Home | History | Annotate | Download | only in IR
      1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This library implements the functionality defined in llvm/Assembly/Writer.h
     11 //
     12 // Note that these routines must be extremely tolerant of various errors in the
     13 // LLVM code, because it can be used for debugging transformations.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Assembly/Writer.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallString.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
     23 #include "llvm/Assembly/PrintModulePass.h"
     24 #include "llvm/DebugInfo.h"
     25 #include "llvm/IR/CallingConv.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/InlineAsm.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/IR/Operator.h"
     33 #include "llvm/IR/TypeFinder.h"
     34 #include "llvm/IR/ValueSymbolTable.h"
     35 #include "llvm/Support/CFG.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/Dwarf.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/FormattedStream.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include <algorithm>
     42 #include <cctype>
     43 using namespace llvm;
     44 
     45 // Make virtual table appear in this compilation unit.
     46 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
     47 
     48 //===----------------------------------------------------------------------===//
     49 // Helper Functions
     50 //===----------------------------------------------------------------------===//
     51 
     52 static const Module *getModuleFromVal(const Value *V) {
     53   if (const Argument *MA = dyn_cast<Argument>(V))
     54     return MA->getParent() ? MA->getParent()->getParent() : 0;
     55 
     56   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
     57     return BB->getParent() ? BB->getParent()->getParent() : 0;
     58 
     59   if (const Instruction *I = dyn_cast<Instruction>(V)) {
     60     const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
     61     return M ? M->getParent() : 0;
     62   }
     63 
     64   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
     65     return GV->getParent();
     66   return 0;
     67 }
     68 
     69 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
     70   switch (cc) {
     71   default:                         Out << "cc" << cc; break;
     72   case CallingConv::Fast:          Out << "fastcc"; break;
     73   case CallingConv::Cold:          Out << "coldcc"; break;
     74   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
     75   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
     76   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
     77   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
     78   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
     79   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
     80   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
     81   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
     82   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
     83   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
     84   }
     85 }
     86 
     87 // PrintEscapedString - Print each character of the specified string, escaping
     88 // it if it is not printable or if it is an escape char.
     89 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
     90   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
     91     unsigned char C = Name[i];
     92     if (isprint(C) && C != '\\' && C != '"')
     93       Out << C;
     94     else
     95       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
     96   }
     97 }
     98 
     99 enum PrefixType {
    100   GlobalPrefix,
    101   LabelPrefix,
    102   LocalPrefix,
    103   NoPrefix
    104 };
    105 
    106 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
    107 /// prefixed with % (if the string only contains simple characters) or is
    108 /// surrounded with ""'s (if it has special chars in it).  Print it out.
    109 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
    110   assert(!Name.empty() && "Cannot get empty name!");
    111   switch (Prefix) {
    112   case NoPrefix: break;
    113   case GlobalPrefix: OS << '@'; break;
    114   case LabelPrefix:  break;
    115   case LocalPrefix:  OS << '%'; break;
    116   }
    117 
    118   // Scan the name to see if it needs quotes first.
    119   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
    120   if (!NeedsQuotes) {
    121     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
    122       // By making this unsigned, the value passed in to isalnum will always be
    123       // in the range 0-255.  This is important when building with MSVC because
    124       // its implementation will assert.  This situation can arise when dealing
    125       // with UTF-8 multibyte characters.
    126       unsigned char C = Name[i];
    127       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
    128           C != '_') {
    129         NeedsQuotes = true;
    130         break;
    131       }
    132     }
    133   }
    134 
    135   // If we didn't need any quotes, just write out the name in one blast.
    136   if (!NeedsQuotes) {
    137     OS << Name;
    138     return;
    139   }
    140 
    141   // Okay, we need quotes.  Output the quotes and escape any scary characters as
    142   // needed.
    143   OS << '"';
    144   PrintEscapedString(Name, OS);
    145   OS << '"';
    146 }
    147 
    148 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
    149 /// prefixed with % (if the string only contains simple characters) or is
    150 /// surrounded with ""'s (if it has special chars in it).  Print it out.
    151 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
    152   PrintLLVMName(OS, V->getName(),
    153                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
    154 }
    155 
    156 //===----------------------------------------------------------------------===//
    157 // TypePrinting Class: Type printing machinery
    158 //===----------------------------------------------------------------------===//
    159 
    160 /// TypePrinting - Type printing machinery.
    161 namespace {
    162 class TypePrinting {
    163   TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION;
    164   void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION;
    165 public:
    166 
    167   /// NamedTypes - The named types that are used by the current module.
    168   TypeFinder NamedTypes;
    169 
    170   /// NumberedTypes - The numbered types, along with their value.
    171   DenseMap<StructType*, unsigned> NumberedTypes;
    172 
    173 
    174   TypePrinting() {}
    175   ~TypePrinting() {}
    176 
    177   void incorporateTypes(const Module &M);
    178 
    179   void print(Type *Ty, raw_ostream &OS);
    180 
    181   void printStructBody(StructType *Ty, raw_ostream &OS);
    182 };
    183 } // end anonymous namespace.
    184 
    185 
    186 void TypePrinting::incorporateTypes(const Module &M) {
    187   NamedTypes.run(M, false);
    188 
    189   // The list of struct types we got back includes all the struct types, split
    190   // the unnamed ones out to a numbering and remove the anonymous structs.
    191   unsigned NextNumber = 0;
    192 
    193   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
    194   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
    195     StructType *STy = *I;
    196 
    197     // Ignore anonymous types.
    198     if (STy->isLiteral())
    199       continue;
    200 
    201     if (STy->getName().empty())
    202       NumberedTypes[STy] = NextNumber++;
    203     else
    204       *NextToUse++ = STy;
    205   }
    206 
    207   NamedTypes.erase(NextToUse, NamedTypes.end());
    208 }
    209 
    210 
    211 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
    212 /// use of type names or up references to shorten the type name where possible.
    213 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
    214   switch (Ty->getTypeID()) {
    215   case Type::VoidTyID:      OS << "void"; break;
    216   case Type::HalfTyID:      OS << "half"; break;
    217   case Type::FloatTyID:     OS << "float"; break;
    218   case Type::DoubleTyID:    OS << "double"; break;
    219   case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
    220   case Type::FP128TyID:     OS << "fp128"; break;
    221   case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
    222   case Type::LabelTyID:     OS << "label"; break;
    223   case Type::MetadataTyID:  OS << "metadata"; break;
    224   case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
    225   case Type::IntegerTyID:
    226     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
    227     return;
    228 
    229   case Type::FunctionTyID: {
    230     FunctionType *FTy = cast<FunctionType>(Ty);
    231     print(FTy->getReturnType(), OS);
    232     OS << " (";
    233     for (FunctionType::param_iterator I = FTy->param_begin(),
    234          E = FTy->param_end(); I != E; ++I) {
    235       if (I != FTy->param_begin())
    236         OS << ", ";
    237       print(*I, OS);
    238     }
    239     if (FTy->isVarArg()) {
    240       if (FTy->getNumParams()) OS << ", ";
    241       OS << "...";
    242     }
    243     OS << ')';
    244     return;
    245   }
    246   case Type::StructTyID: {
    247     StructType *STy = cast<StructType>(Ty);
    248 
    249     if (STy->isLiteral())
    250       return printStructBody(STy, OS);
    251 
    252     if (!STy->getName().empty())
    253       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
    254 
    255     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
    256     if (I != NumberedTypes.end())
    257       OS << '%' << I->second;
    258     else  // Not enumerated, print the hex address.
    259       OS << "%\"type " << STy << '\"';
    260     return;
    261   }
    262   case Type::PointerTyID: {
    263     PointerType *PTy = cast<PointerType>(Ty);
    264     print(PTy->getElementType(), OS);
    265     if (unsigned AddressSpace = PTy->getAddressSpace())
    266       OS << " addrspace(" << AddressSpace << ')';
    267     OS << '*';
    268     return;
    269   }
    270   case Type::ArrayTyID: {
    271     ArrayType *ATy = cast<ArrayType>(Ty);
    272     OS << '[' << ATy->getNumElements() << " x ";
    273     print(ATy->getElementType(), OS);
    274     OS << ']';
    275     return;
    276   }
    277   case Type::VectorTyID: {
    278     VectorType *PTy = cast<VectorType>(Ty);
    279     OS << "<" << PTy->getNumElements() << " x ";
    280     print(PTy->getElementType(), OS);
    281     OS << '>';
    282     return;
    283   }
    284   default:
    285     OS << "<unrecognized-type>";
    286     return;
    287   }
    288 }
    289 
    290 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
    291   if (STy->isOpaque()) {
    292     OS << "opaque";
    293     return;
    294   }
    295 
    296   if (STy->isPacked())
    297     OS << '<';
    298 
    299   if (STy->getNumElements() == 0) {
    300     OS << "{}";
    301   } else {
    302     StructType::element_iterator I = STy->element_begin();
    303     OS << "{ ";
    304     print(*I++, OS);
    305     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
    306       OS << ", ";
    307       print(*I, OS);
    308     }
    309 
    310     OS << " }";
    311   }
    312   if (STy->isPacked())
    313     OS << '>';
    314 }
    315 
    316 
    317 
    318 //===----------------------------------------------------------------------===//
    319 // SlotTracker Class: Enumerate slot numbers for unnamed values
    320 //===----------------------------------------------------------------------===//
    321 
    322 namespace {
    323 
    324 /// This class provides computation of slot numbers for LLVM Assembly writing.
    325 ///
    326 class SlotTracker {
    327 public:
    328   /// ValueMap - A mapping of Values to slot numbers.
    329   typedef DenseMap<const Value*, unsigned> ValueMap;
    330 
    331 private:
    332   /// TheModule - The module for which we are holding slot numbers.
    333   const Module* TheModule;
    334 
    335   /// TheFunction - The function for which we are holding slot numbers.
    336   const Function* TheFunction;
    337   bool FunctionProcessed;
    338 
    339   /// mMap - The slot map for the module level data.
    340   ValueMap mMap;
    341   unsigned mNext;
    342 
    343   /// fMap - The slot map for the function level data.
    344   ValueMap fMap;
    345   unsigned fNext;
    346 
    347   /// mdnMap - Map for MDNodes.
    348   DenseMap<const MDNode*, unsigned> mdnMap;
    349   unsigned mdnNext;
    350 
    351   /// asMap - The slot map for attribute sets.
    352   DenseMap<AttributeSet, unsigned> asMap;
    353   unsigned asNext;
    354 public:
    355   /// Construct from a module
    356   explicit SlotTracker(const Module *M);
    357   /// Construct from a function, starting out in incorp state.
    358   explicit SlotTracker(const Function *F);
    359 
    360   /// Return the slot number of the specified value in it's type
    361   /// plane.  If something is not in the SlotTracker, return -1.
    362   int getLocalSlot(const Value *V);
    363   int getGlobalSlot(const GlobalValue *V);
    364   int getMetadataSlot(const MDNode *N);
    365   int getAttributeGroupSlot(AttributeSet AS);
    366 
    367   /// If you'd like to deal with a function instead of just a module, use
    368   /// this method to get its data into the SlotTracker.
    369   void incorporateFunction(const Function *F) {
    370     TheFunction = F;
    371     FunctionProcessed = false;
    372   }
    373 
    374   /// After calling incorporateFunction, use this method to remove the
    375   /// most recently incorporated function from the SlotTracker. This
    376   /// will reset the state of the machine back to just the module contents.
    377   void purgeFunction();
    378 
    379   /// MDNode map iterators.
    380   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
    381   mdn_iterator mdn_begin() { return mdnMap.begin(); }
    382   mdn_iterator mdn_end() { return mdnMap.end(); }
    383   unsigned mdn_size() const { return mdnMap.size(); }
    384   bool mdn_empty() const { return mdnMap.empty(); }
    385 
    386   /// AttributeSet map iterators.
    387   typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
    388   as_iterator as_begin()   { return asMap.begin(); }
    389   as_iterator as_end()     { return asMap.end(); }
    390   unsigned as_size() const { return asMap.size(); }
    391   bool as_empty() const    { return asMap.empty(); }
    392 
    393   /// This function does the actual initialization.
    394   inline void initialize();
    395 
    396   // Implementation Details
    397 private:
    398   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
    399   void CreateModuleSlot(const GlobalValue *V);
    400 
    401   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
    402   void CreateMetadataSlot(const MDNode *N);
    403 
    404   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
    405   void CreateFunctionSlot(const Value *V);
    406 
    407   /// \brief Insert the specified AttributeSet into the slot table.
    408   void CreateAttributeSetSlot(AttributeSet AS);
    409 
    410   /// Add all of the module level global variables (and their initializers)
    411   /// and function declarations, but not the contents of those functions.
    412   void processModule();
    413 
    414   /// Add all of the functions arguments, basic blocks, and instructions.
    415   void processFunction();
    416 
    417   SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
    418   void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
    419 };
    420 
    421 }  // end anonymous namespace
    422 
    423 
    424 static SlotTracker *createSlotTracker(const Value *V) {
    425   if (const Argument *FA = dyn_cast<Argument>(V))
    426     return new SlotTracker(FA->getParent());
    427 
    428   if (const Instruction *I = dyn_cast<Instruction>(V))
    429     if (I->getParent())
    430       return new SlotTracker(I->getParent()->getParent());
    431 
    432   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    433     return new SlotTracker(BB->getParent());
    434 
    435   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    436     return new SlotTracker(GV->getParent());
    437 
    438   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    439     return new SlotTracker(GA->getParent());
    440 
    441   if (const Function *Func = dyn_cast<Function>(V))
    442     return new SlotTracker(Func);
    443 
    444   if (const MDNode *MD = dyn_cast<MDNode>(V)) {
    445     if (!MD->isFunctionLocal())
    446       return new SlotTracker(MD->getFunction());
    447 
    448     return new SlotTracker((Function *)0);
    449   }
    450 
    451   return 0;
    452 }
    453 
    454 #if 0
    455 #define ST_DEBUG(X) dbgs() << X
    456 #else
    457 #define ST_DEBUG(X)
    458 #endif
    459 
    460 // Module level constructor. Causes the contents of the Module (sans functions)
    461 // to be added to the slot table.
    462 SlotTracker::SlotTracker(const Module *M)
    463   : TheModule(M), TheFunction(0), FunctionProcessed(false),
    464     mNext(0), fNext(0),  mdnNext(0), asNext(0) {
    465 }
    466 
    467 // Function level constructor. Causes the contents of the Module and the one
    468 // function provided to be added to the slot table.
    469 SlotTracker::SlotTracker(const Function *F)
    470   : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
    471     mNext(0), fNext(0), mdnNext(0), asNext(0) {
    472 }
    473 
    474 inline void SlotTracker::initialize() {
    475   if (TheModule) {
    476     processModule();
    477     TheModule = 0; ///< Prevent re-processing next time we're called.
    478   }
    479 
    480   if (TheFunction && !FunctionProcessed)
    481     processFunction();
    482 }
    483 
    484 // Iterate through all the global variables, functions, and global
    485 // variable initializers and create slots for them.
    486 void SlotTracker::processModule() {
    487   ST_DEBUG("begin processModule!\n");
    488 
    489   // Add all of the unnamed global variables to the value table.
    490   for (Module::const_global_iterator I = TheModule->global_begin(),
    491          E = TheModule->global_end(); I != E; ++I) {
    492     if (!I->hasName())
    493       CreateModuleSlot(I);
    494   }
    495 
    496   // Add metadata used by named metadata.
    497   for (Module::const_named_metadata_iterator
    498          I = TheModule->named_metadata_begin(),
    499          E = TheModule->named_metadata_end(); I != E; ++I) {
    500     const NamedMDNode *NMD = I;
    501     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    502       CreateMetadataSlot(NMD->getOperand(i));
    503   }
    504 
    505   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
    506        I != E; ++I) {
    507     if (!I->hasName())
    508       // Add all the unnamed functions to the table.
    509       CreateModuleSlot(I);
    510 
    511     // Add all the function attributes to the table.
    512     // FIXME: Add attributes of other objects?
    513     AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
    514     if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
    515       CreateAttributeSetSlot(FnAttrs);
    516   }
    517 
    518   ST_DEBUG("end processModule!\n");
    519 }
    520 
    521 // Process the arguments, basic blocks, and instructions  of a function.
    522 void SlotTracker::processFunction() {
    523   ST_DEBUG("begin processFunction!\n");
    524   fNext = 0;
    525 
    526   // Add all the function arguments with no names.
    527   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
    528       AE = TheFunction->arg_end(); AI != AE; ++AI)
    529     if (!AI->hasName())
    530       CreateFunctionSlot(AI);
    531 
    532   ST_DEBUG("Inserting Instructions:\n");
    533 
    534   SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
    535 
    536   // Add all of the basic blocks and instructions with no names.
    537   for (Function::const_iterator BB = TheFunction->begin(),
    538        E = TheFunction->end(); BB != E; ++BB) {
    539     if (!BB->hasName())
    540       CreateFunctionSlot(BB);
    541 
    542     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
    543          ++I) {
    544       if (!I->getType()->isVoidTy() && !I->hasName())
    545         CreateFunctionSlot(I);
    546 
    547       // Intrinsics can directly use metadata.  We allow direct calls to any
    548       // llvm.foo function here, because the target may not be linked into the
    549       // optimizer.
    550       if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    551         if (Function *F = CI->getCalledFunction())
    552           if (F->getName().startswith("llvm."))
    553             for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    554               if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
    555                 CreateMetadataSlot(N);
    556 
    557         // Add all the call attributes to the table.
    558         AttributeSet Attrs = CI->getAttributes().getFnAttributes();
    559         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
    560           CreateAttributeSetSlot(Attrs);
    561       } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
    562         // Add all the call attributes to the table.
    563         AttributeSet Attrs = II->getAttributes().getFnAttributes();
    564         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
    565           CreateAttributeSetSlot(Attrs);
    566       }
    567 
    568       // Process metadata attached with this instruction.
    569       I->getAllMetadata(MDForInst);
    570       for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
    571         CreateMetadataSlot(MDForInst[i].second);
    572       MDForInst.clear();
    573     }
    574   }
    575 
    576   FunctionProcessed = true;
    577 
    578   ST_DEBUG("end processFunction!\n");
    579 }
    580 
    581 /// Clean up after incorporating a function. This is the only way to get out of
    582 /// the function incorporation state that affects get*Slot/Create*Slot. Function
    583 /// incorporation state is indicated by TheFunction != 0.
    584 void SlotTracker::purgeFunction() {
    585   ST_DEBUG("begin purgeFunction!\n");
    586   fMap.clear(); // Simply discard the function level map
    587   TheFunction = 0;
    588   FunctionProcessed = false;
    589   ST_DEBUG("end purgeFunction!\n");
    590 }
    591 
    592 /// getGlobalSlot - Get the slot number of a global value.
    593 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
    594   // Check for uninitialized state and do lazy initialization.
    595   initialize();
    596 
    597   // Find the value in the module map
    598   ValueMap::iterator MI = mMap.find(V);
    599   return MI == mMap.end() ? -1 : (int)MI->second;
    600 }
    601 
    602 /// getMetadataSlot - Get the slot number of a MDNode.
    603 int SlotTracker::getMetadataSlot(const MDNode *N) {
    604   // Check for uninitialized state and do lazy initialization.
    605   initialize();
    606 
    607   // Find the MDNode in the module map
    608   mdn_iterator MI = mdnMap.find(N);
    609   return MI == mdnMap.end() ? -1 : (int)MI->second;
    610 }
    611 
    612 
    613 /// getLocalSlot - Get the slot number for a value that is local to a function.
    614 int SlotTracker::getLocalSlot(const Value *V) {
    615   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
    616 
    617   // Check for uninitialized state and do lazy initialization.
    618   initialize();
    619 
    620   ValueMap::iterator FI = fMap.find(V);
    621   return FI == fMap.end() ? -1 : (int)FI->second;
    622 }
    623 
    624 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
    625   // Check for uninitialized state and do lazy initialization.
    626   initialize();
    627 
    628   // Find the AttributeSet in the module map.
    629   as_iterator AI = asMap.find(AS);
    630   return AI == asMap.end() ? -1 : (int)AI->second;
    631 }
    632 
    633 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
    634 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
    635   assert(V && "Can't insert a null Value into SlotTracker!");
    636   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
    637   assert(!V->hasName() && "Doesn't need a slot!");
    638 
    639   unsigned DestSlot = mNext++;
    640   mMap[V] = DestSlot;
    641 
    642   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
    643            DestSlot << " [");
    644   // G = Global, F = Function, A = Alias, o = other
    645   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
    646             (isa<Function>(V) ? 'F' :
    647              (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
    648 }
    649 
    650 /// CreateSlot - Create a new slot for the specified value if it has no name.
    651 void SlotTracker::CreateFunctionSlot(const Value *V) {
    652   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
    653 
    654   unsigned DestSlot = fNext++;
    655   fMap[V] = DestSlot;
    656 
    657   // G = Global, F = Function, o = other
    658   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
    659            DestSlot << " [o]\n");
    660 }
    661 
    662 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
    663 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
    664   assert(N && "Can't insert a null Value into SlotTracker!");
    665 
    666   // Don't insert if N is a function-local metadata, these are always printed
    667   // inline.
    668   if (!N->isFunctionLocal()) {
    669     mdn_iterator I = mdnMap.find(N);
    670     if (I != mdnMap.end())
    671       return;
    672 
    673     unsigned DestSlot = mdnNext++;
    674     mdnMap[N] = DestSlot;
    675   }
    676 
    677   // Recursively add any MDNodes referenced by operands.
    678   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    679     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
    680       CreateMetadataSlot(Op);
    681 }
    682 
    683 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
    684   assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
    685          "Doesn't need a slot!");
    686 
    687   as_iterator I = asMap.find(AS);
    688   if (I != asMap.end())
    689     return;
    690 
    691   unsigned DestSlot = asNext++;
    692   asMap[AS] = DestSlot;
    693 }
    694 
    695 //===----------------------------------------------------------------------===//
    696 // AsmWriter Implementation
    697 //===----------------------------------------------------------------------===//
    698 
    699 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
    700                                    TypePrinting *TypePrinter,
    701                                    SlotTracker *Machine,
    702                                    const Module *Context);
    703 
    704 
    705 
    706 static const char *getPredicateText(unsigned predicate) {
    707   const char * pred = "unknown";
    708   switch (predicate) {
    709   case FCmpInst::FCMP_FALSE: pred = "false"; break;
    710   case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
    711   case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
    712   case FCmpInst::FCMP_OGE:   pred = "oge"; break;
    713   case FCmpInst::FCMP_OLT:   pred = "olt"; break;
    714   case FCmpInst::FCMP_OLE:   pred = "ole"; break;
    715   case FCmpInst::FCMP_ONE:   pred = "one"; break;
    716   case FCmpInst::FCMP_ORD:   pred = "ord"; break;
    717   case FCmpInst::FCMP_UNO:   pred = "uno"; break;
    718   case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
    719   case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
    720   case FCmpInst::FCMP_UGE:   pred = "uge"; break;
    721   case FCmpInst::FCMP_ULT:   pred = "ult"; break;
    722   case FCmpInst::FCMP_ULE:   pred = "ule"; break;
    723   case FCmpInst::FCMP_UNE:   pred = "une"; break;
    724   case FCmpInst::FCMP_TRUE:  pred = "true"; break;
    725   case ICmpInst::ICMP_EQ:    pred = "eq"; break;
    726   case ICmpInst::ICMP_NE:    pred = "ne"; break;
    727   case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
    728   case ICmpInst::ICMP_SGE:   pred = "sge"; break;
    729   case ICmpInst::ICMP_SLT:   pred = "slt"; break;
    730   case ICmpInst::ICMP_SLE:   pred = "sle"; break;
    731   case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
    732   case ICmpInst::ICMP_UGE:   pred = "uge"; break;
    733   case ICmpInst::ICMP_ULT:   pred = "ult"; break;
    734   case ICmpInst::ICMP_ULE:   pred = "ule"; break;
    735   }
    736   return pred;
    737 }
    738 
    739 static void writeAtomicRMWOperation(raw_ostream &Out,
    740                                     AtomicRMWInst::BinOp Op) {
    741   switch (Op) {
    742   default: Out << " <unknown operation " << Op << ">"; break;
    743   case AtomicRMWInst::Xchg: Out << " xchg"; break;
    744   case AtomicRMWInst::Add:  Out << " add"; break;
    745   case AtomicRMWInst::Sub:  Out << " sub"; break;
    746   case AtomicRMWInst::And:  Out << " and"; break;
    747   case AtomicRMWInst::Nand: Out << " nand"; break;
    748   case AtomicRMWInst::Or:   Out << " or"; break;
    749   case AtomicRMWInst::Xor:  Out << " xor"; break;
    750   case AtomicRMWInst::Max:  Out << " max"; break;
    751   case AtomicRMWInst::Min:  Out << " min"; break;
    752   case AtomicRMWInst::UMax: Out << " umax"; break;
    753   case AtomicRMWInst::UMin: Out << " umin"; break;
    754   }
    755 }
    756 
    757 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
    758   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
    759     // Unsafe algebra implies all the others, no need to write them all out
    760     if (FPO->hasUnsafeAlgebra())
    761       Out << " fast";
    762     else {
    763       if (FPO->hasNoNaNs())
    764         Out << " nnan";
    765       if (FPO->hasNoInfs())
    766         Out << " ninf";
    767       if (FPO->hasNoSignedZeros())
    768         Out << " nsz";
    769       if (FPO->hasAllowReciprocal())
    770         Out << " arcp";
    771     }
    772   }
    773 
    774   if (const OverflowingBinaryOperator *OBO =
    775         dyn_cast<OverflowingBinaryOperator>(U)) {
    776     if (OBO->hasNoUnsignedWrap())
    777       Out << " nuw";
    778     if (OBO->hasNoSignedWrap())
    779       Out << " nsw";
    780   } else if (const PossiblyExactOperator *Div =
    781                dyn_cast<PossiblyExactOperator>(U)) {
    782     if (Div->isExact())
    783       Out << " exact";
    784   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
    785     if (GEP->isInBounds())
    786       Out << " inbounds";
    787   }
    788 }
    789 
    790 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
    791                                   TypePrinting &TypePrinter,
    792                                   SlotTracker *Machine,
    793                                   const Module *Context) {
    794   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    795     if (CI->getType()->isIntegerTy(1)) {
    796       Out << (CI->getZExtValue() ? "true" : "false");
    797       return;
    798     }
    799     Out << CI->getValue();
    800     return;
    801   }
    802 
    803   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    804     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
    805         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
    806       // We would like to output the FP constant value in exponential notation,
    807       // but we cannot do this if doing so will lose precision.  Check here to
    808       // make sure that we only output it in exponential format if we can parse
    809       // the value back and get the same value.
    810       //
    811       bool ignored;
    812       bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
    813       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
    814       bool isInf = CFP->getValueAPF().isInfinity();
    815       bool isNaN = CFP->getValueAPF().isNaN();
    816       if (!isHalf && !isInf && !isNaN) {
    817         double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
    818                                 CFP->getValueAPF().convertToFloat();
    819         SmallString<128> StrVal;
    820         raw_svector_ostream(StrVal) << Val;
    821 
    822         // Check to make sure that the stringized number is not some string like
    823         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
    824         // that the string matches the "[-+]?[0-9]" regex.
    825         //
    826         if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    827             ((StrVal[0] == '-' || StrVal[0] == '+') &&
    828              (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
    829           // Reparse stringized version!
    830           if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
    831             Out << StrVal.str();
    832             return;
    833           }
    834         }
    835       }
    836       // Otherwise we could not reparse it to exactly the same value, so we must
    837       // output the string in hexadecimal format!  Note that loading and storing
    838       // floating point types changes the bits of NaNs on some hosts, notably
    839       // x86, so we must not use these types.
    840       assert(sizeof(double) == sizeof(uint64_t) &&
    841              "assuming that double is 64 bits!");
    842       char Buffer[40];
    843       APFloat apf = CFP->getValueAPF();
    844       // Halves and floats are represented in ASCII IR as double, convert.
    845       if (!isDouble)
    846         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    847                           &ignored);
    848       Out << "0x" <<
    849               utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
    850                             Buffer+40);
    851       return;
    852     }
    853 
    854     // Either half, or some form of long double.
    855     // These appear as a magic letter identifying the type, then a
    856     // fixed number of hex digits.
    857     Out << "0x";
    858     // Bit position, in the current word, of the next nibble to print.
    859     int shiftcount;
    860 
    861     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
    862       Out << 'K';
    863       // api needed to prevent premature destruction
    864       APInt api = CFP->getValueAPF().bitcastToAPInt();
    865       const uint64_t* p = api.getRawData();
    866       uint64_t word = p[1];
    867       shiftcount = 12;
    868       int width = api.getBitWidth();
    869       for (int j=0; j<width; j+=4, shiftcount-=4) {
    870         unsigned int nibble = (word>>shiftcount) & 15;
    871         if (nibble < 10)
    872           Out << (unsigned char)(nibble + '0');
    873         else
    874           Out << (unsigned char)(nibble - 10 + 'A');
    875         if (shiftcount == 0 && j+4 < width) {
    876           word = *p;
    877           shiftcount = 64;
    878           if (width-j-4 < 64)
    879             shiftcount = width-j-4;
    880         }
    881       }
    882       return;
    883     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
    884       shiftcount = 60;
    885       Out << 'L';
    886     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
    887       shiftcount = 60;
    888       Out << 'M';
    889     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
    890       shiftcount = 12;
    891       Out << 'H';
    892     } else
    893       llvm_unreachable("Unsupported floating point type");
    894     // api needed to prevent premature destruction
    895     APInt api = CFP->getValueAPF().bitcastToAPInt();
    896     const uint64_t* p = api.getRawData();
    897     uint64_t word = *p;
    898     int width = api.getBitWidth();
    899     for (int j=0; j<width; j+=4, shiftcount-=4) {
    900       unsigned int nibble = (word>>shiftcount) & 15;
    901       if (nibble < 10)
    902         Out << (unsigned char)(nibble + '0');
    903       else
    904         Out << (unsigned char)(nibble - 10 + 'A');
    905       if (shiftcount == 0 && j+4 < width) {
    906         word = *(++p);
    907         shiftcount = 64;
    908         if (width-j-4 < 64)
    909           shiftcount = width-j-4;
    910       }
    911     }
    912     return;
    913   }
    914 
    915   if (isa<ConstantAggregateZero>(CV)) {
    916     Out << "zeroinitializer";
    917     return;
    918   }
    919 
    920   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    921     Out << "blockaddress(";
    922     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
    923                            Context);
    924     Out << ", ";
    925     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
    926                            Context);
    927     Out << ")";
    928     return;
    929   }
    930 
    931   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    932     Type *ETy = CA->getType()->getElementType();
    933     Out << '[';
    934     TypePrinter.print(ETy, Out);
    935     Out << ' ';
    936     WriteAsOperandInternal(Out, CA->getOperand(0),
    937                            &TypePrinter, Machine,
    938                            Context);
    939     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
    940       Out << ", ";
    941       TypePrinter.print(ETy, Out);
    942       Out << ' ';
    943       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
    944                              Context);
    945     }
    946     Out << ']';
    947     return;
    948   }
    949 
    950   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
    951     // As a special case, print the array as a string if it is an array of
    952     // i8 with ConstantInt values.
    953     if (CA->isString()) {
    954       Out << "c\"";
    955       PrintEscapedString(CA->getAsString(), Out);
    956       Out << '"';
    957       return;
    958     }
    959 
    960     Type *ETy = CA->getType()->getElementType();
    961     Out << '[';
    962     TypePrinter.print(ETy, Out);
    963     Out << ' ';
    964     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
    965                            &TypePrinter, Machine,
    966                            Context);
    967     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
    968       Out << ", ";
    969       TypePrinter.print(ETy, Out);
    970       Out << ' ';
    971       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
    972                              Machine, Context);
    973     }
    974     Out << ']';
    975     return;
    976   }
    977 
    978 
    979   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    980     if (CS->getType()->isPacked())
    981       Out << '<';
    982     Out << '{';
    983     unsigned N = CS->getNumOperands();
    984     if (N) {
    985       Out << ' ';
    986       TypePrinter.print(CS->getOperand(0)->getType(), Out);
    987       Out << ' ';
    988 
    989       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
    990                              Context);
    991 
    992       for (unsigned i = 1; i < N; i++) {
    993         Out << ", ";
    994         TypePrinter.print(CS->getOperand(i)->getType(), Out);
    995         Out << ' ';
    996 
    997         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
    998                                Context);
    999       }
   1000       Out << ' ';
   1001     }
   1002 
   1003     Out << '}';
   1004     if (CS->getType()->isPacked())
   1005       Out << '>';
   1006     return;
   1007   }
   1008 
   1009   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
   1010     Type *ETy = CV->getType()->getVectorElementType();
   1011     Out << '<';
   1012     TypePrinter.print(ETy, Out);
   1013     Out << ' ';
   1014     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
   1015                            Machine, Context);
   1016     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
   1017       Out << ", ";
   1018       TypePrinter.print(ETy, Out);
   1019       Out << ' ';
   1020       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
   1021                              Machine, Context);
   1022     }
   1023     Out << '>';
   1024     return;
   1025   }
   1026 
   1027   if (isa<ConstantPointerNull>(CV)) {
   1028     Out << "null";
   1029     return;
   1030   }
   1031 
   1032   if (isa<UndefValue>(CV)) {
   1033     Out << "undef";
   1034     return;
   1035   }
   1036 
   1037   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   1038     Out << CE->getOpcodeName();
   1039     WriteOptimizationInfo(Out, CE);
   1040     if (CE->isCompare())
   1041       Out << ' ' << getPredicateText(CE->getPredicate());
   1042     Out << " (";
   1043 
   1044     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
   1045       TypePrinter.print((*OI)->getType(), Out);
   1046       Out << ' ';
   1047       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
   1048       if (OI+1 != CE->op_end())
   1049         Out << ", ";
   1050     }
   1051 
   1052     if (CE->hasIndices()) {
   1053       ArrayRef<unsigned> Indices = CE->getIndices();
   1054       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   1055         Out << ", " << Indices[i];
   1056     }
   1057 
   1058     if (CE->isCast()) {
   1059       Out << " to ";
   1060       TypePrinter.print(CE->getType(), Out);
   1061     }
   1062 
   1063     Out << ')';
   1064     return;
   1065   }
   1066 
   1067   Out << "<placeholder or erroneous Constant>";
   1068 }
   1069 
   1070 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
   1071                                     TypePrinting *TypePrinter,
   1072                                     SlotTracker *Machine,
   1073                                     const Module *Context) {
   1074   Out << "!{";
   1075   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
   1076     const Value *V = Node->getOperand(mi);
   1077     if (V == 0)
   1078       Out << "null";
   1079     else {
   1080       TypePrinter->print(V->getType(), Out);
   1081       Out << ' ';
   1082       WriteAsOperandInternal(Out, Node->getOperand(mi),
   1083                              TypePrinter, Machine, Context);
   1084     }
   1085     if (mi + 1 != me)
   1086       Out << ", ";
   1087   }
   1088 
   1089   Out << "}";
   1090 }
   1091 
   1092 
   1093 /// WriteAsOperand - Write the name of the specified value out to the specified
   1094 /// ostream.  This can be useful when you just want to print int %reg126, not
   1095 /// the whole instruction that generated it.
   1096 ///
   1097 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
   1098                                    TypePrinting *TypePrinter,
   1099                                    SlotTracker *Machine,
   1100                                    const Module *Context) {
   1101   if (V->hasName()) {
   1102     PrintLLVMName(Out, V);
   1103     return;
   1104   }
   1105 
   1106   const Constant *CV = dyn_cast<Constant>(V);
   1107   if (CV && !isa<GlobalValue>(CV)) {
   1108     assert(TypePrinter && "Constants require TypePrinting!");
   1109     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
   1110     return;
   1111   }
   1112 
   1113   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
   1114     Out << "asm ";
   1115     if (IA->hasSideEffects())
   1116       Out << "sideeffect ";
   1117     if (IA->isAlignStack())
   1118       Out << "alignstack ";
   1119     // We don't emit the AD_ATT dialect as it's the assumed default.
   1120     if (IA->getDialect() == InlineAsm::AD_Intel)
   1121       Out << "inteldialect ";
   1122     Out << '"';
   1123     PrintEscapedString(IA->getAsmString(), Out);
   1124     Out << "\", \"";
   1125     PrintEscapedString(IA->getConstraintString(), Out);
   1126     Out << '"';
   1127     return;
   1128   }
   1129 
   1130   if (const MDNode *N = dyn_cast<MDNode>(V)) {
   1131     if (N->isFunctionLocal()) {
   1132       // Print metadata inline, not via slot reference number.
   1133       WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
   1134       return;
   1135     }
   1136 
   1137     if (!Machine) {
   1138       if (N->isFunctionLocal())
   1139         Machine = new SlotTracker(N->getFunction());
   1140       else
   1141         Machine = new SlotTracker(Context);
   1142     }
   1143     int Slot = Machine->getMetadataSlot(N);
   1144     if (Slot == -1)
   1145       Out << "<badref>";
   1146     else
   1147       Out << '!' << Slot;
   1148     return;
   1149   }
   1150 
   1151   if (const MDString *MDS = dyn_cast<MDString>(V)) {
   1152     Out << "!\"";
   1153     PrintEscapedString(MDS->getString(), Out);
   1154     Out << '"';
   1155     return;
   1156   }
   1157 
   1158   if (V->getValueID() == Value::PseudoSourceValueVal ||
   1159       V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
   1160     V->print(Out);
   1161     return;
   1162   }
   1163 
   1164   char Prefix = '%';
   1165   int Slot;
   1166   // If we have a SlotTracker, use it.
   1167   if (Machine) {
   1168     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
   1169       Slot = Machine->getGlobalSlot(GV);
   1170       Prefix = '@';
   1171     } else {
   1172       Slot = Machine->getLocalSlot(V);
   1173 
   1174       // If the local value didn't succeed, then we may be referring to a value
   1175       // from a different function.  Translate it, as this can happen when using
   1176       // address of blocks.
   1177       if (Slot == -1)
   1178         if ((Machine = createSlotTracker(V))) {
   1179           Slot = Machine->getLocalSlot(V);
   1180           delete Machine;
   1181         }
   1182     }
   1183   } else if ((Machine = createSlotTracker(V))) {
   1184     // Otherwise, create one to get the # and then destroy it.
   1185     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
   1186       Slot = Machine->getGlobalSlot(GV);
   1187       Prefix = '@';
   1188     } else {
   1189       Slot = Machine->getLocalSlot(V);
   1190     }
   1191     delete Machine;
   1192     Machine = 0;
   1193   } else {
   1194     Slot = -1;
   1195   }
   1196 
   1197   if (Slot != -1)
   1198     Out << Prefix << Slot;
   1199   else
   1200     Out << "<badref>";
   1201 }
   1202 
   1203 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
   1204                           bool PrintType, const Module *Context) {
   1205 
   1206   // Fast path: Don't construct and populate a TypePrinting object if we
   1207   // won't be needing any types printed.
   1208   if (!PrintType &&
   1209       ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
   1210        V->hasName() || isa<GlobalValue>(V))) {
   1211     WriteAsOperandInternal(Out, V, 0, 0, Context);
   1212     return;
   1213   }
   1214 
   1215   if (Context == 0) Context = getModuleFromVal(V);
   1216 
   1217   TypePrinting TypePrinter;
   1218   if (Context)
   1219     TypePrinter.incorporateTypes(*Context);
   1220   if (PrintType) {
   1221     TypePrinter.print(V->getType(), Out);
   1222     Out << ' ';
   1223   }
   1224 
   1225   WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
   1226 }
   1227 
   1228 namespace {
   1229 
   1230 class AssemblyWriter {
   1231   formatted_raw_ostream &Out;
   1232   SlotTracker &Machine;
   1233   const Module *TheModule;
   1234   TypePrinting TypePrinter;
   1235   AssemblyAnnotationWriter *AnnotationWriter;
   1236 
   1237 public:
   1238   inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
   1239                         const Module *M,
   1240                         AssemblyAnnotationWriter *AAW)
   1241     : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
   1242     if (M)
   1243       TypePrinter.incorporateTypes(*M);
   1244   }
   1245 
   1246   void printMDNodeBody(const MDNode *MD);
   1247   void printNamedMDNode(const NamedMDNode *NMD);
   1248 
   1249   void printModule(const Module *M);
   1250 
   1251   void writeOperand(const Value *Op, bool PrintType);
   1252   void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
   1253   void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
   1254 
   1255   void writeAllMDNodes();
   1256   void writeAllAttributeGroups();
   1257 
   1258   void printTypeIdentities();
   1259   void printGlobal(const GlobalVariable *GV);
   1260   void printAlias(const GlobalAlias *GV);
   1261   void printFunction(const Function *F);
   1262   void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
   1263   void printBasicBlock(const BasicBlock *BB);
   1264   void printInstruction(const Instruction &I);
   1265 
   1266 private:
   1267   // printInfoComment - Print a little comment after the instruction indicating
   1268   // which slot it occupies.
   1269   void printInfoComment(const Value &V);
   1270 };
   1271 }  // end of anonymous namespace
   1272 
   1273 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
   1274   if (Operand == 0) {
   1275     Out << "<null operand!>";
   1276     return;
   1277   }
   1278   if (PrintType) {
   1279     TypePrinter.print(Operand->getType(), Out);
   1280     Out << ' ';
   1281   }
   1282   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
   1283 }
   1284 
   1285 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
   1286                                  SynchronizationScope SynchScope) {
   1287   if (Ordering == NotAtomic)
   1288     return;
   1289 
   1290   switch (SynchScope) {
   1291   case SingleThread: Out << " singlethread"; break;
   1292   case CrossThread: break;
   1293   }
   1294 
   1295   switch (Ordering) {
   1296   default: Out << " <bad ordering " << int(Ordering) << ">"; break;
   1297   case Unordered: Out << " unordered"; break;
   1298   case Monotonic: Out << " monotonic"; break;
   1299   case Acquire: Out << " acquire"; break;
   1300   case Release: Out << " release"; break;
   1301   case AcquireRelease: Out << " acq_rel"; break;
   1302   case SequentiallyConsistent: Out << " seq_cst"; break;
   1303   }
   1304 }
   1305 
   1306 void AssemblyWriter::writeParamOperand(const Value *Operand,
   1307                                        AttributeSet Attrs, unsigned Idx) {
   1308   if (Operand == 0) {
   1309     Out << "<null operand!>";
   1310     return;
   1311   }
   1312 
   1313   // Print the type
   1314   TypePrinter.print(Operand->getType(), Out);
   1315   // Print parameter attributes list
   1316   if (Attrs.hasAttributes(Idx))
   1317     Out << ' ' << Attrs.getAsString(Idx);
   1318   Out << ' ';
   1319   // Print the operand
   1320   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
   1321 }
   1322 
   1323 void AssemblyWriter::printModule(const Module *M) {
   1324   Machine.initialize();
   1325 
   1326   if (!M->getModuleIdentifier().empty() &&
   1327       // Don't print the ID if it will start a new line (which would
   1328       // require a comment char before it).
   1329       M->getModuleIdentifier().find('\n') == std::string::npos)
   1330     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
   1331 
   1332   if (!M->getDataLayout().empty())
   1333     Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
   1334   if (!M->getTargetTriple().empty())
   1335     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
   1336 
   1337   if (!M->getModuleInlineAsm().empty()) {
   1338     // Split the string into lines, to make it easier to read the .ll file.
   1339     std::string Asm = M->getModuleInlineAsm();
   1340     size_t CurPos = 0;
   1341     size_t NewLine = Asm.find_first_of('\n', CurPos);
   1342     Out << '\n';
   1343     while (NewLine != std::string::npos) {
   1344       // We found a newline, print the portion of the asm string from the
   1345       // last newline up to this newline.
   1346       Out << "module asm \"";
   1347       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
   1348                          Out);
   1349       Out << "\"\n";
   1350       CurPos = NewLine+1;
   1351       NewLine = Asm.find_first_of('\n', CurPos);
   1352     }
   1353     std::string rest(Asm.begin()+CurPos, Asm.end());
   1354     if (!rest.empty()) {
   1355       Out << "module asm \"";
   1356       PrintEscapedString(rest, Out);
   1357       Out << "\"\n";
   1358     }
   1359   }
   1360 
   1361   printTypeIdentities();
   1362 
   1363   // Output all globals.
   1364   if (!M->global_empty()) Out << '\n';
   1365   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
   1366        I != E; ++I) {
   1367     printGlobal(I); Out << '\n';
   1368   }
   1369 
   1370   // Output all aliases.
   1371   if (!M->alias_empty()) Out << "\n";
   1372   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
   1373        I != E; ++I)
   1374     printAlias(I);
   1375 
   1376   // Output all of the functions.
   1377   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
   1378     printFunction(I);
   1379 
   1380   // Output all attribute groups.
   1381   if (!Machine.as_empty()) {
   1382     Out << '\n';
   1383     writeAllAttributeGroups();
   1384   }
   1385 
   1386   // Output named metadata.
   1387   if (!M->named_metadata_empty()) Out << '\n';
   1388 
   1389   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
   1390        E = M->named_metadata_end(); I != E; ++I)
   1391     printNamedMDNode(I);
   1392 
   1393   // Output metadata.
   1394   if (!Machine.mdn_empty()) {
   1395     Out << '\n';
   1396     writeAllMDNodes();
   1397   }
   1398 }
   1399 
   1400 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
   1401   Out << '!';
   1402   StringRef Name = NMD->getName();
   1403   if (Name.empty()) {
   1404     Out << "<empty name> ";
   1405   } else {
   1406     if (isalpha(static_cast<unsigned char>(Name[0])) ||
   1407         Name[0] == '-' || Name[0] == '$' ||
   1408         Name[0] == '.' || Name[0] == '_')
   1409       Out << Name[0];
   1410     else
   1411       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
   1412     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
   1413       unsigned char C = Name[i];
   1414       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
   1415           C == '.' || C == '_')
   1416         Out << C;
   1417       else
   1418         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
   1419     }
   1420   }
   1421   Out << " = !{";
   1422   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
   1423     if (i) Out << ", ";
   1424     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
   1425     if (Slot == -1)
   1426       Out << "<badref>";
   1427     else
   1428       Out << '!' << Slot;
   1429   }
   1430   Out << "}\n";
   1431 }
   1432 
   1433 
   1434 static void PrintLinkage(GlobalValue::LinkageTypes LT,
   1435                          formatted_raw_ostream &Out) {
   1436   switch (LT) {
   1437   case GlobalValue::ExternalLinkage: break;
   1438   case GlobalValue::PrivateLinkage:       Out << "private ";        break;
   1439   case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
   1440   case GlobalValue::LinkerPrivateWeakLinkage:
   1441     Out << "linker_private_weak ";
   1442     break;
   1443   case GlobalValue::InternalLinkage:      Out << "internal ";       break;
   1444   case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
   1445   case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
   1446   case GlobalValue::LinkOnceODRAutoHideLinkage:
   1447     Out << "linkonce_odr_auto_hide ";
   1448     break;
   1449   case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
   1450   case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
   1451   case GlobalValue::CommonLinkage:        Out << "common ";         break;
   1452   case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
   1453   case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
   1454   case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
   1455   case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
   1456   case GlobalValue::AvailableExternallyLinkage:
   1457     Out << "available_externally ";
   1458     break;
   1459   }
   1460 }
   1461 
   1462 
   1463 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
   1464                             formatted_raw_ostream &Out) {
   1465   switch (Vis) {
   1466   case GlobalValue::DefaultVisibility: break;
   1467   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
   1468   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
   1469   }
   1470 }
   1471 
   1472 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
   1473                                   formatted_raw_ostream &Out) {
   1474   switch (TLM) {
   1475     case GlobalVariable::NotThreadLocal:
   1476       break;
   1477     case GlobalVariable::GeneralDynamicTLSModel:
   1478       Out << "thread_local ";
   1479       break;
   1480     case GlobalVariable::LocalDynamicTLSModel:
   1481       Out << "thread_local(localdynamic) ";
   1482       break;
   1483     case GlobalVariable::InitialExecTLSModel:
   1484       Out << "thread_local(initialexec) ";
   1485       break;
   1486     case GlobalVariable::LocalExecTLSModel:
   1487       Out << "thread_local(localexec) ";
   1488       break;
   1489   }
   1490 }
   1491 
   1492 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
   1493   if (GV->isMaterializable())
   1494     Out << "; Materializable\n";
   1495 
   1496   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
   1497   Out << " = ";
   1498 
   1499   if (!GV->hasInitializer() && GV->hasExternalLinkage())
   1500     Out << "external ";
   1501 
   1502   PrintLinkage(GV->getLinkage(), Out);
   1503   PrintVisibility(GV->getVisibility(), Out);
   1504   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
   1505 
   1506   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
   1507     Out << "addrspace(" << AddressSpace << ") ";
   1508   if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
   1509   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
   1510   Out << (GV->isConstant() ? "constant " : "global ");
   1511   TypePrinter.print(GV->getType()->getElementType(), Out);
   1512 
   1513   if (GV->hasInitializer()) {
   1514     Out << ' ';
   1515     writeOperand(GV->getInitializer(), false);
   1516   }
   1517 
   1518   if (GV->hasSection()) {
   1519     Out << ", section \"";
   1520     PrintEscapedString(GV->getSection(), Out);
   1521     Out << '"';
   1522   }
   1523   if (GV->getAlignment())
   1524     Out << ", align " << GV->getAlignment();
   1525 
   1526   printInfoComment(*GV);
   1527 }
   1528 
   1529 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
   1530   if (GA->isMaterializable())
   1531     Out << "; Materializable\n";
   1532 
   1533   // Don't crash when dumping partially built GA
   1534   if (!GA->hasName())
   1535     Out << "<<nameless>> = ";
   1536   else {
   1537     PrintLLVMName(Out, GA);
   1538     Out << " = ";
   1539   }
   1540   PrintVisibility(GA->getVisibility(), Out);
   1541 
   1542   Out << "alias ";
   1543 
   1544   PrintLinkage(GA->getLinkage(), Out);
   1545 
   1546   const Constant *Aliasee = GA->getAliasee();
   1547 
   1548   if (Aliasee == 0) {
   1549     TypePrinter.print(GA->getType(), Out);
   1550     Out << " <<NULL ALIASEE>>";
   1551   } else {
   1552     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
   1553   }
   1554 
   1555   printInfoComment(*GA);
   1556   Out << '\n';
   1557 }
   1558 
   1559 void AssemblyWriter::printTypeIdentities() {
   1560   if (TypePrinter.NumberedTypes.empty() &&
   1561       TypePrinter.NamedTypes.empty())
   1562     return;
   1563 
   1564   Out << '\n';
   1565 
   1566   // We know all the numbers that each type is used and we know that it is a
   1567   // dense assignment.  Convert the map to an index table.
   1568   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
   1569   for (DenseMap<StructType*, unsigned>::iterator I =
   1570        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
   1571        I != E; ++I) {
   1572     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
   1573     NumberedTypes[I->second] = I->first;
   1574   }
   1575 
   1576   // Emit all numbered types.
   1577   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
   1578     Out << '%' << i << " = type ";
   1579 
   1580     // Make sure we print out at least one level of the type structure, so
   1581     // that we do not get %2 = type %2
   1582     TypePrinter.printStructBody(NumberedTypes[i], Out);
   1583     Out << '\n';
   1584   }
   1585 
   1586   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
   1587     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
   1588     Out << " = type ";
   1589 
   1590     // Make sure we print out at least one level of the type structure, so
   1591     // that we do not get %FILE = type %FILE
   1592     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
   1593     Out << '\n';
   1594   }
   1595 }
   1596 
   1597 /// printFunction - Print all aspects of a function.
   1598 ///
   1599 void AssemblyWriter::printFunction(const Function *F) {
   1600   // Print out the return type and name.
   1601   Out << '\n';
   1602 
   1603   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
   1604 
   1605   if (F->isMaterializable())
   1606     Out << "; Materializable\n";
   1607 
   1608   if (F->isDeclaration())
   1609     Out << "declare ";
   1610   else
   1611     Out << "define ";
   1612 
   1613   PrintLinkage(F->getLinkage(), Out);
   1614   PrintVisibility(F->getVisibility(), Out);
   1615 
   1616   // Print the calling convention.
   1617   if (F->getCallingConv() != CallingConv::C) {
   1618     PrintCallingConv(F->getCallingConv(), Out);
   1619     Out << " ";
   1620   }
   1621 
   1622   FunctionType *FT = F->getFunctionType();
   1623   const AttributeSet &Attrs = F->getAttributes();
   1624   if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
   1625     Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
   1626   TypePrinter.print(F->getReturnType(), Out);
   1627   Out << ' ';
   1628   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
   1629   Out << '(';
   1630   Machine.incorporateFunction(F);
   1631 
   1632   // Loop over the arguments, printing them...
   1633 
   1634   unsigned Idx = 1;
   1635   if (!F->isDeclaration()) {
   1636     // If this isn't a declaration, print the argument names as well.
   1637     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1638          I != E; ++I) {
   1639       // Insert commas as we go... the first arg doesn't get a comma
   1640       if (I != F->arg_begin()) Out << ", ";
   1641       printArgument(I, Attrs, Idx);
   1642       Idx++;
   1643     }
   1644   } else {
   1645     // Otherwise, print the types from the function type.
   1646     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   1647       // Insert commas as we go... the first arg doesn't get a comma
   1648       if (i) Out << ", ";
   1649 
   1650       // Output type...
   1651       TypePrinter.print(FT->getParamType(i), Out);
   1652 
   1653       if (Attrs.hasAttributes(i+1))
   1654         Out << ' ' << Attrs.getAsString(i+1);
   1655     }
   1656   }
   1657 
   1658   // Finish printing arguments...
   1659   if (FT->isVarArg()) {
   1660     if (FT->getNumParams()) Out << ", ";
   1661     Out << "...";  // Output varargs portion of signature!
   1662   }
   1663   Out << ')';
   1664   if (F->hasUnnamedAddr())
   1665     Out << " unnamed_addr";
   1666   if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
   1667     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
   1668   if (F->hasSection()) {
   1669     Out << " section \"";
   1670     PrintEscapedString(F->getSection(), Out);
   1671     Out << '"';
   1672   }
   1673   if (F->getAlignment())
   1674     Out << " align " << F->getAlignment();
   1675   if (F->hasGC())
   1676     Out << " gc \"" << F->getGC() << '"';
   1677   if (F->isDeclaration()) {
   1678     Out << '\n';
   1679   } else {
   1680     Out << " {";
   1681     // Output all of the function's basic blocks.
   1682     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
   1683       printBasicBlock(I);
   1684 
   1685     Out << "}\n";
   1686   }
   1687 
   1688   Machine.purgeFunction();
   1689 }
   1690 
   1691 /// printArgument - This member is called for every argument that is passed into
   1692 /// the function.  Simply print it out
   1693 ///
   1694 void AssemblyWriter::printArgument(const Argument *Arg,
   1695                                    AttributeSet Attrs, unsigned Idx) {
   1696   // Output type...
   1697   TypePrinter.print(Arg->getType(), Out);
   1698 
   1699   // Output parameter attributes list
   1700   if (Attrs.hasAttributes(Idx))
   1701     Out << ' ' << Attrs.getAsString(Idx);
   1702 
   1703   // Output name, if available...
   1704   if (Arg->hasName()) {
   1705     Out << ' ';
   1706     PrintLLVMName(Out, Arg);
   1707   }
   1708 }
   1709 
   1710 /// printBasicBlock - This member is called for each basic block in a method.
   1711 ///
   1712 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
   1713   if (BB->hasName()) {              // Print out the label if it exists...
   1714     Out << "\n";
   1715     PrintLLVMName(Out, BB->getName(), LabelPrefix);
   1716     Out << ':';
   1717   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
   1718     Out << "\n; <label>:";
   1719     int Slot = Machine.getLocalSlot(BB);
   1720     if (Slot != -1)
   1721       Out << Slot;
   1722     else
   1723       Out << "<badref>";
   1724   }
   1725 
   1726   if (BB->getParent() == 0) {
   1727     Out.PadToColumn(50);
   1728     Out << "; Error: Block without parent!";
   1729   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
   1730     // Output predecessors for the block.
   1731     Out.PadToColumn(50);
   1732     Out << ";";
   1733     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
   1734 
   1735     if (PI == PE) {
   1736       Out << " No predecessors!";
   1737     } else {
   1738       Out << " preds = ";
   1739       writeOperand(*PI, false);
   1740       for (++PI; PI != PE; ++PI) {
   1741         Out << ", ";
   1742         writeOperand(*PI, false);
   1743       }
   1744     }
   1745   }
   1746 
   1747   Out << "\n";
   1748 
   1749   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
   1750 
   1751   // Output all of the instructions in the basic block...
   1752   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1753     printInstruction(*I);
   1754     Out << '\n';
   1755   }
   1756 
   1757   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
   1758 }
   1759 
   1760 /// printInfoComment - Print a little comment after the instruction indicating
   1761 /// which slot it occupies.
   1762 ///
   1763 void AssemblyWriter::printInfoComment(const Value &V) {
   1764   if (AnnotationWriter) {
   1765     AnnotationWriter->printInfoComment(V, Out);
   1766     return;
   1767   }
   1768 }
   1769 
   1770 // This member is called for each Instruction in a function..
   1771 void AssemblyWriter::printInstruction(const Instruction &I) {
   1772   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
   1773 
   1774   // Print out indentation for an instruction.
   1775   Out << "  ";
   1776 
   1777   // Print out name if it exists...
   1778   if (I.hasName()) {
   1779     PrintLLVMName(Out, &I);
   1780     Out << " = ";
   1781   } else if (!I.getType()->isVoidTy()) {
   1782     // Print out the def slot taken.
   1783     int SlotNum = Machine.getLocalSlot(&I);
   1784     if (SlotNum == -1)
   1785       Out << "<badref> = ";
   1786     else
   1787       Out << '%' << SlotNum << " = ";
   1788   }
   1789 
   1790   if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
   1791     Out << "tail ";
   1792 
   1793   // Print out the opcode...
   1794   Out << I.getOpcodeName();
   1795 
   1796   // If this is an atomic load or store, print out the atomic marker.
   1797   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
   1798       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
   1799     Out << " atomic";
   1800 
   1801   // If this is a volatile operation, print out the volatile marker.
   1802   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
   1803       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
   1804       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
   1805       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
   1806     Out << " volatile";
   1807 
   1808   // Print out optimization information.
   1809   WriteOptimizationInfo(Out, &I);
   1810 
   1811   // Print out the compare instruction predicates
   1812   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
   1813     Out << ' ' << getPredicateText(CI->getPredicate());
   1814 
   1815   // Print out the atomicrmw operation
   1816   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
   1817     writeAtomicRMWOperation(Out, RMWI->getOperation());
   1818 
   1819   // Print out the type of the operands...
   1820   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
   1821 
   1822   // Special case conditional branches to swizzle the condition out to the front
   1823   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
   1824     const BranchInst &BI(cast<BranchInst>(I));
   1825     Out << ' ';
   1826     writeOperand(BI.getCondition(), true);
   1827     Out << ", ";
   1828     writeOperand(BI.getSuccessor(0), true);
   1829     Out << ", ";
   1830     writeOperand(BI.getSuccessor(1), true);
   1831 
   1832   } else if (isa<SwitchInst>(I)) {
   1833     const SwitchInst& SI(cast<SwitchInst>(I));
   1834     // Special case switch instruction to get formatting nice and correct.
   1835     Out << ' ';
   1836     writeOperand(SI.getCondition(), true);
   1837     Out << ", ";
   1838     writeOperand(SI.getDefaultDest(), true);
   1839     Out << " [";
   1840     for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   1841          i != e; ++i) {
   1842       Out << "\n    ";
   1843       writeOperand(i.getCaseValue(), true);
   1844       Out << ", ";
   1845       writeOperand(i.getCaseSuccessor(), true);
   1846     }
   1847     Out << "\n  ]";
   1848   } else if (isa<IndirectBrInst>(I)) {
   1849     // Special case indirectbr instruction to get formatting nice and correct.
   1850     Out << ' ';
   1851     writeOperand(Operand, true);
   1852     Out << ", [";
   1853 
   1854     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
   1855       if (i != 1)
   1856         Out << ", ";
   1857       writeOperand(I.getOperand(i), true);
   1858     }
   1859     Out << ']';
   1860   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
   1861     Out << ' ';
   1862     TypePrinter.print(I.getType(), Out);
   1863     Out << ' ';
   1864 
   1865     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
   1866       if (op) Out << ", ";
   1867       Out << "[ ";
   1868       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
   1869       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
   1870     }
   1871   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
   1872     Out << ' ';
   1873     writeOperand(I.getOperand(0), true);
   1874     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1875       Out << ", " << *i;
   1876   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
   1877     Out << ' ';
   1878     writeOperand(I.getOperand(0), true); Out << ", ";
   1879     writeOperand(I.getOperand(1), true);
   1880     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1881       Out << ", " << *i;
   1882   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
   1883     Out << ' ';
   1884     TypePrinter.print(I.getType(), Out);
   1885     Out << " personality ";
   1886     writeOperand(I.getOperand(0), true); Out << '\n';
   1887 
   1888     if (LPI->isCleanup())
   1889       Out << "          cleanup";
   1890 
   1891     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
   1892       if (i != 0 || LPI->isCleanup()) Out << "\n";
   1893       if (LPI->isCatch(i))
   1894         Out << "          catch ";
   1895       else
   1896         Out << "          filter ";
   1897 
   1898       writeOperand(LPI->getClause(i), true);
   1899     }
   1900   } else if (isa<ReturnInst>(I) && !Operand) {
   1901     Out << " void";
   1902   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
   1903     // Print the calling convention being used.
   1904     if (CI->getCallingConv() != CallingConv::C) {
   1905       Out << " ";
   1906       PrintCallingConv(CI->getCallingConv(), Out);
   1907     }
   1908 
   1909     Operand = CI->getCalledValue();
   1910     PointerType *PTy = cast<PointerType>(Operand->getType());
   1911     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1912     Type *RetTy = FTy->getReturnType();
   1913     const AttributeSet &PAL = CI->getAttributes();
   1914 
   1915     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
   1916       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
   1917 
   1918     // If possible, print out the short form of the call instruction.  We can
   1919     // only do this if the first argument is a pointer to a nonvararg function,
   1920     // and if the return type is not a pointer to a function.
   1921     //
   1922     Out << ' ';
   1923     if (!FTy->isVarArg() &&
   1924         (!RetTy->isPointerTy() ||
   1925          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
   1926       TypePrinter.print(RetTy, Out);
   1927       Out << ' ';
   1928       writeOperand(Operand, false);
   1929     } else {
   1930       writeOperand(Operand, true);
   1931     }
   1932     Out << '(';
   1933     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
   1934       if (op > 0)
   1935         Out << ", ";
   1936       writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
   1937     }
   1938     Out << ')';
   1939     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
   1940       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
   1941   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
   1942     Operand = II->getCalledValue();
   1943     PointerType *PTy = cast<PointerType>(Operand->getType());
   1944     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1945     Type *RetTy = FTy->getReturnType();
   1946     const AttributeSet &PAL = II->getAttributes();
   1947 
   1948     // Print the calling convention being used.
   1949     if (II->getCallingConv() != CallingConv::C) {
   1950       Out << " ";
   1951       PrintCallingConv(II->getCallingConv(), Out);
   1952     }
   1953 
   1954     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
   1955       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
   1956 
   1957     // If possible, print out the short form of the invoke instruction. We can
   1958     // only do this if the first argument is a pointer to a nonvararg function,
   1959     // and if the return type is not a pointer to a function.
   1960     //
   1961     Out << ' ';
   1962     if (!FTy->isVarArg() &&
   1963         (!RetTy->isPointerTy() ||
   1964          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
   1965       TypePrinter.print(RetTy, Out);
   1966       Out << ' ';
   1967       writeOperand(Operand, false);
   1968     } else {
   1969       writeOperand(Operand, true);
   1970     }
   1971     Out << '(';
   1972     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
   1973       if (op)
   1974         Out << ", ";
   1975       writeParamOperand(II->getArgOperand(op), PAL, op + 1);
   1976     }
   1977 
   1978     Out << ')';
   1979     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
   1980       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
   1981 
   1982     Out << "\n          to ";
   1983     writeOperand(II->getNormalDest(), true);
   1984     Out << " unwind ";
   1985     writeOperand(II->getUnwindDest(), true);
   1986 
   1987   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
   1988     Out << ' ';
   1989     TypePrinter.print(AI->getAllocatedType(), Out);
   1990     if (!AI->getArraySize() || AI->isArrayAllocation()) {
   1991       Out << ", ";
   1992       writeOperand(AI->getArraySize(), true);
   1993     }
   1994     if (AI->getAlignment()) {
   1995       Out << ", align " << AI->getAlignment();
   1996     }
   1997   } else if (isa<CastInst>(I)) {
   1998     if (Operand) {
   1999       Out << ' ';
   2000       writeOperand(Operand, true);   // Work with broken code
   2001     }
   2002     Out << " to ";
   2003     TypePrinter.print(I.getType(), Out);
   2004   } else if (isa<VAArgInst>(I)) {
   2005     if (Operand) {
   2006       Out << ' ';
   2007       writeOperand(Operand, true);   // Work with broken code
   2008     }
   2009     Out << ", ";
   2010     TypePrinter.print(I.getType(), Out);
   2011   } else if (Operand) {   // Print the normal way.
   2012 
   2013     // PrintAllTypes - Instructions who have operands of all the same type
   2014     // omit the type from all but the first operand.  If the instruction has
   2015     // different type operands (for example br), then they are all printed.
   2016     bool PrintAllTypes = false;
   2017     Type *TheType = Operand->getType();
   2018 
   2019     // Select, Store and ShuffleVector always print all types.
   2020     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
   2021         || isa<ReturnInst>(I)) {
   2022       PrintAllTypes = true;
   2023     } else {
   2024       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
   2025         Operand = I.getOperand(i);
   2026         // note that Operand shouldn't be null, but the test helps make dump()
   2027         // more tolerant of malformed IR
   2028         if (Operand && Operand->getType() != TheType) {
   2029           PrintAllTypes = true;    // We have differing types!  Print them all!
   2030           break;
   2031         }
   2032       }
   2033     }
   2034 
   2035     if (!PrintAllTypes) {
   2036       Out << ' ';
   2037       TypePrinter.print(TheType, Out);
   2038     }
   2039 
   2040     Out << ' ';
   2041     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
   2042       if (i) Out << ", ";
   2043       writeOperand(I.getOperand(i), PrintAllTypes);
   2044     }
   2045   }
   2046 
   2047   // Print atomic ordering/alignment for memory operations
   2048   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
   2049     if (LI->isAtomic())
   2050       writeAtomic(LI->getOrdering(), LI->getSynchScope());
   2051     if (LI->getAlignment())
   2052       Out << ", align " << LI->getAlignment();
   2053   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
   2054     if (SI->isAtomic())
   2055       writeAtomic(SI->getOrdering(), SI->getSynchScope());
   2056     if (SI->getAlignment())
   2057       Out << ", align " << SI->getAlignment();
   2058   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
   2059     writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
   2060   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
   2061     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
   2062   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
   2063     writeAtomic(FI->getOrdering(), FI->getSynchScope());
   2064   }
   2065 
   2066   // Print Metadata info.
   2067   SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
   2068   I.getAllMetadata(InstMD);
   2069   if (!InstMD.empty()) {
   2070     SmallVector<StringRef, 8> MDNames;
   2071     I.getType()->getContext().getMDKindNames(MDNames);
   2072     for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
   2073       unsigned Kind = InstMD[i].first;
   2074        if (Kind < MDNames.size()) {
   2075          Out << ", !" << MDNames[Kind];
   2076       } else {
   2077         Out << ", !<unknown kind #" << Kind << ">";
   2078       }
   2079       Out << ' ';
   2080       WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
   2081                              TheModule);
   2082     }
   2083   }
   2084   printInfoComment(I);
   2085 }
   2086 
   2087 static void WriteMDNodeComment(const MDNode *Node,
   2088                                formatted_raw_ostream &Out) {
   2089   if (Node->getNumOperands() < 1)
   2090     return;
   2091 
   2092   Value *Op = Node->getOperand(0);
   2093   if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
   2094     return;
   2095 
   2096   DIDescriptor Desc(Node);
   2097   if (!Desc.Verify())
   2098     return;
   2099 
   2100   unsigned Tag = Desc.getTag();
   2101   Out.PadToColumn(50);
   2102   if (dwarf::TagString(Tag)) {
   2103     Out << "; ";
   2104     Desc.print(Out);
   2105   } else if (Tag == dwarf::DW_TAG_user_base) {
   2106     Out << "; [ DW_TAG_user_base ]";
   2107   }
   2108 }
   2109 
   2110 void AssemblyWriter::writeAllMDNodes() {
   2111   SmallVector<const MDNode *, 16> Nodes;
   2112   Nodes.resize(Machine.mdn_size());
   2113   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
   2114        I != E; ++I)
   2115     Nodes[I->second] = cast<MDNode>(I->first);
   2116 
   2117   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
   2118     Out << '!' << i << " = metadata ";
   2119     printMDNodeBody(Nodes[i]);
   2120   }
   2121 }
   2122 
   2123 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
   2124   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
   2125   WriteMDNodeComment(Node, Out);
   2126   Out << "\n";
   2127 }
   2128 
   2129 void AssemblyWriter::writeAllAttributeGroups() {
   2130   std::vector<std::pair<AttributeSet, unsigned> > asVec;
   2131   asVec.resize(Machine.as_size());
   2132 
   2133   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
   2134        I != E; ++I)
   2135     asVec[I->second] = *I;
   2136 
   2137   for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
   2138          I = asVec.begin(), E = asVec.end(); I != E; ++I)
   2139     Out << "attributes #" << I->second << " = { "
   2140         << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
   2141 }
   2142 
   2143 //===----------------------------------------------------------------------===//
   2144 //                       External Interface declarations
   2145 //===----------------------------------------------------------------------===//
   2146 
   2147 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2148   SlotTracker SlotTable(this);
   2149   formatted_raw_ostream OS(ROS);
   2150   AssemblyWriter W(OS, SlotTable, this, AAW);
   2151   W.printModule(this);
   2152 }
   2153 
   2154 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2155   SlotTracker SlotTable(getParent());
   2156   formatted_raw_ostream OS(ROS);
   2157   AssemblyWriter W(OS, SlotTable, getParent(), AAW);
   2158   W.printNamedMDNode(this);
   2159 }
   2160 
   2161 void Type::print(raw_ostream &OS) const {
   2162   if (this == 0) {
   2163     OS << "<null Type>";
   2164     return;
   2165   }
   2166   TypePrinting TP;
   2167   TP.print(const_cast<Type*>(this), OS);
   2168 
   2169   // If the type is a named struct type, print the body as well.
   2170   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
   2171     if (!STy->isLiteral()) {
   2172       OS << " = type ";
   2173       TP.printStructBody(STy, OS);
   2174     }
   2175 }
   2176 
   2177 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2178   if (this == 0) {
   2179     ROS << "printing a <null> value\n";
   2180     return;
   2181   }
   2182   formatted_raw_ostream OS(ROS);
   2183   if (const Instruction *I = dyn_cast<Instruction>(this)) {
   2184     const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
   2185     SlotTracker SlotTable(F);
   2186     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
   2187     W.printInstruction(*I);
   2188   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
   2189     SlotTracker SlotTable(BB->getParent());
   2190     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
   2191     W.printBasicBlock(BB);
   2192   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
   2193     SlotTracker SlotTable(GV->getParent());
   2194     AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
   2195     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
   2196       W.printGlobal(V);
   2197     else if (const Function *F = dyn_cast<Function>(GV))
   2198       W.printFunction(F);
   2199     else
   2200       W.printAlias(cast<GlobalAlias>(GV));
   2201   } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
   2202     const Function *F = N->getFunction();
   2203     SlotTracker SlotTable(F);
   2204     AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
   2205     W.printMDNodeBody(N);
   2206   } else if (const Constant *C = dyn_cast<Constant>(this)) {
   2207     TypePrinting TypePrinter;
   2208     TypePrinter.print(C->getType(), OS);
   2209     OS << ' ';
   2210     WriteConstantInternal(OS, C, TypePrinter, 0, 0);
   2211   } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
   2212              isa<Argument>(this)) {
   2213     WriteAsOperand(OS, this, true, 0);
   2214   } else {
   2215     // Otherwise we don't know what it is. Call the virtual function to
   2216     // allow a subclass to print itself.
   2217     printCustom(OS);
   2218   }
   2219 }
   2220 
   2221 // Value::printCustom - subclasses should override this to implement printing.
   2222 void Value::printCustom(raw_ostream &OS) const {
   2223   llvm_unreachable("Unknown value to print out!");
   2224 }
   2225 
   2226 // Value::dump - allow easy printing of Values from the debugger.
   2227 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
   2228 
   2229 // Type::dump - allow easy printing of Types from the debugger.
   2230 void Type::dump() const { print(dbgs()); }
   2231 
   2232 // Module::dump() - Allow printing of Modules from the debugger.
   2233 void Module::dump() const { print(dbgs(), 0); }
   2234 
   2235 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
   2236 void NamedMDNode::dump() const { print(dbgs(), 0); }
   2237