Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: kushalav (at) google.com (Avanish Kushal)
     30 
     31 #include <cmath>
     32 #include <ctime>
     33 #include <algorithm>
     34 #include <set>
     35 #include <vector>
     36 #include <utility>
     37 #include "ceres/block_structure.h"
     38 #include "ceres/collections_port.h"
     39 #include "ceres/graph.h"
     40 #include "glog/logging.h"
     41 
     42 namespace ceres {
     43 namespace internal {
     44 
     45 void ComputeVisibility(const CompressedRowBlockStructure& block_structure,
     46                        const int num_eliminate_blocks,
     47                        vector< set<int> >* visibility) {
     48   CHECK_NOTNULL(visibility);
     49 
     50   // Clear the visibility vector and resize it to hold a
     51   // vector for each camera.
     52   visibility->resize(0);
     53   visibility->resize(block_structure.cols.size() - num_eliminate_blocks);
     54 
     55   for (int i = 0; i < block_structure.rows.size(); ++i) {
     56     const vector<Cell>& cells = block_structure.rows[i].cells;
     57     int block_id = cells[0].block_id;
     58     // If the first block is not an e_block, then skip this row block.
     59     if (block_id >= num_eliminate_blocks) {
     60       continue;
     61     }
     62 
     63     for (int j = 1; j < cells.size(); ++j) {
     64       int camera_block_id = cells[j].block_id - num_eliminate_blocks;
     65       DCHECK_GE(camera_block_id, 0);
     66       DCHECK_LT(camera_block_id, visibility->size());
     67       (*visibility)[camera_block_id].insert(block_id);
     68     }
     69   }
     70 }
     71 
     72 Graph<int>* CreateSchurComplementGraph(const vector<set<int> >& visibility) {
     73   const time_t start_time = time(NULL);
     74   // Compute the number of e_blocks/point blocks. Since the visibility
     75   // set for each e_block/camera contains the set of e_blocks/points
     76   // visible to it, we find the maximum across all visibility sets.
     77   int num_points = 0;
     78   for (int i = 0; i < visibility.size(); i++) {
     79     if (visibility[i].size() > 0) {
     80       num_points = max(num_points, (*visibility[i].rbegin()) + 1);
     81     }
     82   }
     83 
     84   // Invert the visibility. The input is a camera->point mapping,
     85   // which tells us which points are visible in which
     86   // cameras. However, to compute the sparsity structure of the Schur
     87   // Complement efficiently, its better to have the point->camera
     88   // mapping.
     89   vector<set<int> > inverse_visibility(num_points);
     90   for (int i = 0; i < visibility.size(); i++) {
     91     const set<int>& visibility_set = visibility[i];
     92     for (set<int>::const_iterator it = visibility_set.begin();
     93          it != visibility_set.end();
     94          ++it) {
     95       inverse_visibility[*it].insert(i);
     96     }
     97   }
     98 
     99   // Map from camera pairs to number of points visible to both cameras
    100   // in the pair.
    101   HashMap<pair<int, int>, int > camera_pairs;
    102 
    103   // Count the number of points visible to each camera/f_block pair.
    104   for (vector<set<int> >::const_iterator it = inverse_visibility.begin();
    105        it != inverse_visibility.end();
    106        ++it) {
    107     const set<int>& inverse_visibility_set = *it;
    108     for (set<int>::const_iterator camera1 = inverse_visibility_set.begin();
    109          camera1 != inverse_visibility_set.end();
    110          ++camera1) {
    111       set<int>::const_iterator camera2 = camera1;
    112       for (++camera2; camera2 != inverse_visibility_set.end(); ++camera2) {
    113         ++(camera_pairs[make_pair(*camera1, *camera2)]);
    114       }
    115     }
    116   }
    117 
    118   Graph<int>* graph = new Graph<int>();
    119 
    120   // Add vertices and initialize the pairs for self edges so that self
    121   // edges are guaranteed. This is needed for the Canonical views
    122   // algorithm to work correctly.
    123   static const double kSelfEdgeWeight = 1.0;
    124   for (int i = 0; i < visibility.size(); ++i) {
    125     graph->AddVertex(i);
    126     graph->AddEdge(i, i, kSelfEdgeWeight);
    127   }
    128 
    129   // Add an edge for each camera pair.
    130   for (HashMap<pair<int, int>, int>::const_iterator it = camera_pairs.begin();
    131        it != camera_pairs.end();
    132        ++it) {
    133     const int camera1 = it->first.first;
    134     const int camera2 = it->first.second;
    135     CHECK_NE(camera1, camera2);
    136 
    137     const int count = it->second;
    138     // Static cast necessary for Windows.
    139     const double weight = static_cast<double>(count) /
    140         (sqrt(static_cast<double>(visibility[camera1].size() * visibility[camera2].size())));
    141     graph->AddEdge(camera1, camera2, weight);
    142   }
    143 
    144   VLOG(2) << "Schur complement graph time: " << (time(NULL) - start_time);
    145   return graph;
    146 }
    147 
    148 }  // namespace internal
    149 }  // namespace ceres
    150