Home | History | Annotate | Download | only in Core
      1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a basic region store model. In this model, we do have field
     11 // sensitivity. But we assume nothing about the heap shape. So recursive data
     12 // structures are largely ignored. Basically we do 1-limiting analysis.
     13 // Parameter pointers are assumed with no aliasing. Pointee objects of
     14 // parameters are created lazily.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/Analysis/Analyses/LiveVariables.h"
     20 #include "clang/Analysis/AnalysisContext.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     23 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
     24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     26 #include "llvm/ADT/ImmutableList.h"
     27 #include "llvm/ADT/ImmutableMap.h"
     28 #include "llvm/ADT/Optional.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 
     31 using namespace clang;
     32 using namespace ento;
     33 
     34 //===----------------------------------------------------------------------===//
     35 // Representation of binding keys.
     36 //===----------------------------------------------------------------------===//
     37 
     38 namespace {
     39 class BindingKey {
     40 public:
     41   enum Kind { Default = 0x0, Direct = 0x1 };
     42 private:
     43   enum { Symbolic = 0x2 };
     44 
     45   llvm::PointerIntPair<const MemRegion *, 2> P;
     46   uint64_t Data;
     47 
     48   /// Create a key for a binding to region \p r, which has a symbolic offset
     49   /// from region \p Base.
     50   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
     51     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
     52     assert(r && Base && "Must have known regions.");
     53     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
     54   }
     55 
     56   /// Create a key for a binding at \p offset from base region \p r.
     57   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
     58     : P(r, k), Data(offset) {
     59     assert(r && "Must have known regions.");
     60     assert(getOffset() == offset && "Failed to store offset");
     61     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
     62   }
     63 public:
     64 
     65   bool isDirect() const { return P.getInt() & Direct; }
     66   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
     67 
     68   const MemRegion *getRegion() const { return P.getPointer(); }
     69   uint64_t getOffset() const {
     70     assert(!hasSymbolicOffset());
     71     return Data;
     72   }
     73 
     74   const SubRegion *getConcreteOffsetRegion() const {
     75     assert(hasSymbolicOffset());
     76     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
     77   }
     78 
     79   const MemRegion *getBaseRegion() const {
     80     if (hasSymbolicOffset())
     81       return getConcreteOffsetRegion()->getBaseRegion();
     82     return getRegion()->getBaseRegion();
     83   }
     84 
     85   void Profile(llvm::FoldingSetNodeID& ID) const {
     86     ID.AddPointer(P.getOpaqueValue());
     87     ID.AddInteger(Data);
     88   }
     89 
     90   static BindingKey Make(const MemRegion *R, Kind k);
     91 
     92   bool operator<(const BindingKey &X) const {
     93     if (P.getOpaqueValue() < X.P.getOpaqueValue())
     94       return true;
     95     if (P.getOpaqueValue() > X.P.getOpaqueValue())
     96       return false;
     97     return Data < X.Data;
     98   }
     99 
    100   bool operator==(const BindingKey &X) const {
    101     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
    102            Data == X.Data;
    103   }
    104 
    105   LLVM_ATTRIBUTE_USED void dump() const;
    106 };
    107 } // end anonymous namespace
    108 
    109 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
    110   const RegionOffset &RO = R->getAsOffset();
    111   if (RO.hasSymbolicOffset())
    112     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
    113 
    114   return BindingKey(RO.getRegion(), RO.getOffset(), k);
    115 }
    116 
    117 namespace llvm {
    118   static inline
    119   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
    120     os << '(' << K.getRegion();
    121     if (!K.hasSymbolicOffset())
    122       os << ',' << K.getOffset();
    123     os << ',' << (K.isDirect() ? "direct" : "default")
    124        << ')';
    125     return os;
    126   }
    127 
    128   template <typename T> struct isPodLike;
    129   template <> struct isPodLike<BindingKey> {
    130     static const bool value = true;
    131   };
    132 } // end llvm namespace
    133 
    134 void BindingKey::dump() const {
    135   llvm::errs() << *this;
    136 }
    137 
    138 //===----------------------------------------------------------------------===//
    139 // Actual Store type.
    140 //===----------------------------------------------------------------------===//
    141 
    142 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
    143 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
    144 typedef std::pair<BindingKey, SVal> BindingPair;
    145 
    146 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
    147         RegionBindings;
    148 
    149 namespace {
    150 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
    151                                  ClusterBindings> {
    152  ClusterBindings::Factory &CBFactory;
    153 public:
    154   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
    155           ParentTy;
    156 
    157   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
    158                     const RegionBindings::TreeTy *T,
    159                     RegionBindings::TreeTy::Factory *F)
    160     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
    161       CBFactory(CBFactory) {}
    162 
    163   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
    164     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
    165       CBFactory(CBFactory) {}
    166 
    167   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
    168     return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
    169                              CBFactory);
    170   }
    171 
    172   RegionBindingsRef remove(key_type_ref K) const {
    173     return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
    174                              CBFactory);
    175   }
    176 
    177   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
    178 
    179   RegionBindingsRef addBinding(const MemRegion *R,
    180                                BindingKey::Kind k, SVal V) const;
    181 
    182   RegionBindingsRef &operator=(const RegionBindingsRef &X) {
    183     *static_cast<ParentTy*>(this) = X;
    184     return *this;
    185   }
    186 
    187   const SVal *lookup(BindingKey K) const;
    188   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
    189   const ClusterBindings *lookup(const MemRegion *R) const {
    190     return static_cast<const ParentTy*>(this)->lookup(R);
    191   }
    192 
    193   RegionBindingsRef removeBinding(BindingKey K);
    194 
    195   RegionBindingsRef removeBinding(const MemRegion *R,
    196                                   BindingKey::Kind k);
    197 
    198   RegionBindingsRef removeBinding(const MemRegion *R) {
    199     return removeBinding(R, BindingKey::Direct).
    200            removeBinding(R, BindingKey::Default);
    201   }
    202 
    203   Optional<SVal> getDirectBinding(const MemRegion *R) const;
    204 
    205   /// getDefaultBinding - Returns an SVal* representing an optional default
    206   ///  binding associated with a region and its subregions.
    207   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
    208 
    209   /// Return the internal tree as a Store.
    210   Store asStore() const {
    211     return asImmutableMap().getRootWithoutRetain();
    212   }
    213 
    214   void dump(raw_ostream &OS, const char *nl) const {
    215    for (iterator I = begin(), E = end(); I != E; ++I) {
    216      const ClusterBindings &Cluster = I.getData();
    217      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
    218           CI != CE; ++CI) {
    219        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
    220      }
    221      OS << nl;
    222    }
    223   }
    224 
    225   LLVM_ATTRIBUTE_USED void dump() const {
    226     dump(llvm::errs(), "\n");
    227   }
    228 };
    229 } // end anonymous namespace
    230 
    231 typedef const RegionBindingsRef& RegionBindingsConstRef;
    232 
    233 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
    234   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
    235 }
    236 
    237 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
    238   if (R->isBoundable())
    239     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
    240       if (TR->getValueType()->isUnionType())
    241         return UnknownVal();
    242 
    243   return Optional<SVal>::create(lookup(R, BindingKey::Default));
    244 }
    245 
    246 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
    247   const MemRegion *Base = K.getBaseRegion();
    248 
    249   const ClusterBindings *ExistingCluster = lookup(Base);
    250   ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
    251                              : CBFactory.getEmptyMap());
    252 
    253   ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
    254   return add(Base, NewCluster);
    255 }
    256 
    257 
    258 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
    259                                                 BindingKey::Kind k,
    260                                                 SVal V) const {
    261   return addBinding(BindingKey::Make(R, k), V);
    262 }
    263 
    264 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
    265   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
    266   if (!Cluster)
    267     return 0;
    268   return Cluster->lookup(K);
    269 }
    270 
    271 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
    272                                       BindingKey::Kind k) const {
    273   return lookup(BindingKey::Make(R, k));
    274 }
    275 
    276 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
    277   const MemRegion *Base = K.getBaseRegion();
    278   const ClusterBindings *Cluster = lookup(Base);
    279   if (!Cluster)
    280     return *this;
    281 
    282   ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
    283   if (NewCluster.isEmpty())
    284     return remove(Base);
    285   return add(Base, NewCluster);
    286 }
    287 
    288 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
    289                                                 BindingKey::Kind k){
    290   return removeBinding(BindingKey::Make(R, k));
    291 }
    292 
    293 //===----------------------------------------------------------------------===//
    294 // Fine-grained control of RegionStoreManager.
    295 //===----------------------------------------------------------------------===//
    296 
    297 namespace {
    298 struct minimal_features_tag {};
    299 struct maximal_features_tag {};
    300 
    301 class RegionStoreFeatures {
    302   bool SupportsFields;
    303 public:
    304   RegionStoreFeatures(minimal_features_tag) :
    305     SupportsFields(false) {}
    306 
    307   RegionStoreFeatures(maximal_features_tag) :
    308     SupportsFields(true) {}
    309 
    310   void enableFields(bool t) { SupportsFields = t; }
    311 
    312   bool supportsFields() const { return SupportsFields; }
    313 };
    314 }
    315 
    316 //===----------------------------------------------------------------------===//
    317 // Main RegionStore logic.
    318 //===----------------------------------------------------------------------===//
    319 
    320 namespace {
    321 
    322 class RegionStoreManager : public StoreManager {
    323 public:
    324   const RegionStoreFeatures Features;
    325   RegionBindings::Factory RBFactory;
    326   mutable ClusterBindings::Factory CBFactory;
    327 
    328   typedef std::vector<SVal> SValListTy;
    329 private:
    330   typedef llvm::DenseMap<const LazyCompoundValData *,
    331                          SValListTy> LazyBindingsMapTy;
    332   LazyBindingsMapTy LazyBindingsMap;
    333 
    334 public:
    335   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
    336     : StoreManager(mgr), Features(f),
    337       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {}
    338 
    339 
    340   /// setImplicitDefaultValue - Set the default binding for the provided
    341   ///  MemRegion to the value implicitly defined for compound literals when
    342   ///  the value is not specified.
    343   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
    344                                             const MemRegion *R, QualType T);
    345 
    346   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
    347   ///  type.  'Array' represents the lvalue of the array being decayed
    348   ///  to a pointer, and the returned SVal represents the decayed
    349   ///  version of that lvalue (i.e., a pointer to the first element of
    350   ///  the array).  This is called by ExprEngine when evaluating
    351   ///  casts from arrays to pointers.
    352   SVal ArrayToPointer(Loc Array);
    353 
    354   StoreRef getInitialStore(const LocationContext *InitLoc) {
    355     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
    356   }
    357 
    358   //===-------------------------------------------------------------------===//
    359   // Binding values to regions.
    360   //===-------------------------------------------------------------------===//
    361   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
    362                                            const Expr *Ex,
    363                                            unsigned Count,
    364                                            const LocationContext *LCtx,
    365                                            RegionBindingsRef B,
    366                                            InvalidatedRegions *Invalidated);
    367 
    368   StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
    369                              const Expr *E, unsigned Count,
    370                              const LocationContext *LCtx,
    371                              InvalidatedSymbols &IS,
    372                              const CallEvent *Call,
    373                              InvalidatedRegions *Invalidated);
    374 
    375   bool scanReachableSymbols(Store S, const MemRegion *R,
    376                             ScanReachableSymbols &Callbacks);
    377 
    378   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
    379                                             const SubRegion *R);
    380 
    381 public: // Part of public interface to class.
    382 
    383   virtual StoreRef Bind(Store store, Loc LV, SVal V) {
    384     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
    385   }
    386 
    387   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
    388 
    389   // BindDefault is only used to initialize a region with a default value.
    390   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
    391     RegionBindingsRef B = getRegionBindings(store);
    392     assert(!B.lookup(R, BindingKey::Default));
    393     assert(!B.lookup(R, BindingKey::Direct));
    394     return StoreRef(B.addBinding(R, BindingKey::Default, V)
    395                      .asImmutableMap()
    396                      .getRootWithoutRetain(), *this);
    397   }
    398 
    399   /// \brief Create a new store that binds a value to a compound literal.
    400   ///
    401   /// \param ST The original store whose bindings are the basis for the new
    402   ///        store.
    403   ///
    404   /// \param CL The compound literal to bind (the binding key).
    405   ///
    406   /// \param LC The LocationContext for the binding.
    407   ///
    408   /// \param V The value to bind to the compound literal.
    409   StoreRef bindCompoundLiteral(Store ST,
    410                                const CompoundLiteralExpr *CL,
    411                                const LocationContext *LC, SVal V);
    412 
    413   /// BindStruct - Bind a compound value to a structure.
    414   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
    415                                const TypedValueRegion* R, SVal V);
    416 
    417   /// BindVector - Bind a compound value to a vector.
    418   RegionBindingsRef bindVector(RegionBindingsConstRef B,
    419                                const TypedValueRegion* R, SVal V);
    420 
    421   RegionBindingsRef bindArray(RegionBindingsConstRef B,
    422                               const TypedValueRegion* R,
    423                               SVal V);
    424 
    425   /// Clears out all bindings in the given region and assigns a new value
    426   /// as a Default binding.
    427   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
    428                                   const TypedRegion *R,
    429                                   SVal DefaultVal);
    430 
    431   /// \brief Create a new store with the specified binding removed.
    432   /// \param ST the original store, that is the basis for the new store.
    433   /// \param L the location whose binding should be removed.
    434   virtual StoreRef killBinding(Store ST, Loc L);
    435 
    436   void incrementReferenceCount(Store store) {
    437     getRegionBindings(store).manualRetain();
    438   }
    439 
    440   /// If the StoreManager supports it, decrement the reference count of
    441   /// the specified Store object.  If the reference count hits 0, the memory
    442   /// associated with the object is recycled.
    443   void decrementReferenceCount(Store store) {
    444     getRegionBindings(store).manualRelease();
    445   }
    446 
    447   bool includedInBindings(Store store, const MemRegion *region) const;
    448 
    449   /// \brief Return the value bound to specified location in a given state.
    450   ///
    451   /// The high level logic for this method is this:
    452   /// getBinding (L)
    453   ///   if L has binding
    454   ///     return L's binding
    455   ///   else if L is in killset
    456   ///     return unknown
    457   ///   else
    458   ///     if L is on stack or heap
    459   ///       return undefined
    460   ///     else
    461   ///       return symbolic
    462   virtual SVal getBinding(Store S, Loc L, QualType T) {
    463     return getBinding(getRegionBindings(S), L, T);
    464   }
    465 
    466   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
    467 
    468   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
    469 
    470   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
    471 
    472   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
    473 
    474   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
    475 
    476   SVal getBindingForLazySymbol(const TypedValueRegion *R);
    477 
    478   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
    479                                          const TypedValueRegion *R,
    480                                          QualType Ty,
    481                                          const MemRegion *superR);
    482 
    483   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
    484                       RegionBindingsRef LazyBinding);
    485 
    486   /// Get bindings for the values in a struct and return a CompoundVal, used
    487   /// when doing struct copy:
    488   /// struct s x, y;
    489   /// x = y;
    490   /// y's value is retrieved by this method.
    491   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
    492   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
    493   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
    494 
    495   /// Used to lazily generate derived symbols for bindings that are defined
    496   /// implicitly by default bindings in a super region.
    497   ///
    498   /// Note that callers may need to specially handle LazyCompoundVals, which
    499   /// are returned as is in case the caller needs to treat them differently.
    500   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
    501                                                   const MemRegion *superR,
    502                                                   const TypedValueRegion *R,
    503                                                   QualType Ty);
    504 
    505   /// Get the state and region whose binding this region \p R corresponds to.
    506   ///
    507   /// If there is no lazy binding for \p R, the returned value will have a null
    508   /// \c second. Note that a null pointer can represents a valid Store.
    509   std::pair<Store, const SubRegion *>
    510   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
    511                   const SubRegion *originalRegion);
    512 
    513   /// Returns the cached set of interesting SVals contained within a lazy
    514   /// binding.
    515   ///
    516   /// The precise value of "interesting" is determined for the purposes of
    517   /// RegionStore's internal analysis. It must always contain all regions and
    518   /// symbols, but may omit constants and other kinds of SVal.
    519   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
    520 
    521   //===------------------------------------------------------------------===//
    522   // State pruning.
    523   //===------------------------------------------------------------------===//
    524 
    525   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
    526   ///  It returns a new Store with these values removed.
    527   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
    528                               SymbolReaper& SymReaper);
    529 
    530   //===------------------------------------------------------------------===//
    531   // Region "extents".
    532   //===------------------------------------------------------------------===//
    533 
    534   // FIXME: This method will soon be eliminated; see the note in Store.h.
    535   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
    536                                          const MemRegion* R, QualType EleTy);
    537 
    538   //===------------------------------------------------------------------===//
    539   // Utility methods.
    540   //===------------------------------------------------------------------===//
    541 
    542   RegionBindingsRef getRegionBindings(Store store) const {
    543     return RegionBindingsRef(CBFactory,
    544                              static_cast<const RegionBindings::TreeTy*>(store),
    545                              RBFactory.getTreeFactory());
    546   }
    547 
    548   void print(Store store, raw_ostream &Out, const char* nl,
    549              const char *sep);
    550 
    551   void iterBindings(Store store, BindingsHandler& f) {
    552     RegionBindingsRef B = getRegionBindings(store);
    553     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    554       const ClusterBindings &Cluster = I.getData();
    555       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
    556            CI != CE; ++CI) {
    557         const BindingKey &K = CI.getKey();
    558         if (!K.isDirect())
    559           continue;
    560         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
    561           // FIXME: Possibly incorporate the offset?
    562           if (!f.HandleBinding(*this, store, R, CI.getData()))
    563             return;
    564         }
    565       }
    566     }
    567   }
    568 };
    569 
    570 } // end anonymous namespace
    571 
    572 //===----------------------------------------------------------------------===//
    573 // RegionStore creation.
    574 //===----------------------------------------------------------------------===//
    575 
    576 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
    577   RegionStoreFeatures F = maximal_features_tag();
    578   return new RegionStoreManager(StMgr, F);
    579 }
    580 
    581 StoreManager *
    582 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
    583   RegionStoreFeatures F = minimal_features_tag();
    584   F.enableFields(true);
    585   return new RegionStoreManager(StMgr, F);
    586 }
    587 
    588 
    589 //===----------------------------------------------------------------------===//
    590 // Region Cluster analysis.
    591 //===----------------------------------------------------------------------===//
    592 
    593 namespace {
    594 template <typename DERIVED>
    595 class ClusterAnalysis  {
    596 protected:
    597   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
    598   typedef SmallVector<const MemRegion *, 10> WorkList;
    599 
    600   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
    601 
    602   WorkList WL;
    603 
    604   RegionStoreManager &RM;
    605   ASTContext &Ctx;
    606   SValBuilder &svalBuilder;
    607 
    608   RegionBindingsRef B;
    609 
    610   const bool includeGlobals;
    611 
    612   const ClusterBindings *getCluster(const MemRegion *R) {
    613     return B.lookup(R);
    614   }
    615 
    616 public:
    617   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
    618                   RegionBindingsRef b, const bool includeGlobals)
    619     : RM(rm), Ctx(StateMgr.getContext()),
    620       svalBuilder(StateMgr.getSValBuilder()),
    621       B(b), includeGlobals(includeGlobals) {}
    622 
    623   RegionBindingsRef getRegionBindings() const { return B; }
    624 
    625   bool isVisited(const MemRegion *R) {
    626     return Visited.count(getCluster(R));
    627   }
    628 
    629   void GenerateClusters() {
    630     // Scan the entire set of bindings and record the region clusters.
    631     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
    632          RI != RE; ++RI){
    633       const MemRegion *Base = RI.getKey();
    634 
    635       const ClusterBindings &Cluster = RI.getData();
    636       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
    637       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
    638 
    639       if (includeGlobals)
    640         if (isa<NonStaticGlobalSpaceRegion>(Base->getMemorySpace()))
    641           AddToWorkList(Base, &Cluster);
    642     }
    643   }
    644 
    645   bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) {
    646     if (C && !Visited.insert(C))
    647       return false;
    648     WL.push_back(R);
    649     return true;
    650   }
    651 
    652   bool AddToWorkList(const MemRegion *R) {
    653     const MemRegion *baseR = R->getBaseRegion();
    654     return AddToWorkList(baseR, getCluster(baseR));
    655   }
    656 
    657   void RunWorkList() {
    658     while (!WL.empty()) {
    659       const MemRegion *baseR = WL.pop_back_val();
    660 
    661       // First visit the cluster.
    662       if (const ClusterBindings *Cluster = getCluster(baseR))
    663         static_cast<DERIVED*>(this)->VisitCluster(baseR, *Cluster);
    664 
    665       // Next, visit the base region.
    666       static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
    667     }
    668   }
    669 
    670 public:
    671   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
    672   void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {}
    673   void VisitBaseRegion(const MemRegion *baseR) {}
    674 };
    675 }
    676 
    677 //===----------------------------------------------------------------------===//
    678 // Binding invalidation.
    679 //===----------------------------------------------------------------------===//
    680 
    681 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
    682                                               ScanReachableSymbols &Callbacks) {
    683   assert(R == R->getBaseRegion() && "Should only be called for base regions");
    684   RegionBindingsRef B = getRegionBindings(S);
    685   const ClusterBindings *Cluster = B.lookup(R);
    686 
    687   if (!Cluster)
    688     return true;
    689 
    690   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
    691        RI != RE; ++RI) {
    692     if (!Callbacks.scan(RI.getData()))
    693       return false;
    694   }
    695 
    696   return true;
    697 }
    698 
    699 static inline bool isUnionField(const FieldRegion *FR) {
    700   return FR->getDecl()->getParent()->isUnion();
    701 }
    702 
    703 typedef SmallVector<const FieldDecl *, 8> FieldVector;
    704 
    705 void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
    706   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
    707 
    708   const MemRegion *Base = K.getConcreteOffsetRegion();
    709   const MemRegion *R = K.getRegion();
    710 
    711   while (R != Base) {
    712     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
    713       if (!isUnionField(FR))
    714         Fields.push_back(FR->getDecl());
    715 
    716     R = cast<SubRegion>(R)->getSuperRegion();
    717   }
    718 }
    719 
    720 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
    721   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
    722 
    723   if (Fields.empty())
    724     return true;
    725 
    726   FieldVector FieldsInBindingKey;
    727   getSymbolicOffsetFields(K, FieldsInBindingKey);
    728 
    729   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
    730   if (Delta >= 0)
    731     return std::equal(FieldsInBindingKey.begin() + Delta,
    732                       FieldsInBindingKey.end(),
    733                       Fields.begin());
    734   else
    735     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
    736                       Fields.begin() - Delta);
    737 }
    738 
    739 /// Collects all bindings in \p Cluster that may refer to bindings within
    740 /// \p Top.
    741 ///
    742 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
    743 /// \c second is the value (an SVal).
    744 ///
    745 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
    746 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
    747 /// an aggregate within a larger aggregate with a default binding.
    748 static void
    749 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
    750                          SValBuilder &SVB, const ClusterBindings &Cluster,
    751                          const SubRegion *Top, BindingKey TopKey,
    752                          bool IncludeAllDefaultBindings) {
    753   FieldVector FieldsInSymbolicSubregions;
    754   if (TopKey.hasSymbolicOffset()) {
    755     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
    756     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
    757     TopKey = BindingKey::Make(Top, BindingKey::Default);
    758   }
    759 
    760   // Find the length (in bits) of the region being invalidated.
    761   uint64_t Length = UINT64_MAX;
    762   SVal Extent = Top->getExtent(SVB);
    763   if (Optional<nonloc::ConcreteInt> ExtentCI =
    764           Extent.getAs<nonloc::ConcreteInt>()) {
    765     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
    766     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
    767     // Extents are in bytes but region offsets are in bits. Be careful!
    768     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
    769   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
    770     if (FR->getDecl()->isBitField())
    771       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
    772   }
    773 
    774   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
    775        I != E; ++I) {
    776     BindingKey NextKey = I.getKey();
    777     if (NextKey.getRegion() == TopKey.getRegion()) {
    778       // FIXME: This doesn't catch the case where we're really invalidating a
    779       // region with a symbolic offset. Example:
    780       //      R: points[i].y
    781       //   Next: points[0].x
    782 
    783       if (NextKey.getOffset() > TopKey.getOffset() &&
    784           NextKey.getOffset() - TopKey.getOffset() < Length) {
    785         // Case 1: The next binding is inside the region we're invalidating.
    786         // Include it.
    787         Bindings.push_back(*I);
    788 
    789       } else if (NextKey.getOffset() == TopKey.getOffset()) {
    790         // Case 2: The next binding is at the same offset as the region we're
    791         // invalidating. In this case, we need to leave default bindings alone,
    792         // since they may be providing a default value for a regions beyond what
    793         // we're invalidating.
    794         // FIXME: This is probably incorrect; consider invalidating an outer
    795         // struct whose first field is bound to a LazyCompoundVal.
    796         if (IncludeAllDefaultBindings || NextKey.isDirect())
    797           Bindings.push_back(*I);
    798       }
    799 
    800     } else if (NextKey.hasSymbolicOffset()) {
    801       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
    802       if (Top->isSubRegionOf(Base)) {
    803         // Case 3: The next key is symbolic and we just changed something within
    804         // its concrete region. We don't know if the binding is still valid, so
    805         // we'll be conservative and include it.
    806         if (IncludeAllDefaultBindings || NextKey.isDirect())
    807           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
    808             Bindings.push_back(*I);
    809       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
    810         // Case 4: The next key is symbolic, but we changed a known
    811         // super-region. In this case the binding is certainly included.
    812         if (Top == Base || BaseSR->isSubRegionOf(Top))
    813           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
    814             Bindings.push_back(*I);
    815       }
    816     }
    817   }
    818 }
    819 
    820 static void
    821 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
    822                          SValBuilder &SVB, const ClusterBindings &Cluster,
    823                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
    824   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
    825                            BindingKey::Make(Top, BindingKey::Default),
    826                            IncludeAllDefaultBindings);
    827 }
    828 
    829 RegionBindingsRef
    830 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
    831                                             const SubRegion *Top) {
    832   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
    833   const MemRegion *ClusterHead = TopKey.getBaseRegion();
    834   if (Top == ClusterHead) {
    835     // We can remove an entire cluster's bindings all in one go.
    836     return B.remove(Top);
    837   }
    838 
    839   const ClusterBindings *Cluster = B.lookup(ClusterHead);
    840   if (!Cluster)
    841     return B;
    842 
    843   SmallVector<BindingPair, 32> Bindings;
    844   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
    845                            /*IncludeAllDefaultBindings=*/false);
    846 
    847   ClusterBindingsRef Result(*Cluster, CBFactory);
    848   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
    849                                                     E = Bindings.end();
    850        I != E; ++I)
    851     Result = Result.remove(I->first);
    852 
    853   // If we're invalidating a region with a symbolic offset, we need to make sure
    854   // we don't treat the base region as uninitialized anymore.
    855   // FIXME: This isn't very precise; see the example in the loop.
    856   if (TopKey.hasSymbolicOffset()) {
    857     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
    858     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
    859                         UnknownVal());
    860   }
    861 
    862   if (Result.isEmpty())
    863     return B.remove(ClusterHead);
    864   return B.add(ClusterHead, Result.asImmutableMap());
    865 }
    866 
    867 namespace {
    868 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
    869 {
    870   const Expr *Ex;
    871   unsigned Count;
    872   const LocationContext *LCtx;
    873   InvalidatedSymbols &IS;
    874   StoreManager::InvalidatedRegions *Regions;
    875 public:
    876   invalidateRegionsWorker(RegionStoreManager &rm,
    877                           ProgramStateManager &stateMgr,
    878                           RegionBindingsRef b,
    879                           const Expr *ex, unsigned count,
    880                           const LocationContext *lctx,
    881                           InvalidatedSymbols &is,
    882                           StoreManager::InvalidatedRegions *r,
    883                           bool includeGlobals)
    884     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
    885       Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
    886 
    887   void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
    888   void VisitBaseRegion(const MemRegion *baseR);
    889 
    890 private:
    891   void VisitBinding(SVal V);
    892 };
    893 }
    894 
    895 void invalidateRegionsWorker::VisitBinding(SVal V) {
    896   // A symbol?  Mark it touched by the invalidation.
    897   if (SymbolRef Sym = V.getAsSymbol())
    898     IS.insert(Sym);
    899 
    900   if (const MemRegion *R = V.getAsRegion()) {
    901     AddToWorkList(R);
    902     return;
    903   }
    904 
    905   // Is it a LazyCompoundVal?  All references get invalidated as well.
    906   if (Optional<nonloc::LazyCompoundVal> LCS =
    907           V.getAs<nonloc::LazyCompoundVal>()) {
    908 
    909     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
    910 
    911     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
    912                                                         E = Vals.end();
    913          I != E; ++I)
    914       VisitBinding(*I);
    915 
    916     return;
    917   }
    918 }
    919 
    920 void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR,
    921                                            const ClusterBindings &C) {
    922   for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
    923     VisitBinding(I.getData());
    924 
    925   B = B.remove(BaseR);
    926 }
    927 
    928 void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
    929   // Symbolic region?  Mark that symbol touched by the invalidation.
    930   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
    931     IS.insert(SR->getSymbol());
    932 
    933   // BlockDataRegion?  If so, invalidate captured variables that are passed
    934   // by reference.
    935   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
    936     for (BlockDataRegion::referenced_vars_iterator
    937          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
    938          BI != BE; ++BI) {
    939       const VarRegion *VR = BI.getCapturedRegion();
    940       const VarDecl *VD = VR->getDecl();
    941       if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
    942         AddToWorkList(VR);
    943       }
    944       else if (Loc::isLocType(VR->getValueType())) {
    945         // Map the current bindings to a Store to retrieve the value
    946         // of the binding.  If that binding itself is a region, we should
    947         // invalidate that region.  This is because a block may capture
    948         // a pointer value, but the thing pointed by that pointer may
    949         // get invalidated.
    950         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
    951         if (Optional<Loc> L = V.getAs<Loc>()) {
    952           if (const MemRegion *LR = L->getAsRegion())
    953             AddToWorkList(LR);
    954         }
    955       }
    956     }
    957     return;
    958   }
    959 
    960   // Otherwise, we have a normal data region. Record that we touched the region.
    961   if (Regions)
    962     Regions->push_back(baseR);
    963 
    964   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
    965     // Invalidate the region by setting its default value to
    966     // conjured symbol. The type of the symbol is irrelavant.
    967     DefinedOrUnknownSVal V =
    968       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
    969     B = B.addBinding(baseR, BindingKey::Default, V);
    970     return;
    971   }
    972 
    973   if (!baseR->isBoundable())
    974     return;
    975 
    976   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
    977   QualType T = TR->getValueType();
    978 
    979     // Invalidate the binding.
    980   if (T->isStructureOrClassType()) {
    981     // Invalidate the region by setting its default value to
    982     // conjured symbol. The type of the symbol is irrelavant.
    983     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
    984                                                           Ctx.IntTy, Count);
    985     B = B.addBinding(baseR, BindingKey::Default, V);
    986     return;
    987   }
    988 
    989   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
    990       // Set the default value of the array to conjured symbol.
    991     DefinedOrUnknownSVal V =
    992     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
    993                                      AT->getElementType(), Count);
    994     B = B.addBinding(baseR, BindingKey::Default, V);
    995     return;
    996   }
    997 
    998   if (includeGlobals &&
    999       isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
   1000     // If the region is a global and we are invalidating all globals,
   1001     // just erase the entry.  This causes all globals to be lazily
   1002     // symbolicated from the same base symbol.
   1003     B = B.removeBinding(baseR);
   1004     return;
   1005   }
   1006 
   1007 
   1008   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1009                                                         T,Count);
   1010   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
   1011   B = B.addBinding(baseR, BindingKey::Direct, V);
   1012 }
   1013 
   1014 RegionBindingsRef
   1015 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
   1016                                            const Expr *Ex,
   1017                                            unsigned Count,
   1018                                            const LocationContext *LCtx,
   1019                                            RegionBindingsRef B,
   1020                                            InvalidatedRegions *Invalidated) {
   1021   // Bind the globals memory space to a new symbol that we will use to derive
   1022   // the bindings for all globals.
   1023   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
   1024   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
   1025                                         /* type does not matter */ Ctx.IntTy,
   1026                                         Count);
   1027 
   1028   B = B.removeBinding(GS)
   1029        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
   1030 
   1031   // Even if there are no bindings in the global scope, we still need to
   1032   // record that we touched it.
   1033   if (Invalidated)
   1034     Invalidated->push_back(GS);
   1035 
   1036   return B;
   1037 }
   1038 
   1039 StoreRef
   1040 RegionStoreManager::invalidateRegions(Store store,
   1041                                       ArrayRef<const MemRegion *> Regions,
   1042                                       const Expr *Ex, unsigned Count,
   1043                                       const LocationContext *LCtx,
   1044                                       InvalidatedSymbols &IS,
   1045                                       const CallEvent *Call,
   1046                                       InvalidatedRegions *Invalidated) {
   1047   invalidateRegionsWorker W(*this, StateMgr,
   1048                             RegionStoreManager::getRegionBindings(store),
   1049                             Ex, Count, LCtx, IS, Invalidated, false);
   1050 
   1051   // Scan the bindings and generate the clusters.
   1052   W.GenerateClusters();
   1053 
   1054   // Add the regions to the worklist.
   1055   for (ArrayRef<const MemRegion *>::iterator
   1056        I = Regions.begin(), E = Regions.end(); I != E; ++I)
   1057     W.AddToWorkList(*I);
   1058 
   1059   W.RunWorkList();
   1060 
   1061   // Return the new bindings.
   1062   RegionBindingsRef B = W.getRegionBindings();
   1063 
   1064   // For all globals which are not static nor immutable: determine which global
   1065   // regions should be invalidated and invalidate them.
   1066   // TODO: This could possibly be more precise with modules.
   1067   //
   1068   // System calls invalidate only system globals.
   1069   if (Call && Call->isInSystemHeader()) {
   1070     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
   1071                                Ex, Count, LCtx, B, Invalidated);
   1072   // Internal calls might invalidate both system and internal globals.
   1073   } else {
   1074     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
   1075                                Ex, Count, LCtx, B, Invalidated);
   1076     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
   1077                                Ex, Count, LCtx, B, Invalidated);
   1078   }
   1079 
   1080   return StoreRef(B.asStore(), *this);
   1081 }
   1082 
   1083 //===----------------------------------------------------------------------===//
   1084 // Extents for regions.
   1085 //===----------------------------------------------------------------------===//
   1086 
   1087 DefinedOrUnknownSVal
   1088 RegionStoreManager::getSizeInElements(ProgramStateRef state,
   1089                                       const MemRegion *R,
   1090                                       QualType EleTy) {
   1091   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
   1092   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
   1093   if (!SizeInt)
   1094     return UnknownVal();
   1095 
   1096   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
   1097 
   1098   if (Ctx.getAsVariableArrayType(EleTy)) {
   1099     // FIXME: We need to track extra state to properly record the size
   1100     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
   1101     // we don't have a divide-by-zero below.
   1102     return UnknownVal();
   1103   }
   1104 
   1105   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
   1106 
   1107   // If a variable is reinterpreted as a type that doesn't fit into a larger
   1108   // type evenly, round it down.
   1109   // This is a signed value, since it's used in arithmetic with signed indices.
   1110   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
   1111 }
   1112 
   1113 //===----------------------------------------------------------------------===//
   1114 // Location and region casting.
   1115 //===----------------------------------------------------------------------===//
   1116 
   1117 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
   1118 ///  type.  'Array' represents the lvalue of the array being decayed
   1119 ///  to a pointer, and the returned SVal represents the decayed
   1120 ///  version of that lvalue (i.e., a pointer to the first element of
   1121 ///  the array).  This is called by ExprEngine when evaluating casts
   1122 ///  from arrays to pointers.
   1123 SVal RegionStoreManager::ArrayToPointer(Loc Array) {
   1124   if (!Array.getAs<loc::MemRegionVal>())
   1125     return UnknownVal();
   1126 
   1127   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
   1128   const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
   1129 
   1130   if (!ArrayR)
   1131     return UnknownVal();
   1132 
   1133   // Strip off typedefs from the ArrayRegion's ValueType.
   1134   QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
   1135   const ArrayType *AT = cast<ArrayType>(T);
   1136   T = AT->getElementType();
   1137 
   1138   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
   1139   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
   1140 }
   1141 
   1142 //===----------------------------------------------------------------------===//
   1143 // Loading values from regions.
   1144 //===----------------------------------------------------------------------===//
   1145 
   1146 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
   1147   assert(!L.getAs<UnknownVal>() && "location unknown");
   1148   assert(!L.getAs<UndefinedVal>() && "location undefined");
   1149 
   1150   // For access to concrete addresses, return UnknownVal.  Checks
   1151   // for null dereferences (and similar errors) are done by checkers, not
   1152   // the Store.
   1153   // FIXME: We can consider lazily symbolicating such memory, but we really
   1154   // should defer this when we can reason easily about symbolicating arrays
   1155   // of bytes.
   1156   if (L.getAs<loc::ConcreteInt>()) {
   1157     return UnknownVal();
   1158   }
   1159   if (!L.getAs<loc::MemRegionVal>()) {
   1160     return UnknownVal();
   1161   }
   1162 
   1163   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
   1164 
   1165   if (isa<AllocaRegion>(MR) ||
   1166       isa<SymbolicRegion>(MR) ||
   1167       isa<CodeTextRegion>(MR)) {
   1168     if (T.isNull()) {
   1169       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
   1170         T = TR->getLocationType();
   1171       else {
   1172         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
   1173         T = SR->getSymbol()->getType();
   1174       }
   1175     }
   1176     MR = GetElementZeroRegion(MR, T);
   1177   }
   1178 
   1179   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
   1180   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
   1181   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
   1182   QualType RTy = R->getValueType();
   1183 
   1184   // FIXME: we do not yet model the parts of a complex type, so treat the
   1185   // whole thing as "unknown".
   1186   if (RTy->isAnyComplexType())
   1187     return UnknownVal();
   1188 
   1189   // FIXME: We should eventually handle funny addressing.  e.g.:
   1190   //
   1191   //   int x = ...;
   1192   //   int *p = &x;
   1193   //   char *q = (char*) p;
   1194   //   char c = *q;  // returns the first byte of 'x'.
   1195   //
   1196   // Such funny addressing will occur due to layering of regions.
   1197   if (RTy->isStructureOrClassType())
   1198     return getBindingForStruct(B, R);
   1199 
   1200   // FIXME: Handle unions.
   1201   if (RTy->isUnionType())
   1202     return UnknownVal();
   1203 
   1204   if (RTy->isArrayType()) {
   1205     if (RTy->isConstantArrayType())
   1206       return getBindingForArray(B, R);
   1207     else
   1208       return UnknownVal();
   1209   }
   1210 
   1211   // FIXME: handle Vector types.
   1212   if (RTy->isVectorType())
   1213     return UnknownVal();
   1214 
   1215   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
   1216     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
   1217 
   1218   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
   1219     // FIXME: Here we actually perform an implicit conversion from the loaded
   1220     // value to the element type.  Eventually we want to compose these values
   1221     // more intelligently.  For example, an 'element' can encompass multiple
   1222     // bound regions (e.g., several bound bytes), or could be a subset of
   1223     // a larger value.
   1224     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
   1225   }
   1226 
   1227   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
   1228     // FIXME: Here we actually perform an implicit conversion from the loaded
   1229     // value to the ivar type.  What we should model is stores to ivars
   1230     // that blow past the extent of the ivar.  If the address of the ivar is
   1231     // reinterpretted, it is possible we stored a different value that could
   1232     // fit within the ivar.  Either we need to cast these when storing them
   1233     // or reinterpret them lazily (as we do here).
   1234     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
   1235   }
   1236 
   1237   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
   1238     // FIXME: Here we actually perform an implicit conversion from the loaded
   1239     // value to the variable type.  What we should model is stores to variables
   1240     // that blow past the extent of the variable.  If the address of the
   1241     // variable is reinterpretted, it is possible we stored a different value
   1242     // that could fit within the variable.  Either we need to cast these when
   1243     // storing them or reinterpret them lazily (as we do here).
   1244     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
   1245   }
   1246 
   1247   const SVal *V = B.lookup(R, BindingKey::Direct);
   1248 
   1249   // Check if the region has a binding.
   1250   if (V)
   1251     return *V;
   1252 
   1253   // The location does not have a bound value.  This means that it has
   1254   // the value it had upon its creation and/or entry to the analyzed
   1255   // function/method.  These are either symbolic values or 'undefined'.
   1256   if (R->hasStackNonParametersStorage()) {
   1257     // All stack variables are considered to have undefined values
   1258     // upon creation.  All heap allocated blocks are considered to
   1259     // have undefined values as well unless they are explicitly bound
   1260     // to specific values.
   1261     return UndefinedVal();
   1262   }
   1263 
   1264   // All other values are symbolic.
   1265   return svalBuilder.getRegionValueSymbolVal(R);
   1266 }
   1267 
   1268 /// Checks to see if store \p B has a lazy binding for region \p R.
   1269 ///
   1270 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
   1271 /// if there are additional bindings within \p R.
   1272 ///
   1273 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
   1274 /// for lazy bindings for super-regions of \p R.
   1275 static Optional<nonloc::LazyCompoundVal>
   1276 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
   1277                        const SubRegion *R, bool AllowSubregionBindings) {
   1278   Optional<SVal> V = B.getDefaultBinding(R);
   1279   if (!V)
   1280     return None;
   1281 
   1282   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
   1283   if (!LCV)
   1284     return None;
   1285 
   1286   // If the LCV is for a subregion, the types won't match, and we shouldn't
   1287   // reuse the binding. Unfortuately we can only check this if the destination
   1288   // region is a TypedValueRegion.
   1289   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) {
   1290     QualType RegionTy = TVR->getValueType();
   1291     QualType SourceRegionTy = LCV->getRegion()->getValueType();
   1292     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
   1293       return None;
   1294   }
   1295 
   1296   if (!AllowSubregionBindings) {
   1297     // If there are any other bindings within this region, we shouldn't reuse
   1298     // the top-level binding.
   1299     SmallVector<BindingPair, 16> Bindings;
   1300     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
   1301                              /*IncludeAllDefaultBindings=*/true);
   1302     if (Bindings.size() > 1)
   1303       return None;
   1304   }
   1305 
   1306   return *LCV;
   1307 }
   1308 
   1309 
   1310 std::pair<Store, const SubRegion *>
   1311 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
   1312                                    const SubRegion *R,
   1313                                    const SubRegion *originalRegion) {
   1314   if (originalRegion != R) {
   1315     if (Optional<nonloc::LazyCompoundVal> V =
   1316           getExistingLazyBinding(svalBuilder, B, R, true))
   1317       return std::make_pair(V->getStore(), V->getRegion());
   1318   }
   1319 
   1320   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
   1321   StoreRegionPair Result = StoreRegionPair();
   1322 
   1323   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
   1324     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
   1325                              originalRegion);
   1326 
   1327     if (Result.second)
   1328       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
   1329 
   1330   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
   1331     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
   1332                                        originalRegion);
   1333 
   1334     if (Result.second)
   1335       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
   1336 
   1337   } else if (const CXXBaseObjectRegion *BaseReg =
   1338                dyn_cast<CXXBaseObjectRegion>(R)) {
   1339     // C++ base object region is another kind of region that we should blast
   1340     // through to look for lazy compound value. It is like a field region.
   1341     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
   1342                              originalRegion);
   1343 
   1344     if (Result.second)
   1345       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
   1346                                                             Result.second);
   1347   }
   1348 
   1349   return Result;
   1350 }
   1351 
   1352 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
   1353                                               const ElementRegion* R) {
   1354   // We do not currently model bindings of the CompoundLiteralregion.
   1355   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
   1356     return UnknownVal();
   1357 
   1358   // Check if the region has a binding.
   1359   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1360     return *V;
   1361 
   1362   const MemRegion* superR = R->getSuperRegion();
   1363 
   1364   // Check if the region is an element region of a string literal.
   1365   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
   1366     // FIXME: Handle loads from strings where the literal is treated as
   1367     // an integer, e.g., *((unsigned int*)"hello")
   1368     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
   1369     if (T != Ctx.getCanonicalType(R->getElementType()))
   1370       return UnknownVal();
   1371 
   1372     const StringLiteral *Str = StrR->getStringLiteral();
   1373     SVal Idx = R->getIndex();
   1374     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
   1375       int64_t i = CI->getValue().getSExtValue();
   1376       // Abort on string underrun.  This can be possible by arbitrary
   1377       // clients of getBindingForElement().
   1378       if (i < 0)
   1379         return UndefinedVal();
   1380       int64_t length = Str->getLength();
   1381       // Technically, only i == length is guaranteed to be null.
   1382       // However, such overflows should be caught before reaching this point;
   1383       // the only time such an access would be made is if a string literal was
   1384       // used to initialize a larger array.
   1385       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
   1386       return svalBuilder.makeIntVal(c, T);
   1387     }
   1388   }
   1389 
   1390   // Check for loads from a code text region.  For such loads, just give up.
   1391   if (isa<CodeTextRegion>(superR))
   1392     return UnknownVal();
   1393 
   1394   // Handle the case where we are indexing into a larger scalar object.
   1395   // For example, this handles:
   1396   //   int x = ...
   1397   //   char *y = &x;
   1398   //   return *y;
   1399   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
   1400   const RegionRawOffset &O = R->getAsArrayOffset();
   1401 
   1402   // If we cannot reason about the offset, return an unknown value.
   1403   if (!O.getRegion())
   1404     return UnknownVal();
   1405 
   1406   if (const TypedValueRegion *baseR =
   1407         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
   1408     QualType baseT = baseR->getValueType();
   1409     if (baseT->isScalarType()) {
   1410       QualType elemT = R->getElementType();
   1411       if (elemT->isScalarType()) {
   1412         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
   1413           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
   1414             if (SymbolRef parentSym = V->getAsSymbol())
   1415               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1416 
   1417             if (V->isUnknownOrUndef())
   1418               return *V;
   1419             // Other cases: give up.  We are indexing into a larger object
   1420             // that has some value, but we don't know how to handle that yet.
   1421             return UnknownVal();
   1422           }
   1423         }
   1424       }
   1425     }
   1426   }
   1427   return getBindingForFieldOrElementCommon(B, R, R->getElementType(),
   1428                                            superR);
   1429 }
   1430 
   1431 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
   1432                                             const FieldRegion* R) {
   1433 
   1434   // Check if the region has a binding.
   1435   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1436     return *V;
   1437 
   1438   QualType Ty = R->getValueType();
   1439   return getBindingForFieldOrElementCommon(B, R, Ty, R->getSuperRegion());
   1440 }
   1441 
   1442 Optional<SVal>
   1443 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
   1444                                                      const MemRegion *superR,
   1445                                                      const TypedValueRegion *R,
   1446                                                      QualType Ty) {
   1447 
   1448   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
   1449     const SVal &val = D.getValue();
   1450     if (SymbolRef parentSym = val.getAsSymbol())
   1451       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1452 
   1453     if (val.isZeroConstant())
   1454       return svalBuilder.makeZeroVal(Ty);
   1455 
   1456     if (val.isUnknownOrUndef())
   1457       return val;
   1458 
   1459     // Lazy bindings are usually handled through getExistingLazyBinding().
   1460     // We should unify these two code paths at some point.
   1461     if (val.getAs<nonloc::LazyCompoundVal>())
   1462       return val;
   1463 
   1464     llvm_unreachable("Unknown default value");
   1465   }
   1466 
   1467   return None;
   1468 }
   1469 
   1470 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
   1471                                         RegionBindingsRef LazyBinding) {
   1472   SVal Result;
   1473   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
   1474     Result = getBindingForElement(LazyBinding, ER);
   1475   else
   1476     Result = getBindingForField(LazyBinding,
   1477                                 cast<FieldRegion>(LazyBindingRegion));
   1478 
   1479   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
   1480   // default value for /part/ of an aggregate from a default value for the
   1481   // /entire/ aggregate. The most common case of this is when struct Outer
   1482   // has as its first member a struct Inner, which is copied in from a stack
   1483   // variable. In this case, even if the Outer's default value is symbolic, 0,
   1484   // or unknown, it gets overridden by the Inner's default value of undefined.
   1485   //
   1486   // This is a general problem -- if the Inner is zero-initialized, the Outer
   1487   // will now look zero-initialized. The proper way to solve this is with a
   1488   // new version of RegionStore that tracks the extent of a binding as well
   1489   // as the offset.
   1490   //
   1491   // This hack only takes care of the undefined case because that can very
   1492   // quickly result in a warning.
   1493   if (Result.isUndef())
   1494     Result = UnknownVal();
   1495 
   1496   return Result;
   1497 }
   1498 
   1499 SVal
   1500 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
   1501                                                       const TypedValueRegion *R,
   1502                                                       QualType Ty,
   1503                                                       const MemRegion *superR) {
   1504 
   1505   // At this point we have already checked in either getBindingForElement or
   1506   // getBindingForField if 'R' has a direct binding.
   1507 
   1508   // Lazy binding?
   1509   Store lazyBindingStore = NULL;
   1510   const SubRegion *lazyBindingRegion = NULL;
   1511   llvm::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
   1512   if (lazyBindingRegion)
   1513     return getLazyBinding(lazyBindingRegion,
   1514                           getRegionBindings(lazyBindingStore));
   1515 
   1516   // Record whether or not we see a symbolic index.  That can completely
   1517   // be out of scope of our lookup.
   1518   bool hasSymbolicIndex = false;
   1519 
   1520   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
   1521   // default value for /part/ of an aggregate from a default value for the
   1522   // /entire/ aggregate. The most common case of this is when struct Outer
   1523   // has as its first member a struct Inner, which is copied in from a stack
   1524   // variable. In this case, even if the Outer's default value is symbolic, 0,
   1525   // or unknown, it gets overridden by the Inner's default value of undefined.
   1526   //
   1527   // This is a general problem -- if the Inner is zero-initialized, the Outer
   1528   // will now look zero-initialized. The proper way to solve this is with a
   1529   // new version of RegionStore that tracks the extent of a binding as well
   1530   // as the offset.
   1531   //
   1532   // This hack only takes care of the undefined case because that can very
   1533   // quickly result in a warning.
   1534   bool hasPartialLazyBinding = false;
   1535 
   1536   const SubRegion *Base = dyn_cast<SubRegion>(superR);
   1537   while (Base) {
   1538     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
   1539       if (D->getAs<nonloc::LazyCompoundVal>()) {
   1540         hasPartialLazyBinding = true;
   1541         break;
   1542       }
   1543 
   1544       return *D;
   1545     }
   1546 
   1547     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
   1548       NonLoc index = ER->getIndex();
   1549       if (!index.isConstant())
   1550         hasSymbolicIndex = true;
   1551     }
   1552 
   1553     // If our super region is a field or element itself, walk up the region
   1554     // hierarchy to see if there is a default value installed in an ancestor.
   1555     Base = dyn_cast<SubRegion>(Base->getSuperRegion());
   1556   }
   1557 
   1558   if (R->hasStackNonParametersStorage()) {
   1559     if (isa<ElementRegion>(R)) {
   1560       // Currently we don't reason specially about Clang-style vectors.  Check
   1561       // if superR is a vector and if so return Unknown.
   1562       if (const TypedValueRegion *typedSuperR =
   1563             dyn_cast<TypedValueRegion>(superR)) {
   1564         if (typedSuperR->getValueType()->isVectorType())
   1565           return UnknownVal();
   1566       }
   1567     }
   1568 
   1569     // FIXME: We also need to take ElementRegions with symbolic indexes into
   1570     // account.  This case handles both directly accessing an ElementRegion
   1571     // with a symbolic offset, but also fields within an element with
   1572     // a symbolic offset.
   1573     if (hasSymbolicIndex)
   1574       return UnknownVal();
   1575 
   1576     if (!hasPartialLazyBinding)
   1577       return UndefinedVal();
   1578   }
   1579 
   1580   // All other values are symbolic.
   1581   return svalBuilder.getRegionValueSymbolVal(R);
   1582 }
   1583 
   1584 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
   1585                                                const ObjCIvarRegion* R) {
   1586   // Check if the region has a binding.
   1587   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1588     return *V;
   1589 
   1590   const MemRegion *superR = R->getSuperRegion();
   1591 
   1592   // Check if the super region has a default binding.
   1593   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
   1594     if (SymbolRef parentSym = V->getAsSymbol())
   1595       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1596 
   1597     // Other cases: give up.
   1598     return UnknownVal();
   1599   }
   1600 
   1601   return getBindingForLazySymbol(R);
   1602 }
   1603 
   1604 static Optional<SVal> getConstValue(SValBuilder &SVB, const VarDecl *VD) {
   1605   ASTContext &Ctx = SVB.getContext();
   1606   if (!VD->getType().isConstQualified())
   1607     return None;
   1608 
   1609   const Expr *Init = VD->getInit();
   1610   if (!Init)
   1611     return None;
   1612 
   1613   llvm::APSInt Result;
   1614   if (!Init->isGLValue() && Init->EvaluateAsInt(Result, Ctx))
   1615     return SVB.makeIntVal(Result);
   1616 
   1617   if (Init->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
   1618     return SVB.makeNull();
   1619 
   1620   // FIXME: Handle other possible constant expressions.
   1621   return None;
   1622 }
   1623 
   1624 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
   1625                                           const VarRegion *R) {
   1626 
   1627   // Check if the region has a binding.
   1628   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1629     return *V;
   1630 
   1631   // Lazily derive a value for the VarRegion.
   1632   const VarDecl *VD = R->getDecl();
   1633   const MemSpaceRegion *MS = R->getMemorySpace();
   1634 
   1635   // Arguments are always symbolic.
   1636   if (isa<StackArgumentsSpaceRegion>(MS))
   1637     return svalBuilder.getRegionValueSymbolVal(R);
   1638 
   1639   // Is 'VD' declared constant?  If so, retrieve the constant value.
   1640   if (Optional<SVal> V = getConstValue(svalBuilder, VD))
   1641     return *V;
   1642 
   1643   // This must come after the check for constants because closure-captured
   1644   // constant variables may appear in UnknownSpaceRegion.
   1645   if (isa<UnknownSpaceRegion>(MS))
   1646     return svalBuilder.getRegionValueSymbolVal(R);
   1647 
   1648   if (isa<GlobalsSpaceRegion>(MS)) {
   1649     QualType T = VD->getType();
   1650 
   1651     // Function-scoped static variables are default-initialized to 0; if they
   1652     // have an initializer, it would have been processed by now.
   1653     if (isa<StaticGlobalSpaceRegion>(MS))
   1654       return svalBuilder.makeZeroVal(T);
   1655 
   1656     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
   1657       assert(!V->getAs<nonloc::LazyCompoundVal>());
   1658       return V.getValue();
   1659     }
   1660 
   1661     return svalBuilder.getRegionValueSymbolVal(R);
   1662   }
   1663 
   1664   return UndefinedVal();
   1665 }
   1666 
   1667 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
   1668   // All other values are symbolic.
   1669   return svalBuilder.getRegionValueSymbolVal(R);
   1670 }
   1671 
   1672 const RegionStoreManager::SValListTy &
   1673 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
   1674   // First, check the cache.
   1675   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
   1676   if (I != LazyBindingsMap.end())
   1677     return I->second;
   1678 
   1679   // If we don't have a list of values cached, start constructing it.
   1680   SValListTy List;
   1681 
   1682   const SubRegion *LazyR = LCV.getRegion();
   1683   RegionBindingsRef B = getRegionBindings(LCV.getStore());
   1684 
   1685   // If this region had /no/ bindings at the time, there are no interesting
   1686   // values to return.
   1687   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
   1688   if (!Cluster)
   1689     return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
   1690 
   1691   SmallVector<BindingPair, 32> Bindings;
   1692   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
   1693                            /*IncludeAllDefaultBindings=*/true);
   1694   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
   1695                                                     E = Bindings.end();
   1696        I != E; ++I) {
   1697     SVal V = I->second;
   1698     if (V.isUnknownOrUndef() || V.isConstant())
   1699       continue;
   1700 
   1701     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
   1702             V.getAs<nonloc::LazyCompoundVal>()) {
   1703       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
   1704       List.insert(List.end(), InnerList.begin(), InnerList.end());
   1705       continue;
   1706     }
   1707 
   1708     List.push_back(V);
   1709   }
   1710 
   1711   return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
   1712 }
   1713 
   1714 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
   1715                                              const TypedValueRegion *R) {
   1716   if (Optional<nonloc::LazyCompoundVal> V =
   1717         getExistingLazyBinding(svalBuilder, B, R, false))
   1718     return *V;
   1719 
   1720   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
   1721 }
   1722 
   1723 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
   1724                                              const TypedValueRegion *R) {
   1725   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
   1726   if (RD->field_empty())
   1727     return UnknownVal();
   1728 
   1729   return createLazyBinding(B, R);
   1730 }
   1731 
   1732 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
   1733                                             const TypedValueRegion *R) {
   1734   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
   1735          "Only constant array types can have compound bindings.");
   1736 
   1737   return createLazyBinding(B, R);
   1738 }
   1739 
   1740 bool RegionStoreManager::includedInBindings(Store store,
   1741                                             const MemRegion *region) const {
   1742   RegionBindingsRef B = getRegionBindings(store);
   1743   region = region->getBaseRegion();
   1744 
   1745   // Quick path: if the base is the head of a cluster, the region is live.
   1746   if (B.lookup(region))
   1747     return true;
   1748 
   1749   // Slow path: if the region is the VALUE of any binding, it is live.
   1750   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
   1751     const ClusterBindings &Cluster = RI.getData();
   1752     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
   1753          CI != CE; ++CI) {
   1754       const SVal &D = CI.getData();
   1755       if (const MemRegion *R = D.getAsRegion())
   1756         if (R->getBaseRegion() == region)
   1757           return true;
   1758     }
   1759   }
   1760 
   1761   return false;
   1762 }
   1763 
   1764 //===----------------------------------------------------------------------===//
   1765 // Binding values to regions.
   1766 //===----------------------------------------------------------------------===//
   1767 
   1768 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
   1769   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
   1770     if (const MemRegion* R = LV->getRegion())
   1771       return StoreRef(getRegionBindings(ST).removeBinding(R)
   1772                                            .asImmutableMap()
   1773                                            .getRootWithoutRetain(),
   1774                       *this);
   1775 
   1776   return StoreRef(ST, *this);
   1777 }
   1778 
   1779 RegionBindingsRef
   1780 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
   1781   if (L.getAs<loc::ConcreteInt>())
   1782     return B;
   1783 
   1784   // If we get here, the location should be a region.
   1785   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
   1786 
   1787   // Check if the region is a struct region.
   1788   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
   1789     QualType Ty = TR->getValueType();
   1790     if (Ty->isArrayType())
   1791       return bindArray(B, TR, V);
   1792     if (Ty->isStructureOrClassType())
   1793       return bindStruct(B, TR, V);
   1794     if (Ty->isVectorType())
   1795       return bindVector(B, TR, V);
   1796   }
   1797 
   1798   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
   1799     // Binding directly to a symbolic region should be treated as binding
   1800     // to element 0.
   1801     QualType T = SR->getSymbol()->getType();
   1802     if (T->isAnyPointerType() || T->isReferenceType())
   1803       T = T->getPointeeType();
   1804 
   1805     R = GetElementZeroRegion(SR, T);
   1806   }
   1807 
   1808   // Clear out bindings that may overlap with this binding.
   1809   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
   1810   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
   1811 }
   1812 
   1813 // FIXME: this method should be merged into Bind().
   1814 StoreRef RegionStoreManager::bindCompoundLiteral(Store ST,
   1815                                                  const CompoundLiteralExpr *CL,
   1816                                                  const LocationContext *LC,
   1817                                                  SVal V) {
   1818   return Bind(ST, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V);
   1819 }
   1820 
   1821 RegionBindingsRef
   1822 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
   1823                                             const MemRegion *R,
   1824                                             QualType T) {
   1825   SVal V;
   1826 
   1827   if (Loc::isLocType(T))
   1828     V = svalBuilder.makeNull();
   1829   else if (T->isIntegerType())
   1830     V = svalBuilder.makeZeroVal(T);
   1831   else if (T->isStructureOrClassType() || T->isArrayType()) {
   1832     // Set the default value to a zero constant when it is a structure
   1833     // or array.  The type doesn't really matter.
   1834     V = svalBuilder.makeZeroVal(Ctx.IntTy);
   1835   }
   1836   else {
   1837     // We can't represent values of this type, but we still need to set a value
   1838     // to record that the region has been initialized.
   1839     // If this assertion ever fires, a new case should be added above -- we
   1840     // should know how to default-initialize any value we can symbolicate.
   1841     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
   1842     V = UnknownVal();
   1843   }
   1844 
   1845   return B.addBinding(R, BindingKey::Default, V);
   1846 }
   1847 
   1848 RegionBindingsRef
   1849 RegionStoreManager::bindArray(RegionBindingsConstRef B,
   1850                               const TypedValueRegion* R,
   1851                               SVal Init) {
   1852 
   1853   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
   1854   QualType ElementTy = AT->getElementType();
   1855   Optional<uint64_t> Size;
   1856 
   1857   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
   1858     Size = CAT->getSize().getZExtValue();
   1859 
   1860   // Check if the init expr is a string literal.
   1861   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
   1862     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
   1863 
   1864     // Treat the string as a lazy compound value.
   1865     StoreRef store(B.asStore(), *this);
   1866     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
   1867         .castAs<nonloc::LazyCompoundVal>();
   1868     return bindAggregate(B, R, LCV);
   1869   }
   1870 
   1871   // Handle lazy compound values.
   1872   if (Init.getAs<nonloc::LazyCompoundVal>())
   1873     return bindAggregate(B, R, Init);
   1874 
   1875   // Remaining case: explicit compound values.
   1876 
   1877   if (Init.isUnknown())
   1878     return setImplicitDefaultValue(B, R, ElementTy);
   1879 
   1880   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
   1881   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   1882   uint64_t i = 0;
   1883 
   1884   RegionBindingsRef NewB(B);
   1885 
   1886   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
   1887     // The init list might be shorter than the array length.
   1888     if (VI == VE)
   1889       break;
   1890 
   1891     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
   1892     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
   1893 
   1894     if (ElementTy->isStructureOrClassType())
   1895       NewB = bindStruct(NewB, ER, *VI);
   1896     else if (ElementTy->isArrayType())
   1897       NewB = bindArray(NewB, ER, *VI);
   1898     else
   1899       NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
   1900   }
   1901 
   1902   // If the init list is shorter than the array length, set the
   1903   // array default value.
   1904   if (Size.hasValue() && i < Size.getValue())
   1905     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
   1906 
   1907   return NewB;
   1908 }
   1909 
   1910 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
   1911                                                  const TypedValueRegion* R,
   1912                                                  SVal V) {
   1913   QualType T = R->getValueType();
   1914   assert(T->isVectorType());
   1915   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
   1916 
   1917   // Handle lazy compound values and symbolic values.
   1918   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
   1919     return bindAggregate(B, R, V);
   1920 
   1921   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   1922   // that we are binding symbolic struct value. Kill the field values, and if
   1923   // the value is symbolic go and bind it as a "default" binding.
   1924   if (!V.getAs<nonloc::CompoundVal>()) {
   1925     return bindAggregate(B, R, UnknownVal());
   1926   }
   1927 
   1928   QualType ElemType = VT->getElementType();
   1929   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
   1930   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   1931   unsigned index = 0, numElements = VT->getNumElements();
   1932   RegionBindingsRef NewB(B);
   1933 
   1934   for ( ; index != numElements ; ++index) {
   1935     if (VI == VE)
   1936       break;
   1937 
   1938     NonLoc Idx = svalBuilder.makeArrayIndex(index);
   1939     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
   1940 
   1941     if (ElemType->isArrayType())
   1942       NewB = bindArray(NewB, ER, *VI);
   1943     else if (ElemType->isStructureOrClassType())
   1944       NewB = bindStruct(NewB, ER, *VI);
   1945     else
   1946       NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
   1947   }
   1948   return NewB;
   1949 }
   1950 
   1951 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
   1952                                                  const TypedValueRegion* R,
   1953                                                  SVal V) {
   1954   if (!Features.supportsFields())
   1955     return B;
   1956 
   1957   QualType T = R->getValueType();
   1958   assert(T->isStructureOrClassType());
   1959 
   1960   const RecordType* RT = T->getAs<RecordType>();
   1961   RecordDecl *RD = RT->getDecl();
   1962 
   1963   if (!RD->isCompleteDefinition())
   1964     return B;
   1965 
   1966   // Handle lazy compound values and symbolic values.
   1967   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
   1968     return bindAggregate(B, R, V);
   1969 
   1970   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   1971   // that we are binding symbolic struct value. Kill the field values, and if
   1972   // the value is symbolic go and bind it as a "default" binding.
   1973   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
   1974     return bindAggregate(B, R, UnknownVal());
   1975 
   1976   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
   1977   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   1978 
   1979   RecordDecl::field_iterator FI, FE;
   1980   RegionBindingsRef NewB(B);
   1981 
   1982   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
   1983 
   1984     if (VI == VE)
   1985       break;
   1986 
   1987     // Skip any unnamed bitfields to stay in sync with the initializers.
   1988     if (FI->isUnnamedBitfield())
   1989       continue;
   1990 
   1991     QualType FTy = FI->getType();
   1992     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
   1993 
   1994     if (FTy->isArrayType())
   1995       NewB = bindArray(NewB, FR, *VI);
   1996     else if (FTy->isStructureOrClassType())
   1997       NewB = bindStruct(NewB, FR, *VI);
   1998     else
   1999       NewB = bind(NewB, svalBuilder.makeLoc(FR), *VI);
   2000     ++VI;
   2001   }
   2002 
   2003   // There may be fewer values in the initialize list than the fields of struct.
   2004   if (FI != FE) {
   2005     NewB = NewB.addBinding(R, BindingKey::Default,
   2006                            svalBuilder.makeIntVal(0, false));
   2007   }
   2008 
   2009   return NewB;
   2010 }
   2011 
   2012 RegionBindingsRef
   2013 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
   2014                                   const TypedRegion *R,
   2015                                   SVal Val) {
   2016   // Remove the old bindings, using 'R' as the root of all regions
   2017   // we will invalidate. Then add the new binding.
   2018   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
   2019 }
   2020 
   2021 //===----------------------------------------------------------------------===//
   2022 // State pruning.
   2023 //===----------------------------------------------------------------------===//
   2024 
   2025 namespace {
   2026 class removeDeadBindingsWorker :
   2027   public ClusterAnalysis<removeDeadBindingsWorker> {
   2028   SmallVector<const SymbolicRegion*, 12> Postponed;
   2029   SymbolReaper &SymReaper;
   2030   const StackFrameContext *CurrentLCtx;
   2031 
   2032 public:
   2033   removeDeadBindingsWorker(RegionStoreManager &rm,
   2034                            ProgramStateManager &stateMgr,
   2035                            RegionBindingsRef b, SymbolReaper &symReaper,
   2036                            const StackFrameContext *LCtx)
   2037     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
   2038                                                 /* includeGlobals = */ false),
   2039       SymReaper(symReaper), CurrentLCtx(LCtx) {}
   2040 
   2041   // Called by ClusterAnalysis.
   2042   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
   2043   void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
   2044 
   2045   bool UpdatePostponed();
   2046   void VisitBinding(SVal V);
   2047 };
   2048 }
   2049 
   2050 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
   2051                                                    const ClusterBindings &C) {
   2052 
   2053   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
   2054     if (SymReaper.isLive(VR))
   2055       AddToWorkList(baseR, &C);
   2056 
   2057     return;
   2058   }
   2059 
   2060   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
   2061     if (SymReaper.isLive(SR->getSymbol()))
   2062       AddToWorkList(SR, &C);
   2063     else
   2064       Postponed.push_back(SR);
   2065 
   2066     return;
   2067   }
   2068 
   2069   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
   2070     AddToWorkList(baseR, &C);
   2071     return;
   2072   }
   2073 
   2074   // CXXThisRegion in the current or parent location context is live.
   2075   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
   2076     const StackArgumentsSpaceRegion *StackReg =
   2077       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
   2078     const StackFrameContext *RegCtx = StackReg->getStackFrame();
   2079     if (CurrentLCtx &&
   2080         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
   2081       AddToWorkList(TR, &C);
   2082   }
   2083 }
   2084 
   2085 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
   2086                                             const ClusterBindings &C) {
   2087   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
   2088   // This means we should continue to track that symbol.
   2089   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
   2090     SymReaper.markLive(SymR->getSymbol());
   2091 
   2092   for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
   2093     VisitBinding(I.getData());
   2094 }
   2095 
   2096 void removeDeadBindingsWorker::VisitBinding(SVal V) {
   2097   // Is it a LazyCompoundVal?  All referenced regions are live as well.
   2098   if (Optional<nonloc::LazyCompoundVal> LCS =
   2099           V.getAs<nonloc::LazyCompoundVal>()) {
   2100 
   2101     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
   2102 
   2103     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
   2104                                                         E = Vals.end();
   2105          I != E; ++I)
   2106       VisitBinding(*I);
   2107 
   2108     return;
   2109   }
   2110 
   2111   // If V is a region, then add it to the worklist.
   2112   if (const MemRegion *R = V.getAsRegion()) {
   2113     AddToWorkList(R);
   2114 
   2115     // All regions captured by a block are also live.
   2116     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
   2117       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
   2118                                                 E = BR->referenced_vars_end();
   2119       for ( ; I != E; ++I)
   2120         AddToWorkList(I.getCapturedRegion());
   2121     }
   2122   }
   2123 
   2124 
   2125   // Update the set of live symbols.
   2126   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
   2127        SI!=SE; ++SI)
   2128     SymReaper.markLive(*SI);
   2129 }
   2130 
   2131 bool removeDeadBindingsWorker::UpdatePostponed() {
   2132   // See if any postponed SymbolicRegions are actually live now, after
   2133   // having done a scan.
   2134   bool changed = false;
   2135 
   2136   for (SmallVectorImpl<const SymbolicRegion*>::iterator
   2137         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
   2138     if (const SymbolicRegion *SR = *I) {
   2139       if (SymReaper.isLive(SR->getSymbol())) {
   2140         changed |= AddToWorkList(SR);
   2141         *I = NULL;
   2142       }
   2143     }
   2144   }
   2145 
   2146   return changed;
   2147 }
   2148 
   2149 StoreRef RegionStoreManager::removeDeadBindings(Store store,
   2150                                                 const StackFrameContext *LCtx,
   2151                                                 SymbolReaper& SymReaper) {
   2152   RegionBindingsRef B = getRegionBindings(store);
   2153   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
   2154   W.GenerateClusters();
   2155 
   2156   // Enqueue the region roots onto the worklist.
   2157   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
   2158        E = SymReaper.region_end(); I != E; ++I) {
   2159     W.AddToWorkList(*I);
   2160   }
   2161 
   2162   do W.RunWorkList(); while (W.UpdatePostponed());
   2163 
   2164   // We have now scanned the store, marking reachable regions and symbols
   2165   // as live.  We now remove all the regions that are dead from the store
   2166   // as well as update DSymbols with the set symbols that are now dead.
   2167   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
   2168     const MemRegion *Base = I.getKey();
   2169 
   2170     // If the cluster has been visited, we know the region has been marked.
   2171     if (W.isVisited(Base))
   2172       continue;
   2173 
   2174     // Remove the dead entry.
   2175     B = B.remove(Base);
   2176 
   2177     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
   2178       SymReaper.maybeDead(SymR->getSymbol());
   2179 
   2180     // Mark all non-live symbols that this binding references as dead.
   2181     const ClusterBindings &Cluster = I.getData();
   2182     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
   2183          CI != CE; ++CI) {
   2184       SVal X = CI.getData();
   2185       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
   2186       for (; SI != SE; ++SI)
   2187         SymReaper.maybeDead(*SI);
   2188     }
   2189   }
   2190 
   2191   return StoreRef(B.asStore(), *this);
   2192 }
   2193 
   2194 //===----------------------------------------------------------------------===//
   2195 // Utility methods.
   2196 //===----------------------------------------------------------------------===//
   2197 
   2198 void RegionStoreManager::print(Store store, raw_ostream &OS,
   2199                                const char* nl, const char *sep) {
   2200   RegionBindingsRef B = getRegionBindings(store);
   2201   OS << "Store (direct and default bindings), "
   2202      << B.asStore()
   2203      << " :" << nl;
   2204   B.dump(OS, nl);
   2205 }
   2206