if (LHSType->isIntegerType())
   7380       LHS = ImpCastExprToType(LHS.take(), RHSType,
   7381                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   7382     else
   7383       RHS = ImpCastExprToType(RHS.take(), LHSType,
   7384                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   7385     return ResultTy;
   7386   }
   7387 
   7388   // Handle block pointers.
   7389   if (!IsRelational && RHSIsNull
   7390       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
   7391     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
   7392     return ResultTy;
   7393   }
   7394   if (!IsRelational && LHSIsNull
   7395       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
   7396     LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
   7397     return ResultTy;
   7398   }
   7399 
   7400   return InvalidOperands(Loc, LHS, RHS);
   7401 }
   7402 
   7403 
   7404 // Return a signed type that is of identical size and number of elements.
   7405 // For floating point vectors, return an integer type of identical size
   7406 // and number of elements.
   7407 QualType Sema::GetSignedVectorType(QualType V) {
   7408   const VectorType *VTy = V->getAs<VectorType>();
   7409   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
   7410   if (TypeSize == Context.getTypeSize(Context.CharTy))
   7411     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
   7412   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
   7413     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
   7414   else if (TypeSize == Context.getTypeSize(Context.IntTy))
   7415     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
   7416   else if (TypeSize == Context.getTypeSize(Context.LongTy))
   7417     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
   7418   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
   7419          "Unhandled vector element size in vector compare");
   7420   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
   7421 }
   7422 
   7423 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
   7424 /// operates on extended vector types.  Instead of producing an IntTy result,
   7425 /// like a scalar comparison, a vector comparison produces a vector of integer
   7426 /// types.
   7427 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
   7428                                           SourceLocation Loc,
   7429                                           bool IsRelational) {
   7430   // Check to make sure we're operating on vectors of the same type and width,
   7431   // Allowing one side to be a scalar of element type.
   7432   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
   7433   if (vType.isNull())
   7434     return vType;
   7435 
   7436   QualType LHSType = LHS.get()->getType();
   7437 
   7438   // If AltiVec, the comparison results in a numeric type, i.e.
   7439   // bool for C++, int for C
   7440   if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
   7441     return Context.getLogicalOperationType();
   7442 
   7443   // For non-floating point types, check for self-comparisons of the form
   7444   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   7445   // often indicate logic errors in the program.
   7446   if (!LHSType->hasFloatingRepresentation()) {
   7447     if (DeclRefExpr* DRL
   7448           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
   7449       if (DeclRefExpr* DRR
   7450             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
   7451         if (DRL->getDecl() == DRR->getDecl())
   7452           DiagRuntimeBehavior(Loc, 0,
   7453                               PDiag(diag::warn_comparison_always)
   7454                                 << 0 // self-
   7455                                 << 2 // "a constant"
   7456                               );
   7457   }
   7458 
   7459   // Check for comparisons of floating point operands using != and ==.
   7460   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
   7461     assert (RHS.get()->getType()->hasFloatingRepresentation());
   7462     CheckFloatComparison(Loc, LHS.get(), RHS.get());
   7463   }
   7464 
   7465   // Return a signed type for the vector.
   7466   return GetSignedVectorType(LHSType);
   7467 }
   7468 
   7469 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   7470                                           SourceLocation Loc) {
   7471   // Ensure that either both operands are of the same vector type, or
   7472   // one operand is of a vector type and the other is of its element type.
   7473   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
   7474   if (vType.isNull())
   7475     return InvalidOperands(Loc, LHS, RHS);
   7476   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
   7477       vType->hasFloatingRepresentation())
   7478     return InvalidOperands(Loc, LHS, RHS);
   7479 
   7480   return GetSignedVectorType(LHS.get()->getType());
   7481 }
   7482 
   7483 inline QualType Sema::CheckBitwiseOperands(
   7484   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   7485   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7486 
   7487   if (LHS.get()->getType()->isVectorType() ||
   7488       RHS.get()->getType()->isVectorType()) {
   7489     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   7490         RHS.get()->getType()->hasIntegerRepresentation())
   7491       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   7492 
   7493     return InvalidOperands(Loc, LHS, RHS);
   7494   }
   7495 
   7496   ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
   7497   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
   7498                                                  IsCompAssign);
   7499   if (LHSResult.isInvalid() || RHSResult.isInvalid())
   7500     return QualType();
   7501   LHS = LHSResult.take();
   7502   RHS = RHSResult.take();
   7503 
   7504   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
   7505     return compType;
   7506   return InvalidOperands(Loc, LHS, RHS);
   7507 }
   7508 
   7509 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
   7510   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
   7511 
   7512   // Check vector operands differently.
   7513   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
   7514     return CheckVectorLogicalOperands(LHS, RHS, Loc);
   7515 
   7516   // Diagnose cases where the user write a logical and/or but probably meant a
   7517   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
   7518   // is a constant.
   7519   if (LHS.get()->getType()->isIntegerType() &&
   7520       !LHS.get()->getType()->isBooleanType() &&
   7521       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
   7522       // Don't warn in macros or template instantiations.
   7523       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
   7524     // If the RHS can be constant folded, and if it constant folds to something
   7525     // that isn't 0 or 1 (which indicate a potential logical operation that
   7526     // happened to fold to true/false) then warn.
   7527     // Parens on the RHS are ignored.
   7528     llvm::APSInt Result;
   7529     if (RHS.get()->EvaluateAsInt(Result, Context))
   7530       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
   7531           (Result != 0 && Result != 1)) {
   7532         Diag(Loc, diag::warn_logical_instead_of_bitwise)
   7533           << RHS.get()->getSourceRange()
   7534           << (Opc == BO_LAnd ? "&&" : "||");
   7535         // Suggest replacing the logical operator with the bitwise version
   7536         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
   7537             << (Opc == BO_LAnd ? "&" : "|")
   7538             << FixItHint::CreateReplacement(SourceRange(
   7539                 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
   7540                                                 getLangOpts())),
   7541                                             Opc == BO_LAnd ? "&" : "|");
   7542         if (Opc == BO_LAnd)
   7543           // Suggest replacing "Foo() && kNonZero" with "Foo()"
   7544           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
   7545               << FixItHint::CreateRemoval(
   7546                   SourceRange(
   7547                       Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
   7548                                                  0, getSourceManager(),
   7549                                                  getLangOpts()),
   7550                       RHS.get()->getLocEnd()));
   7551       }
   7552   }
   7553 
   7554   if (!Context.getLangOpts().CPlusPlus) {
   7555     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
   7556     // not operate on the built-in scalar and vector float types.
   7557     if (Context.getLangOpts().OpenCL &&
   7558         Context.getLangOpts().OpenCLVersion < 120) {
   7559       if (LHS.get()->getType()->isFloatingType() ||
   7560           RHS.get()->getType()->isFloatingType())
   7561         return InvalidOperands(Loc, LHS, RHS);
   7562     }
   7563 
   7564     LHS = UsualUnaryConversions(LHS.take());
   7565     if (LHS.isInvalid())
   7566       return QualType();
   7567 
   7568     RHS = UsualUnaryConversions(RHS.take());
   7569     if (RHS.isInvalid())
   7570       return QualType();
   7571 
   7572     if (!LHS.get()->getType()->isScalarType() ||
   7573         !RHS.get()->getType()->isScalarType())
   7574       return InvalidOperands(Loc, LHS, RHS);
   7575 
   7576     return Context.IntTy;
   7577   }
   7578 
   7579   // The following is safe because we only use this method for
   7580   // non-overloadable operands.
   7581 
   7582   // C++ [expr.log.and]p1
   7583   // C++ [expr.log.or]p1
   7584   // The operands are both contextually converted to type bool.
   7585   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
   7586   if (LHSRes.isInvalid())
   7587     return InvalidOperands(Loc, LHS, RHS);
   7588   LHS = LHSRes;
   7589 
   7590   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
   7591   if (RHSRes.isInvalid())
   7592     return InvalidOperands(Loc, LHS, RHS);
   7593   RHS = RHSRes;
   7594 
   7595   // C++ [expr.log.and]p2
   7596   // C++ [expr.log.or]p2
   7597   // The result is a bool.
   7598   return Context.BoolTy;
   7599 }
   7600 
   7601 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
   7602 /// is a read-only property; return true if so. A readonly property expression
   7603 /// depends on various declarations and thus must be treated specially.
   7604 ///
   7605 static bool IsReadonlyProperty(Expr *E, Sema &S) {
   7606   const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
   7607   if (!PropExpr) return false;
   7608   if (PropExpr->isImplicitProperty()) return false;
   7609 
   7610   ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
   7611   QualType BaseType = PropExpr->isSuperReceiver() ?
   7612                             PropExpr->getSuperReceiverType() :
   7613                             PropExpr->getBase()->getType();
   7614 
   7615   if (const ObjCObjectPointerType *OPT =
   7616       BaseType->getAsObjCInterfacePointerType())
   7617     if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
   7618       if (S.isPropertyReadonly(PDecl, IFace))
   7619         return true;
   7620   return false;
   7621 }
   7622 
   7623 static bool IsReadonlyMessage(Expr *E, Sema &S) {
   7624   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   7625   if (!ME) return false;
   7626   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
   7627   ObjCMessageExpr *Base =
   7628     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
   7629   if (!Base) return false;
   7630   return Base->getMethodDecl() != 0;
   7631 }
   7632 
   7633 /// Is the given expression (which must be 'const') a reference to a
   7634 /// variable which was originally non-const, but which has become
   7635 /// 'const' due to being captured within a block?
   7636 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
   7637 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
   7638   assert(E->isLValue() && E->getType().isConstQualified());
   7639   E = E->IgnoreParens();
   7640 
   7641   // Must be a reference to a declaration from an enclosing scope.
   7642   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   7643   if (!DRE) return NCCK_None;
   7644   if (!DRE->refersToEnclosingLocal()) return NCCK_None;
   7645 
   7646   // The declaration must be a variable which is not declared 'const'.
   7647   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
   7648   if (!var) return NCCK_None;
   7649   if (var->getType().isConstQualified()) return NCCK_None;
   7650   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
   7651 
   7652   // Decide whether the first capture was for a block or a lambda.
   7653   DeclContext *DC = S.CurContext;
   7654   while (DC->getParent() != var->getDeclContext())
   7655     DC = DC->getParent();
   7656   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
   7657 }
   7658 
   7659 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
   7660 /// emit an error and return true.  If so, return false.
   7661 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
   7662   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
   7663   SourceLocation OrigLoc = Loc;
   7664   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
   7665                                                               &Loc);
   7666   if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
   7667     IsLV = Expr::MLV_ReadonlyProperty;
   7668   else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
   7669     IsLV = Expr::MLV_InvalidMessageExpression;
   7670   if (IsLV == Expr::MLV_Valid)
   7671     return false;
   7672 
   7673   unsigned Diag = 0;
   7674   bool NeedType = false;
   7675   switch (IsLV) { // C99 6.5.16p2
   7676   case Expr::MLV_ConstQualified:
   7677     Diag = diag::err_typecheck_assign_const;
   7678 
   7679     // Use a specialized diagnostic when we're assigning to an object
   7680     // from an enclosing function or block.
   7681     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
   7682       if (NCCK == NCCK_Block)
   7683         Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
   7684       else
   7685         Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
   7686       break;
   7687     }
   7688 
   7689     // In ARC, use some specialized diagnostics for occasions where we
   7690     // infer 'const'.  These are always pseudo-strong variables.
   7691     if (S.getLangOpts().ObjCAutoRefCount) {
   7692       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
   7693       if (declRef && isa<VarDecl>(declRef->getDecl())) {
   7694         VarDecl *var = cast<VarDecl>(declRef->getDecl());
   7695 
   7696         // Use the normal diagnostic if it's pseudo-__strong but the
   7697         // user actually wrote 'const'.
   7698         if (var->isARCPseudoStrong() &&
   7699             (!var->getTypeSourceInfo() ||
   7700              !var->getTypeSourceInfo()->getType().isConstQualified())) {
   7701           // There are two pseudo-strong cases:
   7702           //  - self
   7703           ObjCMethodDecl *method = S.getCurMethodDecl();
   7704           if (method && var == method->getSelfDecl())
   7705             Diag = method->isClassMethod()
   7706               ? diag::err_typecheck_arc_assign_self_class_method
   7707               : diag::err_typecheck_arc_assign_self;
   7708 
   7709           //  - fast enumeration variables
   7710           else
   7711             Diag = diag::err_typecheck_arr_assign_enumeration;
   7712 
   7713           SourceRange Assign;
   7714           if (Loc != OrigLoc)
   7715             Assign = SourceRange(OrigLoc, OrigLoc);
   7716           S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
   7717           // We need to preserve the AST regardless, so migration tool
   7718           // can do its job.
   7719           return false;
   7720         }
   7721       }
   7722     }
   7723 
   7724     break;
   7725   case Expr::MLV_ArrayType:
   7726   case Expr::MLV_ArrayTemporary:
   7727     Diag = diag::err_typecheck_array_not_modifiable_lvalue;
   7728     NeedType = true;
   7729     break;
   7730   case Expr::MLV_NotObjectType:
   7731     Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
   7732     NeedType = true;
   7733     break;
   7734   case Expr::MLV_LValueCast:
   7735     Diag = diag::err_typecheck_lvalue_casts_not_supported;
   7736     break;
   7737   case Expr::MLV_Valid:
   7738     llvm_unreachable("did not take early return for MLV_Valid");
   7739   case Expr::MLV_InvalidExpression:
   7740   case Expr::MLV_MemberFunction:
   7741   case Expr::MLV_ClassTemporary:
   7742     Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
   7743     break;
   7744   case Expr::MLV_IncompleteType:
   7745   case Expr::MLV_IncompleteVoidType:
   7746     return S.RequireCompleteType(Loc, E->getType(),
   7747              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
   7748   case Expr::MLV_DuplicateVectorComponents:
   7749     Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
   7750     break;
   7751   case Expr::MLV_ReadonlyProperty:
   7752   case Expr::MLV_NoSetterProperty:
   7753     llvm_unreachable("readonly properties should be processed differently");
   7754   case Expr::MLV_InvalidMessageExpression:
   7755     Diag = diag::error_readonly_message_assignment;
   7756     break;
   7757   case Expr::MLV_SubObjCPropertySetting:
   7758     Diag = diag::error_no_subobject_property_setting;
   7759     break;
   7760   }
   7761 
   7762   SourceRange Assign;
   7763   if (Loc != OrigLoc)
   7764     Assign = SourceRange(OrigLoc, OrigLoc);
   7765   if (NeedType)
   7766     S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
   7767   else
   7768     S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
   7769   return true;
   7770 }
   7771 
   7772 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
   7773                                          SourceLocation Loc,
   7774                                          Sema &Sema) {
   7775   // C / C++ fields
   7776   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
   7777   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
   7778   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
   7779     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
   7780       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
   7781   }
   7782 
   7783   // Objective-C instance variables
   7784   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
   7785   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
   7786   if (OL && OR && OL->getDecl() == OR->getDecl()) {
   7787     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
   7788     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
   7789     if (RL && RR && RL->getDecl() == RR->getDecl())
   7790       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
   7791   }
   7792 }
   7793 
   7794 // C99 6.5.16.1
   7795 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
   7796                                        SourceLocation Loc,
   7797                                        QualType CompoundType) {
   7798   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
   7799 
   7800   // Verify that LHS is a modifiable lvalue, and emit error if not.
   7801   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
   7802     return QualType();
   7803 
   7804   QualType LHSType = LHSExpr->getType();
   7805   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
   7806                                              CompoundType;
   7807   AssignConvertType ConvTy;
   7808   if (CompoundType.isNull()) {
   7809     Expr *RHSCheck = RHS.get();
   7810 
   7811     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
   7812 
   7813     QualType LHSTy(LHSType);
   7814     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
   7815     if (RHS.isInvalid())
   7816       return QualType();
   7817     // Special case of NSObject attributes on c-style pointer types.
   7818     if (ConvTy == IncompatiblePointer &&
   7819         ((Context.isObjCNSObjectType(LHSType) &&
   7820           RHSType->isObjCObjectPointerType()) ||
   7821          (Context.isObjCNSObjectType(RHSType) &&
   7822           LHSType->isObjCObjectPointerType())))
   7823       ConvTy = Compatible;
   7824 
   7825     if (ConvTy == Compatible &&
   7826         LHSType->isObjCObjectType())
   7827         Diag(Loc, diag::err_objc_object_assignment)
   7828           << LHSType;
   7829 
   7830     // If the RHS is a unary plus or minus, check to see if they = and + are
   7831     // right next to each other.  If so, the user may have typo'd "x =+ 4"
   7832     // instead of "x += 4".
   7833     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
   7834       RHSCheck = ICE->getSubExpr();
   7835     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
   7836       if ((UO->getOpcode() == UO_Plus ||
   7837            UO->getOpcode() == UO_Minus) &&
   7838           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
   7839           // Only if the two operators are exactly adjacent.
   7840           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
   7841           // And there is a space or other character before the subexpr of the
   7842           // unary +/-.  We don't want to warn on "x=-1".
   7843           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
   7844           UO->getSubExpr()->getLocStart().isFileID()) {
   7845         Diag(Loc, diag::warn_not_compound_assign)
   7846           << (UO->getOpcode() == UO_Plus ? "+" : "-")
   7847           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
   7848       }
   7849     }
   7850 
   7851     if (ConvTy == Compatible) {
   7852       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
   7853         // Warn about retain cycles where a block captures the LHS, but
   7854         // not if the LHS is a simple variable into which the block is
   7855         // being stored...unless that variable can be captured by reference!
   7856         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
   7857         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
   7858         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
   7859           checkRetainCycles(LHSExpr, RHS.get());
   7860 
   7861         // It is safe to assign a weak reference into a strong variable.
   7862         // Although this code can still have problems:
   7863         //   id x = self.weakProp;
   7864         //   id y = self.weakProp;
   7865         // we do not warn to warn spuriously when 'x' and 'y' are on separate
   7866         // paths through the function. This should be revisited if
   7867         // -Wrepeated-use-of-weak is made flow-sensitive.
   7868         DiagnosticsEngine::Level Level =
   7869           Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
   7870                                    RHS.get()->getLocStart());
   7871         if (Level != DiagnosticsEngine::Ignored)
   7872           getCurFunction()->markSafeWeakUse(RHS.get());
   7873 
   7874       } else if (getLangOpts().ObjCAutoRefCount) {
   7875         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
   7876       }
   7877     }
   7878   } else {
   7879     // Compound assignment "x += y"
   7880     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
   7881   }
   7882 
   7883   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
   7884                                RHS.get(), AA_Assigning))
   7885     return QualType();
   7886 
   7887   CheckForNullPointerDereference(*this, LHSExpr);
   7888 
   7889   // C99 6.5.16p3: The type of an assignment expression is the type of the
   7890   // left operand unless the left operand has qualified type, in which case
   7891   // it is the unqualified version of the type of the left operand.
   7892   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
   7893   // is converted to the type of the assignment expression (above).
   7894   // C++ 5.17p1: the type of the assignment expression is that of its left
   7895   // operand.
   7896   return (getLangOpts().CPlusPlus
   7897           ? LHSType : LHSType.getUnqualifiedType());
   7898 }
   7899 
   7900 // C99 6.5.17
   7901 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
   7902                                    SourceLocation Loc) {
   7903   LHS = S.CheckPlaceholderExpr(LHS.take());
   7904   RHS = S.CheckPlaceholderExpr(RHS.take());
   7905   if (LHS.isInvalid() || RHS.isInvalid())
   7906     return QualType();
   7907 
   7908   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
   7909   // operands, but not unary promotions.
   7910   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
   7911 
   7912   // So we treat the LHS as a ignored value, and in C++ we allow the
   7913   // containing site to determine what should be done with the RHS.
   7914   LHS = S.IgnoredValueConversions(LHS.take());
   7915   if (LHS.isInvalid())
   7916     return QualType();
   7917 
   7918   S.DiagnoseUnusedExprResult(LHS.get());
   7919 
   7920   if (!S.getLangOpts().CPlusPlus) {
   7921     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
   7922     if (RHS.isInvalid())
   7923       return QualType();
   7924     if (!RHS.get()->getType()->isVoidType())
   7925       S.RequireCompleteType(Loc, RHS.get()->getType(),
   7926                             diag::err_incomplete_type);
   7927   }
   7928 
   7929   return RHS.get()->getType();
   7930 }
   7931 
   7932 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
   7933 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
   7934 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
   7935                                                ExprValueKind &VK,
   7936                                                SourceLocation OpLoc,
   7937                                                bool IsInc, bool IsPrefix) {
   7938   if (Op->isTypeDependent())
   7939     return S.Context.DependentTy;
   7940 
   7941   QualType ResType = Op->getType();
   7942   // Atomic types can be used for increment / decrement where the non-atomic
   7943   // versions can, so ignore the _Atomic() specifier for the purpose of
   7944   // checking.
   7945   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   7946     ResType = ResAtomicType->getValueType();
   7947 
   7948   assert(!ResType.isNull() && "no type for increment/decrement expression");
   7949 
   7950   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
   7951     // Decrement of bool is not allowed.
   7952     if (!IsInc) {
   7953       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
   7954       return QualType();
   7955     }
   7956     // Increment of bool sets it to true, but is deprecated.
   7957     S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
   7958   } else if (ResType->isRealType()) {
   7959     // OK!
   7960   } else if (ResType->isPointerType()) {
   7961     // C99 6.5.2.4p2, 6.5.6p2
   7962     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
   7963       return QualType();
   7964   } else if (ResType->isObjCObjectPointerType()) {
   7965     // On modern runtimes, ObjC pointer arithmetic is forbidden.
   7966     // Otherwise, we just need a complete type.
   7967     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
   7968         checkArithmeticOnObjCPointer(S, OpLoc, Op))
   7969       return QualType();
   7970   } else if (ResType->isAnyComplexType()) {
   7971     // C99 does not support ++/-- on complex types, we allow as an extension.
   7972     S.Diag(OpLoc, diag::ext_integer_increment_complex)
   7973       << ResType << Op->getSourceRange();
   7974   } else if (ResType->isPlaceholderType()) {
   7975     ExprResult PR = S.CheckPlaceholderExpr(Op);
   7976     if (PR.isInvalid()) return QualType();
   7977     return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
   7978                                           IsInc, IsPrefix);
   7979   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
   7980     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
   7981   } else {
   7982     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
   7983       << ResType << int(IsInc) << Op->getSourceRange();
   7984     return QualType();
   7985   }
   7986   // At this point, we know we have a real, complex or pointer type.
   7987   // Now make sure the operand is a modifiable lvalue.
   7988   if (CheckForModifiableLvalue(Op, OpLoc, S))
   7989     return QualType();
   7990   // In C++, a prefix increment is the same type as the operand. Otherwise
   7991   // (in C or with postfix), the increment is the unqualified type of the
   7992   // operand.
   7993   if (IsPrefix && S.getLangOpts().CPlusPlus) {
   7994     VK = VK_LValue;
   7995     return ResType;
   7996   } else {
   7997     VK = VK_RValue;
   7998     return ResType.getUnqualifiedType();
   7999   }
   8000 }
   8001 
   8002 
   8003 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
   8004 /// This routine allows us to typecheck complex/recursive expressions
   8005 /// where the declaration is needed for type checking. We only need to
   8006 /// handle cases when the expression references a function designator
   8007 /// or is an lvalue. Here are some examples:
   8008 ///  - &(x) => x
   8009 ///  - &*****f => f for f a function designator.
   8010 ///  - &s.xx => s
   8011 ///  - &s.zz[1].yy -> s, if zz is an array
   8012 ///  - *(x + 1) -> x, if x is an array
   8013 ///  - &"123"[2] -> 0
   8014 ///  - & __real__ x -> x
   8015 static ValueDecl *getPrimaryDecl(Expr *E) {
   8016   switch (E->getStmtClass()) {
   8017   case Stmt::DeclRefExprClass:
   8018     return cast<DeclRefExpr>(E)->getDecl();
   8019   case Stmt::MemberExprClass:
   8020     // If this is an arrow operator, the address is an offset from
   8021     // the base's value, so the object the base refers to is
   8022     // irrelevant.
   8023     if (cast<MemberExpr>(E)->isArrow())
   8024       return 0;
   8025     // Otherwise, the expression refers to a part of the base
   8026     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
   8027   case Stmt::ArraySubscriptExprClass: {
   8028     // FIXME: This code shouldn't be necessary!  We should catch the implicit
   8029     // promotion of register arrays earlier.
   8030     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
   8031     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
   8032       if (ICE->getSubExpr()->getType()->isArrayType())
   8033         return getPrimaryDecl(ICE->getSubExpr());
   8034     }
   8035     return 0;
   8036   }
   8037   case Stmt::UnaryOperatorClass: {
   8038     UnaryOperator *UO = cast<UnaryOperator>(E);
   8039 
   8040     switch(UO->getOpcode()) {
   8041     case UO_Real:
   8042     case UO_Imag:
   8043     case UO_Extension:
   8044       return getPrimaryDecl(UO->getSubExpr());
   8045     default:
   8046       return 0;
   8047     }
   8048   }
   8049   case Stmt::ParenExprClass:
   8050     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
   8051   case Stmt::ImplicitCastExprClass:
   8052     // If the result of an implicit cast is an l-value, we care about
   8053     // the sub-expression; otherwise, the result here doesn't matter.
   8054     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
   8055   default:
   8056     return 0;
   8057   }
   8058 }
   8059 
   8060 namespace {
   8061   enum {
   8062     AO_Bit_Field = 0,
   8063     AO_Vector_Element = 1,
   8064     AO_Property_Expansion = 2,
   8065     AO_Register_Variable = 3,
   8066     AO_No_Error = 4
   8067   };
   8068 }
   8069 /// \brief Diagnose invalid operand for address of operations.
   8070 ///
   8071 /// \param Type The type of operand which cannot have its address taken.
   8072 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
   8073                                          Expr *E, unsigned Type) {
   8074   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
   8075 }
   8076 
   8077 /// CheckAddressOfOperand - The operand of & must be either a function
   8078 /// designator or an lvalue designating an object. If it is an lvalue, the
   8079 /// object cannot be declared with storage class register or be a bit field.
   8080 /// Note: The usual conversions are *not* applied to the operand of the &
   8081 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
   8082 /// In C++, the operand might be an overloaded function name, in which case
   8083 /// we allow the '&' but retain the overloaded-function type.
   8084 static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
   8085                                       SourceLocation OpLoc) {
   8086   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
   8087     if (PTy->getKind() == BuiltinType::Overload) {
   8088       if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
   8089         assert(cast<UnaryOperator>(OrigOp.get()->IgnoreParens())->getOpcode()
   8090                  == UO_AddrOf);
   8091         S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
   8092           << OrigOp.get()->getSourceRange();
   8093         return QualType();
   8094       }
   8095 
   8096       return S.Context.OverloadTy;
   8097     }
   8098 
   8099     if (PTy->getKind() == BuiltinType::UnknownAny)
   8100       return S.Context.UnknownAnyTy;
   8101 
   8102     if (PTy->getKind() == BuiltinType::BoundMember) {
   8103       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   8104         << OrigOp.get()->getSourceRange();
   8105       return QualType();
   8106     }
   8107 
   8108     OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
   8109     if (OrigOp.isInvalid()) return QualType();
   8110   }
   8111 
   8112   if (OrigOp.get()->isTypeDependent())
   8113     return S.Context.DependentTy;
   8114 
   8115   assert(!OrigOp.get()->getType()->isPlaceholderType());
   8116 
   8117   // Make sure to ignore parentheses in subsequent checks
   8118   Expr *op = OrigOp.get()->IgnoreParens();
   8119 
   8120   if (S.getLangOpts().C99) {
   8121     // Implement C99-only parts of addressof rules.
   8122     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
   8123       if (uOp->getOpcode() == UO_Deref)
   8124         // Per C99 6.5.3.2, the address of a deref always returns a valid result
   8125         // (assuming the deref expression is valid).
   8126         return uOp->getSubExpr()->getType();
   8127     }
   8128     // Technically, there should be a check for array subscript
   8129     // expressions here, but the result of one is always an lvalue anyway.
   8130   }
   8131   ValueDecl *dcl = getPrimaryDecl(op);
   8132   Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
   8133   unsigned AddressOfError = AO_No_Error;
   8134 
   8135   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
   8136     bool sfinae = (bool)S.isSFINAEContext();
   8137     S.Diag(OpLoc, S.isSFINAEContext() ? diag::err_typecheck_addrof_temporary
   8138                          : diag::ext_typecheck_addrof_temporary)
   8139       << op->getType() << op->getSourceRange();
   8140     if (sfinae)
   8141       return QualType();
   8142   } else if (isa<ObjCSelectorExpr>(op)) {
   8143     return S.Context.getPointerType(op->getType());
   8144   } else if (lval == Expr::LV_MemberFunction) {
   8145     // If it's an instance method, make a member pointer.
   8146     // The expression must have exactly the form &A::foo.
   8147 
   8148     // If the underlying expression isn't a decl ref, give up.
   8149     if (!isa<DeclRefExpr>(op)) {
   8150       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   8151         << OrigOp.get()->getSourceRange();
   8152       return QualType();
   8153     }
   8154     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
   8155     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
   8156 
   8157     // The id-expression was parenthesized.
   8158     if (OrigOp.get() != DRE) {
   8159       S.Diag(OpLoc, diag::err_parens_pointer_member_function)
   8160         << OrigOp.get()->getSourceRange();
   8161 
   8162     // The method was named without a qualifier.
   8163     } else if (!DRE->getQualifier()) {
   8164       if (MD->getParent()->getName().empty())
   8165         S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   8166           << op->getSourceRange();
   8167       else {
   8168         SmallString<32> Str;
   8169         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
   8170         S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   8171           << op->getSourceRange()
   8172           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
   8173       }
   8174     }
   8175 
   8176     return S.Context.getMemberPointerType(op->getType(),
   8177               S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
   8178   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
   8179     // C99 6.5.3.2p1
   8180     // The operand must be either an l-value or a function designator
   8181     if (!op->getType()->isFunctionType()) {
   8182       // Use a special diagnostic for loads from property references.
   8183       if (isa<PseudoObjectExpr>(op)) {
   8184         AddressOfError = AO_Property_Expansion;
   8185       } else {
   8186         S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
   8187           << op->getType() << op->getSourceRange();
   8188         return QualType();
   8189       }
   8190     }
   8191   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
   8192     // The operand cannot be a bit-field
   8193     AddressOfError = AO_Bit_Field;
   8194   } else if (op->getObjectKind() == OK_VectorComponent) {
   8195     // The operand cannot be an element of a vector
   8196     AddressOfError = AO_Vector_Element;
   8197   } else if (dcl) { // C99 6.5.3.2p1
   8198     // We have an lvalue with a decl. Make sure the decl is not declared
   8199     // with the register storage-class specifier.
   8200     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
   8201       // in C++ it is not error to take address of a register
   8202       // variable (c++03 7.1.1P3)
   8203       if (vd->getStorageClass() == SC_Register &&
   8204           !S.getLangOpts().CPlusPlus) {
   8205         AddressOfError = AO_Register_Variable;
   8206       }
   8207     } else if (isa<FunctionTemplateDecl>(dcl)) {
   8208       return S.Context.OverloadTy;
   8209     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
   8210       // Okay: we can take the address of a field.
   8211       // Could be a pointer to member, though, if there is an explicit
   8212       // scope qualifier for the class.
   8213       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
   8214         DeclContext *Ctx = dcl->getDeclContext();
   8215         if (Ctx && Ctx->isRecord()) {
   8216           if (dcl->getType()->isReferenceType()) {
   8217             S.Diag(OpLoc,
   8218                    diag::err_cannot_form_pointer_to_member_of_reference_type)
   8219               << dcl->getDeclName() << dcl->getType();
   8220             return QualType();
   8221           }
   8222 
   8223           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
   8224             Ctx = Ctx->getParent();
   8225           return S.Context.getMemberPointerType(op->getType(),
   8226                 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
   8227         }
   8228       }
   8229     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
   8230       llvm_unreachable("Unknown/unexpected decl type");
   8231   }
   8232 
   8233   if (AddressOfError != AO_No_Error) {
   8234     diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
   8235     return QualType();
   8236   }
   8237 
   8238   if (lval == Expr::LV_IncompleteVoidType) {
   8239     // Taking the address of a void variable is technically illegal, but we
   8240     // allow it in cases which are otherwise valid.
   8241     // Example: "extern void x; void* y = &x;".
   8242     S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
   8243   }
   8244 
   8245   // If the operand has type "type", the result has type "pointer to type".
   8246   if (op->getType()->isObjCObjectType())
   8247     return S.Context.getObjCObjectPointerType(op->getType());
   8248   return S.Context.getPointerType(op->getType());
   8249 }
   8250 
   8251 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
   8252 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
   8253                                         SourceLocation OpLoc) {
   8254   if (Op->isTypeDependent())
   8255     return S.Context.DependentTy;
   8256 
   8257   ExprResult ConvResult = S.UsualUnaryConversions(Op);
   8258   if (ConvResult.isInvalid())
   8259     return QualType();
   8260   Op = ConvResult.take();
   8261   QualType OpTy = Op->getType();
   8262   QualType Result;
   8263 
   8264   if (isa<CXXReinterpretCastExpr>(Op)) {
   8265     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
   8266     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
   8267                                      Op->getSourceRange());
   8268   }
   8269 
   8270   // Note that per both C89 and C99, indirection is always legal, even if OpTy
   8271   // is an incomplete type or void.  It would be possible to warn about
   8272   // dereferencing a void pointer, but it's completely well-defined, and such a
   8273   // warning is unlikely to catch any mistakes.
   8274   if (const PointerType *PT = OpTy->getAs<PointerType>())
   8275     Result = PT->getPointeeType();
   8276   else if (const ObjCObjectPointerType *OPT =
   8277              OpTy->getAs<ObjCObjectPointerType>())
   8278     Result = OPT->getPointeeType();
   8279   else {
   8280     ExprResult PR = S.CheckPlaceholderExpr(Op);
   8281     if (PR.isInvalid()) return QualType();
   8282     if (PR.take() != Op)
   8283       return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
   8284   }
   8285 
   8286   if (Result.isNull()) {
   8287     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
   8288       << OpTy << Op->getSourceRange();
   8289     return QualType();
   8290   }
   8291 
   8292   // Dereferences are usually l-values...
   8293   VK = VK_LValue;
   8294 
   8295   // ...except that certain expressions are never l-values in C.
   8296   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
   8297     VK = VK_RValue;
   8298 
   8299   return Result;
   8300 }
   8301 
   8302 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
   8303   tok::TokenKind Kind) {
   8304   BinaryOperatorKind Opc;
   8305   switch (Kind) {
   8306   default: llvm_unreachable("Unknown binop!");
   8307   case tok::periodstar:           Opc = BO_PtrMemD; break;
   8308   case tok::arrowstar:            Opc = BO_PtrMemI; break;
   8309   case tok::star:                 Opc = BO_Mul; break;
   8310   case tok::slash:                Opc = BO_Div; break;
   8311   case tok::percent:              Opc = BO_Rem; break;
   8312   case tok::plus:                 Opc = BO_Add; break;
   8313   case tok::minus:                Opc = BO_Sub; break;
   8314   case tok::lessless:             Opc = BO_Shl; break;
   8315   case tok::greatergreater:       Opc = BO_Shr; break;
   8316   case tok::lessequal:            Opc = BO_LE; break;
   8317   case tok::less:                 Opc = BO_LT; break;
   8318   case tok::greaterequal:         Opc = BO_GE; break;
   8319   case tok::greater:              Opc = BO_GT; break;
   8320   case tok::exclaimequal:         Opc = BO_NE; break;
   8321   case tok::equalequal:           Opc = BO_EQ; break;
   8322   case tok::amp:                  Opc = BO_And; break;
   8323   case tok::caret:                Opc = BO_Xor; break;
   8324   case tok::pipe:                 Opc = BO_Or; break;
   8325   case tok::ampamp:               Opc = BO_LAnd; break;
   8326   case tok::pipepipe:             Opc = BO_LOr; break;
   8327   case tok::equal:                Opc = BO_Assign; break;
   8328   case tok::starequal:            Opc = BO_MulAssign; break;
   8329   case tok::slashequal:           Opc = BO_DivAssign; break;
   8330   case tok::percentequal:         Opc = BO_RemAssign; break;
   8331   case tok::plusequal:            Opc = BO_AddAssign; break;
   8332   case tok::minusequal:           Opc = BO_SubAssign; break;
   8333   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
   8334   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
   8335   case tok::ampequal:             Opc = BO_AndAssign; break;
   8336   case tok::caretequal:           Opc = BO_XorAssign; break;
   8337   case tok::pipeequal:            Opc = BO_OrAssign; break;
   8338   case tok::comma:                Opc = BO_Comma; break;
   8339   }
   8340   return Opc;
   8341 }
   8342 
   8343 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
   8344   tok::TokenKind Kind) {
   8345   UnaryOperatorKind Opc;
   8346   switch (Kind) {
   8347   default: llvm_unreachable("Unknown unary op!");
   8348   case tok::plusplus:     Opc = UO_PreInc; break;
   8349   case tok::minusminus:   Opc = UO_PreDec; break;
   8350   case tok::amp:          Opc = UO_AddrOf; break;
   8351   case tok::star:         Opc = UO_Deref; break;
   8352   case tok::plus:         Opc = UO_Plus; break;
   8353   case tok::minus:        Opc = UO_Minus; break;
   8354   case tok::tilde:        Opc = UO_Not; break;
   8355   case tok::exclaim:      Opc = UO_LNot; break;
   8356   case tok::kw___real:    Opc = UO_Real; break;
   8357   case tok::kw___imag:    Opc = UO_Imag; break;
   8358   case tok::kw___extension__: Opc = UO_Extension; break;
   8359   }
   8360   return Opc;
   8361 }
   8362 
   8363 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
   8364 /// This warning is only emitted for builtin assignment operations. It is also
   8365 /// suppressed in the event of macro expansions.
   8366 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
   8367                                    SourceLocation OpLoc) {
   8368   if (!S.ActiveTemplateInstantiations.empty())
   8369     return;
   8370   if (OpLoc.isInvalid() || OpLoc.isMacroID())
   8371     return;
   8372   LHSExpr = LHSExpr->IgnoreParenImpCasts();
   8373   RHSExpr = RHSExpr->IgnoreParenImpCasts();
   8374   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
   8375   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
   8376   if (!LHSDeclRef || !RHSDeclRef ||
   8377       LHSDeclRef->getLocation().isMacroID() ||
   8378       RHSDeclRef->getLocation().isMacroID())
   8379     return;
   8380   const ValueDecl *LHSDecl =
   8381     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
   8382   const ValueDecl *RHSDecl =
   8383     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
   8384   if (LHSDecl != RHSDecl)
   8385     return;
   8386   if (LHSDecl->getType().isVolatileQualified())
   8387     return;
   8388   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
   8389     if (RefTy->getPointeeType().isVolatileQualified())
   8390       return;
   8391 
   8392   S.Diag(OpLoc, diag::warn_self_assignment)
   8393       << LHSDeclRef->getType()
   8394       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
   8395 }
   8396 
   8397 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
   8398 /// operator @p Opc at location @c TokLoc. This routine only supports
   8399 /// built-in operations; ActOnBinOp handles overloaded operators.
   8400 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
   8401                                     BinaryOperatorKind Opc,
   8402                                     Expr *LHSExpr, Expr *RHSExpr) {
   8403   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
   8404     // The syntax only allows initializer lists on the RHS of assignment,
   8405     // so we don't need to worry about accepting invalid code for
   8406     // non-assignment operators.
   8407     // C++11 5.17p9:
   8408     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
   8409     //   of x = {} is x = T().
   8410     InitializationKind Kind =
   8411         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
   8412     InitializedEntity Entity =
   8413         InitializedEntity::InitializeTemporary(LHSExpr->getType());
   8414     InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
   8415     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
   8416     if (Init.isInvalid())
   8417       return Init;
   8418     RHSExpr = Init.take();
   8419   }
   8420 
   8421   ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
   8422   QualType ResultTy;     // Result type of the binary operator.
   8423   // The following two variables are used for compound assignment operators
   8424   QualType CompLHSTy;    // Type of LHS after promotions for computation
   8425   QualType CompResultTy; // Type of computation result
   8426   ExprValueKind VK = VK_RValue;
   8427   ExprObjectKind OK = OK_Ordinary;
   8428 
   8429   switch (Opc) {
   8430   case BO_Assign:
   8431     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
   8432     if (getLangOpts().CPlusPlus &&
   8433         LHS.get()->getObjectKind() != OK_ObjCProperty) {
   8434       VK = LHS.get()->getValueKind();
   8435       OK = LHS.get()->getObjectKind();
   8436     }
   8437     if (!ResultTy.isNull())
   8438       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   8439     break;
   8440   case BO_PtrMemD:
   8441   case BO_PtrMemI:
   8442     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
   8443                                             Opc == BO_PtrMemI);
   8444     break;
   8445   case BO_Mul:
   8446   case BO_Div:
   8447     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
   8448                                            Opc == BO_Div);
   8449     break;
   8450   case BO_Rem:
   8451     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
   8452     break;
   8453   case BO_Add:
   8454     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
   8455     break;
   8456   case BO_Sub:
   8457     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
   8458     break;
   8459   case BO_Shl:
   8460   case BO_Shr:
   8461     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
   8462     break;
   8463   case BO_LE:
   8464   case BO_LT:
   8465   case BO_GE:
   8466   case BO_GT:
   8467     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
   8468     break;
   8469   case BO_EQ:
   8470   case BO_NE:
   8471     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
   8472     break;
   8473   case BO_And:
   8474   case BO_Xor:
   8475   case BO_Or:
   8476     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
   8477     break;
   8478   case BO_LAnd:
   8479   case BO_LOr:
   8480     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
   8481     break;
   8482   case BO_MulAssign:
   8483   case BO_DivAssign:
   8484     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
   8485                                                Opc == BO_DivAssign);
   8486     CompLHSTy = CompResultTy;
   8487     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   8488       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   8489     break;
   8490   case BO_RemAssign:
   8491     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
   8492     CompLHSTy = CompResultTy;
   8493     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   8494       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   8495     break;
   8496   case BO_AddAssign:
   8497     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
   8498     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   8499       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   8500     break;
   8501   case BO_SubAssign:
   8502     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
   8503     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   8504       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   8505     break;
   8506   case BO_ShlAssign:
   8507   case BO_ShrAssign:
   8508     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
   8509     CompLHSTy = CompResultTy;
   8510     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   8511       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   8512     break;
   8513   case BO_AndAssign:
   8514   case BO_XorAssign:
   8515   case BO_OrAssign:
   8516     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
   8517     CompLHSTy = CompResultTy;
   8518     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   8519       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   8520     break;
   8521   case BO_Comma:
   8522     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
   8523     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
   8524       VK = RHS.get()->getValueKind();
   8525       OK = RHS.get()->getObjectKind();
   8526     }
   8527     break;
   8528   }
   8529   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
   8530     return ExprError();
   8531 
   8532   // Check for array bounds violations for both sides of the BinaryOperator
   8533   CheckArrayAccess(LHS.get());
   8534   CheckArrayAccess(RHS.get());
   8535 
   8536   if (CompResultTy.isNull())
   8537     return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
   8538                                               ResultTy, VK, OK, OpLoc,
   8539                                               FPFeatures.fp_contract));
   8540   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
   8541       OK_ObjCProperty) {
   8542     VK = VK_LValue;
   8543     OK = LHS.get()->getObjectKind();
   8544   }
   8545   return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
   8546                                                     ResultTy, VK, OK, CompLHSTy,
   8547                                                     CompResultTy, OpLoc,
   8548                                                     FPFeatures.fp_contract));
   8549 }
   8550 
   8551 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
   8552 /// operators are mixed in a way that suggests that the programmer forgot that
   8553 /// comparison operators have higher precedence. The most typical example of
   8554 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
   8555 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
   8556                                       SourceLocation OpLoc, Expr *LHSExpr,
   8557                                       Expr *RHSExpr) {
   8558   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
   8559   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
   8560 
   8561   // Check that one of the sides is a comparison operator.
   8562   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
   8563   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
   8564   if (!isLeftComp && !isRightComp)
   8565     return;
   8566 
   8567   // Bitwise operations are sometimes used as eager logical ops.
   8568   // Don't diagnose this.
   8569   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
   8570   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
   8571   if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
   8572     return;
   8573 
   8574   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
   8575                                                    OpLoc)
   8576                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
   8577   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
   8578   SourceRange ParensRange = isLeftComp ?
   8579       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
   8580     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
   8581 
   8582   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
   8583     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
   8584   SuggestParentheses(Self, OpLoc,
   8585     Self.PDiag(diag::note_precedence_silence) << OpStr,
   8586     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
   8587   SuggestParentheses(Self, OpLoc,
   8588     Self.PDiag(diag::note_precedence_bitwise_first)
   8589       << BinaryOperator::getOpcodeStr(Opc),
   8590     ParensRange);
   8591 }
   8592 
   8593 /// \brief It accepts a '&' expr that is inside a '|' one.
   8594 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
   8595 /// in parentheses.
   8596 static void
   8597 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
   8598                                        BinaryOperator *Bop) {
   8599   assert(Bop->getOpcode() == BO_And);
   8600   Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
   8601       << Bop->getSourceRange() << OpLoc;
   8602   SuggestParentheses(Self, Bop->getOperatorLoc(),
   8603     Self.PDiag(diag::note_precedence_silence)
   8604       << Bop->getOpcodeStr(),
   8605     Bop->getSourceRange());
   8606 }
   8607 
   8608 /// \brief It accepts a '&&' expr that is inside a '||' one.
   8609 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
   8610 /// in parentheses.
   8611 static void
   8612 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
   8613                                        BinaryOperator *Bop) {
   8614   assert(Bop->getOpcode() == BO_LAnd);
   8615   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
   8616       << Bop->getSourceRange() << OpLoc;
   8617   SuggestParentheses(Self, Bop->getOperatorLoc(),
   8618     Self.PDiag(diag::note_precedence_silence)
   8619       << Bop->getOpcodeStr(),
   8620     Bop->getSourceRange());
   8621 }
   8622 
   8623 /// \brief Returns true if the given expression can be evaluated as a constant
   8624 /// 'true'.
   8625 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
   8626   bool Res;
   8627   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
   8628 }
   8629 
   8630 /// \brief Returns true if the given expression can be evaluated as a constant
   8631 /// 'false'.
   8632 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
   8633   bool Res;
   8634   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
   8635 }
   8636 
   8637 /// \brief Look for '&&' in the left hand of a '||' expr.
   8638 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
   8639                                              Expr *LHSExpr, Expr *RHSExpr) {
   8640   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
   8641     if (Bop->getOpcode() == BO_LAnd) {
   8642       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
   8643       if (EvaluatesAsFalse(S, RHSExpr))
   8644         return;
   8645       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
   8646       if (!EvaluatesAsTrue(S, Bop->getLHS()))
   8647         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   8648     } else if (Bop->getOpcode() == BO_LOr) {
   8649       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
   8650         // If it's "a || b && 1 || c" we didn't warn earlier for
   8651         // "a || b && 1", but warn now.
   8652         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
   8653           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
   8654       }
   8655     }
   8656   }
   8657 }
   8658 
   8659 /// \brief Look for '&&' in the right hand of a '||' expr.
   8660 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
   8661                                              Expr *LHSExpr, Expr *RHSExpr) {
   8662   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
   8663     if (Bop->getOpcode() == BO_LAnd) {
   8664       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
   8665       if (EvaluatesAsFalse(S, LHSExpr))
   8666         return;
   8667       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
   8668       if (!EvaluatesAsTrue(S, Bop->getRHS()))
   8669         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   8670     }
   8671   }
   8672 }
   8673 
   8674 /// \brief Look for '&' in the left or right hand of a '|' expr.
   8675 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
   8676                                              Expr *OrArg) {
   8677   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
   8678     if (Bop->getOpcode() == BO_And)
   8679       return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
   8680   }
   8681 }
   8682 
   8683 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
   8684                                     Expr *SubExpr, StringRef Shift) {
   8685   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
   8686     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
   8687       StringRef Op = Bop->getOpcodeStr();
   8688       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
   8689           << Bop->getSourceRange() << OpLoc << Shift << Op;
   8690       SuggestParentheses(S, Bop->getOperatorLoc(),
   8691           S.PDiag(diag::note_precedence_silence) << Op,
   8692           Bop->getSourceRange());
   8693     }
   8694   }
   8695 }
   8696 
   8697 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
   8698 /// precedence.
   8699 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
   8700                                     SourceLocation OpLoc, Expr *LHSExpr,
   8701                                     Expr *RHSExpr){
   8702   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
   8703   if (BinaryOperator::isBitwiseOp(Opc))
   8704     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
   8705 
   8706   // Diagnose "arg1 & arg2 | arg3"
   8707   if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   8708     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
   8709     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
   8710   }
   8711 
   8712   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
   8713   // We don't warn for 'assert(a || b && "bad")' since this is safe.
   8714   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   8715     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
   8716     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
   8717   }
   8718 
   8719   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
   8720       || Opc == BO_Shr) {
   8721     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
   8722     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
   8723     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
   8724   }
   8725 }
   8726 
   8727 // Binary Operators.  'Tok' is the token for the operator.
   8728 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
   8729                             tok::TokenKind Kind,
   8730                             Expr *LHSExpr, Expr *RHSExpr) {
   8731   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
   8732   assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
   8733   assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
   8734 
   8735   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
   8736   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
   8737 
   8738   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
   8739 }
   8740 
   8741 /// Build an overloaded binary operator expression in the given scope.
   8742 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
   8743                                        BinaryOperatorKind Opc,
   8744                                        Expr *LHS, Expr *RHS) {
   8745   // Find all of the overloaded operators visible from this
   8746   // point. We perform both an operator-name lookup from the local
   8747   // scope and an argument-dependent lookup based on the types of
   8748   // the arguments.
   8749   UnresolvedSet<16> Functions;
   8750   OverloadedOperatorKind OverOp
   8751     = BinaryOperator::getOverloadedOperator(Opc);
   8752   if (Sc && OverOp != OO_None)
   8753     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
   8754                                    RHS->getType(), Functions);
   8755 
   8756   // Build the (potentially-overloaded, potentially-dependent)
   8757   // binary operation.
   8758   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
   8759 }
   8760 
   8761 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
   8762                             BinaryOperatorKind Opc,
   8763                             Expr *LHSExpr, Expr *RHSExpr) {
   8764   // We want to end up calling one of checkPseudoObjectAssignment
   8765   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
   8766   // both expressions are overloadable or either is type-dependent),
   8767   // or CreateBuiltinBinOp (in any other case).  We also want to get
   8768   // any placeholder types out of the way.
   8769 
   8770   // Handle pseudo-objects in the LHS.
   8771   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
   8772     // Assignments with a pseudo-object l-value need special analysis.
   8773     if (pty->getKind() == BuiltinType::PseudoObject &&
   8774         BinaryOperator::isAssignmentOp(Opc))
   8775       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
   8776 
   8777     // Don't resolve overloads if the other type is overloadable.
   8778     if (pty->getKind() == BuiltinType::Overload) {
   8779       // We can't actually test that if we still have a placeholder,
   8780       // though.  Fortunately, none of the exceptions we see in that
   8781       // code below are valid when the LHS is an overload set.  Note
   8782       // that an overload set can be dependently-typed, but it never
   8783       // instantiates to having an overloadable type.
   8784       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   8785       if (resolvedRHS.isInvalid()) return ExprError();
   8786       RHSExpr = resolvedRHS.take();
   8787 
   8788       if (RHSExpr->isTypeDependent() ||
   8789           RHSExpr->getType()->isOverloadableType())
   8790         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   8791     }
   8792 
   8793     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
   8794     if (LHS.isInvalid()) return ExprError();
   8795     LHSExpr = LHS.take();
   8796   }
   8797 
   8798   // Handle pseudo-objects in the RHS.
   8799   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
   8800     // An overload in the RHS can potentially be resolved by the type
   8801     // being assigned to.
   8802     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
   8803       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   8804         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   8805 
   8806       if (LHSExpr->getType()->isOverloadableType())
   8807         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   8808 
   8809       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   8810     }
   8811 
   8812     // Don't resolve overloads if the other type is overloadable.
   8813     if (pty->getKind() == BuiltinType::Overload &&
   8814         LHSExpr->getType()->isOverloadableType())
   8815       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   8816 
   8817     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   8818     if (!resolvedRHS.isUsable()) return ExprError();
   8819     RHSExpr = resolvedRHS.take();
   8820   }
   8821 
   8822   if (getLangOpts().CPlusPlus) {
   8823     // If either expression is type-dependent, always build an
   8824     // overloaded op.
   8825     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   8826       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   8827 
   8828     // Otherwise, build an overloaded op if either expression has an
   8829     // overloadable type.
   8830     if (LHSExpr->getType()->isOverloadableType() ||
   8831         RHSExpr->getType()->isOverloadableType())
   8832       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   8833   }
   8834 
   8835   // Build a built-in binary operation.
   8836   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   8837 }
   8838 
   8839 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
   8840                                       UnaryOperatorKind Opc,
   8841                                       Expr *InputExpr) {
   8842   ExprResult Input = Owned(InputExpr);
   8843   ExprValueKind VK = VK_RValue;
   8844   ExprObjectKind OK = OK_Ordinary;
   8845   QualType resultType;
   8846   switch (Opc) {
   8847   case UO_PreInc:
   8848   case UO_PreDec:
   8849   case UO_PostInc:
   8850   case UO_PostDec:
   8851     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
   8852                                                 Opc == UO_PreInc ||
   8853                                                 Opc == UO_PostInc,
   8854                                                 Opc == UO_PreInc ||
   8855                                                 Opc == UO_PreDec);
   8856     break;
   8857   case UO_AddrOf:
   8858     resultType = CheckAddressOfOperand(*this, Input, OpLoc);
   8859     break;
   8860   case UO_Deref: {
   8861     Input = DefaultFunctionArrayLvalueConversion(Input.take());
   8862     if (Input.isInvalid()) return ExprError();
   8863     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
   8864     break;
   8865   }
   8866   case UO_Plus:
   8867   case UO_Minus:
   8868     Input = UsualUnaryConversions(Input.take());
   8869     if (Input.isInvalid()) return ExprError();
   8870     resultType = Input.get()->getType();
   8871     if (resultType->isDependentType())
   8872       break;
   8873     if (resultType->isArithmeticType() || // C99 6.5.3.3p1
   8874         resultType->isVectorType())
   8875       break;
   8876     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
   8877              resultType->isEnumeralType())
   8878       break;
   8879     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
   8880              Opc == UO_Plus &&
   8881              resultType->isPointerType())
   8882       break;
   8883 
   8884     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   8885       << resultType << Input.get()->getSourceRange());
   8886 
   8887   case UO_Not: // bitwise complement
   8888     Input = UsualUnaryConversions(Input.take());
   8889     if (Input.isInvalid())
   8890       return ExprError();
   8891     resultType = Input.get()->getType();
   8892     if (resultType->isDependentType())
   8893       break;
   8894     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
   8895     if (resultType->isComplexType() || resultType->isComplexIntegerType())
   8896       // C99 does not support '~' for complex conjugation.
   8897       Diag(OpLoc, diag::ext_integer_complement_complex)
   8898           << resultType << Input.get()->getSourceRange();
   8899     else if (resultType->hasIntegerRepresentation())
   8900       break;
   8901     else if (resultType->isExtVectorType()) {
   8902       if (Context.getLangOpts().OpenCL) {
   8903         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
   8904         // on vector float types.
   8905         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   8906         if (!T->isIntegerType())
   8907           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   8908                            << resultType << Input.get()->getSourceRange());
   8909       }
   8910       break;
   8911     } else {
   8912       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   8913                        << resultType << Input.get()->getSourceRange());
   8914     }
   8915     break;
   8916 
   8917   case UO_LNot: // logical negation
   8918     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
   8919     Input = DefaultFunctionArrayLvalueConversion(Input.take());
   8920     if (Input.isInvalid()) return ExprError();
   8921     resultType = Input.get()->getType();
   8922 
   8923     // Though we still have to promote half FP to float...
   8924     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
   8925       Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
   8926       resultType = Context.FloatTy;
   8927     }
   8928 
   8929     if (resultType->isDependentType())
   8930       break;
   8931     if (resultType->isScalarType()) {
   8932       // C99 6.5.3.3p1: ok, fallthrough;
   8933       if (Context.getLangOpts().CPlusPlus) {
   8934         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
   8935         // operand contextually converted to bool.
   8936         Input = ImpCastExprToType(Input.take(), Context.BoolTy,
   8937                                   ScalarTypeToBooleanCastKind(resultType));
   8938       } else if (Context.getLangOpts().OpenCL &&
   8939                  Context.getLangOpts().OpenCLVersion < 120) {
   8940         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   8941         // operate on scalar float types.
   8942         if (!resultType->isIntegerType())
   8943           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   8944                            << resultType << Input.get()->getSourceRange());
   8945       }
   8946     } else if (resultType->isExtVectorType()) {
   8947       if (Context.getLangOpts().OpenCL &&
   8948           Context.getLangOpts().OpenCLVersion < 120) {
   8949         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   8950         // operate on vector float types.
   8951         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   8952         if (!T->isIntegerType())
   8953           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   8954                            << resultType << Input.get()->getSourceRange());
   8955       }
   8956       // Vector logical not returns the signed variant of the operand type.
   8957       resultType = GetSignedVectorType(resultType);
   8958       break;
   8959     } else {
   8960       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   8961         << resultType << Input.get()->getSourceRange());
   8962     }
   8963 
   8964     // LNot always has type int. C99 6.5.3.3p5.
   8965     // In C++, it's bool. C++ 5.3.1p8
   8966     resultType = Context.getLogicalOperationType();
   8967     break;
   8968   case UO_Real:
   8969   case UO_Imag:
   8970     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
   8971     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
   8972     // complex l-values to ordinary l-values and all other values to r-values.
   8973     if (Input.isInvalid()) return ExprError();
   8974     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
   8975       if (Input.get()->getValueKind() != VK_RValue &&
   8976           Input.get()->getObjectKind() == OK_Ordinary)
   8977         VK = Input.get()->getValueKind();
   8978     } else if (!getLangOpts().CPlusPlus) {
   8979       // In C, a volatile scalar is read by __imag. In C++, it is not.
   8980       Input = DefaultLvalueConversion(Input.take());
   8981     }
   8982     break;
   8983   case UO_Extension:
   8984     resultType = Input.get()->getType();
   8985     VK = Input.get()->getValueKind();
   8986     OK = Input.get()->getObjectKind();
   8987     break;
   8988   }
   8989   if (resultType.isNull() || Input.isInvalid())
   8990     return ExprError();
   8991 
   8992   // Check for array bounds violations in the operand of the UnaryOperator,
   8993   // except for the '*' and '&' operators that have to be handled specially
   8994   // by CheckArrayAccess (as there are special cases like &array[arraysize]
   8995   // that are explicitly defined as valid by the standard).
   8996   if (Opc != UO_AddrOf && Opc != UO_Deref)
   8997     CheckArrayAccess(Input.get());
   8998 
   8999   return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
   9000                                            VK, OK, OpLoc));
   9001 }
   9002 
   9003 /// \brief Determine whether the given expression is a qualified member
   9004 /// access expression, of a form that could be turned into a pointer to member
   9005 /// with the address-of operator.
   9006 static bool isQualifiedMemberAccess(Expr *E) {
   9007   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   9008     if (!DRE->getQualifier())
   9009       return false;
   9010 
   9011     ValueDecl *VD = DRE->getDecl();
   9012     if (!VD->isCXXClassMember())
   9013       return false;
   9014 
   9015     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
   9016       return true;
   9017     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
   9018       return Method->isInstance();
   9019 
   9020     return false;
   9021   }
   9022 
   9023   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   9024     if (!ULE->getQualifier())
   9025       return false;
   9026 
   9027     for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
   9028                                            DEnd = ULE->decls_end();
   9029          D != DEnd; ++D) {
   9030       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
   9031         if (Method->isInstance())
   9032           return true;
   9033       } else {
   9034         // Overload set does not contain methods.
   9035         break;
   9036       }
   9037     }
   9038 
   9039     return false;
   9040   }
   9041 
   9042   return false;
   9043 }
   9044 
   9045 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
   9046                               UnaryOperatorKind Opc, Expr *Input) {
   9047   // First things first: handle placeholders so that the
   9048   // overloaded-operator check considers the right type.
   9049   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
   9050     // Increment and decrement of pseudo-object references.
   9051     if (pty->getKind() == BuiltinType::PseudoObject &&
   9052         UnaryOperator::isIncrementDecrementOp(Opc))
   9053       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
   9054 
   9055     // extension is always a builtin operator.
   9056     if (Opc == UO_Extension)
   9057       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   9058 
   9059     // & gets special logic for several kinds of placeholder.
   9060     // The builtin code knows what to do.
   9061     if (Opc == UO_AddrOf &&
   9062         (pty->getKind() == BuiltinType::Overload ||
   9063          pty->getKind() == BuiltinType::UnknownAny ||
   9064          pty->getKind() == BuiltinType::BoundMember))
   9065       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   9066 
   9067     // Anything else needs to be handled now.
   9068     ExprResult Result = CheckPlaceholderExpr(Input);
   9069     if (Result.isInvalid()) return ExprError();
   9070     Input = Result.take();
   9071   }
   9072 
   9073   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
   9074       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
   9075       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
   9076     // Find all of the overloaded operators visible from this
   9077     // point. We perform both an operator-name lookup from the local
   9078     // scope and an argument-dependent lookup based on the types of
   9079     // the arguments.
   9080     UnresolvedSet<16> Functions;
   9081     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
   9082     if (S && OverOp != OO_None)
   9083       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
   9084                                    Functions);
   9085 
   9086     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
   9087   }
   9088 
   9089   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   9090 }
   9091 
   9092 // Unary Operators.  'Tok' is the token for the operator.
   9093 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
   9094                               tok::TokenKind Op, Expr *Input) {
   9095   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
   9096 }
   9097 
   9098 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
   9099 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
   9100                                 LabelDecl *TheDecl) {
   9101   TheDecl->setUsed();
   9102   // Create the AST node.  The address of a label always has type 'void*'.
   9103   return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
   9104                                        Context.getPointerType(Context.VoidTy)));
   9105 }
   9106 
   9107 /// Given the last statement in a statement-expression, check whether
   9108 /// the result is a producing expression (like a call to an
   9109 /// ns_returns_retained function) and, if so, rebuild it to hoist the
   9110 /// release out of the full-expression.  Otherwise, return null.
   9111 /// Cannot fail.
   9112 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
   9113   // Should always be wrapped with one of these.
   9114   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
   9115   if (!cleanups) return 0;
   9116 
   9117   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
   9118   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
   9119     return 0;
   9120 
   9121   // Splice out the cast.  This shouldn't modify any interesting
   9122   // features of the statement.
   9123   Expr *producer = cast->getSubExpr();
   9124   assert(producer->getType() == cast->getType());
   9125   assert(producer->getValueKind() == cast->getValueKind());
   9126   cleanups->setSubExpr(producer);
   9127   return cleanups;
   9128 }
   9129 
   9130 void Sema::ActOnStartStmtExpr() {
   9131   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
   9132 }
   9133 
   9134 void Sema::ActOnStmtExprError() {
   9135   // Note that function is also called by TreeTransform when leaving a
   9136   // StmtExpr scope without rebuilding anything.
   9137 
   9138   DiscardCleanupsInEvaluationContext();
   9139   PopExpressionEvaluationContext();
   9140 }
   9141 
   9142 ExprResult
   9143 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
   9144                     SourceLocation RPLoc) { // "({..})"
   9145   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
   9146   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
   9147 
   9148   if (hasAnyUnrecoverableErrorsInThisFunction())
   9149     DiscardCleanupsInEvaluationContext();
   9150   assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
   9151   PopExpressionEvaluationContext();
   9152 
   9153   bool isFileScope
   9154     = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
   9155   if (isFileScope)
   9156     return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
   9157 
   9158   // FIXME: there are a variety of strange constraints to enforce here, for
   9159   // example, it is not possible to goto into a stmt expression apparently.
   9160   // More semantic analysis is needed.
   9161 
   9162   // If there are sub stmts in the compound stmt, take the type of the last one
   9163   // as the type of the stmtexpr.
   9164   QualType Ty = Context.VoidTy;
   9165   bool StmtExprMayBindToTemp = false;
   9166   if (!Compound->body_empty()) {
   9167     Stmt *LastStmt = Compound->body_back();
   9168     LabelStmt *LastLabelStmt = 0;
   9169     // If LastStmt is a label, skip down through into the body.
   9170     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
   9171       LastLabelStmt = Label;
   9172       LastStmt = Label->getSubStmt();
   9173     }
   9174 
   9175     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
   9176       // Do function/array conversion on the last expression, but not
   9177       // lvalue-to-rvalue.  However, initialize an unqualified type.
   9178       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
   9179       if (LastExpr.isInvalid())
   9180         return ExprError();
   9181       Ty = LastExpr.get()->getType().getUnqualifiedType();
   9182 
   9183       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
   9184         // In ARC, if the final expression ends in a consume, splice
   9185         // the consume out and bind it later.  In the alternate case
   9186         // (when dealing with a retainable type), the result
   9187         // initialization will create a produce.  In both cases the
   9188         // result will be +1, and we'll need to balance that out with
   9189         // a bind.
   9190         if (Expr *rebuiltLastStmt
   9191               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
   9192           LastExpr = rebuiltLastStmt;
   9193         } else {
   9194           LastExpr = PerformCopyInitialization(
   9195                             InitializedEntity::InitializeResult(LPLoc,
   9196                                                                 Ty,
   9197                                                                 false),
   9198                                                    SourceLocation(),
   9199                                                LastExpr);
   9200         }
   9201 
   9202         if (LastExpr.isInvalid())
   9203           return ExprError();
   9204         if (LastExpr.get() != 0) {
   9205           if (!LastLabelStmt)
   9206             Compound->setLastStmt(LastExpr.take());
   9207           else
   9208             LastLabelStmt->setSubStmt(LastExpr.take());
   9209           StmtExprMayBindToTemp = true;
   9210         }
   9211       }
   9212     }
   9213   }
   9214 
   9215   // FIXME: Check that expression type is complete/non-abstract; statement
   9216   // expressions are not lvalues.
   9217   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
   9218   if (StmtExprMayBindToTemp)
   9219     return MaybeBindToTemporary(ResStmtExpr);
   9220   return Owned(ResStmtExpr);
   9221 }
   9222 
   9223 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
   9224                                       TypeSourceInfo *TInfo,
   9225                                       OffsetOfComponent *CompPtr,
   9226                                       unsigned NumComponents,
   9227                                       SourceLocation RParenLoc) {
   9228   QualType ArgTy = TInfo->getType();
   9229   bool Dependent = ArgTy->isDependentType();
   9230   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
   9231 
   9232   // We must have at least one component that refers to the type, and the first
   9233   // one is known to be a field designator.  Verify that the ArgTy represents
   9234   // a struct/union/class.
   9235   if (!Dependent && !ArgTy->isRecordType())
   9236     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
   9237                        << ArgTy << TypeRange);
   9238 
   9239   // Type must be complete per C99 7.17p3 because a declaring a variable
   9240   // with an incomplete type would be ill-formed.
   9241   if (!Dependent
   9242       && RequireCompleteType(BuiltinLoc, ArgTy,
   9243                              diag::err_offsetof_incomplete_type, TypeRange))
   9244     return ExprError();
   9245 
   9246   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
   9247   // GCC extension, diagnose them.
   9248   // FIXME: This diagnostic isn't actually visible because the location is in
   9249   // a system header!
   9250   if (NumComponents != 1)
   9251     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
   9252       << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
   9253 
   9254   bool DidWarnAboutNonPOD = false;
   9255   QualType CurrentType = ArgTy;
   9256   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
   9257   SmallVector<OffsetOfNode, 4> Comps;
   9258   SmallVector<Expr*, 4> Exprs;
   9259   for (unsigned i = 0; i != NumComponents; ++i) {
   9260     const OffsetOfComponent &OC = CompPtr[i];
   9261     if (OC.isBrackets) {
   9262       // Offset of an array sub-field.  TODO: Should we allow vector elements?
   9263       if (!CurrentType->isDependentType()) {
   9264         const ArrayType *AT = Context.getAsArrayType(CurrentType);
   9265         if(!AT)
   9266           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
   9267                            << CurrentType);
   9268         CurrentType = AT->getElementType();
   9269       } else
   9270         CurrentType = Context.DependentTy;
   9271 
   9272       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
   9273       if (IdxRval.isInvalid())
   9274         return ExprError();
   9275       Expr *Idx = IdxRval.take();
   9276 
   9277       // The expression must be an integral expression.
   9278       // FIXME: An integral constant expression?
   9279       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
   9280           !Idx->getType()->isIntegerType())
   9281         return ExprError(Diag(Idx->getLocStart(),
   9282                               diag::err_typecheck_subscript_not_integer)
   9283                          << Idx->getSourceRange());
   9284 
   9285       // Record this array index.
   9286       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
   9287       Exprs.push_back(Idx);
   9288       continue;
   9289     }
   9290 
   9291     // Offset of a field.
   9292     if (CurrentType->isDependentType()) {
   9293       // We have the offset of a field, but we can't look into the dependent
   9294       // type. Just record the identifier of the field.
   9295       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
   9296       CurrentType = Context.DependentTy;
   9297       continue;
   9298     }
   9299 
   9300     // We need to have a complete type to look into.
   9301     if (RequireCompleteType(OC.LocStart, CurrentType,
   9302                             diag::err_offsetof_incomplete_type))
   9303       return ExprError();
   9304 
   9305     // Look for the designated field.
   9306     const RecordType *RC = CurrentType->getAs<RecordType>();
   9307     if (!RC)
   9308       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
   9309                        << CurrentType);
   9310     RecordDecl *RD = RC->getDecl();
   9311 
   9312     // C++ [lib.support.types]p5:
   9313     //   The macro offsetof accepts a restricted set of type arguments in this
   9314     //   International Standard. type shall be a POD structure or a POD union
   9315     //   (clause 9).
   9316     // C++11 [support.types]p4:
   9317     //   If type is not a standard-layout class (Clause 9), the results are
   9318     //   undefined.
   9319     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
   9320       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
   9321       unsigned DiagID =
   9322         LangOpts.CPlusPlus11? diag::warn_offsetof_non_standardlayout_type
   9323                             : diag::warn_offsetof_non_pod_type;
   9324 
   9325       if (!IsSafe && !DidWarnAboutNonPOD &&
   9326           DiagRuntimeBehavior(BuiltinLoc, 0,
   9327                               PDiag(DiagID)
   9328                               << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
   9329                               << CurrentType))
   9330         DidWarnAboutNonPOD = true;
   9331     }
   9332 
   9333     // Look for the field.
   9334     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
   9335     LookupQualifiedName(R, RD);
   9336     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
   9337     IndirectFieldDecl *IndirectMemberDecl = 0;
   9338     if (!MemberDecl) {
   9339       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
   9340         MemberDecl = IndirectMemberDecl->getAnonField();
   9341     }
   9342 
   9343     if (!MemberDecl)
   9344       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
   9345                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
   9346                                                               OC.LocEnd));
   9347 
   9348     // C99 7.17p3:
   9349     //   (If the specified member is a bit-field, the behavior is undefined.)
   9350     //
   9351     // We diagnose this as an error.
   9352     if (MemberDecl->isBitField()) {
   9353       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
   9354         << MemberDecl->getDeclName()
   9355         << SourceRange(BuiltinLoc, RParenLoc);
   9356       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
   9357       return ExprError();
   9358     }
   9359 
   9360     RecordDecl *Parent = MemberDecl->getParent();
   9361     if (IndirectMemberDecl)
   9362       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
   9363 
   9364     // If the member was found in a base class, introduce OffsetOfNodes for
   9365     // the base class indirections.
   9366     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   9367                        /*DetectVirtual=*/false);
   9368     if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
   9369       CXXBasePath &Path = Paths.front();
   9370       for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
   9371            B != BEnd; ++B)
   9372         Comps.push_back(OffsetOfNode(B->Base));
   9373     }
   9374 
   9375     if (IndirectMemberDecl) {
   9376       for (IndirectFieldDecl::chain_iterator FI =
   9377            IndirectMemberDecl->chain_begin(),
   9378            FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
   9379         assert(isa<FieldDecl>(*FI));
   9380         Comps.push_back(OffsetOfNode(OC.LocStart,
   9381                                      cast<FieldDecl>(*FI), OC.LocEnd));
   9382       }
   9383     } else
   9384       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
   9385 
   9386     CurrentType = MemberDecl->getType().getNonReferenceType();
   9387   }
   9388 
   9389   return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
   9390                                     TInfo, Comps, Exprs, RParenLoc));
   9391 }
   9392 
   9393 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
   9394                                       SourceLocation BuiltinLoc,
   9395                                       SourceLocation TypeLoc,
   9396                                       ParsedType ParsedArgTy,
   9397                                       OffsetOfComponent *CompPtr,
   9398                                       unsigned NumComponents,
   9399                                       SourceLocation RParenLoc) {
   9400 
   9401   TypeSourceInfo *ArgTInfo;
   9402   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
   9403   if (ArgTy.isNull())
   9404     return ExprError();
   9405 
   9406   if (!ArgTInfo)
   9407     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
   9408 
   9409   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
   9410                               RParenLoc);
   9411 }
   9412 
   9413 
   9414 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
   9415                                  Expr *CondExpr,
   9416                                  Expr *LHSExpr, Expr *RHSExpr,
   9417                                  SourceLocation RPLoc) {
   9418   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
   9419 
   9420   ExprValueKind VK = VK_RValue;
   9421   ExprObjectKind OK = OK_Ordinary;
   9422   QualType resType;
   9423   bool ValueDependent = false;
   9424   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
   9425     resType = Context.DependentTy;
   9426     ValueDependent = true;
   9427   } else {
   9428     // The conditional expression is required to be a constant expression.
   9429     llvm::APSInt condEval(32);
   9430     ExprResult CondICE
   9431       = VerifyIntegerConstantExpression(CondExpr, &condEval,
   9432           diag::err_typecheck_choose_expr_requires_constant, false);
   9433     if (CondICE.isInvalid())
   9434       return ExprError();
   9435     CondExpr = CondICE.take();
   9436 
   9437     // If the condition is > zero, then the AST type is the same as the LSHExpr.
   9438     Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
   9439 
   9440     resType = ActiveExpr->getType();
   9441     ValueDependent = ActiveExpr->isValueDependent();
   9442     VK = ActiveExpr->getValueKind();
   9443     OK = ActiveExpr->getObjectKind();
   9444   }
   9445 
   9446   return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
   9447                                         resType, VK, OK, RPLoc,
   9448                                         resType->isDependentType(),
   9449                                         ValueDependent));
   9450 }
   9451 
   9452 //===----------------------------------------------------------------------===//
   9453 // Clang Extensions.
   9454 //===----------------------------------------------------------------------===//
   9455 
   9456 /// ActOnBlockStart - This callback is invoked when a block literal is started.
   9457 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
   9458   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
   9459   PushBlockScope(CurScope, Block);
   9460   CurContext->addDecl(Block);
   9461   if (CurScope)
   9462     PushDeclContext(CurScope, Block);
   9463   else
   9464     CurContext = Block;
   9465 
   9466   getCurBlock()->HasImplicitReturnType = true;
   9467 
   9468   // Enter a new evaluation context to insulate the block from any
   9469   // cleanups from the enclosing full-expression.
   9470   PushExpressionEvaluationContext(PotentiallyEvaluated);
   9471 }
   9472 
   9473 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
   9474                                Scope *CurScope) {
   9475   assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
   9476   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
   9477   BlockScopeInfo *CurBlock = getCurBlock();
   9478 
   9479   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
   9480   QualType T = Sig->getType();
   9481 
   9482   // FIXME: We should allow unexpanded parameter packs here, but that would,
   9483   // in turn, make the block expression contain unexpanded parameter packs.
   9484   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
   9485     // Drop the parameters.
   9486     FunctionProtoType::ExtProtoInfo EPI;
   9487     EPI.HasTrailingReturn = false;
   9488     EPI.TypeQuals |= DeclSpec::TQ_const;
   9489     T = Context.getFunctionType(Context.DependentTy, ArrayRef<QualType>(), EPI);
   9490     Sig = Context.getTrivialTypeSourceInfo(T);
   9491   }
   9492 
   9493   // GetTypeForDeclarator always produces a function type for a block
   9494   // literal signature.  Furthermore, it is always a FunctionProtoType
   9495   // unless the function was written with a typedef.
   9496   assert(T->isFunctionType() &&
   9497          "GetTypeForDeclarator made a non-function block signature");
   9498 
   9499   // Look for an explicit signature in that function type.
   9500   FunctionProtoTypeLoc ExplicitSignature;
   9501 
   9502   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
   9503   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
   9504 
   9505     // Check whether that explicit signature was synthesized by
   9506     // GetTypeForDeclarator.  If so, don't save that as part of the
   9507     // written signature.
   9508     if (ExplicitSignature.getLocalRangeBegin() ==
   9509         ExplicitSignature.getLocalRangeEnd()) {
   9510       // This would be much cheaper if we stored TypeLocs instead of
   9511       // TypeSourceInfos.
   9512       TypeLoc Result = ExplicitSignature.getResultLoc();
   9513       unsigned Size = Result.getFullDataSize();
   9514       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
   9515       Sig->getTypeLoc().initializeFullCopy(Result, Size);
   9516 
   9517       ExplicitSignature = FunctionProtoTypeLoc();
   9518     }
   9519   }
   9520 
   9521   CurBlock->TheDecl->setSignatureAsWritten(Sig);
   9522   CurBlock->FunctionType = T;
   9523 
   9524   const FunctionType *Fn = T->getAs<FunctionType>();
   9525   QualType RetTy = Fn->getResultType();
   9526   bool isVariadic =
   9527     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
   9528 
   9529   CurBlock->TheDecl->setIsVariadic(isVariadic);
   9530 
   9531   // Don't allow returning a objc interface by value.
   9532   if (RetTy->isObjCObjectType()) {
   9533     Diag(ParamInfo.getLocStart(),
   9534          diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
   9535     return;
   9536   }
   9537 
   9538   // Context.DependentTy is used as a placeholder for a missing block
   9539   // return type.  TODO:  what should we do with declarators like:
   9540   //   ^ * { ... }
   9541   // If the answer is "apply template argument deduction"....
   9542   if (RetTy != Context.DependentTy) {
   9543     CurBlock->ReturnType = RetTy;
   9544     CurBlock->TheDecl->setBlockMissingReturnType(false);
   9545     CurBlock->HasImplicitReturnType = false;
   9546   }
   9547 
   9548   // Push block parameters from the declarator if we had them.
   9549   SmallVector<ParmVarDecl*, 8> Params;
   9550   if (ExplicitSignature) {
   9551     for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
   9552       ParmVarDecl *Param = ExplicitSignature.getArg(I);
   9553       if (Param->getIdentifier() == 0 &&
   9554           !Param->isImplicit() &&
   9555           !Param->isInvalidDecl() &&
   9556           !getLangOpts().CPlusPlus)
   9557         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   9558       Params.push_back(Param);
   9559     }
   9560 
   9561   // Fake up parameter variables if we have a typedef, like
   9562   //   ^ fntype { ... }
   9563   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
   9564     for (FunctionProtoType::arg_type_iterator
   9565            I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
   9566       ParmVarDecl *Param =
   9567         BuildParmVarDeclForTypedef(CurBlock->TheDecl,
   9568                                    ParamInfo.getLocStart(),
   9569                                    *I);
   9570       Params.push_back(Param);
   9571     }
   9572   }
   9573 
   9574   // Set the parameters on the block decl.
   9575   if (!Params.empty()) {
   9576     CurBlock->TheDecl->setParams(Params);
   9577     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
   9578                              CurBlock->TheDecl->param_end(),
   9579                              /*CheckParameterNames=*/false);
   9580   }
   9581 
   9582   // Finally we can process decl attributes.
   9583   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
   9584 
   9585   // Put the parameter variables in scope.  We can bail out immediately
   9586   // if we don't have any.
   9587   if (Params.empty())
   9588     return;
   9589 
   9590   for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
   9591          E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
   9592     (*AI)->setOwningFunction(CurBlock->TheDecl);
   9593 
   9594     // If this has an identifier, add it to the scope stack.
   9595     if ((*AI)->getIdentifier()) {
   9596       CheckShadow(CurBlock->TheScope, *AI);
   9597 
   9598       PushOnScopeChains(*AI, CurBlock->TheScope);
   9599     }
   9600   }
   9601 }
   9602 
   9603 /// ActOnBlockError - If there is an error parsing a block, this callback
   9604 /// is invoked to pop the information about the block from the action impl.
   9605 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
   9606   // Leave the expression-evaluation context.
   9607   DiscardCleanupsInEvaluationContext();
   9608   PopExpressionEvaluationContext();
   9609 
   9610   // Pop off CurBlock, handle nested blocks.
   9611   PopDeclContext();
   9612   PopFunctionScopeInfo();
   9613 }
   9614 
   9615 /// ActOnBlockStmtExpr - This is called when the body of a block statement
   9616 /// literal was successfully completed.  ^(int x){...}
   9617 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
   9618                                     Stmt *Body, Scope *CurScope) {
   9619   // If blocks are disabled, emit an error.
   9620   if (!LangOpts.Blocks)
   9621     Diag(CaretLoc, diag::err_blocks_disable);
   9622 
   9623   // Leave the expression-evaluation context.
   9624   if (hasAnyUnrecoverableErrorsInThisFunction())
   9625     DiscardCleanupsInEvaluationContext();
   9626   assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
   9627   PopExpressionEvaluationContext();
   9628 
   9629   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
   9630 
   9631   if (BSI->HasImplicitReturnType)
   9632     deduceClosureReturnType(*BSI);
   9633 
   9634   PopDeclContext();
   9635 
   9636   QualType RetTy = Context.VoidTy;
   9637   if (!BSI->ReturnType.isNull())
   9638     RetTy = BSI->ReturnType;
   9639 
   9640   bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
   9641   QualType BlockTy;
   9642 
   9643   // Set the captured variables on the block.
   9644   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
   9645   SmallVector<BlockDecl::Capture, 4> Captures;
   9646   for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
   9647     CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
   9648     if (Cap.isThisCapture())
   9649       continue;
   9650     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
   9651                               Cap.isNested(), Cap.getCopyExpr());
   9652     Captures.push_back(NewCap);
   9653   }
   9654   BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
   9655                             BSI->CXXThisCaptureIndex != 0);
   9656 
   9657   // If the user wrote a function type in some form, try to use that.
   9658   if (!BSI->FunctionType.isNull()) {
   9659     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
   9660 
   9661     FunctionType::ExtInfo Ext = FTy->getExtInfo();
   9662     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
   9663 
   9664     // Turn protoless block types into nullary block types.
   9665     if (isa<FunctionNoProtoType>(FTy)) {
   9666       FunctionProtoType::ExtProtoInfo EPI;
   9667       EPI.ExtInfo = Ext;
   9668       BlockTy = Context.getFunctionType(RetTy, ArrayRef<QualType>(), EPI);
   9669 
   9670     // Otherwise, if we don't need to change anything about the function type,
   9671     // preserve its sugar structure.
   9672     } else if (FTy->getResultType() == RetTy &&
   9673                (!NoReturn || FTy->getNoReturnAttr())) {
   9674       BlockTy = BSI->FunctionType;
   9675 
   9676     // Otherwise, make the minimal modifications to the function type.
   9677     } else {
   9678       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
   9679       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   9680       EPI.TypeQuals = 0; // FIXME: silently?
   9681       EPI.ExtInfo = Ext;
   9682       BlockTy =
   9683         Context.getFunctionType(RetTy,
   9684                                 ArrayRef<QualType>(FPT->arg_type_begin(),
   9685                                                    FPT->getNumArgs()),
   9686                                 EPI);
   9687     }
   9688 
   9689   // If we don't have a function type, just build one from nothing.
   9690   } else {
   9691     FunctionProtoType::ExtProtoInfo EPI;
   9692     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
   9693     BlockTy = Context.getFunctionType(RetTy, ArrayRef<QualType>(), EPI);
   9694   }
   9695 
   9696   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
   9697                            BSI->TheDecl->param_end());
   9698   BlockTy = Context.getBlockPointerType(BlockTy);
   9699 
   9700   // If needed, diagnose invalid gotos and switches in the block.
   9701   if (getCurFunction()->NeedsScopeChecking() &&
   9702       !hasAnyUnrecoverableErrorsInThisFunction() &&
   9703       !PP.isCodeCompletionEnabled())
   9704     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
   9705 
   9706   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
   9707 
   9708   // Try to apply the named return value optimization. We have to check again
   9709   // if we can do this, though, because blocks keep return statements around
   9710   // to deduce an implicit return type.
   9711   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
   9712       !BSI->TheDecl->isDependentContext())
   9713     computeNRVO(Body, getCurBlock());
   9714 
   9715   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
   9716   const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
   9717   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
   9718 
   9719   // If the block isn't obviously global, i.e. it captures anything at
   9720   // all, then we need to do a few things in the surrounding context:
   9721   if (Result->getBlockDecl()->hasCaptures()) {
   9722     // First, this expression has a new cleanup object.
   9723     ExprCleanupObjects.push_back(Result->getBlockDecl());
   9724     ExprNeedsCleanups = true;
   9725 
   9726     // It also gets a branch-protected scope if any of the captured
   9727     // variables needs destruction.
   9728     for (BlockDecl::capture_const_iterator
   9729            ci = Result->getBlockDecl()->capture_begin(),
   9730            ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
   9731       const VarDecl *var = ci->getVariable();
   9732       if (var->getType().isDestructedType() != QualType::DK_none) {
   9733         getCurFunction()->setHasBranchProtectedScope();
   9734         break;
   9735       }
   9736     }
   9737   }
   9738 
   9739   return Owned(Result);
   9740 }
   9741 
   9742 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
   9743                                         Expr *E, ParsedType Ty,
   9744                                         SourceLocation RPLoc) {
   9745   TypeSourceInfo *TInfo;
   9746   GetTypeFromParser(Ty, &TInfo);
   9747   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
   9748 }
   9749 
   9750 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
   9751                                 Expr *E, TypeSourceInfo *TInfo,
   9752                                 SourceLocation RPLoc) {
   9753   Expr *OrigExpr = E;
   9754 
   9755   // Get the va_list type
   9756   QualType VaListType = Context.getBuiltinVaListType();
   9757   if (VaListType->isArrayType()) {
   9758     // Deal with implicit array decay; for example, on x86-64,
   9759     // va_list is an array, but it's supposed to decay to
   9760     // a pointer for va_arg.
   9761     VaListType = Context.getArrayDecayedType(VaListType);
   9762     // Make sure the input expression also decays appropriately.
   9763     ExprResult Result = UsualUnaryConversions(E);
   9764     if (Result.isInvalid())
   9765       return ExprError();
   9766     E = Result.take();
   9767   } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
   9768     // If va_list is a record type and we are compiling in C++ mode,
   9769     // check the argument using reference binding.
   9770     InitializedEntity Entity
   9771       = InitializedEntity::InitializeParameter(Context,
   9772           Context.getLValueReferenceType(VaListType), false);
   9773     ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
   9774     if (Init.isInvalid())
   9775       return ExprError();
   9776     E = Init.takeAs<Expr>();
   9777   } else {
   9778     // Otherwise, the va_list argument must be an l-value because
   9779     // it is modified by va_arg.
   9780     if (!E->isTypeDependent() &&
   9781         CheckForModifiableLvalue(E, BuiltinLoc, *this))
   9782       return ExprError();
   9783   }
   9784 
   9785   if (!E->isTypeDependent() &&
   9786       !Context.hasSameType(VaListType, E->getType())) {
   9787     return ExprError(Diag(E->getLocStart(),
   9788                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
   9789       << OrigExpr->getType() << E->getSourceRange());
   9790   }
   9791 
   9792   if (!TInfo->getType()->isDependentType()) {
   9793     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
   9794                             diag::err_second_parameter_to_va_arg_incomplete,
   9795                             TInfo->getTypeLoc()))
   9796       return ExprError();
   9797 
   9798     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
   9799                                TInfo->getType(),
   9800                                diag::err_second_parameter_to_va_arg_abstract,
   9801                                TInfo->getTypeLoc()))
   9802       return ExprError();
   9803 
   9804     if (!TInfo->getType().isPODType(Context)) {
   9805       Diag(TInfo->getTypeLoc().getBeginLoc(),
   9806            TInfo->getType()->isObjCLifetimeType()
   9807              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
   9808              : diag::warn_second_parameter_to_va_arg_not_pod)
   9809         << TInfo->getType()
   9810         << TInfo->getTypeLoc().getSourceRange();
   9811     }
   9812 
   9813     // Check for va_arg where arguments of the given type will be promoted
   9814     // (i.e. this va_arg is guaranteed to have undefined behavior).
   9815     QualType PromoteType;
   9816     if (TInfo->getType()->isPromotableIntegerType()) {
   9817       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
   9818       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
   9819         PromoteType = QualType();
   9820     }
   9821     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
   9822       PromoteType = Context.DoubleTy;
   9823     if (!PromoteType.isNull())
   9824       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
   9825                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
   9826                           << TInfo->getType()
   9827                           << PromoteType
   9828                           << TInfo->getTypeLoc().getSourceRange());
   9829   }
   9830 
   9831   QualType T = TInfo->getType().getNonLValueExprType(Context);
   9832   return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
   9833 }
   9834 
   9835 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
   9836   // The type of __null will be int or long, depending on the size of
   9837   // pointers on the target.
   9838   QualType Ty;
   9839   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
   9840   if (pw == Context.getTargetInfo().getIntWidth())
   9841     Ty = Context.IntTy;
   9842   else if (pw == Context.getTargetInfo().getLongWidth())
   9843     Ty = Context.LongTy;
   9844   else if (pw == Context.getTargetInfo().getLongLongWidth())
   9845     Ty = Context.LongLongTy;
   9846   else {
   9847     llvm_unreachable("I don't know size of pointer!");
   9848   }
   9849 
   9850   return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
   9851 }
   9852 
   9853 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
   9854                                            Expr *SrcExpr, FixItHint &Hint) {
   9855   if (!SemaRef.getLangOpts().ObjC1)
   9856     return;
   9857 
   9858   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
   9859   if (!PT)
   9860     return;
   9861 
   9862   // Check if the destination is of type 'id'.
   9863   if (!PT->isObjCIdType()) {
   9864     // Check if the destination is the 'NSString' interface.
   9865     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
   9866     if (!ID || !ID->getIdentifier()->isStr("NSString"))
   9867       return;
   9868   }
   9869 
   9870   // Ignore any parens, implicit casts (should only be
   9871   // array-to-pointer decays), and not-so-opaque values.  The last is
   9872   // important for making this trigger for property assignments.
   9873   SrcExpr = SrcExpr->IgnoreParenImpCasts();
   9874   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
   9875     if (OV->getSourceExpr())
   9876       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
   9877 
   9878   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
   9879   if (!SL || !SL->isAscii())
   9880     return;
   9881 
   9882   Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
   9883 }
   9884 
   9885 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
   9886                                     SourceLocation Loc,
   9887                                     QualType DstType, QualType SrcType,
   9888                                     Expr *SrcExpr, AssignmentAction Action,
   9889                                     bool *Complained) {
   9890   if (Complained)
   9891     *Complained = false;
   9892 
   9893   // Decode the result (notice that AST's are still created for extensions).
   9894   bool CheckInferredResultType = false;
   9895   bool isInvalid = false;
   9896   unsigned DiagKind = 0;
   9897   FixItHint Hint;
   9898   ConversionFixItGenerator ConvHints;
   9899   bool MayHaveConvFixit = false;
   9900   bool MayHaveFunctionDiff = false;
   9901 
   9902   switch (ConvTy) {
   9903   case Compatible:
   9904       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
   9905       return false;
   9906 
   9907   case PointerToInt:
   9908     DiagKind = diag::ext_typecheck_convert_pointer_int;
   9909     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   9910     MayHaveConvFixit = true;
   9911     break;
   9912   case IntToPointer:
   9913     DiagKind = diag::ext_typecheck_convert_int_pointer;
   9914     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   9915     MayHaveConvFixit = true;
   9916     break;
   9917   case IncompatiblePointer:
   9918     MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
   9919     DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
   9920     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
   9921       SrcType->isObjCObjectPointerType();
   9922     if (Hint.isNull() && !CheckInferredResultType) {
   9923       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   9924     }
   9925     MayHaveConvFixit = true;
   9926     break;
   9927   case IncompatiblePointerSign:
   9928     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
   9929     break;
   9930   case FunctionVoidPointer:
   9931     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
   9932     break;
   9933   case IncompatiblePointerDiscardsQualifiers: {
   9934     // Perform array-to-pointer decay if necessary.
   9935     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
   9936 
   9937     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
   9938     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
   9939     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
   9940       DiagKind = diag::err_typecheck_incompatible_address_space;
   9941       break;
   9942 
   9943 
   9944     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
   9945       DiagKind = diag::err_typecheck_incompatible_ownership;
   9946       break;
   9947     }
   9948 
   9949     llvm_unreachable("unknown error case for discarding qualifiers!");
   9950     // fallthrough
   9951   }
   9952   case CompatiblePointerDiscardsQualifiers:
   9953     // If the qualifiers lost were because we were applying the
   9954     // (deprecated) C++ conversion from a string literal to a char*
   9955     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
   9956     // Ideally, this check would be performed in
   9957     // checkPointerTypesForAssignment. However, that would require a
   9958     // bit of refactoring (so that the second argument is an
   9959     // expression, rather than a type), which should be done as part
   9960     // of a larger effort to fix checkPointerTypesForAssignment for
   9961     // C++ semantics.
   9962     if (getLangOpts().CPlusPlus &&
   9963         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
   9964       return false;
   9965     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
   9966     break;
   9967   case IncompatibleNestedPointerQualifiers:
   9968     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
   9969     break;
   9970   case IntToBlockPointer:
   9971     DiagKind = diag::err_int_to_block_pointer;
   9972     break;
   9973   case IncompatibleBlockPointer:
   9974     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
   9975     break;
   9976   case IncompatibleObjCQualifiedId:
   9977     // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
   9978     // it can give a more specific diagnostic.
   9979     DiagKind = diag::warn_incompatible_qualified_id;
   9980     break;
   9981   case IncompatibleVectors:
   9982     DiagKind = diag::warn_incompatible_vectors;
   9983     break;
   9984   case IncompatibleObjCWeakRef:
   9985     DiagKind = diag::err_arc_weak_unavailable_assign;
   9986     break;
   9987   case Incompatible:
   9988     DiagKind = diag::err_typecheck_convert_incompatible;
   9989     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   9990     MayHaveConvFixit = true;
   9991     isInvalid = true;
   9992     MayHaveFunctionDiff = true;
   9993     break;
   9994   }
   9995 
   9996   QualType FirstType, SecondType;
   9997   switch (Action) {
   9998   case AA_Assigning:
   9999   case AA_Initializing:
   10000     // The destination type comes first.
   10001     FirstType = DstType;
   10002     SecondType = SrcType;
   10003     break;
   10004 
   10005   case AA_Returning:
   10006   case AA_Passing:
   10007   case AA_Converting:
   10008   case AA_Sending:
   10009   case AA_Casting:
   10010     // The source type comes first.
   10011     FirstType = SrcType;
   10012     SecondType = DstType;
   10013     break;
   10014   }
   10015 
   10016   PartialDiagnostic FDiag = PDiag(DiagKind);
   10017   FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
   10018 
   10019   // If we can fix the conversion, suggest the FixIts.
   10020   assert(ConvHints.isNull() || Hint.isNull());
   10021   if (!ConvHints.isNull()) {
   10022     for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
   10023          HE = ConvHints.Hints.end(); HI != HE; ++HI)
   10024       FDiag << *HI;
   10025   } else {
   10026     FDiag << Hint;
   10027   }
   10028   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
   10029 
   10030   if (MayHaveFunctionDiff)
   10031     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
   10032 
   10033   Diag(Loc, FDiag);
   10034 
   10035   if (SecondType == Context.OverloadTy)
   10036     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
   10037                               FirstType);
   10038 
   10039   if (CheckInferredResultType)
   10040     EmitRelatedResultTypeNote(SrcExpr);
   10041 
   10042   if (Complained)
   10043     *Complained = true;
   10044   return isInvalid;
   10045 }
   10046 
   10047 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   10048                                                  llvm::APSInt *Result) {
   10049   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
   10050   public:
   10051     virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
   10052       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
   10053     }
   10054   } Diagnoser;
   10055 
   10056   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
   10057 }
   10058 
   10059 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   10060                                                  llvm::APSInt *Result,
   10061                                                  unsigned DiagID,
   10062                                                  bool AllowFold) {
   10063   class IDDiagnoser : public VerifyICEDiagnoser {
   10064     unsigned DiagID;
   10065 
   10066   public:
   10067     IDDiagnoser(unsigned DiagID)
   10068       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
   10069 
   10070     virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
   10071       S.Diag(Loc, DiagID) << SR;
   10072     }
   10073   } Diagnoser(DiagID);
   10074 
   10075   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
   10076 }
   10077 
   10078 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
   10079                                             SourceRange SR) {
   10080   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
   10081 }
   10082 
   10083 ExprResult
   10084 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
   10085                                       VerifyICEDiagnoser &Diagnoser,
   10086                                       bool AllowFold) {
   10087   SourceLocation DiagLoc = E->getLocStart();
   10088 
   10089   if (getLangOpts().CPlusPlus11) {
   10090     // C++11 [expr.const]p5:
   10091     //   If an expression of literal class type is used in a context where an
   10092     //   integral constant expression is required, then that class type shall
   10093     //   have a single non-explicit conversion function to an integral or
   10094     //   unscoped enumeration type
   10095     ExprResult Converted;
   10096     if (!Diagnoser.Suppress) {
   10097       class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
   10098       public:
   10099         CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
   10100 
   10101         virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   10102                                                  QualType T) {
   10103           return S.Diag(Loc, diag::err_ice_not_integral) << T;
   10104         }
   10105 
   10106         virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
   10107                                                      SourceLocation Loc,
   10108                                                      QualType T) {
   10109           return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
   10110         }
   10111 
   10112         virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
   10113                                                        SourceLocation Loc,
   10114                                                        QualType T,
   10115                                                        QualType ConvTy) {
   10116           return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
   10117         }
   10118 
   10119         virtual DiagnosticBuilder noteExplicitConv(Sema &S,
   10120                                                    CXXConversionDecl *Conv,
   10121                                                    QualType ConvTy) {
   10122           return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   10123                    << ConvTy->isEnumeralType() << ConvTy;
   10124         }
   10125 
   10126         virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
   10127                                                     QualType T) {
   10128           return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
   10129         }
   10130 
   10131         virtual DiagnosticBuilder noteAmbiguous(Sema &S,
   10132                                                 CXXConversionDecl *Conv,
   10133                                                 QualType ConvTy) {
   10134           return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   10135                    << ConvTy->isEnumeralType() << ConvTy;
   10136         }
   10137 
   10138         virtual DiagnosticBuilder diagnoseConversion(Sema &S,
   10139                                                      SourceLocation Loc,
   10140                                                      QualType T,
   10141                                                      QualType ConvTy) {
   10142           return DiagnosticBuilder::getEmpty();
   10143         }
   10144       } ConvertDiagnoser;
   10145 
   10146       Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
   10147                                                      ConvertDiagnoser,
   10148                                              /*AllowScopedEnumerations*/ false);
   10149     } else {
   10150       // The caller wants to silently enquire whether this is an ICE. Don't
   10151       // produce any diagnostics if it isn't.
   10152       class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
   10153       public:
   10154         SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
   10155 
   10156         virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   10157                                                  QualType T) {
   10158           return DiagnosticBuilder::getEmpty();
   10159         }
   10160 
   10161         virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
   10162                                                      SourceLocation Loc,
   10163                                                      QualType T) {
   10164           return DiagnosticBuilder::getEmpty();
   10165         }
   10166 
   10167         virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
   10168                                                        SourceLocation Loc,
   10169                                                        QualType T,
   10170                                                        QualType ConvTy) {
   10171           return DiagnosticBuilder::getEmpty();
   10172         }
   10173 
   10174         virtual DiagnosticBuilder noteExplicitConv(Sema &S,
   10175                                                    CXXConversionDecl *Conv,
   10176                                                    QualType ConvTy) {
   10177           return DiagnosticBuilder::getEmpty();
   10178         }
   10179 
   10180         virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
   10181                                                     QualType T) {
   10182           return DiagnosticBuilder::getEmpty();
   10183         }
   10184 
   10185         virtual DiagnosticBuilder noteAmbiguous(Sema &S,
   10186                                                 CXXConversionDecl *Conv,
   10187                                                 QualType ConvTy) {
   10188           return DiagnosticBuilder::getEmpty();
   10189         }
   10190 
   10191         virtual DiagnosticBuilder diagnoseConversion(Sema &S,
   10192                                                      SourceLocation Loc,
   10193                                                      QualType T,
   10194                                                      QualType ConvTy) {
   10195           return DiagnosticBuilder::getEmpty();
   10196         }
   10197       } ConvertDiagnoser;
   10198 
   10199       Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
   10200                                                      ConvertDiagnoser, false);
   10201     }
   10202     if (Converted.isInvalid())
   10203       return Converted;
   10204     E = Converted.take();
   10205     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
   10206       return ExprError();
   10207   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
   10208     // An ICE must be of integral or unscoped enumeration type.
   10209     if (!Diagnoser.Suppress)
   10210       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   10211     return ExprError();
   10212   }
   10213 
   10214   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
   10215   // in the non-ICE case.
   10216   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
   10217     if (Result)
   10218       *Result = E->EvaluateKnownConstInt(Context);
   10219     return Owned(E);
   10220   }
   10221 
   10222   Expr::EvalResult EvalResult;
   10223   SmallVector<PartialDiagnosticAt, 8> Notes;
   10224   EvalResult.Diag = &Notes;
   10225 
   10226   // Try to evaluate the expression, and produce diagnostics explaining why it's
   10227   // not a constant expression as a side-effect.
   10228   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
   10229                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
   10230 
   10231   // In C++11, we can rely on diagnostics being produced for any expression
   10232   // which is not a constant expression. If no diagnostics were produced, then
   10233   // this is a constant expression.
   10234   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
   10235     if (Result)
   10236       *Result = EvalResult.Val.getInt();
   10237     return Owned(E);
   10238   }
   10239 
   10240   // If our only note is the usual "invalid subexpression" note, just point
   10241   // the caret at its location rather than producing an essentially
   10242   // redundant note.
   10243   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   10244         diag::note_invalid_subexpr_in_const_expr) {
   10245     DiagLoc = Notes[0].first;
   10246     Notes.clear();
   10247   }
   10248 
   10249   if (!Folded || !AllowFold) {
   10250     if (!Diagnoser.Suppress) {
   10251       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   10252       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   10253         Diag(Notes[I].first, Notes[I].second);
   10254     }
   10255 
   10256     return ExprError();
   10257   }
   10258 
   10259   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
   10260   for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   10261     Diag(Notes[I].first, Notes[I].second);
   10262 
   10263   if (Result)
   10264     *Result = EvalResult.Val.getInt();
   10265   return Owned(E);
   10266 }
   10267 
   10268 namespace {
   10269   // Handle the case where we conclude a expression which we speculatively
   10270   // considered to be unevaluated is actually evaluated.
   10271   class TransformToPE : public TreeTransform<TransformToPE> {
   10272     typedef TreeTransform<TransformToPE> BaseTransform;
   10273 
   10274   public:
   10275     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
   10276 
   10277     // Make sure we redo semantic analysis
   10278     bool AlwaysRebuild() { return true; }
   10279 
   10280     // Make sure we handle LabelStmts correctly.
   10281     // FIXME: This does the right thing, but maybe we need a more general
   10282     // fix to TreeTransform?
   10283     StmtResult TransformLabelStmt(LabelStmt *S) {
   10284       S->getDecl()->setStmt(0);
   10285       return BaseTransform::TransformLabelStmt(S);
   10286     }
   10287 
   10288     // We need to special-case DeclRefExprs referring to FieldDecls which
   10289     // are not part of a member pointer formation; normal TreeTransforming
   10290     // doesn't catch this case because of the way we represent them in the AST.
   10291     // FIXME: This is a bit ugly; is it really the best way to handle this
   10292     // case?
   10293     //
   10294     // Error on DeclRefExprs referring to FieldDecls.
   10295     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
   10296       if (isa<FieldDecl>(E->getDecl()) &&
   10297           !SemaRef.isUnevaluatedContext())
   10298         return SemaRef.Diag(E->getLocation(),
   10299                             diag::err_invalid_non_static_member_use)
   10300             << E->getDecl() << E->getSourceRange();
   10301 
   10302       return BaseTransform::TransformDeclRefExpr(E);
   10303     }
   10304 
   10305     // Exception: filter out member pointer formation
   10306     ExprResult TransformUnaryOperator(UnaryOperator *E) {
   10307       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
   10308         return E;
   10309 
   10310       return BaseTransform::TransformUnaryOperator(E);
   10311     }
   10312 
   10313     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   10314       // Lambdas never need to be transformed.
   10315       return E;
   10316     }
   10317   };
   10318 }
   10319 
   10320 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
   10321   assert(ExprEvalContexts.back().Context == Unevaluated &&
   10322          "Should only transform unevaluated expressions");
   10323   ExprEvalContexts.back().Context =
   10324       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
   10325   if (ExprEvalContexts.back().Context == Unevaluated)
   10326     return E;
   10327   return TransformToPE(*this).TransformExpr(E);
   10328 }
   10329 
   10330 void
   10331 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   10332                                       Decl *LambdaContextDecl,
   10333                                       bool IsDecltype) {
   10334   ExprEvalContexts.push_back(
   10335              ExpressionEvaluationContextRecord(NewContext,
   10336                                                ExprCleanupObjects.size(),
   10337                                                ExprNeedsCleanups,
   10338                                                LambdaContextDecl,
   10339                                                IsDecltype));
   10340   ExprNeedsCleanups = false;
   10341   if (!MaybeODRUseExprs.empty())
   10342     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
   10343 }
   10344 
   10345 void
   10346 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   10347                                       ReuseLambdaContextDecl_t,
   10348                                       bool IsDecltype) {
   10349   Decl *LambdaContextDecl = ExprEvalContexts.back().LambdaContextDecl;
   10350   PushExpressionEvaluationContext(NewContext, LambdaContextDecl, IsDecltype);
   10351 }
   10352 
   10353 void Sema::PopExpressionEvaluationContext() {
   10354   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
   10355 
   10356   if (!Rec.Lambdas.empty()) {
   10357     if (Rec.Context == Unevaluated) {
   10358       // C++11 [expr.prim.lambda]p2:
   10359       //   A lambda-expression shall not appear in an unevaluated operand
   10360       //   (Clause 5).
   10361       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
   10362         Diag(Rec.Lambdas[I]->getLocStart(),
   10363              diag::err_lambda_unevaluated_operand);
   10364     } else {
   10365       // Mark the capture expressions odr-used. This was deferred
   10366       // during lambda expression creation.
   10367       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
   10368         LambdaExpr *Lambda = Rec.Lambdas[I];
   10369         for (LambdaExpr::capture_init_iterator
   10370                   C = Lambda->capture_init_begin(),
   10371                CEnd = Lambda->capture_init_end();
   10372              C != CEnd; ++C) {
   10373           MarkDeclarationsReferencedInExpr(*C);
   10374         }
   10375       }
   10376     }
   10377   }
   10378 
   10379   // When are coming out of an unevaluated context, clear out any
   10380   // temporaries that we may have created as part of the evaluation of
   10381   // the expression in that context: they aren't relevant because they
   10382   // will never be constructed.
   10383   if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
   10384     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
   10385                              ExprCleanupObjects.end());
   10386     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
   10387     CleanupVarDeclMarking();
   10388     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
   10389   // Otherwise, merge the contexts together.
   10390   } else {
   10391     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
   10392     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
   10393                             Rec.SavedMaybeODRUseExprs.end());
   10394   }
   10395 
   10396   // Pop the current expression evaluation context off the stack.
   10397   ExprEvalContexts.pop_back();
   10398 }
   10399 
   10400 void Sema::DiscardCleanupsInEvaluationContext() {
   10401   ExprCleanupObjects.erase(
   10402          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
   10403          ExprCleanupObjects.end());
   10404   ExprNeedsCleanups = false;
   10405   MaybeODRUseExprs.clear();
   10406 }
   10407 
   10408 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
   10409   if (!E->getType()->isVariablyModifiedType())
   10410     return E;
   10411   return TransformToPotentiallyEvaluated(E);
   10412 }
   10413 
   10414 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
   10415   // Do not mark anything as "used" within a dependent context; wait for
   10416   // an instantiation.
   10417   if (SemaRef.CurContext->isDependentContext())
   10418     return false;
   10419 
   10420   switch (SemaRef.ExprEvalContexts.back().Context) {
   10421     case Sema::Unevaluated:
   10422       // We are in an expression that is not potentially evaluated; do nothing.
   10423       // (Depending on how you read the standard, we actually do need to do
   10424       // something here for null pointer constants, but the standard's
   10425       // definition of a null pointer constant is completely crazy.)
   10426       return false;
   10427 
   10428     case Sema::ConstantEvaluated:
   10429     case Sema::PotentiallyEvaluated:
   10430       // We are in a potentially evaluated expression (or a constant-expression
   10431       // in C++03); we need to do implicit template instantiation, implicitly
   10432       // define class members, and mark most declarations as used.
   10433       return true;
   10434 
   10435     case Sema::PotentiallyEvaluatedIfUsed:
   10436       // Referenced declarations will only be used if the construct in the
   10437       // containing expression is used.
   10438       return false;
   10439   }
   10440   llvm_unreachable("Invalid context");
   10441 }
   10442 
   10443 /// \brief Mark a function referenced, and check whether it is odr-used
   10444 /// (C++ [basic.def.odr]p2, C99 6.9p3)
   10445 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
   10446   assert(Func && "No function?");
   10447 
   10448   Func->setReferenced();
   10449 
   10450   // C++11 [basic.def.odr]p3:
   10451   //   A function whose name appears as a potentially-evaluated expression is
   10452   //   odr-used if it is the unique lookup result or the selected member of a
   10453   //   set of overloaded functions [...].
   10454   //
   10455   // We (incorrectly) mark overload resolution as an unevaluated context, so we
   10456   // can just check that here. Skip the rest of this function if we've already
   10457   // marked the function as used.
   10458   if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
   10459     // C++11 [temp.inst]p3:
   10460     //   Unless a function template specialization has been explicitly
   10461     //   instantiated or explicitly specialized, the function template
   10462     //   specialization is implicitly instantiated when the specialization is
   10463     //   referenced in a context that requires a function definition to exist.
   10464     //
   10465     // We consider constexpr function templates to be referenced in a context
   10466     // that requires a definition to exist whenever they are referenced.
   10467     //
   10468     // FIXME: This instantiates constexpr functions too frequently. If this is
   10469     // really an unevaluated context (and we're not just in the definition of a
   10470     // function template or overload resolution or other cases which we
   10471     // incorrectly consider to be unevaluated contexts), and we're not in a
   10472     // subexpression which we actually need to evaluate (for instance, a
   10473     // template argument, array bound or an expression in a braced-init-list),
   10474     // we are not permitted to instantiate this constexpr function definition.
   10475     //
   10476     // FIXME: This also implicitly defines special members too frequently. They
   10477     // are only supposed to be implicitly defined if they are odr-used, but they
   10478     // are not odr-used from constant expressions in unevaluated contexts.
   10479     // However, they cannot be referenced if they are deleted, and they are
   10480     // deleted whenever the implicit definition of the special member would
   10481     // fail.
   10482     if (!Func->isConstexpr() || Func->getBody())
   10483       return;
   10484     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
   10485     if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
   10486       return;
   10487   }
   10488 
   10489   // Note that this declaration has been used.
   10490   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
   10491     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
   10492       if (Constructor->isDefaultConstructor()) {
   10493         if (Constructor->isTrivial())
   10494           return;
   10495         if (!Constructor->isUsed(false))
   10496           DefineImplicitDefaultConstructor(Loc, Constructor);
   10497       } else if (Constructor->isCopyConstructor()) {
   10498         if (!Constructor->isUsed(false))
   10499           DefineImplicitCopyConstructor(Loc, Constructor);
   10500       } else if (Constructor->isMoveConstructor()) {
   10501         if (!Constructor->isUsed(false))
   10502           DefineImplicitMoveConstructor(Loc, Constructor);
   10503       }
   10504     } else if (Constructor->getInheritedConstructor()) {
   10505       if (!Constructor->isUsed(false))
   10506         DefineInheritingConstructor(Loc, Constructor);
   10507     }
   10508 
   10509     MarkVTableUsed(Loc, Constructor->getParent());
   10510   } else if (CXXDestructorDecl *Destructor =
   10511                  dyn_cast<CXXDestructorDecl>(Func)) {
   10512     if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
   10513         !Destructor->isUsed(false))
   10514       DefineImplicitDestructor(Loc, Destructor);
   10515     if (Destructor->isVirtual())
   10516       MarkVTableUsed(Loc, Destructor->getParent());
   10517   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
   10518     if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
   10519         MethodDecl->isOverloadedOperator() &&
   10520         MethodDecl->getOverloadedOperator() == OO_Equal) {
   10521       if (!MethodDecl->isUsed(false)) {
   10522         if (MethodDecl->isCopyAssignmentOperator())
   10523           DefineImplicitCopyAssignment(Loc, MethodDecl);
   10524         else
   10525           DefineImplicitMoveAssignment(Loc, MethodDecl);
   10526       }
   10527     } else if (isa<CXXConversionDecl>(MethodDecl) &&
   10528                MethodDecl->getParent()->isLambda()) {
   10529       CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
   10530       if (Conversion->isLambdaToBlockPointerConversion())
   10531         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
   10532       else
   10533         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
   10534     } else if (MethodDecl->isVirtual())
   10535       MarkVTableUsed(Loc, MethodDecl->getParent());
   10536   }
   10537 
   10538   // Recursive functions should be marked when used from another function.
   10539   // FIXME: Is this really right?
   10540   if (CurContext == Func) return;
   10541 
   10542   // Resolve the exception specification for any function which is
   10543   // used: CodeGen will need it.
   10544   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
   10545   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
   10546     ResolveExceptionSpec(Loc, FPT);
   10547 
   10548   // Implicit instantiation of function templates and member functions of
   10549   // class templates.
   10550   if (Func->isImplicitlyInstantiable()) {
   10551     bool AlreadyInstantiated = false;
   10552     SourceLocation PointOfInstantiation = Loc;
   10553     if (FunctionTemplateSpecializationInfo *SpecInfo
   10554                               = Func->getTemplateSpecializationInfo()) {
   10555       if (SpecInfo->getPointOfInstantiation().isInvalid())
   10556         SpecInfo->setPointOfInstantiation(Loc);
   10557       else if (SpecInfo->getTemplateSpecializationKind()
   10558                  == TSK_ImplicitInstantiation) {
   10559         AlreadyInstantiated = true;
   10560         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
   10561       }
   10562     } else if (MemberSpecializationInfo *MSInfo
   10563                                 = Func->getMemberSpecializationInfo()) {
   10564       if (MSInfo->getPointOfInstantiation().isInvalid())
   10565         MSInfo->setPointOfInstantiation(Loc);
   10566       else if (MSInfo->getTemplateSpecializationKind()
   10567                  == TSK_ImplicitInstantiation) {
   10568         AlreadyInstantiated = true;
   10569         PointOfInstantiation = MSInfo->getPointOfInstantiation();
   10570       }
   10571     }
   10572 
   10573     if (!AlreadyInstantiated || Func->isConstexpr()) {
   10574       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
   10575           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
   10576         PendingLocalImplicitInstantiations.push_back(
   10577             std::make_pair(Func, PointOfInstantiation));
   10578       else if (Func->isConstexpr())
   10579         // Do not defer instantiations of constexpr functions, to avoid the
   10580         // expression evaluator needing to call back into Sema if it sees a
   10581         // call to such a function.
   10582         InstantiateFunctionDefinition(PointOfInstantiation, Func);
   10583       else {
   10584         PendingInstantiations.push_back(std::make_pair(Func,
   10585                                                        PointOfInstantiation));
   10586         // Notify the consumer that a function was implicitly instantiated.
   10587         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
   10588       }
   10589     }
   10590   } else {
   10591     // Walk redefinitions, as some of them may be instantiable.
   10592     for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
   10593          e(Func->redecls_end()); i != e; ++i) {
   10594       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
   10595         MarkFunctionReferenced(Loc, *i);
   10596     }
   10597   }
   10598 
   10599   // Keep track of used but undefined functions.
   10600   if (!Func->isDefined()) {
   10601     if (mightHaveNonExternalLinkage(Func))
   10602       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   10603     else if (Func->getMostRecentDecl()->isInlined() &&
   10604              (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
   10605              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
   10606       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   10607   }
   10608 
   10609   // Normally the must current decl is marked used while processing the use and
   10610   // any subsequent decls are marked used by decl merging. This fails with
   10611   // template instantiation since marking can happen at the end of the file
   10612   // and, because of the two phase lookup, this function is called with at
   10613   // decl in the middle of a decl chain. We loop to maintain the invariant
   10614   // that once a decl is used, all decls after it are also used.
   10615   for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
   10616     F->setUsed(true);
   10617     if (F == Func)
   10618       break;
   10619   }
   10620 }
   10621 
   10622 static void
   10623 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
   10624                                    VarDecl *var, DeclContext *DC) {
   10625   DeclContext *VarDC = var->getDeclContext();
   10626 
   10627   //  If the parameter still belongs to the translation unit, then
   10628   //  we're actually just using one parameter in the declaration of
   10629   //  the next.
   10630   if (isa<ParmVarDecl>(var) &&
   10631       isa<TranslationUnitDecl>(VarDC))
   10632     return;
   10633 
   10634   // For C code, don't diagnose about capture if we're not actually in code
   10635   // right now; it's impossible to write a non-constant expression outside of
   10636   // function context, so we'll get other (more useful) diagnostics later.
   10637   //
   10638   // For C++, things get a bit more nasty... it would be nice to suppress this
   10639   // diagnostic for certain cases like using a local variable in an array bound
   10640   // for a member of a local class, but the correct predicate is not obvious.
   10641   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
   10642     return;
   10643 
   10644   if (isa<CXXMethodDecl>(VarDC) &&
   10645       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
   10646     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
   10647       << var->getIdentifier();
   10648   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
   10649     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
   10650       << var->getIdentifier() << fn->getDeclName();
   10651   } else if (isa<BlockDecl>(VarDC)) {
   10652     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
   10653       << var->getIdentifier();
   10654   } else {
   10655     // FIXME: Is there any other context where a local variable can be
   10656     // declared?
   10657     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
   10658       << var->getIdentifier();
   10659   }
   10660 
   10661   S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
   10662     << var->getIdentifier();
   10663 
   10664   // FIXME: Add additional diagnostic info about class etc. which prevents
   10665   // capture.
   10666 }
   10667 
   10668 /// \brief Capture the given variable in the given lambda expression.
   10669 static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
   10670                                   VarDecl *Var, QualType FieldType,
   10671                                   QualType DeclRefType,
   10672                                   SourceLocation Loc,
   10673                                   bool RefersToEnclosingLocal) {
   10674   CXXRecordDecl *Lambda = LSI->Lambda;
   10675 
   10676   // Build the non-static data member.
   10677   FieldDecl *Field
   10678     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
   10679                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
   10680                         0, false, ICIS_NoInit);
   10681   Field->setImplicit(true);
   10682   Field->setAccess(AS_private);
   10683   Lambda->addDecl(Field);
   10684 
   10685   // C++11 [expr.prim.lambda]p21:
   10686   //   When the lambda-expression is evaluated, the entities that
   10687   //   are captured by copy are used to direct-initialize each
   10688   //   corresponding non-static data member of the resulting closure
   10689   //   object. (For array members, the array elements are
   10690   //   direct-initialized in increasing subscript order.) These
   10691   //   initializations are performed in the (unspecified) order in
   10692   //   which the non-static data members are declared.
   10693 
   10694   // Introduce a new evaluation context for the initialization, so
   10695   // that temporaries introduced as part of the capture are retained
   10696   // to be re-"exported" from the lambda expression itself.
   10697   S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
   10698 
   10699   // C++ [expr.prim.labda]p12:
   10700   //   An entity captured by a lambda-expression is odr-used (3.2) in
   10701   //   the scope containing the lambda-expression.
   10702   Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
   10703                                           DeclRefType, VK_LValue, Loc);
   10704   Var->setReferenced(true);
   10705   Var->setUsed(true);
   10706 
   10707   // When the field has array type, create index variables for each
   10708   // dimension of the array. We use these index variables to subscript
   10709   // the source array, and other clients (e.g., CodeGen) will perform
   10710   // the necessary iteration with these index variables.
   10711   SmallVector<VarDecl *, 4> IndexVariables;
   10712   QualType BaseType = FieldType;
   10713   QualType SizeType = S.Context.getSizeType();
   10714   LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
   10715   while (const ConstantArrayType *Array
   10716                         = S.Context.getAsConstantArrayType(BaseType)) {
   10717     // Create the iteration variable for this array index.
   10718     IdentifierInfo *IterationVarName = 0;
   10719     {
   10720       SmallString<8> Str;
   10721       llvm::raw_svector_ostream OS(Str);
   10722       OS << "__i" << IndexVariables.size();
   10723       IterationVarName = &S.Context.Idents.get(OS.str());
   10724     }
   10725     VarDecl *IterationVar
   10726       = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
   10727                         IterationVarName, SizeType,
   10728                         S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   10729                         SC_None, SC_None);
   10730     IndexVariables.push_back(IterationVar);
   10731     LSI->ArrayIndexVars.push_back(IterationVar);
   10732 
   10733     // Create a reference to the iteration variable.
   10734     ExprResult IterationVarRef
   10735       = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
   10736     assert(!IterationVarRef.isInvalid() &&
   10737            "Reference to invented variable cannot fail!");
   10738     IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
   10739     assert(!IterationVarRef.isInvalid() &&
   10740            "Conversion of invented variable cannot fail!");
   10741 
   10742     // Subscript the array with this iteration variable.
   10743     ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
   10744                              Ref, Loc, IterationVarRef.take(), Loc);
   10745     if (Subscript.isInvalid()) {
   10746       S.CleanupVarDeclMarking();
   10747       S.DiscardCleanupsInEvaluationContext();
   10748       S.PopExpressionEvaluationContext();
   10749       return ExprError();
   10750     }
   10751 
   10752     Ref = Subscript.take();
   10753     BaseType = Array->getElementType();
   10754   }
   10755 
   10756   // Construct the entity that we will be initializing. For an array, this
   10757   // will be first element in the array, which may require several levels
   10758   // of array-subscript entities.
   10759   SmallVector<InitializedEntity, 4> Entities;
   10760   Entities.reserve(1 + IndexVariables.size());
   10761   Entities.push_back(
   10762     InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
   10763   for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
   10764     Entities.push_back(InitializedEntity::InitializeElement(S.Context,
   10765                                                             0,
   10766                                                             Entities.back()));
   10767 
   10768   InitializationKind InitKind
   10769     = InitializationKind::CreateDirect(Loc, Loc, Loc);
   10770   InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
   10771   ExprResult Result(true);
   10772   if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
   10773     Result = Init.Perform(S, Entities.back(), InitKind, Ref);
   10774 
   10775   // If this initialization requires any cleanups (e.g., due to a
   10776   // default argument to a copy constructor), note that for the
   10777   // lambda.
   10778   if (S.ExprNeedsCleanups)
   10779     LSI->ExprNeedsCleanups = true;
   10780 
   10781   // Exit the expression evaluation context used for the capture.
   10782   S.CleanupVarDeclMarking();
   10783   S.DiscardCleanupsInEvaluationContext();
   10784   S.PopExpressionEvaluationContext();
   10785   return Result;
   10786 }
   10787 
   10788 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
   10789                               TryCaptureKind Kind, SourceLocation EllipsisLoc,
   10790                               bool BuildAndDiagnose,
   10791                               QualType &CaptureType,
   10792                               QualType &DeclRefType) {
   10793   bool Nested = false;
   10794 
   10795   DeclContext *DC = CurContext;
   10796   if (Var->getDeclContext() == DC) return true;
   10797   if (!Var->hasLocalStorage()) return true;
   10798 
   10799   bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   10800 
   10801   // Walk up the stack to determine whether we can capture the variable,
   10802   // performing the "simple" checks that don't depend on type. We stop when
   10803   // we've either hit the declared scope of the variable or find an existing
   10804   // capture of that variable.
   10805   CaptureType = Var->getType();
   10806   DeclRefType = CaptureType.getNonReferenceType();
   10807   bool Explicit = (Kind != TryCapture_Implicit);
   10808   unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
   10809   do {
   10810     // Only block literals and lambda expressions can capture; other
   10811     // scopes don't work.
   10812     DeclContext *ParentDC;
   10813     if (isa<BlockDecl>(DC))
   10814       ParentDC = DC->getParent();
   10815     else if (isa<CXXMethodDecl>(DC) &&
   10816              cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
   10817              cast<CXXRecordDecl>(DC->getParent())->isLambda())
   10818       ParentDC = DC->getParent()->getParent();
   10819     else {
   10820       if (BuildAndDiagnose)
   10821         diagnoseUncapturableValueReference(*this, Loc, Var, DC);
   10822       return true;
   10823     }
   10824 
   10825     CapturingScopeInfo *CSI =
   10826       cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
   10827 
   10828     // Check whether we've already captured it.
   10829     if (CSI->CaptureMap.count(Var)) {
   10830       // If we found a capture, any subcaptures are nested.
   10831       Nested = true;
   10832 
   10833       // Retrieve the capture type for this variable.
   10834       CaptureType = CSI->getCapture(Var).getCaptureType();
   10835 
   10836       // Compute the type of an expression that refers to this variable.
   10837       DeclRefType = CaptureType.getNonReferenceType();
   10838 
   10839       const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
   10840       if (Cap.isCopyCapture() &&
   10841           !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
   10842         DeclRefType.addConst();
   10843       break;
   10844     }
   10845 
   10846     bool IsBlock = isa<BlockScopeInfo>(CSI);
   10847     bool IsLambda = !IsBlock;
   10848 
   10849     // Lambdas are not allowed to capture unnamed variables
   10850     // (e.g. anonymous unions).
   10851     // FIXME: The C++11 rule don't actually state this explicitly, but I'm
   10852     // assuming that's the intent.
   10853     if (IsLambda && !Var->getDeclName()) {
   10854       if (BuildAndDiagnose) {
   10855         Diag(Loc, diag::err_lambda_capture_anonymous_var);
   10856         Diag(Var->getLocation(), diag::note_declared_at);
   10857       }
   10858       return true;
   10859     }
   10860 
   10861     // Prohibit variably-modified types; they're difficult to deal with.
   10862     if (Var->getType()->isVariablyModifiedType()) {
   10863       if (BuildAndDiagnose) {
   10864         if (IsBlock)
   10865           Diag(Loc, diag::err_ref_vm_type);
   10866         else
   10867           Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
   10868         Diag(Var->getLocation(), diag::note_previous_decl)
   10869           << Var->getDeclName();
   10870       }
   10871       return true;
   10872     }
   10873     // Prohibit structs with flexible array members too.
   10874     // We cannot capture what is in the tail end of the struct.
   10875     if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
   10876       if (VTTy->getDecl()->hasFlexibleArrayMember()) {
   10877         if (BuildAndDiagnose) {
   10878           if (IsBlock)
   10879             Diag(Loc, diag::err_ref_flexarray_type);
   10880           else
   10881             Diag(Loc, diag::err_lambda_capture_flexarray_type)
   10882               << Var->getDeclName();
   10883           Diag(Var->getLocation(), diag::note_previous_decl)
   10884             << Var->getDeclName();
   10885         }
   10886         return true;
   10887       }
   10888     }
   10889     // Lambdas are not allowed to capture __block variables; they don't
   10890     // support the expected semantics.
   10891     if (IsLambda && HasBlocksAttr) {
   10892       if (BuildAndDiagnose) {
   10893         Diag(Loc, diag::err_lambda_capture_block)
   10894           << Var->getDeclName();
   10895         Diag(Var->getLocation(), diag::note_previous_decl)
   10896           << Var->getDeclName();
   10897       }
   10898       return true;
   10899     }
   10900 
   10901     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
   10902       // No capture-default
   10903       if (BuildAndDiagnose) {
   10904         Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
   10905         Diag(Var->getLocation(), diag::note_previous_decl)
   10906           << Var->getDeclName();
   10907         Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
   10908              diag::note_lambda_decl);
   10909       }
   10910       return true;
   10911     }
   10912 
   10913     FunctionScopesIndex--;
   10914     DC = ParentDC;
   10915     Explicit = false;
   10916   } while (!Var->getDeclContext()->Equals(DC));
   10917 
   10918   // Walk back down the scope stack, computing the type of the capture at
   10919   // each step, checking type-specific requirements, and adding captures if
   10920   // requested.
   10921   for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
   10922        ++I) {
   10923     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
   10924 
   10925     // Compute the type of the capture and of a reference to the capture within
   10926     // this scope.
   10927     if (isa<BlockScopeInfo>(CSI)) {
   10928       Expr *CopyExpr = 0;
   10929       bool ByRef = false;
   10930 
   10931       // Blocks are not allowed to capture arrays.
   10932       if (CaptureType->isArrayType()) {
   10933         if (BuildAndDiagnose) {
   10934           Diag(Loc, diag::err_ref_array_type);
   10935           Diag(Var->getLocation(), diag::note_previous_decl)
   10936           << Var->getDeclName();
   10937         }
   10938         return true;
   10939       }
   10940 
   10941       // Forbid the block-capture of autoreleasing variables.
   10942       if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   10943         if (BuildAndDiagnose) {
   10944           Diag(Loc, diag::err_arc_autoreleasing_capture)
   10945             << /*block*/ 0;
   10946           Diag(Var->getLocation(), diag::note_previous_decl)
   10947             << Var->getDeclName();
   10948         }
   10949         return true;
   10950       }
   10951 
   10952       if (HasBlocksAttr || CaptureType->isReferenceType()) {
   10953         // Block capture by reference does not change the capture or
   10954         // declaration reference types.
   10955         ByRef = true;
   10956       } else {
   10957         // Block capture by copy introduces 'const'.
   10958         CaptureType = CaptureType.getNonReferenceType().withConst();
   10959         DeclRefType = CaptureType;
   10960 
   10961         if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
   10962           if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
   10963             // The capture logic needs the destructor, so make sure we mark it.
   10964             // Usually this is unnecessary because most local variables have
   10965             // their destructors marked at declaration time, but parameters are
   10966             // an exception because it's technically only the call site that
   10967             // actually requires the destructor.
   10968             if (isa<ParmVarDecl>(Var))
   10969               FinalizeVarWithDestructor(Var, Record);
   10970 
   10971             // According to the blocks spec, the capture of a variable from
   10972             // the stack requires a const copy constructor.  This is not true
   10973             // of the copy/move done to move a __block variable to the heap.
   10974             Expr *DeclRef = new (Context) DeclRefExpr(Var, Nested,
   10975                                                       DeclRefType.withConst(),
   10976                                                       VK_LValue, Loc);
   10977 
   10978             ExprResult Result
   10979               = PerformCopyInitialization(
   10980                   InitializedEntity::InitializeBlock(Var->getLocation(),
   10981                                                      CaptureType, false),
   10982                   Loc, Owned(DeclRef));
   10983 
   10984             // Build a full-expression copy expression if initialization
   10985             // succeeded and used a non-trivial constructor.  Recover from
   10986             // errors by pretending that the copy isn't necessary.
   10987             if (!Result.isInvalid() &&
   10988                 !cast<CXXConstructExpr>(Result.get())->getConstructor()
   10989                    ->isTrivial()) {
   10990               Result = MaybeCreateExprWithCleanups(Result);
   10991               CopyExpr = Result.take();
   10992             }
   10993           }
   10994         }
   10995       }
   10996 
   10997       // Actually capture the variable.
   10998       if (BuildAndDiagnose)
   10999         CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
   11000                         SourceLocation(), CaptureType, CopyExpr);
   11001       Nested = true;
   11002       continue;
   11003     }
   11004 
   11005     LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   11006 
   11007     // Determine whether we are capturing by reference or by value.
   11008     bool ByRef = false;
   11009     if (I == N - 1 && Kind != TryCapture_Implicit) {
   11010       ByRef = (Kind == TryCapture_ExplicitByRef);
   11011     } else {
   11012       ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
   11013     }
   11014 
   11015     // Compute the type of the field that will capture this variable.
   11016     if (ByRef) {
   11017       // C++11 [expr.prim.lambda]p15:
   11018       //   An entity is captured by reference if it is implicitly or
   11019       //   explicitly captured but not captured by copy. It is
   11020       //   unspecified whether additional unnamed non-static data
   11021       //   members are declared in the closure type for entities
   11022       //   captured by reference.
   11023       //
   11024       // FIXME: It is not clear whether we want to build an lvalue reference
   11025       // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
   11026       // to do the former, while EDG does the latter. Core issue 1249 will
   11027       // clarify, but for now we follow GCC because it's a more permissive and
   11028       // easily defensible position.
   11029       CaptureType = Context.getLValueReferenceType(DeclRefType);
   11030     } else {
   11031       // C++11 [expr.prim.lambda]p14:
   11032       //   For each entity captured by copy, an unnamed non-static
   11033       //   data member is declared in the closure type. The
   11034       //   declaration order of these members is unspecified. The type
   11035       //   of such a data member is the type of the corresponding
   11036       //   captured entity if the entity is not a reference to an
   11037       //   object, or the referenced type otherwise. [Note: If the
   11038       //   captured entity is a reference to a function, the
   11039       //   corresponding data member is also a reference to a
   11040       //   function. - end note ]
   11041       if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
   11042         if (!RefType->getPointeeType()->isFunctionType())
   11043           CaptureType = RefType->getPointeeType();
   11044       }
   11045 
   11046       // Forbid the lambda copy-capture of autoreleasing variables.
   11047       if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   11048         if (BuildAndDiagnose) {
   11049           Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
   11050           Diag(Var->getLocation(), diag::note_previous_decl)
   11051             << Var->getDeclName();
   11052         }
   11053         return true;
   11054       }
   11055     }
   11056 
   11057     // Capture this variable in the lambda.
   11058     Expr *CopyExpr = 0;
   11059     if (BuildAndDiagnose) {
   11060       ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
   11061                                           DeclRefType, Loc,
   11062                                           Nested);
   11063       if (!Result.isInvalid())
   11064         CopyExpr = Result.take();
   11065     }
   11066 
   11067     // Compute the type of a reference to this captured variable.
   11068     if (ByRef)
   11069       DeclRefType = CaptureType.getNonReferenceType();
   11070     else {
   11071       // C++ [expr.prim.lambda]p5:
   11072       //   The closure type for a lambda-expression has a public inline
   11073       //   function call operator [...]. This function call operator is
   11074       //   declared const (9.3.1) if and only if the lambda-expressions
   11075       //   parameter-declaration-clause is not followed by mutable.
   11076       DeclRefType = CaptureType.getNonReferenceType();
   11077       if (!LSI->Mutable && !CaptureType->isReferenceType())
   11078         DeclRefType.addConst();
   11079     }
   11080 
   11081     // Add the capture.
   11082     if (BuildAndDiagnose)
   11083       CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
   11084                       EllipsisLoc, CaptureType, CopyExpr);
   11085     Nested = true;
   11086   }
   11087 
   11088   return false;
   11089 }
   11090 
   11091 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
   11092                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
   11093   QualType CaptureType;
   11094   QualType DeclRefType;
   11095   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
   11096                             /*BuildAndDiagnose=*/true, CaptureType,
   11097                             DeclRefType);
   11098 }
   11099 
   11100 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
   11101   QualType CaptureType;
   11102   QualType DeclRefType;
   11103 
   11104   // Determine whether we can capture this variable.
   11105   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
   11106                          /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
   11107     return QualType();
   11108 
   11109   return DeclRefType;
   11110 }
   11111 
   11112 static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
   11113                                SourceLocation Loc) {
   11114   // Keep track of used but undefined variables.
   11115   // FIXME: We shouldn't suppress this warning for static data members.
   11116   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
   11117       Var->getLinkage() != ExternalLinkage &&
   11118       !(Var->isStaticDataMember() && Var->hasInit())) {
   11119     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
   11120     if (old.isInvalid()) old = Loc;
   11121   }
   11122 
   11123   SemaRef.tryCaptureVariable(Var, Loc);
   11124 
   11125   Var->setUsed(true);
   11126 }
   11127 
   11128 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
   11129   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
   11130   // an object that satisfies the requirements for appearing in a
   11131   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
   11132   // is immediately applied."  This function handles the lvalue-to-rvalue
   11133   // conversion part.
   11134   MaybeODRUseExprs.erase(E->IgnoreParens());
   11135 }
   11136 
   11137 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
   11138   if (!Res.isUsable())
   11139     return Res;
   11140 
   11141   // If a constant-expression is a reference to a variable where we delay
   11142   // deciding whether it is an odr-use, just assume we will apply the
   11143   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
   11144   // (a non-type template argument), we have special handling anyway.
   11145   UpdateMarkingForLValueToRValue(Res.get());
   11146   return Res;
   11147 }
   11148 
   11149 void Sema::CleanupVarDeclMarking() {
   11150   for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
   11151                                         e = MaybeODRUseExprs.end();
   11152        i != e; ++i) {
   11153     VarDecl *Var;
   11154     SourceLocation Loc;
   11155     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
   11156       Var = cast<VarDecl>(DRE->getDecl());
   11157       Loc = DRE->getLocation();
   11158     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
   11159       Var = cast<VarDecl>(ME->getMemberDecl());
   11160       Loc = ME->getMemberLoc();
   11161     } else {
   11162       llvm_unreachable("Unexpcted expression");
   11163     }
   11164 
   11165     MarkVarDeclODRUsed(*this, Var, Loc);
   11166   }
   11167 
   11168   MaybeODRUseExprs.clear();
   11169 }
   11170 
   11171 // Mark a VarDecl referenced, and perform the necessary handling to compute
   11172 // odr-uses.
   11173 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
   11174                                     VarDecl *Var, Expr *E) {
   11175   Var->setReferenced();
   11176 
   11177   if (!IsPotentiallyEvaluatedContext(SemaRef))
   11178     return;
   11179 
   11180   // Implicit instantiation of static data members of class templates.
   11181   if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
   11182     MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
   11183     assert(MSInfo && "Missing member specialization information?");
   11184     bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
   11185     if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
   11186         (!AlreadyInstantiated ||
   11187          Var->isUsableInConstantExpressions(SemaRef.Context))) {
   11188       if (!AlreadyInstantiated) {
   11189         // This is a modification of an existing AST node. Notify listeners.
   11190         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
   11191           L->StaticDataMemberInstantiated(Var);
   11192         MSInfo->setPointOfInstantiation(Loc);
   11193       }
   11194       SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
   11195       if (Var->isUsableInConstantExpressions(SemaRef.Context))
   11196         // Do not defer instantiations of variables which could be used in a
   11197         // constant expression.
   11198         SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
   11199       else
   11200         SemaRef.PendingInstantiations.push_back(
   11201             std::make_pair(Var, PointOfInstantiation));
   11202     }
   11203   }
   11204 
   11205   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
   11206   // the requirements for appearing in a constant expression (5.19) and, if
   11207   // it is an object, the lvalue-to-rvalue conversion (4.1)
   11208   // is immediately applied."  We check the first part here, and
   11209   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
   11210   // Note that we use the C++11 definition everywhere because nothing in
   11211   // C++03 depends on whether we get the C++03 version correct. The second
   11212   // part does not apply to references, since they are not objects.
   11213   const VarDecl *DefVD;
   11214   if (E && !isa<ParmVarDecl>(Var) &&
   11215       Var->isUsableInConstantExpressions(SemaRef.Context) &&
   11216       Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE()) {
   11217     if (!Var->getType()->isReferenceType())
   11218       SemaRef.MaybeODRUseExprs.insert(E);
   11219   } else
   11220     MarkVarDeclODRUsed(SemaRef, Var, Loc);
   11221 }
   11222 
   11223 /// \brief Mark a variable referenced, and check whether it is odr-used
   11224 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
   11225 /// used directly for normal expressions referring to VarDecl.
   11226 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
   11227   DoMarkVarDeclReferenced(*this, Loc, Var, 0);
   11228 }
   11229 
   11230 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
   11231                                Decl *D, Expr *E, bool OdrUse) {
   11232   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
   11233     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
   11234     return;
   11235   }
   11236 
   11237   SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
   11238 
   11239   // If this is a call to a method via a cast, also mark the method in the
   11240   // derived class used in case codegen can devirtualize the call.
   11241   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   11242   if (!ME)
   11243     return;
   11244   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
   11245   if (!MD)
   11246     return;
   11247   const Expr *Base = ME->getBase();
   11248   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   11249   if (!MostDerivedClassDecl)
   11250     return;
   11251   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
   11252   if (!DM || DM->isPure())
   11253     return;
   11254   SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
   11255 }
   11256 
   11257 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
   11258 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
   11259   // TODO: update this with DR# once a defect report is filed.
   11260   // C++11 defect. The address of a pure member should not be an ODR use, even
   11261   // if it's a qualified reference.
   11262   bool OdrUse = true;
   11263   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
   11264     if (Method->isVirtual())
   11265       OdrUse = false;
   11266   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
   11267 }
   11268 
   11269 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
   11270 void Sema::MarkMemberReferenced(MemberExpr *E) {
   11271   // C++11 [basic.def.odr]p2:
   11272   //   A non-overloaded function whose name appears as a potentially-evaluated
   11273   //   expression or a member of a set of candidate functions, if selected by
   11274   //   overload resolution when referred to from a potentially-evaluated
   11275   //   expression, is odr-used, unless it is a pure virtual function and its
   11276   //   name is not explicitly qualified.
   11277   bool OdrUse = true;
   11278   if (!E->hasQualifier()) {
   11279     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
   11280       if (Method->isPure())
   11281         OdrUse = false;
   11282   }
   11283   SourceLocation Loc = E->getMemberLoc().isValid() ?
   11284                             E->getMemberLoc() : E->getLocStart();
   11285   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
   11286 }
   11287 
   11288 /// \brief Perform marking for a reference to an arbitrary declaration.  It
   11289 /// marks the declaration referenced, and performs odr-use checking for functions
   11290 /// and variables. This method should not be used when building an normal
   11291 /// expression which refers to a variable.
   11292 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
   11293   if (OdrUse) {
   11294     if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
   11295       MarkVariableReferenced(Loc, VD);
   11296       return;
   11297     }
   11298     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   11299       MarkFunctionReferenced(Loc, FD);
   11300       return;
   11301     }
   11302   }
   11303   D->setReferenced();
   11304 }
   11305 
   11306 namespace {
   11307   // Mark all of the declarations referenced
   11308   // FIXME: Not fully implemented yet! We need to have a better understanding
   11309   // of when we're entering
   11310   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
   11311     Sema &S;
   11312     SourceLocation Loc;
   11313 
   11314   public:
   11315     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
   11316 
   11317     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
   11318 
   11319     bool TraverseTemplateArgument(const TemplateArgument &Arg);
   11320     bool TraverseRecordType(RecordType *T);
   11321   };
   11322 }
   11323 
   11324 bool MarkReferencedDecls::TraverseTemplateArgument(
   11325   const TemplateArgument &Arg) {
   11326   if (Arg.getKind() == TemplateArgument::Declaration) {
   11327     if (Decl *D = Arg.getAsDecl())
   11328       S.MarkAnyDeclReferenced(Loc, D, true);
   11329   }
   11330 
   11331   return Inherited::TraverseTemplateArgument(Arg);
   11332 }
   11333 
   11334 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
   11335   if (ClassTemplateSpecializationDecl *Spec
   11336                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
   11337     const TemplateArgumentList &Args = Spec->getTemplateArgs();
   11338     return TraverseTemplateArguments(Args.data(), Args.size());
   11339   }
   11340 
   11341   return true;
   11342 }
   11343 
   11344 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
   11345   MarkReferencedDecls Marker(*this, Loc);
   11346   Marker.TraverseType(Context.getCanonicalType(T));
   11347 }
   11348 
   11349 namespace {
   11350   /// \brief Helper class that marks all of the declarations referenced by
   11351   /// potentially-evaluated subexpressions as "referenced".
   11352   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
   11353     Sema &S;
   11354     bool SkipLocalVariables;
   11355 
   11356   public:
   11357     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
   11358 
   11359     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
   11360       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
   11361 
   11362     void VisitDeclRefExpr(DeclRefExpr *E) {
   11363       // If we were asked not to visit local variables, don't.
   11364       if (SkipLocalVariables) {
   11365         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   11366           if (VD->hasLocalStorage())
   11367             return;
   11368       }
   11369 
   11370       S.MarkDeclRefReferenced(E);
   11371     }
   11372 
   11373     void VisitMemberExpr(MemberExpr *E) {
   11374       S.MarkMemberReferenced(E);
   11375       Inherited::VisitMemberExpr(E);
   11376     }
   11377 
   11378     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
   11379       S.MarkFunctionReferenced(E->getLocStart(),
   11380             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
   11381       Visit(E->getSubExpr());
   11382     }
   11383 
   11384     void VisitCXXNewExpr(CXXNewExpr *E) {
   11385       if (E->getOperatorNew())
   11386         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
   11387       if (E->getOperatorDelete())
   11388         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   11389       Inherited::VisitCXXNewExpr(E);
   11390     }
   11391 
   11392     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
   11393       if (E->getOperatorDelete())
   11394         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   11395       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
   11396       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
   11397         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
   11398         S.MarkFunctionReferenced(E->getLocStart(),
   11399                                     S.LookupDestructor(Record));
   11400       }
   11401 
   11402       Inherited::VisitCXXDeleteExpr(E);
   11403     }
   11404 
   11405     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   11406       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
   11407       Inherited::VisitCXXConstructExpr(E);
   11408     }
   11409 
   11410     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
   11411       Visit(E->getExpr());
   11412     }
   11413 
   11414     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   11415       Inherited::VisitImplicitCastExpr(E);
   11416 
   11417       if (E->getCastKind() == CK_LValueToRValue)
   11418         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
   11419     }
   11420   };
   11421 }
   11422 
   11423 /// \brief Mark any declarations that appear within this expression or any
   11424 /// potentially-evaluated subexpressions as "referenced".
   11425 ///
   11426 /// \param SkipLocalVariables If true, don't mark local variables as
   11427 /// 'referenced'.
   11428 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
   11429                                             bool SkipLocalVariables) {
   11430   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
   11431 }
   11432 
   11433 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
   11434 /// of the program being compiled.
   11435 ///
   11436 /// This routine emits the given diagnostic when the code currently being
   11437 /// type-checked is "potentially evaluated", meaning that there is a
   11438 /// possibility that the code will actually be executable. Code in sizeof()
   11439 /// expressions, code used only during overload resolution, etc., are not
   11440 /// potentially evaluated. This routine will suppress such diagnostics or,
   11441 /// in the absolutely nutty case of potentially potentially evaluated
   11442 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
   11443 /// later.
   11444 ///
   11445 /// This routine should be used for all diagnostics that describe the run-time
   11446 /// behavior of a program, such as passing a non-POD value through an ellipsis.
   11447 /// Failure to do so will likely result in spurious diagnostics or failures
   11448 /// during overload resolution or within sizeof/alignof/typeof/typeid.
   11449 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
   11450                                const PartialDiagnostic &PD) {
   11451   switch (ExprEvalContexts.back().Context) {
   11452   case Unevaluated:
   11453     // The argument will never be evaluated, so don't complain.
   11454     break;
   11455 
   11456   case ConstantEvaluated:
   11457     // Relevant diagnostics should be produced by constant evaluation.
   11458     break;
   11459 
   11460   case PotentiallyEvaluated:
   11461   case PotentiallyEvaluatedIfUsed:
   11462     if (Statement && getCurFunctionOrMethodDecl()) {
   11463       FunctionScopes.back()->PossiblyUnreachableDiags.
   11464         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
   11465     }
   11466     else
   11467       Diag(Loc, PD);
   11468 
   11469     return true;
   11470   }
   11471 
   11472   return false;
   11473 }
   11474 
   11475 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
   11476                                CallExpr *CE, FunctionDecl *FD) {
   11477   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
   11478     return false;
   11479 
   11480   // If we're inside a decltype's expression, don't check for a valid return
   11481   // type or construct temporaries until we know whether this is the last call.
   11482   if (ExprEvalContexts.back().IsDecltype) {
   11483     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
   11484     return false;
   11485   }
   11486 
   11487   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
   11488     FunctionDecl *FD;
   11489     CallExpr *CE;
   11490 
   11491   public:
   11492     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
   11493       : FD(FD), CE(CE) { }
   11494 
   11495     virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
   11496       if (!FD) {
   11497         S.Diag(Loc, diag::err_call_incomplete_return)
   11498           << T << CE->getSourceRange();
   11499         return;
   11500       }
   11501 
   11502       S.Diag(Loc, diag::err_call_function_incomplete_return)
   11503         << CE->getSourceRange() << FD->getDeclName() << T;
   11504       S.Diag(FD->getLocation(),
   11505              diag::note_function_with_incomplete_return_type_declared_here)
   11506         << FD->getDeclName();
   11507     }
   11508   } Diagnoser(FD, CE);
   11509 
   11510   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
   11511     return true;
   11512 
   11513   return false;
   11514 }
   11515 
   11516 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
   11517 // will prevent this condition from triggering, which is what we want.
   11518 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
   11519   SourceLocation Loc;
   11520 
   11521   unsigned diagnostic = diag::warn_condition_is_assignment;
   11522   bool IsOrAssign = false;
   11523 
   11524   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
   11525     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
   11526       return;
   11527 
   11528     IsOrAssign = Op->getOpcode() == BO_OrAssign;
   11529 
   11530     // Greylist some idioms by putting them into a warning subcategory.
   11531     if (ObjCMessageExpr *ME
   11532           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
   11533       Selector Sel = ME->getSelector();
   11534 
   11535       // self = [<foo> init...]
   11536       if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
   11537         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   11538 
   11539       // <foo> = [<bar> nextObject]
   11540       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
   11541         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   11542     }
   11543 
   11544     Loc = Op->getOperatorLoc();
   11545   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
   11546     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
   11547       return;
   11548 
   11549     IsOrAssign = Op->getOperator() == OO_PipeEqual;
   11550     Loc = Op->getOperatorLoc();
   11551   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
   11552     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
   11553   else {
   11554     // Not an assignment.
   11555     return;
   11556   }
   11557 
   11558   Diag(Loc, diagnostic) << E->getSourceRange();
   11559 
   11560   SourceLocation Open = E->getLocStart();
   11561   SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
   11562   Diag(Loc, diag::note_condition_assign_silence)
   11563         << FixItHint::CreateInsertion(Open, "(")
   11564         << FixItHint::CreateInsertion(Close, ")");
   11565 
   11566   if (IsOrAssign)
   11567     Diag(Loc, diag::note_condition_or_assign_to_comparison)
   11568       << FixItHint::CreateReplacement(Loc, "!=");
   11569   else
   11570     Diag(Loc, diag::note_condition_assign_to_comparison)
   11571       << FixItHint::CreateReplacement(Loc, "==");
   11572 }
   11573 
   11574 /// \brief Redundant parentheses over an equality comparison can indicate
   11575 /// that the user intended an assignment used as condition.
   11576 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
   11577   // Don't warn if the parens came from a macro.
   11578   SourceLocation parenLoc = ParenE->getLocStart();
   11579   if (parenLoc.isInvalid() || parenLoc.isMacroID())
   11580     return;
   11581   // Don't warn for dependent expressions.
   11582   if (ParenE->isTypeDependent())
   11583     return;
   11584 
   11585   Expr *E = ParenE->IgnoreParens();
   11586 
   11587   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
   11588     if (opE->getOpcode() == BO_EQ &&
   11589         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
   11590                                                            == Expr::MLV_Valid) {
   11591       SourceLocation Loc = opE->getOperatorLoc();
   11592 
   11593       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
   11594       SourceRange ParenERange = ParenE->getSourceRange();
   11595       Diag(Loc, diag::note_equality_comparison_silence)
   11596         << FixItHint::CreateRemoval(ParenERange.getBegin())
   11597         << FixItHint::CreateRemoval(ParenERange.getEnd());
   11598       Diag(Loc, diag::note_equality_comparison_to_assign)
   11599         << FixItHint::CreateReplacement(Loc, "=");
   11600     }
   11601 }
   11602 
   11603 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
   11604   DiagnoseAssignmentAsCondition(E);
   11605   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
   11606     DiagnoseEqualityWithExtraParens(parenE);
   11607 
   11608   ExprResult result = CheckPlaceholderExpr(E);
   11609   if (result.isInvalid()) return ExprError();
   11610   E = result.take();
   11611 
   11612   if (!E->isTypeDependent()) {
   11613     if (getLangOpts().CPlusPlus)
   11614       return CheckCXXBooleanCondition(E); // C++ 6.4p4
   11615 
   11616     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
   11617     if (ERes.isInvalid())
   11618       return ExprError();
   11619     E = ERes.take();
   11620 
   11621     QualType T = E->getType();
   11622     if (!T->isScalarType()) { // C99 6.8.4.1p1
   11623       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
   11624         << T << E->getSourceRange();
   11625       return ExprError();
   11626     }
   11627   }
   11628 
   11629   return Owned(E);
   11630 }
   11631 
   11632 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
   11633                                        Expr *SubExpr) {
   11634   if (!SubExpr)
   11635     return ExprError();
   11636 
   11637   return CheckBooleanCondition(SubExpr, Loc);
   11638 }
   11639 
   11640 namespace {
   11641   /// A visitor for rebuilding a call to an __unknown_any expression
   11642   /// to have an appropriate type.
   11643   struct RebuildUnknownAnyFunction
   11644     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
   11645 
   11646     Sema &S;
   11647 
   11648     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
   11649 
   11650     ExprResult VisitStmt(Stmt *S) {
   11651       llvm_unreachable("unexpected statement!");
   11652     }
   11653 
   11654     ExprResult VisitExpr(Expr *E) {
   11655       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
   11656         << E->getSourceRange();
   11657       return ExprError();
   11658     }
   11659 
   11660     /// Rebuild an expression which simply semantically wraps another
   11661     /// expression which it shares the type and value kind of.
   11662     template <class T> ExprResult rebuildSugarExpr(T *E) {
   11663       ExprResult SubResult = Visit(E->getSubExpr());
   11664       if (SubResult.isInvalid()) return ExprError();
   11665 
   11666       Expr *SubExpr = SubResult.take();
   11667       E->setSubExpr(SubExpr);
   11668       E->setType(SubExpr->getType());
   11669       E->setValueKind(SubExpr->getValueKind());
   11670       assert(E->getObjectKind() == OK_Ordinary);
   11671       return E;
   11672     }
   11673 
   11674     ExprResult VisitParenExpr(ParenExpr *E) {
   11675       return rebuildSugarExpr(E);
   11676     }
   11677 
   11678     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   11679       return rebuildSugarExpr(E);
   11680     }
   11681 
   11682     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   11683       ExprResult SubResult = Visit(E->getSubExpr());
   11684       if (SubResult.isInvalid()) return ExprError();
   11685 
   11686       Expr *SubExpr = SubResult.take();
   11687       E->setSubExpr(SubExpr);
   11688       E->setType(S.Context.getPointerType(SubExpr->getType()));
   11689       assert(E->getValueKind() == VK_RValue);
   11690       assert(E->getObjectKind() == OK_Ordinary);
   11691       return E;
   11692     }
   11693 
   11694     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
   11695       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
   11696 
   11697       E->setType(VD->getType());
   11698 
   11699       assert(E->getValueKind() == VK_RValue);
   11700       if (S.getLangOpts().CPlusPlus &&
   11701           !(isa<CXXMethodDecl>(VD) &&
   11702             cast<CXXMethodDecl>(VD)->isInstance()))
   11703         E->setValueKind(VK_LValue);
   11704 
   11705       return E;
   11706     }
   11707 
   11708     ExprResult VisitMemberExpr(MemberExpr *E) {
   11709       return resolveDecl(E, E->getMemberDecl());
   11710     }
   11711 
   11712     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   11713       return resolveDecl(E, E->getDecl());
   11714     }
   11715   };
   11716 }
   11717 
   11718 /// Given a function expression of unknown-any type, try to rebuild it
   11719 /// to have a function type.
   11720 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
   11721   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
   11722   if (Result.isInvalid()) return ExprError();
   11723   return S.DefaultFunctionArrayConversion(Result.take());
   11724 }
   11725 
   11726 namespace {
   11727   /// A visitor for rebuilding an expression of type __unknown_anytype
   11728   /// into one which resolves the type directly on the referring
   11729   /// expression.  Strict preservation of the original source
   11730   /// structure is not a goal.
   11731   struct RebuildUnknownAnyExpr
   11732     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
   11733 
   11734     Sema &S;
   11735 
   11736     /// The current destination type.
   11737     QualType DestType;
   11738 
   11739     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
   11740       : S(S), DestType(CastType) {}
   11741 
   11742     ExprResult VisitStmt(Stmt *S) {
   11743       llvm_unreachable("unexpected statement!");
   11744     }
   11745 
   11746     ExprResult VisitExpr(Expr *E) {
   11747       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   11748         << E->getSourceRange();
   11749       return ExprError();
   11750     }
   11751 
   11752     ExprResult VisitCallExpr(CallExpr *E);
   11753     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
   11754 
   11755     /// Rebuild an expression which simply semantically wraps another
   11756     /// expression which it shares the type and value kind of.
   11757     template <class T> ExprResult rebuildSugarExpr(T *E) {
   11758       ExprResult SubResult = Visit(E->getSubExpr());
   11759       if (SubResult.isInvalid()) return ExprError();
   11760       Expr *SubExpr = SubResult.take();
   11761       E->setSubExpr(SubExpr);
   11762       E->setType(SubExpr->getType());
   11763       E->setValueKind(SubExpr->getValueKind());
   11764       assert(E->getObjectKind() == OK_Ordinary);
   11765       return E;
   11766     }
   11767 
   11768     ExprResult VisitParenExpr(ParenExpr *E) {
   11769       return rebuildSugarExpr(E);
   11770     }
   11771 
   11772     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   11773       return rebuildSugarExpr(E);
   11774     }
   11775 
   11776     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   11777       const PointerType *Ptr = DestType->getAs<PointerType>();
   11778       if (!Ptr) {
   11779         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
   11780           << E->getSourceRange();
   11781         return ExprError();
   11782       }
   11783       assert(E->getValueKind() == VK_RValue);
   11784       assert(E->getObjectKind() == OK_Ordinary);
   11785       E->setType(DestType);
   11786 
   11787       // Build the sub-expression as if it were an object of the pointee type.
   11788       DestType = Ptr->getPointeeType();
   11789       ExprResult SubResult = Visit(E->getSubExpr());
   11790       if (SubResult.isInvalid()) return ExprError();
   11791       E->setSubExpr(SubResult.take());
   11792       return E;
   11793     }
   11794 
   11795     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
   11796 
   11797     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
   11798 
   11799     ExprResult VisitMemberExpr(MemberExpr *E) {
   11800       return resolveDecl(E, E->getMemberDecl());
   11801     }
   11802 
   11803     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   11804       return resolveDecl(E, E->getDecl());
   11805     }
   11806   };
   11807 }
   11808 
   11809 /// Rebuilds a call expression which yielded __unknown_anytype.
   11810 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
   11811   Expr *CalleeExpr = E->getCallee();
   11812 
   11813   enum FnKind {
   11814     FK_MemberFunction,
   11815     FK_FunctionPointer,
   11816     FK_BlockPointer
   11817   };
   11818 
   11819   FnKind Kind;
   11820   QualType CalleeType = CalleeExpr->getType();
   11821   if (CalleeType == S.Context.BoundMemberTy) {
   11822     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
   11823     Kind = FK_MemberFunction;
   11824     CalleeType = Expr::findBoundMemberType(CalleeExpr);
   11825   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
   11826     CalleeType = Ptr->getPointeeType();
   11827     Kind = FK_FunctionPointer;
   11828   } else {
   11829     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
   11830     Kind = FK_BlockPointer;
   11831   }
   11832   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   11833 
   11834   // Verify that this is a legal result type of a function.
   11835   if (DestType->isArrayType() || DestType->isFunctionType()) {
   11836     unsigned diagID = diag::err_func_returning_array_function;
   11837     if (Kind == FK_BlockPointer)
   11838       diagID = diag::err_block_returning_array_function;
   11839 
   11840     S.Diag(E->getExprLoc(), diagID)
   11841       << DestType->isFunctionType() << DestType;
   11842     return ExprError();
   11843   }
   11844 
   11845   // Otherwise, go ahead and set DestType as the call's result.
   11846   E->setType(DestType.getNonLValueExprType(S.Context));
   11847   E->setValueKind(Expr::getValueKindForType(DestType));
   11848   assert(E->getObjectKind() == OK_Ordinary);
   11849 
   11850   // Rebuild the function type, replacing the result type with DestType.
   11851   if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
   11852     DestType =
   11853       S.Context.getFunctionType(DestType,
   11854                                 ArrayRef<QualType>(Proto->arg_type_begin(),
   11855                                                    Proto->getNumArgs()),
   11856                                 Proto->getExtProtoInfo());
   11857   else
   11858     DestType = S.Context.getFunctionNoProtoType(DestType,
   11859                                                 FnType->getExtInfo());
   11860 
   11861   // Rebuild the appropriate pointer-to-function type.
   11862   switch (Kind) {
   11863   case FK_MemberFunction:
   11864     // Nothing to do.
   11865     break;
   11866 
   11867   case FK_FunctionPointer:
   11868     DestType = S.Context.getPointerType(DestType);
   11869     break;
   11870 
   11871   case FK_BlockPointer:
   11872     DestType = S.Context.getBlockPointerType(DestType);
   11873     break;
   11874   }
   11875 
   11876   // Finally, we can recurse.
   11877   ExprResult CalleeResult = Visit(CalleeExpr);
   11878   if (!CalleeResult.isUsable()) return ExprError();
   11879   E->setCallee(CalleeResult.take());
   11880 
   11881   // Bind a temporary if necessary.
   11882   return S.MaybeBindToTemporary(E);
   11883 }
   11884 
   11885 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
   11886   // Verify that this is a legal result type of a call.
   11887   if (DestType->isArrayType() || DestType->isFunctionType()) {
   11888     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
   11889       << DestType->isFunctionType() << DestType;
   11890     return ExprError();
   11891   }
   11892 
   11893   // Rewrite the method result type if available.
   11894   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
   11895     assert(Method->getResultType() == S.Context.UnknownAnyTy);
   11896     Method->setResultType(DestType);
   11897   }
   11898 
   11899   // Change the type of the message.
   11900   E->setType(DestType.getNonReferenceType());
   11901   E->setValueKind(Expr::getValueKindForType(DestType));
   11902 
   11903   return S.MaybeBindToTemporary(E);
   11904 }
   11905 
   11906 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
   11907   // The only case we should ever see here is a function-to-pointer decay.
   11908   if (E->getCastKind() == CK_FunctionToPointerDecay) {
   11909     assert(E->getValueKind() == VK_RValue);
   11910     assert(E->getObjectKind() == OK_Ordinary);
   11911 
   11912     E->setType(DestType);
   11913 
   11914     // Rebuild the sub-expression as the pointee (function) type.
   11915     DestType = DestType->castAs<PointerType>()->getPointeeType();
   11916 
   11917     ExprResult Result = Visit(E->getSubExpr());
   11918     if (!Result.isUsable()) return ExprError();
   11919 
   11920     E->setSubExpr(Result.take());
   11921     return S.Owned(E);
   11922   } else if (E->getCastKind() == CK_LValueToRValue) {
   11923     assert(E->getValueKind() == VK_RValue);
   11924     assert(E->getObjectKind() == OK_Ordinary);
   11925 
   11926     assert(isa<BlockPointerType>(E->getType()));
   11927 
   11928     E->setType(DestType);
   11929 
   11930     // The sub-expression has to be a lvalue reference, so rebuild it as such.
   11931     DestType = S.Context.getLValueReferenceType(DestType);
   11932 
   11933     ExprResult Result = Visit(E->getSubExpr());
   11934     if (!Result.isUsable()) return ExprError();
   11935 
   11936     E->setSubExpr(Result.take());
   11937     return S.Owned(E);
   11938   } else {
   11939     llvm_unreachable("Unhandled cast type!");
   11940   }
   11941 }
   11942 
   11943 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
   11944   ExprValueKind ValueKind = VK_LValue;
   11945   QualType Type = DestType;
   11946 
   11947   // We know how to make this work for certain kinds of decls:
   11948 
   11949   //  - functions
   11950   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
   11951     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
   11952       DestType = Ptr->getPointeeType();
   11953       ExprResult Result = resolveDecl(E, VD);
   11954       if (Result.isInvalid()) return ExprError();
   11955       return S.ImpCastExprToType(Result.take(), Type,
   11956                                  CK_FunctionToPointerDecay, VK_RValue);
   11957     }
   11958 
   11959     if (!Type->isFunctionType()) {
   11960       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
   11961         << VD << E->getSourceRange();
   11962       return ExprError();
   11963     }
   11964 
   11965     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   11966       if (MD->isInstance()) {
   11967         ValueKind = VK_RValue;
   11968         Type = S.Context.BoundMemberTy;
   11969       }
   11970 
   11971     // Function references aren't l-values in C.
   11972     if (!S.getLangOpts().CPlusPlus)
   11973       ValueKind = VK_RValue;
   11974 
   11975   //  - variables
   11976   } else if (isa<VarDecl>(VD)) {
   11977     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
   11978       Type = RefTy->getPointeeType();
   11979     } else if (Type->isFunctionType()) {
   11980       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
   11981         << VD << E->getSourceRange();
   11982       return ExprError();
   11983     }
   11984 
   11985   //  - nothing else
   11986   } else {
   11987     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
   11988       << VD << E->getSourceRange();
   11989     return ExprError();
   11990   }
   11991 
   11992   VD->setType(DestType);
   11993   E->setType(Type);
   11994   E->setValueKind(ValueKind);
   11995   return S.Owned(E);
   11996 }
   11997 
   11998 /// Check a cast of an unknown-any type.  We intentionally only
   11999 /// trigger this for C-style casts.
   12000 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
   12001                                      Expr *CastExpr, CastKind &CastKind,
   12002                                      ExprValueKind &VK, CXXCastPath &Path) {
   12003   // Rewrite the casted expression from scratch.
   12004   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
   12005   if (!result.isUsable()) return ExprError();
   12006 
   12007   CastExpr = result.take();
   12008   VK = CastExpr->getValueKind();
   12009   CastKind = CK_NoOp;
   12010 
   12011   return CastExpr;
   12012 }
   12013 
   12014 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
   12015   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
   12016 }
   12017 
   12018 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
   12019                                     Expr *arg, QualType &paramType) {
   12020   // If the syntactic form of the argument is not an explicit cast of
   12021   // any sort, just do default argument promotion.
   12022   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
   12023   if (!castArg) {
   12024     ExprResult result = DefaultArgumentPromotion(arg);
   12025     if (result.isInvalid()) return ExprError();
   12026     paramType = result.get()->getType();
   12027     return result;
   12028   }
   12029 
   12030   // Otherwise, use the type that was written in the explicit cast.
   12031   assert(!arg->hasPlaceholderType());
   12032   paramType = castArg->getTypeAsWritten();
   12033 
   12034   // Copy-initialize a parameter of that type.
   12035   InitializedEntity entity =
   12036     InitializedEntity::InitializeParameter(Context, paramType,
   12037                                            /*consumed*/ false);
   12038   return PerformCopyInitialization(entity, callLoc, Owned(arg));
   12039 }
   12040 
   12041 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
   12042   Expr *orig = E;
   12043   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
   12044   while (true) {
   12045     E = E->IgnoreParenImpCasts();
   12046     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
   12047       E = call->getCallee();
   12048       diagID = diag::err_uncasted_call_of_unknown_any;
   12049     } else {
   12050       break;
   12051     }
   12052   }
   12053 
   12054   SourceLocation loc;
   12055   NamedDecl *d;
   12056   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
   12057     loc = ref->getLocation();
   12058     d = ref->getDecl();
   12059   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
   12060     loc = mem->getMemberLoc();
   12061     d = mem->getMemberDecl();
   12062   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
   12063     diagID = diag::err_uncasted_call_of_unknown_any;
   12064     loc = msg->getSelectorStartLoc();
   12065     d = msg->getMethodDecl();
   12066     if (!d) {
   12067       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
   12068         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
   12069         << orig->getSourceRange();
   12070       return ExprError();
   12071     }
   12072   } else {
   12073     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   12074       << E->getSourceRange();
   12075     return ExprError();
   12076   }
   12077 
   12078   S.Diag(loc, diagID) << d << orig->getSourceRange();
   12079 
   12080   // Never recoverable.
   12081   return ExprError();
   12082 }
   12083 
   12084 /// Check for operands with placeholder types and complain if found.
   12085 /// Returns true if there was an error and no recovery was possible.
   12086 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
   12087   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
   12088   if (!placeholderType) return Owned(E);
   12089 
   12090   switch (placeholderType->getKind()) {
   12091 
   12092   // Overloaded expressions.
   12093   case BuiltinType::Overload: {
   12094     // Try to resolve a single function template specialization.
   12095     // This is obligatory.
   12096     ExprResult result = Owned(E);
   12097     if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
   12098       return result;
   12099 
   12100     // If that failed, try to recover with a call.
   12101     } else {
   12102       tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
   12103                            /*complain*/ true);
   12104       return result;
   12105     }
   12106   }
   12107 
   12108   // Bound member functions.
   12109   case BuiltinType::BoundMember: {
   12110     ExprResult result = Owned(E);
   12111     tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
   12112                          /*complain*/ true);
   12113     return result;
   12114   }
   12115 
   12116   // ARC unbridged casts.
   12117   case BuiltinType::ARCUnbridgedCast: {
   12118     Expr *realCast = stripARCUnbridgedCast(E);
   12119     diagnoseARCUnbridgedCast(realCast);
   12120     return Owned(realCast);
   12121   }
   12122 
   12123   // Expressions of unknown type.
   12124   case BuiltinType::UnknownAny:
   12125     return diagnoseUnknownAnyExpr(*this, E);
   12126 
   12127   // Pseudo-objects.
   12128   case BuiltinType::PseudoObject:
   12129     return checkPseudoObjectRValue(E);
   12130 
   12131   case BuiltinType::BuiltinFn:
   12132     Diag(E->getLocStart(), diag::err_builtin_fn_use);
   12133     return ExprError();
   12134 
   12135   // Everything else should be impossible.
   12136 #define BUILTIN_TYPE(Id, SingletonId) \
   12137   case BuiltinType::Id:
   12138 #define PLACEHOLDER_TYPE(Id, SingletonId)
   12139 #include "clang/AST/BuiltinTypes.def"
   12140     break;
   12141   }
   12142 
   12143   llvm_unreachable("invalid placeholder type!");
   12144 }
   12145 
   12146 bool Sema::CheckCaseExpression(Expr *E) {
   12147   if (E->isTypeDependent())
   12148     return true;
   12149   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
   12150     return E->getType()->isIntegralOrEnumerationType();
   12151   return false;
   12152 }
   12153 
   12154 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
   12155 ExprResult
   12156 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
   12157   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
   12158          "Unknown Objective-C Boolean value!");
   12159   QualType BoolT = Context.ObjCBuiltinBoolTy;
   12160   if (!Context.getBOOLDecl()) {
   12161     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
   12162                         Sema::LookupOrdinaryName);
   12163     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
   12164       NamedDecl *ND = Result.getFoundDecl();
   12165       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
   12166         Context.setBOOLDecl(TD);
   12167     }
   12168   }
   12169   if (Context.getBOOLDecl())
   12170     BoolT = Context.getBOOLType();
   12171   return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
   12172                                         BoolT, OpLoc));
   12173 }
   12174