Home | History | Annotate | Download | only in PathSensitive
      1 //==- CoreEngine.h - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines a generic engine for intraprocedural, path-sensitive,
     11 //  dataflow analysis via graph reachability.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_GR_COREENGINE
     16 #define LLVM_CLANG_GR_COREENGINE
     17 
     18 #include "clang/AST/Expr.h"
     19 #include "clang/Analysis/AnalysisContext.h"
     20 #include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
     21 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
     22 #include "clang/StaticAnalyzer/Core/PathSensitive/FunctionSummary.h"
     23 #include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
     24 #include "llvm/ADT/OwningPtr.h"
     25 
     26 namespace clang {
     27 
     28 class ProgramPointTag;
     29 
     30 namespace ento {
     31 
     32 class NodeBuilder;
     33 
     34 //===----------------------------------------------------------------------===//
     35 /// CoreEngine - Implements the core logic of the graph-reachability
     36 ///   analysis. It traverses the CFG and generates the ExplodedGraph.
     37 ///   Program "states" are treated as opaque void pointers.
     38 ///   The template class CoreEngine (which subclasses CoreEngine)
     39 ///   provides the matching component to the engine that knows the actual types
     40 ///   for states.  Note that this engine only dispatches to transfer functions
     41 ///   at the statement and block-level.  The analyses themselves must implement
     42 ///   any transfer function logic and the sub-expression level (if any).
     43 class CoreEngine {
     44   friend struct NodeBuilderContext;
     45   friend class NodeBuilder;
     46   friend class ExprEngine;
     47   friend class CommonNodeBuilder;
     48   friend class IndirectGotoNodeBuilder;
     49   friend class SwitchNodeBuilder;
     50   friend class EndOfFunctionNodeBuilder;
     51 public:
     52   typedef std::vector<std::pair<BlockEdge, const ExplodedNode*> >
     53             BlocksExhausted;
     54 
     55   typedef std::vector<std::pair<const CFGBlock*, const ExplodedNode*> >
     56             BlocksAborted;
     57 
     58 private:
     59 
     60   SubEngine& SubEng;
     61 
     62   /// G - The simulation graph.  Each node is a (location,state) pair.
     63   OwningPtr<ExplodedGraph> G;
     64 
     65   /// WList - A set of queued nodes that need to be processed by the
     66   ///  worklist algorithm.  It is up to the implementation of WList to decide
     67   ///  the order that nodes are processed.
     68   OwningPtr<WorkList> WList;
     69 
     70   /// BCounterFactory - A factory object for created BlockCounter objects.
     71   ///   These are used to record for key nodes in the ExplodedGraph the
     72   ///   number of times different CFGBlocks have been visited along a path.
     73   BlockCounter::Factory BCounterFactory;
     74 
     75   /// The locations where we stopped doing work because we visited a location
     76   ///  too many times.
     77   BlocksExhausted blocksExhausted;
     78 
     79   /// The locations where we stopped because the engine aborted analysis,
     80   /// usually because it could not reason about something.
     81   BlocksAborted blocksAborted;
     82 
     83   /// The information about functions shared by the whole translation unit.
     84   /// (This data is owned by AnalysisConsumer.)
     85   FunctionSummariesTy *FunctionSummaries;
     86 
     87   void generateNode(const ProgramPoint &Loc,
     88                     ProgramStateRef State,
     89                     ExplodedNode *Pred);
     90 
     91   void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
     92   void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
     93   void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);
     94   void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);
     95 
     96   void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
     97                     ExplodedNode *Pred);
     98 
     99 private:
    100   CoreEngine(const CoreEngine &) LLVM_DELETED_FUNCTION;
    101   void operator=(const CoreEngine &) LLVM_DELETED_FUNCTION;
    102 
    103   ExplodedNode *generateCallExitBeginNode(ExplodedNode *N);
    104 
    105 public:
    106   /// Construct a CoreEngine object to analyze the provided CFG.
    107   CoreEngine(SubEngine& subengine,
    108              FunctionSummariesTy *FS)
    109     : SubEng(subengine), G(new ExplodedGraph()),
    110       WList(WorkList::makeDFS()),
    111       BCounterFactory(G->getAllocator()),
    112       FunctionSummaries(FS){}
    113 
    114   /// getGraph - Returns the exploded graph.
    115   ExplodedGraph& getGraph() { return *G.get(); }
    116 
    117   /// takeGraph - Returns the exploded graph.  Ownership of the graph is
    118   ///  transferred to the caller.
    119   ExplodedGraph* takeGraph() { return G.take(); }
    120 
    121   /// ExecuteWorkList - Run the worklist algorithm for a maximum number of
    122   ///  steps.  Returns true if there is still simulation state on the worklist.
    123   bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
    124                        ProgramStateRef InitState);
    125   /// Returns true if there is still simulation state on the worklist.
    126   bool ExecuteWorkListWithInitialState(const LocationContext *L,
    127                                        unsigned Steps,
    128                                        ProgramStateRef InitState,
    129                                        ExplodedNodeSet &Dst);
    130 
    131   /// Dispatch the work list item based on the given location information.
    132   /// Use Pred parameter as the predecessor state.
    133   void dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
    134                         const WorkListUnit& WU);
    135 
    136   // Functions for external checking of whether we have unfinished work
    137   bool wasBlockAborted() const { return !blocksAborted.empty(); }
    138   bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
    139   bool hasWorkRemaining() const { return wasBlocksExhausted() ||
    140                                          WList->hasWork() ||
    141                                          wasBlockAborted(); }
    142 
    143   /// Inform the CoreEngine that a basic block was aborted because
    144   /// it could not be completely analyzed.
    145   void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
    146     blocksAborted.push_back(std::make_pair(block, node));
    147   }
    148 
    149   WorkList *getWorkList() const { return WList.get(); }
    150 
    151   BlocksExhausted::const_iterator blocks_exhausted_begin() const {
    152     return blocksExhausted.begin();
    153   }
    154   BlocksExhausted::const_iterator blocks_exhausted_end() const {
    155     return blocksExhausted.end();
    156   }
    157   BlocksAborted::const_iterator blocks_aborted_begin() const {
    158     return blocksAborted.begin();
    159   }
    160   BlocksAborted::const_iterator blocks_aborted_end() const {
    161     return blocksAborted.end();
    162   }
    163 
    164   /// \brief Enqueue the given set of nodes onto the work list.
    165   void enqueue(ExplodedNodeSet &Set);
    166 
    167   /// \brief Enqueue nodes that were created as a result of processing
    168   /// a statement onto the work list.
    169   void enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx);
    170 
    171   /// \brief enqueue the nodes corresponding to the end of function onto the
    172   /// end of path / work list.
    173   void enqueueEndOfFunction(ExplodedNodeSet &Set);
    174 
    175   /// \brief Enqueue a single node created as a result of statement processing.
    176   void enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx);
    177 };
    178 
    179 // TODO: Turn into a calss.
    180 struct NodeBuilderContext {
    181   const CoreEngine &Eng;
    182   const CFGBlock *Block;
    183   const LocationContext *LC;
    184   NodeBuilderContext(const CoreEngine &E, const CFGBlock *B, ExplodedNode *N)
    185     : Eng(E), Block(B), LC(N->getLocationContext()) { assert(B); }
    186 
    187   /// \brief Return the CFGBlock associated with this builder.
    188   const CFGBlock *getBlock() const { return Block; }
    189 
    190   /// \brief Returns the number of times the current basic block has been
    191   /// visited on the exploded graph path.
    192   unsigned blockCount() const {
    193     return Eng.WList->getBlockCounter().getNumVisited(
    194                     LC->getCurrentStackFrame(),
    195                     Block->getBlockID());
    196   }
    197 };
    198 
    199 /// \class NodeBuilder
    200 /// \brief This is the simplest builder which generates nodes in the
    201 /// ExplodedGraph.
    202 ///
    203 /// The main benefit of the builder is that it automatically tracks the
    204 /// frontier nodes (or destination set). This is the set of nodes which should
    205 /// be propagated to the next step / builder. They are the nodes which have been
    206 /// added to the builder (either as the input node set or as the newly
    207 /// constructed nodes) but did not have any outgoing transitions added.
    208 class NodeBuilder {
    209   virtual void anchor();
    210 protected:
    211   const NodeBuilderContext &C;
    212 
    213   /// Specifies if the builder results have been finalized. For example, if it
    214   /// is set to false, autotransitions are yet to be generated.
    215   bool Finalized;
    216   bool HasGeneratedNodes;
    217   /// \brief The frontier set - a set of nodes which need to be propagated after
    218   /// the builder dies.
    219   ExplodedNodeSet &Frontier;
    220 
    221   /// Checkes if the results are ready.
    222   virtual bool checkResults() {
    223     if (!Finalized)
    224       return false;
    225     return true;
    226   }
    227 
    228   bool hasNoSinksInFrontier() {
    229     for (iterator I = Frontier.begin(), E = Frontier.end(); I != E; ++I) {
    230       if ((*I)->isSink())
    231         return false;
    232     }
    233     return true;
    234   }
    235 
    236   /// Allow subclasses to finalize results before result_begin() is executed.
    237   virtual void finalizeResults() {}
    238 
    239   ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
    240                                  ProgramStateRef State,
    241                                  ExplodedNode *Pred,
    242                                  bool MarkAsSink = false);
    243 
    244 public:
    245   NodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
    246               const NodeBuilderContext &Ctx, bool F = true)
    247     : C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
    248     Frontier.Add(SrcNode);
    249   }
    250 
    251   NodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
    252               const NodeBuilderContext &Ctx, bool F = true)
    253     : C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
    254     Frontier.insert(SrcSet);
    255     assert(hasNoSinksInFrontier());
    256   }
    257 
    258   virtual ~NodeBuilder() {}
    259 
    260   /// \brief Generates a node in the ExplodedGraph.
    261   ExplodedNode *generateNode(const ProgramPoint &PP,
    262                              ProgramStateRef State,
    263                              ExplodedNode *Pred) {
    264     return generateNodeImpl(PP, State, Pred, false);
    265   }
    266 
    267   /// \brief Generates a sink in the ExplodedGraph.
    268   ///
    269   /// When a node is marked as sink, the exploration from the node is stopped -
    270   /// the node becomes the last node on the path and certain kinds of bugs are
    271   /// suppressed.
    272   ExplodedNode *generateSink(const ProgramPoint &PP,
    273                              ProgramStateRef State,
    274                              ExplodedNode *Pred) {
    275     return generateNodeImpl(PP, State, Pred, true);
    276   }
    277 
    278   const ExplodedNodeSet &getResults() {
    279     finalizeResults();
    280     assert(checkResults());
    281     return Frontier;
    282   }
    283 
    284   typedef ExplodedNodeSet::iterator iterator;
    285   /// \brief Iterators through the results frontier.
    286   inline iterator begin() {
    287     finalizeResults();
    288     assert(checkResults());
    289     return Frontier.begin();
    290   }
    291   inline iterator end() {
    292     finalizeResults();
    293     return Frontier.end();
    294   }
    295 
    296   const NodeBuilderContext &getContext() { return C; }
    297   bool hasGeneratedNodes() { return HasGeneratedNodes; }
    298 
    299   void takeNodes(const ExplodedNodeSet &S) {
    300     for (ExplodedNodeSet::iterator I = S.begin(), E = S.end(); I != E; ++I )
    301       Frontier.erase(*I);
    302   }
    303   void takeNodes(ExplodedNode *N) { Frontier.erase(N); }
    304   void addNodes(const ExplodedNodeSet &S) { Frontier.insert(S); }
    305   void addNodes(ExplodedNode *N) { Frontier.Add(N); }
    306 };
    307 
    308 /// \class NodeBuilderWithSinks
    309 /// \brief This node builder keeps track of the generated sink nodes.
    310 class NodeBuilderWithSinks: public NodeBuilder {
    311   virtual void anchor();
    312 protected:
    313   SmallVector<ExplodedNode*, 2> sinksGenerated;
    314   ProgramPoint &Location;
    315 
    316 public:
    317   NodeBuilderWithSinks(ExplodedNode *Pred, ExplodedNodeSet &DstSet,
    318                        const NodeBuilderContext &Ctx, ProgramPoint &L)
    319     : NodeBuilder(Pred, DstSet, Ctx), Location(L) {}
    320 
    321   ExplodedNode *generateNode(ProgramStateRef State,
    322                              ExplodedNode *Pred,
    323                              const ProgramPointTag *Tag = 0) {
    324     const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
    325     return NodeBuilder::generateNode(LocalLoc, State, Pred);
    326   }
    327 
    328   ExplodedNode *generateSink(ProgramStateRef State, ExplodedNode *Pred,
    329                              const ProgramPointTag *Tag = 0) {
    330     const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
    331     ExplodedNode *N = NodeBuilder::generateSink(LocalLoc, State, Pred);
    332     if (N && N->isSink())
    333       sinksGenerated.push_back(N);
    334     return N;
    335   }
    336 
    337   const SmallVectorImpl<ExplodedNode*> &getSinks() const {
    338     return sinksGenerated;
    339   }
    340 };
    341 
    342 /// \class StmtNodeBuilder
    343 /// \brief This builder class is useful for generating nodes that resulted from
    344 /// visiting a statement. The main difference from its parent NodeBuilder is
    345 /// that it creates a statement specific ProgramPoint.
    346 class StmtNodeBuilder: public NodeBuilder {
    347   NodeBuilder *EnclosingBldr;
    348 public:
    349 
    350   /// \brief Constructs a StmtNodeBuilder. If the builder is going to process
    351   /// nodes currently owned by another builder(with larger scope), use
    352   /// Enclosing builder to transfer ownership.
    353   StmtNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
    354                       const NodeBuilderContext &Ctx, NodeBuilder *Enclosing = 0)
    355     : NodeBuilder(SrcNode, DstSet, Ctx), EnclosingBldr(Enclosing) {
    356     if (EnclosingBldr)
    357       EnclosingBldr->takeNodes(SrcNode);
    358   }
    359 
    360   StmtNodeBuilder(ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
    361                       const NodeBuilderContext &Ctx, NodeBuilder *Enclosing = 0)
    362     : NodeBuilder(SrcSet, DstSet, Ctx), EnclosingBldr(Enclosing) {
    363     if (EnclosingBldr)
    364       for (ExplodedNodeSet::iterator I = SrcSet.begin(),
    365                                      E = SrcSet.end(); I != E; ++I )
    366         EnclosingBldr->takeNodes(*I);
    367   }
    368 
    369   virtual ~StmtNodeBuilder();
    370 
    371   using NodeBuilder::generateNode;
    372   using NodeBuilder::generateSink;
    373 
    374   ExplodedNode *generateNode(const Stmt *S,
    375                              ExplodedNode *Pred,
    376                              ProgramStateRef St,
    377                              const ProgramPointTag *tag = 0,
    378                              ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
    379     const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
    380                                   Pred->getLocationContext(), tag);
    381     return NodeBuilder::generateNode(L, St, Pred);
    382   }
    383 
    384   ExplodedNode *generateSink(const Stmt *S,
    385                              ExplodedNode *Pred,
    386                              ProgramStateRef St,
    387                              const ProgramPointTag *tag = 0,
    388                              ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
    389     const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
    390                                   Pred->getLocationContext(), tag);
    391     return NodeBuilder::generateSink(L, St, Pred);
    392   }
    393 };
    394 
    395 /// \brief BranchNodeBuilder is responsible for constructing the nodes
    396 /// corresponding to the two branches of the if statement - true and false.
    397 class BranchNodeBuilder: public NodeBuilder {
    398   virtual void anchor();
    399   const CFGBlock *DstT;
    400   const CFGBlock *DstF;
    401 
    402   bool InFeasibleTrue;
    403   bool InFeasibleFalse;
    404 
    405 public:
    406   BranchNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
    407                     const NodeBuilderContext &C,
    408                     const CFGBlock *dstT, const CFGBlock *dstF)
    409   : NodeBuilder(SrcNode, DstSet, C), DstT(dstT), DstF(dstF),
    410     InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
    411     // The branch node builder does not generate autotransitions.
    412     // If there are no successors it means that both branches are infeasible.
    413     takeNodes(SrcNode);
    414   }
    415 
    416   BranchNodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
    417                     const NodeBuilderContext &C,
    418                     const CFGBlock *dstT, const CFGBlock *dstF)
    419   : NodeBuilder(SrcSet, DstSet, C), DstT(dstT), DstF(dstF),
    420     InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
    421     takeNodes(SrcSet);
    422   }
    423 
    424   ExplodedNode *generateNode(ProgramStateRef State, bool branch,
    425                              ExplodedNode *Pred);
    426 
    427   const CFGBlock *getTargetBlock(bool branch) const {
    428     return branch ? DstT : DstF;
    429   }
    430 
    431   void markInfeasible(bool branch) {
    432     if (branch)
    433       InFeasibleTrue = true;
    434     else
    435       InFeasibleFalse = true;
    436   }
    437 
    438   bool isFeasible(bool branch) {
    439     return branch ? !InFeasibleTrue : !InFeasibleFalse;
    440   }
    441 };
    442 
    443 class IndirectGotoNodeBuilder {
    444   CoreEngine& Eng;
    445   const CFGBlock *Src;
    446   const CFGBlock &DispatchBlock;
    447   const Expr *E;
    448   ExplodedNode *Pred;
    449 
    450 public:
    451   IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
    452                     const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
    453     : Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}
    454 
    455   class iterator {
    456     CFGBlock::const_succ_iterator I;
    457 
    458     friend class IndirectGotoNodeBuilder;
    459     iterator(CFGBlock::const_succ_iterator i) : I(i) {}
    460   public:
    461 
    462     iterator &operator++() { ++I; return *this; }
    463     bool operator!=(const iterator &X) const { return I != X.I; }
    464 
    465     const LabelDecl *getLabel() const {
    466       return cast<LabelStmt>((*I)->getLabel())->getDecl();
    467     }
    468 
    469     const CFGBlock *getBlock() const {
    470       return *I;
    471     }
    472   };
    473 
    474   iterator begin() { return iterator(DispatchBlock.succ_begin()); }
    475   iterator end() { return iterator(DispatchBlock.succ_end()); }
    476 
    477   ExplodedNode *generateNode(const iterator &I,
    478                              ProgramStateRef State,
    479                              bool isSink = false);
    480 
    481   const Expr *getTarget() const { return E; }
    482 
    483   ProgramStateRef getState() const { return Pred->State; }
    484 
    485   const LocationContext *getLocationContext() const {
    486     return Pred->getLocationContext();
    487   }
    488 };
    489 
    490 class SwitchNodeBuilder {
    491   CoreEngine& Eng;
    492   const CFGBlock *Src;
    493   const Expr *Condition;
    494   ExplodedNode *Pred;
    495 
    496 public:
    497   SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
    498                     const Expr *condition, CoreEngine* eng)
    499   : Eng(*eng), Src(src), Condition(condition), Pred(pred) {}
    500 
    501   class iterator {
    502     CFGBlock::const_succ_reverse_iterator I;
    503 
    504     friend class SwitchNodeBuilder;
    505     iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}
    506 
    507   public:
    508     iterator &operator++() { ++I; return *this; }
    509     bool operator!=(const iterator &X) const { return I != X.I; }
    510     bool operator==(const iterator &X) const { return I == X.I; }
    511 
    512     const CaseStmt *getCase() const {
    513       return cast<CaseStmt>((*I)->getLabel());
    514     }
    515 
    516     const CFGBlock *getBlock() const {
    517       return *I;
    518     }
    519   };
    520 
    521   iterator begin() { return iterator(Src->succ_rbegin()+1); }
    522   iterator end() { return iterator(Src->succ_rend()); }
    523 
    524   const SwitchStmt *getSwitch() const {
    525     return cast<SwitchStmt>(Src->getTerminator());
    526   }
    527 
    528   ExplodedNode *generateCaseStmtNode(const iterator &I,
    529                                      ProgramStateRef State);
    530 
    531   ExplodedNode *generateDefaultCaseNode(ProgramStateRef State,
    532                                         bool isSink = false);
    533 
    534   const Expr *getCondition() const { return Condition; }
    535 
    536   ProgramStateRef getState() const { return Pred->State; }
    537 
    538   const LocationContext *getLocationContext() const {
    539     return Pred->getLocationContext();
    540   }
    541 };
    542 
    543 } // end ento namespace
    544 } // end clang namespace
    545 
    546 #endif
    547