Home | History | Annotate | Download | only in Instrumentation
      1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file is a part of MemorySanitizer, a detector of uninitialized
     11 /// reads.
     12 ///
     13 /// Status: early prototype.
     14 ///
     15 /// The algorithm of the tool is similar to Memcheck
     16 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
     17 /// byte of the application memory, poison the shadow of the malloc-ed
     18 /// or alloca-ed memory, load the shadow bits on every memory read,
     19 /// propagate the shadow bits through some of the arithmetic
     20 /// instruction (including MOV), store the shadow bits on every memory
     21 /// write, report a bug on some other instructions (e.g. JMP) if the
     22 /// associated shadow is poisoned.
     23 ///
     24 /// But there are differences too. The first and the major one:
     25 /// compiler instrumentation instead of binary instrumentation. This
     26 /// gives us much better register allocation, possible compiler
     27 /// optimizations and a fast start-up. But this brings the major issue
     28 /// as well: msan needs to see all program events, including system
     29 /// calls and reads/writes in system libraries, so we either need to
     30 /// compile *everything* with msan or use a binary translation
     31 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
     32 /// Another difference from Memcheck is that we use 8 shadow bits per
     33 /// byte of application memory and use a direct shadow mapping. This
     34 /// greatly simplifies the instrumentation code and avoids races on
     35 /// shadow updates (Memcheck is single-threaded so races are not a
     36 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
     37 /// path storage that uses 8 bits per byte).
     38 ///
     39 /// The default value of shadow is 0, which means "clean" (not poisoned).
     40 ///
     41 /// Every module initializer should call __msan_init to ensure that the
     42 /// shadow memory is ready. On error, __msan_warning is called. Since
     43 /// parameters and return values may be passed via registers, we have a
     44 /// specialized thread-local shadow for return values
     45 /// (__msan_retval_tls) and parameters (__msan_param_tls).
     46 ///
     47 ///                           Origin tracking.
     48 ///
     49 /// MemorySanitizer can track origins (allocation points) of all uninitialized
     50 /// values. This behavior is controlled with a flag (msan-track-origins) and is
     51 /// disabled by default.
     52 ///
     53 /// Origins are 4-byte values created and interpreted by the runtime library.
     54 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
     55 /// of application memory. Propagation of origins is basically a bunch of
     56 /// "select" instructions that pick the origin of a dirty argument, if an
     57 /// instruction has one.
     58 ///
     59 /// Every 4 aligned, consecutive bytes of application memory have one origin
     60 /// value associated with them. If these bytes contain uninitialized data
     61 /// coming from 2 different allocations, the last store wins. Because of this,
     62 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
     63 /// practice.
     64 ///
     65 /// Origins are meaningless for fully initialized values, so MemorySanitizer
     66 /// avoids storing origin to memory when a fully initialized value is stored.
     67 /// This way it avoids needless overwritting origin of the 4-byte region on
     68 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
     69 //===----------------------------------------------------------------------===//
     70 
     71 #define DEBUG_TYPE "msan"
     72 
     73 #include "llvm/Transforms/Instrumentation.h"
     74 #include "llvm/ADT/DepthFirstIterator.h"
     75 #include "llvm/ADT/SmallString.h"
     76 #include "llvm/ADT/SmallVector.h"
     77 #include "llvm/ADT/ValueMap.h"
     78 #include "llvm/IR/DataLayout.h"
     79 #include "llvm/IR/Function.h"
     80 #include "llvm/IR/IRBuilder.h"
     81 #include "llvm/IR/InlineAsm.h"
     82 #include "llvm/IR/IntrinsicInst.h"
     83 #include "llvm/IR/LLVMContext.h"
     84 #include "llvm/IR/MDBuilder.h"
     85 #include "llvm/IR/Module.h"
     86 #include "llvm/IR/Type.h"
     87 #include "llvm/InstVisitor.h"
     88 #include "llvm/Support/CommandLine.h"
     89 #include "llvm/Support/Compiler.h"
     90 #include "llvm/Support/Debug.h"
     91 #include "llvm/Support/raw_ostream.h"
     92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     93 #include "llvm/Transforms/Utils/BlackList.h"
     94 #include "llvm/Transforms/Utils/Local.h"
     95 #include "llvm/Transforms/Utils/ModuleUtils.h"
     96 
     97 using namespace llvm;
     98 
     99 static const uint64_t kShadowMask32 = 1ULL << 31;
    100 static const uint64_t kShadowMask64 = 1ULL << 46;
    101 static const uint64_t kOriginOffset32 = 1ULL << 30;
    102 static const uint64_t kOriginOffset64 = 1ULL << 45;
    103 static const unsigned kMinOriginAlignment = 4;
    104 static const unsigned kShadowTLSAlignment = 8;
    105 
    106 /// \brief Track origins of uninitialized values.
    107 ///
    108 /// Adds a section to MemorySanitizer report that points to the allocation
    109 /// (stack or heap) the uninitialized bits came from originally.
    110 static cl::opt<bool> ClTrackOrigins("msan-track-origins",
    111        cl::desc("Track origins (allocation sites) of poisoned memory"),
    112        cl::Hidden, cl::init(false));
    113 static cl::opt<bool> ClKeepGoing("msan-keep-going",
    114        cl::desc("keep going after reporting a UMR"),
    115        cl::Hidden, cl::init(false));
    116 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
    117        cl::desc("poison uninitialized stack variables"),
    118        cl::Hidden, cl::init(true));
    119 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
    120        cl::desc("poison uninitialized stack variables with a call"),
    121        cl::Hidden, cl::init(false));
    122 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
    123        cl::desc("poison uninitialized stack variables with the given patter"),
    124        cl::Hidden, cl::init(0xff));
    125 
    126 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
    127        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
    128        cl::Hidden, cl::init(true));
    129 
    130 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
    131        cl::desc("exact handling of relational integer ICmp"),
    132        cl::Hidden, cl::init(false));
    133 
    134 static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
    135        cl::desc("store origin for clean (fully initialized) values"),
    136        cl::Hidden, cl::init(false));
    137 
    138 // This flag controls whether we check the shadow of the address
    139 // operand of load or store. Such bugs are very rare, since load from
    140 // a garbage address typically results in SEGV, but still happen
    141 // (e.g. only lower bits of address are garbage, or the access happens
    142 // early at program startup where malloc-ed memory is more likely to
    143 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
    144 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
    145        cl::desc("report accesses through a pointer which has poisoned shadow"),
    146        cl::Hidden, cl::init(true));
    147 
    148 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
    149        cl::desc("print out instructions with default strict semantics"),
    150        cl::Hidden, cl::init(false));
    151 
    152 static cl::opt<std::string>  ClBlacklistFile("msan-blacklist",
    153        cl::desc("File containing the list of functions where MemorySanitizer "
    154                 "should not report bugs"), cl::Hidden);
    155 
    156 namespace {
    157 
    158 /// \brief An instrumentation pass implementing detection of uninitialized
    159 /// reads.
    160 ///
    161 /// MemorySanitizer: instrument the code in module to find
    162 /// uninitialized reads.
    163 class MemorySanitizer : public FunctionPass {
    164  public:
    165   MemorySanitizer(bool TrackOrigins = false,
    166                   StringRef BlacklistFile = StringRef())
    167     : FunctionPass(ID),
    168       TrackOrigins(TrackOrigins || ClTrackOrigins),
    169       TD(0),
    170       WarningFn(0),
    171       BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
    172                                           : BlacklistFile) { }
    173   const char *getPassName() const { return "MemorySanitizer"; }
    174   bool runOnFunction(Function &F);
    175   bool doInitialization(Module &M);
    176   static char ID;  // Pass identification, replacement for typeid.
    177 
    178  private:
    179   void initializeCallbacks(Module &M);
    180 
    181   /// \brief Track origins (allocation points) of uninitialized values.
    182   bool TrackOrigins;
    183 
    184   DataLayout *TD;
    185   LLVMContext *C;
    186   Type *IntptrTy;
    187   Type *OriginTy;
    188   /// \brief Thread-local shadow storage for function parameters.
    189   GlobalVariable *ParamTLS;
    190   /// \brief Thread-local origin storage for function parameters.
    191   GlobalVariable *ParamOriginTLS;
    192   /// \brief Thread-local shadow storage for function return value.
    193   GlobalVariable *RetvalTLS;
    194   /// \brief Thread-local origin storage for function return value.
    195   GlobalVariable *RetvalOriginTLS;
    196   /// \brief Thread-local shadow storage for in-register va_arg function
    197   /// parameters (x86_64-specific).
    198   GlobalVariable *VAArgTLS;
    199   /// \brief Thread-local shadow storage for va_arg overflow area
    200   /// (x86_64-specific).
    201   GlobalVariable *VAArgOverflowSizeTLS;
    202   /// \brief Thread-local space used to pass origin value to the UMR reporting
    203   /// function.
    204   GlobalVariable *OriginTLS;
    205 
    206   /// \brief The run-time callback to print a warning.
    207   Value *WarningFn;
    208   /// \brief Run-time helper that copies origin info for a memory range.
    209   Value *MsanCopyOriginFn;
    210   /// \brief Run-time helper that generates a new origin value for a stack
    211   /// allocation.
    212   Value *MsanSetAllocaOriginFn;
    213   /// \brief Run-time helper that poisons stack on function entry.
    214   Value *MsanPoisonStackFn;
    215   /// \brief MSan runtime replacements for memmove, memcpy and memset.
    216   Value *MemmoveFn, *MemcpyFn, *MemsetFn;
    217 
    218   /// \brief Address mask used in application-to-shadow address calculation.
    219   /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
    220   uint64_t ShadowMask;
    221   /// \brief Offset of the origin shadow from the "normal" shadow.
    222   /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
    223   uint64_t OriginOffset;
    224   /// \brief Branch weights for error reporting.
    225   MDNode *ColdCallWeights;
    226   /// \brief Branch weights for origin store.
    227   MDNode *OriginStoreWeights;
    228   /// \bried Path to blacklist file.
    229   SmallString<64> BlacklistFile;
    230   /// \brief The blacklist.
    231   OwningPtr<BlackList> BL;
    232   /// \brief An empty volatile inline asm that prevents callback merge.
    233   InlineAsm *EmptyAsm;
    234 
    235   friend struct MemorySanitizerVisitor;
    236   friend struct VarArgAMD64Helper;
    237 };
    238 }  // namespace
    239 
    240 char MemorySanitizer::ID = 0;
    241 INITIALIZE_PASS(MemorySanitizer, "msan",
    242                 "MemorySanitizer: detects uninitialized reads.",
    243                 false, false)
    244 
    245 FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
    246                                               StringRef BlacklistFile) {
    247   return new MemorySanitizer(TrackOrigins, BlacklistFile);
    248 }
    249 
    250 /// \brief Create a non-const global initialized with the given string.
    251 ///
    252 /// Creates a writable global for Str so that we can pass it to the
    253 /// run-time lib. Runtime uses first 4 bytes of the string to store the
    254 /// frame ID, so the string needs to be mutable.
    255 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
    256                                                             StringRef Str) {
    257   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
    258   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
    259                             GlobalValue::PrivateLinkage, StrConst, "");
    260 }
    261 
    262 
    263 /// \brief Insert extern declaration of runtime-provided functions and globals.
    264 void MemorySanitizer::initializeCallbacks(Module &M) {
    265   // Only do this once.
    266   if (WarningFn)
    267     return;
    268 
    269   IRBuilder<> IRB(*C);
    270   // Create the callback.
    271   // FIXME: this function should have "Cold" calling conv,
    272   // which is not yet implemented.
    273   StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
    274                                         : "__msan_warning_noreturn";
    275   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
    276 
    277   MsanCopyOriginFn = M.getOrInsertFunction(
    278     "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
    279     IRB.getInt8PtrTy(), IntptrTy, NULL);
    280   MsanSetAllocaOriginFn = M.getOrInsertFunction(
    281     "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
    282     IRB.getInt8PtrTy(), NULL);
    283   MsanPoisonStackFn = M.getOrInsertFunction(
    284     "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
    285   MemmoveFn = M.getOrInsertFunction(
    286     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    287     IRB.getInt8PtrTy(), IntptrTy, NULL);
    288   MemcpyFn = M.getOrInsertFunction(
    289     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    290     IntptrTy, NULL);
    291   MemsetFn = M.getOrInsertFunction(
    292     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
    293     IntptrTy, NULL);
    294 
    295   // Create globals.
    296   RetvalTLS = new GlobalVariable(
    297     M, ArrayType::get(IRB.getInt64Ty(), 8), false,
    298     GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
    299     GlobalVariable::GeneralDynamicTLSModel);
    300   RetvalOriginTLS = new GlobalVariable(
    301     M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
    302     "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
    303 
    304   ParamTLS = new GlobalVariable(
    305     M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
    306     GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
    307     GlobalVariable::GeneralDynamicTLSModel);
    308   ParamOriginTLS = new GlobalVariable(
    309     M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
    310     0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
    311 
    312   VAArgTLS = new GlobalVariable(
    313     M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
    314     GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
    315     GlobalVariable::GeneralDynamicTLSModel);
    316   VAArgOverflowSizeTLS = new GlobalVariable(
    317     M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
    318     "__msan_va_arg_overflow_size_tls", 0,
    319     GlobalVariable::GeneralDynamicTLSModel);
    320   OriginTLS = new GlobalVariable(
    321     M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
    322     "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
    323 
    324   // We insert an empty inline asm after __msan_report* to avoid callback merge.
    325   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
    326                             StringRef(""), StringRef(""),
    327                             /*hasSideEffects=*/true);
    328 }
    329 
    330 /// \brief Module-level initialization.
    331 ///
    332 /// inserts a call to __msan_init to the module's constructor list.
    333 bool MemorySanitizer::doInitialization(Module &M) {
    334   TD = getAnalysisIfAvailable<DataLayout>();
    335   if (!TD)
    336     return false;
    337   BL.reset(new BlackList(BlacklistFile));
    338   C = &(M.getContext());
    339   unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
    340   switch (PtrSize) {
    341     case 64:
    342       ShadowMask = kShadowMask64;
    343       OriginOffset = kOriginOffset64;
    344       break;
    345     case 32:
    346       ShadowMask = kShadowMask32;
    347       OriginOffset = kOriginOffset32;
    348       break;
    349     default:
    350       report_fatal_error("unsupported pointer size");
    351       break;
    352   }
    353 
    354   IRBuilder<> IRB(*C);
    355   IntptrTy = IRB.getIntPtrTy(TD);
    356   OriginTy = IRB.getInt32Ty();
    357 
    358   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
    359   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
    360 
    361   // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
    362   appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
    363                       "__msan_init", IRB.getVoidTy(), NULL)), 0);
    364 
    365   new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
    366                      IRB.getInt32(TrackOrigins), "__msan_track_origins");
    367 
    368   new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
    369                      IRB.getInt32(ClKeepGoing), "__msan_keep_going");
    370 
    371   return true;
    372 }
    373 
    374 namespace {
    375 
    376 /// \brief A helper class that handles instrumentation of VarArg
    377 /// functions on a particular platform.
    378 ///
    379 /// Implementations are expected to insert the instrumentation
    380 /// necessary to propagate argument shadow through VarArg function
    381 /// calls. Visit* methods are called during an InstVisitor pass over
    382 /// the function, and should avoid creating new basic blocks. A new
    383 /// instance of this class is created for each instrumented function.
    384 struct VarArgHelper {
    385   /// \brief Visit a CallSite.
    386   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
    387 
    388   /// \brief Visit a va_start call.
    389   virtual void visitVAStartInst(VAStartInst &I) = 0;
    390 
    391   /// \brief Visit a va_copy call.
    392   virtual void visitVACopyInst(VACopyInst &I) = 0;
    393 
    394   /// \brief Finalize function instrumentation.
    395   ///
    396   /// This method is called after visiting all interesting (see above)
    397   /// instructions in a function.
    398   virtual void finalizeInstrumentation() = 0;
    399 
    400   virtual ~VarArgHelper() {}
    401 };
    402 
    403 struct MemorySanitizerVisitor;
    404 
    405 VarArgHelper*
    406 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
    407                    MemorySanitizerVisitor &Visitor);
    408 
    409 /// This class does all the work for a given function. Store and Load
    410 /// instructions store and load corresponding shadow and origin
    411 /// values. Most instructions propagate shadow from arguments to their
    412 /// return values. Certain instructions (most importantly, BranchInst)
    413 /// test their argument shadow and print reports (with a runtime call) if it's
    414 /// non-zero.
    415 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
    416   Function &F;
    417   MemorySanitizer &MS;
    418   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
    419   ValueMap<Value*, Value*> ShadowMap, OriginMap;
    420   bool InsertChecks;
    421   bool LoadShadow;
    422   OwningPtr<VarArgHelper> VAHelper;
    423 
    424   struct ShadowOriginAndInsertPoint {
    425     Instruction *Shadow;
    426     Instruction *Origin;
    427     Instruction *OrigIns;
    428     ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
    429       : Shadow(S), Origin(O), OrigIns(I) { }
    430     ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
    431   };
    432   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
    433   SmallVector<Instruction*, 16> StoreList;
    434 
    435   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
    436       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
    437     LoadShadow = InsertChecks =
    438         !MS.BL->isIn(F) &&
    439         F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    440                                        Attribute::SanitizeMemory);
    441 
    442     DEBUG(if (!InsertChecks)
    443           dbgs() << "MemorySanitizer is not inserting checks into '"
    444                  << F.getName() << "'\n");
    445   }
    446 
    447   void materializeStores() {
    448     for (size_t i = 0, n = StoreList.size(); i < n; i++) {
    449       StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
    450 
    451       IRBuilder<> IRB(&I);
    452       Value *Val = I.getValueOperand();
    453       Value *Addr = I.getPointerOperand();
    454       Value *Shadow = getShadow(Val);
    455       Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
    456 
    457       StoreInst *NewSI =
    458         IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
    459       DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
    460       (void)NewSI;
    461 
    462       if (ClCheckAccessAddress)
    463         insertCheck(Addr, &I);
    464 
    465       if (MS.TrackOrigins) {
    466         unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
    467         if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
    468           IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
    469                                  Alignment);
    470         } else {
    471           Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
    472 
    473           Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
    474           // TODO(eugenis): handle non-zero constant shadow by inserting an
    475           // unconditional check (can not simply fail compilation as this could
    476           // be in the dead code).
    477           if (Cst)
    478             continue;
    479 
    480           Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
    481               getCleanShadow(ConvertedShadow), "_mscmp");
    482           Instruction *CheckTerm =
    483             SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
    484                                       MS.OriginStoreWeights);
    485           IRBuilder<> IRBNew(CheckTerm);
    486           IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
    487                                     Alignment);
    488         }
    489       }
    490     }
    491   }
    492 
    493   void materializeChecks() {
    494     for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
    495       Instruction *Shadow = InstrumentationList[i].Shadow;
    496       Instruction *OrigIns = InstrumentationList[i].OrigIns;
    497       IRBuilder<> IRB(OrigIns);
    498       DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
    499       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
    500       DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
    501       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
    502                                     getCleanShadow(ConvertedShadow), "_mscmp");
    503       Instruction *CheckTerm =
    504         SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
    505                                   /* Unreachable */ !ClKeepGoing,
    506                                   MS.ColdCallWeights);
    507 
    508       IRB.SetInsertPoint(CheckTerm);
    509       if (MS.TrackOrigins) {
    510         Instruction *Origin = InstrumentationList[i].Origin;
    511         IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
    512                         MS.OriginTLS);
    513       }
    514       CallInst *Call = IRB.CreateCall(MS.WarningFn);
    515       Call->setDebugLoc(OrigIns->getDebugLoc());
    516       IRB.CreateCall(MS.EmptyAsm);
    517       DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
    518     }
    519     DEBUG(dbgs() << "DONE:\n" << F);
    520   }
    521 
    522   /// \brief Add MemorySanitizer instrumentation to a function.
    523   bool runOnFunction() {
    524     MS.initializeCallbacks(*F.getParent());
    525     if (!MS.TD) return false;
    526 
    527     // In the presence of unreachable blocks, we may see Phi nodes with
    528     // incoming nodes from such blocks. Since InstVisitor skips unreachable
    529     // blocks, such nodes will not have any shadow value associated with them.
    530     // It's easier to remove unreachable blocks than deal with missing shadow.
    531     removeUnreachableBlocks(F);
    532 
    533     // Iterate all BBs in depth-first order and create shadow instructions
    534     // for all instructions (where applicable).
    535     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
    536     for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
    537          DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
    538       BasicBlock *BB = *DI;
    539       visit(*BB);
    540     }
    541 
    542     // Finalize PHI nodes.
    543     for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
    544       PHINode *PN = ShadowPHINodes[i];
    545       PHINode *PNS = cast<PHINode>(getShadow(PN));
    546       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
    547       size_t NumValues = PN->getNumIncomingValues();
    548       for (size_t v = 0; v < NumValues; v++) {
    549         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
    550         if (PNO)
    551           PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
    552       }
    553     }
    554 
    555     VAHelper->finalizeInstrumentation();
    556 
    557     // Delayed instrumentation of StoreInst.
    558     // This may add new checks to be inserted later.
    559     materializeStores();
    560 
    561     // Insert shadow value checks.
    562     materializeChecks();
    563 
    564     return true;
    565   }
    566 
    567   /// \brief Compute the shadow type that corresponds to a given Value.
    568   Type *getShadowTy(Value *V) {
    569     return getShadowTy(V->getType());
    570   }
    571 
    572   /// \brief Compute the shadow type that corresponds to a given Type.
    573   Type *getShadowTy(Type *OrigTy) {
    574     if (!OrigTy->isSized()) {
    575       return 0;
    576     }
    577     // For integer type, shadow is the same as the original type.
    578     // This may return weird-sized types like i1.
    579     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
    580       return IT;
    581     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
    582       uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
    583       return VectorType::get(IntegerType::get(*MS.C, EltSize),
    584                              VT->getNumElements());
    585     }
    586     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
    587       SmallVector<Type*, 4> Elements;
    588       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
    589         Elements.push_back(getShadowTy(ST->getElementType(i)));
    590       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
    591       DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
    592       return Res;
    593     }
    594     uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
    595     return IntegerType::get(*MS.C, TypeSize);
    596   }
    597 
    598   /// \brief Flatten a vector type.
    599   Type *getShadowTyNoVec(Type *ty) {
    600     if (VectorType *vt = dyn_cast<VectorType>(ty))
    601       return IntegerType::get(*MS.C, vt->getBitWidth());
    602     return ty;
    603   }
    604 
    605   /// \brief Convert a shadow value to it's flattened variant.
    606   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
    607     Type *Ty = V->getType();
    608     Type *NoVecTy = getShadowTyNoVec(Ty);
    609     if (Ty == NoVecTy) return V;
    610     return IRB.CreateBitCast(V, NoVecTy);
    611   }
    612 
    613   /// \brief Compute the shadow address that corresponds to a given application
    614   /// address.
    615   ///
    616   /// Shadow = Addr & ~ShadowMask.
    617   Value *getShadowPtr(Value *Addr, Type *ShadowTy,
    618                       IRBuilder<> &IRB) {
    619     Value *ShadowLong =
    620       IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
    621                     ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
    622     return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
    623   }
    624 
    625   /// \brief Compute the origin address that corresponds to a given application
    626   /// address.
    627   ///
    628   /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
    629   Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
    630     Value *ShadowLong =
    631       IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
    632                     ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
    633     Value *Add =
    634       IRB.CreateAdd(ShadowLong,
    635                     ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
    636     Value *SecondAnd =
    637       IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
    638     return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
    639   }
    640 
    641   /// \brief Compute the shadow address for a given function argument.
    642   ///
    643   /// Shadow = ParamTLS+ArgOffset.
    644   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
    645                                  int ArgOffset) {
    646     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
    647     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    648     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
    649                               "_msarg");
    650   }
    651 
    652   /// \brief Compute the origin address for a given function argument.
    653   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
    654                                  int ArgOffset) {
    655     if (!MS.TrackOrigins) return 0;
    656     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
    657     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    658     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
    659                               "_msarg_o");
    660   }
    661 
    662   /// \brief Compute the shadow address for a retval.
    663   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
    664     Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
    665     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
    666                               "_msret");
    667   }
    668 
    669   /// \brief Compute the origin address for a retval.
    670   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
    671     // We keep a single origin for the entire retval. Might be too optimistic.
    672     return MS.RetvalOriginTLS;
    673   }
    674 
    675   /// \brief Set SV to be the shadow value for V.
    676   void setShadow(Value *V, Value *SV) {
    677     assert(!ShadowMap.count(V) && "Values may only have one shadow");
    678     ShadowMap[V] = SV;
    679   }
    680 
    681   /// \brief Set Origin to be the origin value for V.
    682   void setOrigin(Value *V, Value *Origin) {
    683     if (!MS.TrackOrigins) return;
    684     assert(!OriginMap.count(V) && "Values may only have one origin");
    685     DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
    686     OriginMap[V] = Origin;
    687   }
    688 
    689   /// \brief Create a clean shadow value for a given value.
    690   ///
    691   /// Clean shadow (all zeroes) means all bits of the value are defined
    692   /// (initialized).
    693   Value *getCleanShadow(Value *V) {
    694     Type *ShadowTy = getShadowTy(V);
    695     if (!ShadowTy)
    696       return 0;
    697     return Constant::getNullValue(ShadowTy);
    698   }
    699 
    700   /// \brief Create a dirty shadow of a given shadow type.
    701   Constant *getPoisonedShadow(Type *ShadowTy) {
    702     assert(ShadowTy);
    703     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
    704       return Constant::getAllOnesValue(ShadowTy);
    705     StructType *ST = cast<StructType>(ShadowTy);
    706     SmallVector<Constant *, 4> Vals;
    707     for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
    708       Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
    709     return ConstantStruct::get(ST, Vals);
    710   }
    711 
    712   /// \brief Create a clean (zero) origin.
    713   Value *getCleanOrigin() {
    714     return Constant::getNullValue(MS.OriginTy);
    715   }
    716 
    717   /// \brief Get the shadow value for a given Value.
    718   ///
    719   /// This function either returns the value set earlier with setShadow,
    720   /// or extracts if from ParamTLS (for function arguments).
    721   Value *getShadow(Value *V) {
    722     if (Instruction *I = dyn_cast<Instruction>(V)) {
    723       // For instructions the shadow is already stored in the map.
    724       Value *Shadow = ShadowMap[V];
    725       if (!Shadow) {
    726         DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
    727         (void)I;
    728         assert(Shadow && "No shadow for a value");
    729       }
    730       return Shadow;
    731     }
    732     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
    733       Value *AllOnes = getPoisonedShadow(getShadowTy(V));
    734       DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
    735       (void)U;
    736       return AllOnes;
    737     }
    738     if (Argument *A = dyn_cast<Argument>(V)) {
    739       // For arguments we compute the shadow on demand and store it in the map.
    740       Value **ShadowPtr = &ShadowMap[V];
    741       if (*ShadowPtr)
    742         return *ShadowPtr;
    743       Function *F = A->getParent();
    744       IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
    745       unsigned ArgOffset = 0;
    746       for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
    747            AI != AE; ++AI) {
    748         if (!AI->getType()->isSized()) {
    749           DEBUG(dbgs() << "Arg is not sized\n");
    750           continue;
    751         }
    752         unsigned Size = AI->hasByValAttr()
    753           ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
    754           : MS.TD->getTypeAllocSize(AI->getType());
    755         if (A == AI) {
    756           Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
    757           if (AI->hasByValAttr()) {
    758             // ByVal pointer itself has clean shadow. We copy the actual
    759             // argument shadow to the underlying memory.
    760             Value *Cpy = EntryIRB.CreateMemCpy(
    761               getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
    762               Base, Size, AI->getParamAlignment());
    763             DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
    764             (void)Cpy;
    765             *ShadowPtr = getCleanShadow(V);
    766           } else {
    767             *ShadowPtr = EntryIRB.CreateLoad(Base);
    768           }
    769           DEBUG(dbgs() << "  ARG:    "  << *AI << " ==> " <<
    770                 **ShadowPtr << "\n");
    771           if (MS.TrackOrigins) {
    772             Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
    773             setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
    774           }
    775         }
    776         ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
    777       }
    778       assert(*ShadowPtr && "Could not find shadow for an argument");
    779       return *ShadowPtr;
    780     }
    781     // For everything else the shadow is zero.
    782     return getCleanShadow(V);
    783   }
    784 
    785   /// \brief Get the shadow for i-th argument of the instruction I.
    786   Value *getShadow(Instruction *I, int i) {
    787     return getShadow(I->getOperand(i));
    788   }
    789 
    790   /// \brief Get the origin for a value.
    791   Value *getOrigin(Value *V) {
    792     if (!MS.TrackOrigins) return 0;
    793     if (isa<Instruction>(V) || isa<Argument>(V)) {
    794       Value *Origin = OriginMap[V];
    795       if (!Origin) {
    796         DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
    797         Origin = getCleanOrigin();
    798       }
    799       return Origin;
    800     }
    801     return getCleanOrigin();
    802   }
    803 
    804   /// \brief Get the origin for i-th argument of the instruction I.
    805   Value *getOrigin(Instruction *I, int i) {
    806     return getOrigin(I->getOperand(i));
    807   }
    808 
    809   /// \brief Remember the place where a shadow check should be inserted.
    810   ///
    811   /// This location will be later instrumented with a check that will print a
    812   /// UMR warning in runtime if the value is not fully defined.
    813   void insertCheck(Value *Val, Instruction *OrigIns) {
    814     assert(Val);
    815     if (!InsertChecks) return;
    816     Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
    817     if (!Shadow) return;
    818 #ifndef NDEBUG
    819     Type *ShadowTy = Shadow->getType();
    820     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
    821            "Can only insert checks for integer and vector shadow types");
    822 #endif
    823     Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
    824     InstrumentationList.push_back(
    825       ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
    826   }
    827 
    828   // ------------------- Visitors.
    829 
    830   /// \brief Instrument LoadInst
    831   ///
    832   /// Loads the corresponding shadow and (optionally) origin.
    833   /// Optionally, checks that the load address is fully defined.
    834   void visitLoadInst(LoadInst &I) {
    835     assert(I.getType()->isSized() && "Load type must have size");
    836     IRBuilder<> IRB(&I);
    837     Type *ShadowTy = getShadowTy(&I);
    838     Value *Addr = I.getPointerOperand();
    839     if (LoadShadow) {
    840       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
    841       setShadow(&I,
    842                 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
    843     } else {
    844       setShadow(&I, getCleanShadow(&I));
    845     }
    846 
    847     if (ClCheckAccessAddress)
    848       insertCheck(I.getPointerOperand(), &I);
    849 
    850     if (MS.TrackOrigins) {
    851       if (LoadShadow) {
    852         unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
    853         setOrigin(&I,
    854                   IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
    855       } else {
    856         setOrigin(&I, getCleanOrigin());
    857       }
    858     }
    859   }
    860 
    861   /// \brief Instrument StoreInst
    862   ///
    863   /// Stores the corresponding shadow and (optionally) origin.
    864   /// Optionally, checks that the store address is fully defined.
    865   void visitStoreInst(StoreInst &I) {
    866     StoreList.push_back(&I);
    867   }
    868 
    869   // Vector manipulation.
    870   void visitExtractElementInst(ExtractElementInst &I) {
    871     insertCheck(I.getOperand(1), &I);
    872     IRBuilder<> IRB(&I);
    873     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
    874               "_msprop"));
    875     setOrigin(&I, getOrigin(&I, 0));
    876   }
    877 
    878   void visitInsertElementInst(InsertElementInst &I) {
    879     insertCheck(I.getOperand(2), &I);
    880     IRBuilder<> IRB(&I);
    881     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
    882               I.getOperand(2), "_msprop"));
    883     setOriginForNaryOp(I);
    884   }
    885 
    886   void visitShuffleVectorInst(ShuffleVectorInst &I) {
    887     insertCheck(I.getOperand(2), &I);
    888     IRBuilder<> IRB(&I);
    889     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
    890               I.getOperand(2), "_msprop"));
    891     setOriginForNaryOp(I);
    892   }
    893 
    894   // Casts.
    895   void visitSExtInst(SExtInst &I) {
    896     IRBuilder<> IRB(&I);
    897     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
    898     setOrigin(&I, getOrigin(&I, 0));
    899   }
    900 
    901   void visitZExtInst(ZExtInst &I) {
    902     IRBuilder<> IRB(&I);
    903     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
    904     setOrigin(&I, getOrigin(&I, 0));
    905   }
    906 
    907   void visitTruncInst(TruncInst &I) {
    908     IRBuilder<> IRB(&I);
    909     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
    910     setOrigin(&I, getOrigin(&I, 0));
    911   }
    912 
    913   void visitBitCastInst(BitCastInst &I) {
    914     IRBuilder<> IRB(&I);
    915     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
    916     setOrigin(&I, getOrigin(&I, 0));
    917   }
    918 
    919   void visitPtrToIntInst(PtrToIntInst &I) {
    920     IRBuilder<> IRB(&I);
    921     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
    922              "_msprop_ptrtoint"));
    923     setOrigin(&I, getOrigin(&I, 0));
    924   }
    925 
    926   void visitIntToPtrInst(IntToPtrInst &I) {
    927     IRBuilder<> IRB(&I);
    928     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
    929              "_msprop_inttoptr"));
    930     setOrigin(&I, getOrigin(&I, 0));
    931   }
    932 
    933   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
    934   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
    935   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
    936   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
    937   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
    938   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
    939 
    940   /// \brief Propagate shadow for bitwise AND.
    941   ///
    942   /// This code is exact, i.e. if, for example, a bit in the left argument
    943   /// is defined and 0, then neither the value not definedness of the
    944   /// corresponding bit in B don't affect the resulting shadow.
    945   void visitAnd(BinaryOperator &I) {
    946     IRBuilder<> IRB(&I);
    947     //  "And" of 0 and a poisoned value results in unpoisoned value.
    948     //  1&1 => 1;     0&1 => 0;     p&1 => p;
    949     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
    950     //  1&p => p;     0&p => 0;     p&p => p;
    951     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
    952     Value *S1 = getShadow(&I, 0);
    953     Value *S2 = getShadow(&I, 1);
    954     Value *V1 = I.getOperand(0);
    955     Value *V2 = I.getOperand(1);
    956     if (V1->getType() != S1->getType()) {
    957       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
    958       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
    959     }
    960     Value *S1S2 = IRB.CreateAnd(S1, S2);
    961     Value *V1S2 = IRB.CreateAnd(V1, S2);
    962     Value *S1V2 = IRB.CreateAnd(S1, V2);
    963     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
    964     setOriginForNaryOp(I);
    965   }
    966 
    967   void visitOr(BinaryOperator &I) {
    968     IRBuilder<> IRB(&I);
    969     //  "Or" of 1 and a poisoned value results in unpoisoned value.
    970     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
    971     //  1|0 => 1;     0|0 => 0;     p|0 => p;
    972     //  1|p => 1;     0|p => p;     p|p => p;
    973     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
    974     Value *S1 = getShadow(&I, 0);
    975     Value *S2 = getShadow(&I, 1);
    976     Value *V1 = IRB.CreateNot(I.getOperand(0));
    977     Value *V2 = IRB.CreateNot(I.getOperand(1));
    978     if (V1->getType() != S1->getType()) {
    979       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
    980       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
    981     }
    982     Value *S1S2 = IRB.CreateAnd(S1, S2);
    983     Value *V1S2 = IRB.CreateAnd(V1, S2);
    984     Value *S1V2 = IRB.CreateAnd(S1, V2);
    985     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
    986     setOriginForNaryOp(I);
    987   }
    988 
    989   /// \brief Default propagation of shadow and/or origin.
    990   ///
    991   /// This class implements the general case of shadow propagation, used in all
    992   /// cases where we don't know and/or don't care about what the operation
    993   /// actually does. It converts all input shadow values to a common type
    994   /// (extending or truncating as necessary), and bitwise OR's them.
    995   ///
    996   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
    997   /// fully initialized), and less prone to false positives.
    998   ///
    999   /// This class also implements the general case of origin propagation. For a
   1000   /// Nary operation, result origin is set to the origin of an argument that is
   1001   /// not entirely initialized. If there is more than one such arguments, the
   1002   /// rightmost of them is picked. It does not matter which one is picked if all
   1003   /// arguments are initialized.
   1004   template <bool CombineShadow>
   1005   class Combiner {
   1006     Value *Shadow;
   1007     Value *Origin;
   1008     IRBuilder<> &IRB;
   1009     MemorySanitizerVisitor *MSV;
   1010 
   1011   public:
   1012     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
   1013       Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
   1014 
   1015     /// \brief Add a pair of shadow and origin values to the mix.
   1016     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
   1017       if (CombineShadow) {
   1018         assert(OpShadow);
   1019         if (!Shadow)
   1020           Shadow = OpShadow;
   1021         else {
   1022           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
   1023           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
   1024         }
   1025       }
   1026 
   1027       if (MSV->MS.TrackOrigins) {
   1028         assert(OpOrigin);
   1029         if (!Origin) {
   1030           Origin = OpOrigin;
   1031         } else {
   1032           Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
   1033           Value *Cond = IRB.CreateICmpNE(FlatShadow,
   1034                                          MSV->getCleanShadow(FlatShadow));
   1035           Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
   1036         }
   1037       }
   1038       return *this;
   1039     }
   1040 
   1041     /// \brief Add an application value to the mix.
   1042     Combiner &Add(Value *V) {
   1043       Value *OpShadow = MSV->getShadow(V);
   1044       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
   1045       return Add(OpShadow, OpOrigin);
   1046     }
   1047 
   1048     /// \brief Set the current combined values as the given instruction's shadow
   1049     /// and origin.
   1050     void Done(Instruction *I) {
   1051       if (CombineShadow) {
   1052         assert(Shadow);
   1053         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
   1054         MSV->setShadow(I, Shadow);
   1055       }
   1056       if (MSV->MS.TrackOrigins) {
   1057         assert(Origin);
   1058         MSV->setOrigin(I, Origin);
   1059       }
   1060     }
   1061   };
   1062 
   1063   typedef Combiner<true> ShadowAndOriginCombiner;
   1064   typedef Combiner<false> OriginCombiner;
   1065 
   1066   /// \brief Propagate origin for arbitrary operation.
   1067   void setOriginForNaryOp(Instruction &I) {
   1068     if (!MS.TrackOrigins) return;
   1069     IRBuilder<> IRB(&I);
   1070     OriginCombiner OC(this, IRB);
   1071     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
   1072       OC.Add(OI->get());
   1073     OC.Done(&I);
   1074   }
   1075 
   1076   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
   1077     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
   1078            "Vector of pointers is not a valid shadow type");
   1079     return Ty->isVectorTy() ?
   1080       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
   1081       Ty->getPrimitiveSizeInBits();
   1082   }
   1083 
   1084   /// \brief Cast between two shadow types, extending or truncating as
   1085   /// necessary.
   1086   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
   1087     Type *srcTy = V->getType();
   1088     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
   1089       return IRB.CreateIntCast(V, dstTy, false);
   1090     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
   1091         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
   1092       return IRB.CreateIntCast(V, dstTy, false);
   1093     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
   1094     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
   1095     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
   1096     Value *V2 =
   1097       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
   1098     return IRB.CreateBitCast(V2, dstTy);
   1099     // TODO: handle struct types.
   1100   }
   1101 
   1102   /// \brief Propagate shadow for arbitrary operation.
   1103   void handleShadowOr(Instruction &I) {
   1104     IRBuilder<> IRB(&I);
   1105     ShadowAndOriginCombiner SC(this, IRB);
   1106     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
   1107       SC.Add(OI->get());
   1108     SC.Done(&I);
   1109   }
   1110 
   1111   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
   1112   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
   1113   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
   1114   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
   1115   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
   1116   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
   1117   void visitMul(BinaryOperator &I) { handleShadowOr(I); }
   1118 
   1119   void handleDiv(Instruction &I) {
   1120     IRBuilder<> IRB(&I);
   1121     // Strict on the second argument.
   1122     insertCheck(I.getOperand(1), &I);
   1123     setShadow(&I, getShadow(&I, 0));
   1124     setOrigin(&I, getOrigin(&I, 0));
   1125   }
   1126 
   1127   void visitUDiv(BinaryOperator &I) { handleDiv(I); }
   1128   void visitSDiv(BinaryOperator &I) { handleDiv(I); }
   1129   void visitFDiv(BinaryOperator &I) { handleDiv(I); }
   1130   void visitURem(BinaryOperator &I) { handleDiv(I); }
   1131   void visitSRem(BinaryOperator &I) { handleDiv(I); }
   1132   void visitFRem(BinaryOperator &I) { handleDiv(I); }
   1133 
   1134   /// \brief Instrument == and != comparisons.
   1135   ///
   1136   /// Sometimes the comparison result is known even if some of the bits of the
   1137   /// arguments are not.
   1138   void handleEqualityComparison(ICmpInst &I) {
   1139     IRBuilder<> IRB(&I);
   1140     Value *A = I.getOperand(0);
   1141     Value *B = I.getOperand(1);
   1142     Value *Sa = getShadow(A);
   1143     Value *Sb = getShadow(B);
   1144 
   1145     // Get rid of pointers and vectors of pointers.
   1146     // For ints (and vectors of ints), types of A and Sa match,
   1147     // and this is a no-op.
   1148     A = IRB.CreatePointerCast(A, Sa->getType());
   1149     B = IRB.CreatePointerCast(B, Sb->getType());
   1150 
   1151     // A == B  <==>  (C = A^B) == 0
   1152     // A != B  <==>  (C = A^B) != 0
   1153     // Sc = Sa | Sb
   1154     Value *C = IRB.CreateXor(A, B);
   1155     Value *Sc = IRB.CreateOr(Sa, Sb);
   1156     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
   1157     // Result is defined if one of the following is true
   1158     // * there is a defined 1 bit in C
   1159     // * C is fully defined
   1160     // Si = !(C & ~Sc) && Sc
   1161     Value *Zero = Constant::getNullValue(Sc->getType());
   1162     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
   1163     Value *Si =
   1164       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
   1165                     IRB.CreateICmpEQ(
   1166                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
   1167     Si->setName("_msprop_icmp");
   1168     setShadow(&I, Si);
   1169     setOriginForNaryOp(I);
   1170   }
   1171 
   1172   /// \brief Build the lowest possible value of V, taking into account V's
   1173   ///        uninitialized bits.
   1174   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
   1175                                 bool isSigned) {
   1176     if (isSigned) {
   1177       // Split shadow into sign bit and other bits.
   1178       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
   1179       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
   1180       // Maximise the undefined shadow bit, minimize other undefined bits.
   1181       return
   1182         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
   1183     } else {
   1184       // Minimize undefined bits.
   1185       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
   1186     }
   1187   }
   1188 
   1189   /// \brief Build the highest possible value of V, taking into account V's
   1190   ///        uninitialized bits.
   1191   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
   1192                                 bool isSigned) {
   1193     if (isSigned) {
   1194       // Split shadow into sign bit and other bits.
   1195       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
   1196       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
   1197       // Minimise the undefined shadow bit, maximise other undefined bits.
   1198       return
   1199         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
   1200     } else {
   1201       // Maximize undefined bits.
   1202       return IRB.CreateOr(A, Sa);
   1203     }
   1204   }
   1205 
   1206   /// \brief Instrument relational comparisons.
   1207   ///
   1208   /// This function does exact shadow propagation for all relational
   1209   /// comparisons of integers, pointers and vectors of those.
   1210   /// FIXME: output seems suboptimal when one of the operands is a constant
   1211   void handleRelationalComparisonExact(ICmpInst &I) {
   1212     IRBuilder<> IRB(&I);
   1213     Value *A = I.getOperand(0);
   1214     Value *B = I.getOperand(1);
   1215     Value *Sa = getShadow(A);
   1216     Value *Sb = getShadow(B);
   1217 
   1218     // Get rid of pointers and vectors of pointers.
   1219     // For ints (and vectors of ints), types of A and Sa match,
   1220     // and this is a no-op.
   1221     A = IRB.CreatePointerCast(A, Sa->getType());
   1222     B = IRB.CreatePointerCast(B, Sb->getType());
   1223 
   1224     // Let [a0, a1] be the interval of possible values of A, taking into account
   1225     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
   1226     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
   1227     bool IsSigned = I.isSigned();
   1228     Value *S1 = IRB.CreateICmp(I.getPredicate(),
   1229                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
   1230                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
   1231     Value *S2 = IRB.CreateICmp(I.getPredicate(),
   1232                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
   1233                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
   1234     Value *Si = IRB.CreateXor(S1, S2);
   1235     setShadow(&I, Si);
   1236     setOriginForNaryOp(I);
   1237   }
   1238 
   1239   /// \brief Instrument signed relational comparisons.
   1240   ///
   1241   /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
   1242   /// propagating the highest bit of the shadow. Everything else is delegated
   1243   /// to handleShadowOr().
   1244   void handleSignedRelationalComparison(ICmpInst &I) {
   1245     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
   1246     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
   1247     Value* op = NULL;
   1248     CmpInst::Predicate pre = I.getPredicate();
   1249     if (constOp0 && constOp0->isNullValue() &&
   1250         (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
   1251       op = I.getOperand(1);
   1252     } else if (constOp1 && constOp1->isNullValue() &&
   1253                (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
   1254       op = I.getOperand(0);
   1255     }
   1256     if (op) {
   1257       IRBuilder<> IRB(&I);
   1258       Value* Shadow =
   1259         IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
   1260       setShadow(&I, Shadow);
   1261       setOrigin(&I, getOrigin(op));
   1262     } else {
   1263       handleShadowOr(I);
   1264     }
   1265   }
   1266 
   1267   void visitICmpInst(ICmpInst &I) {
   1268     if (!ClHandleICmp) {
   1269       handleShadowOr(I);
   1270       return;
   1271     }
   1272     if (I.isEquality()) {
   1273       handleEqualityComparison(I);
   1274       return;
   1275     }
   1276 
   1277     assert(I.isRelational());
   1278     if (ClHandleICmpExact) {
   1279       handleRelationalComparisonExact(I);
   1280       return;
   1281     }
   1282     if (I.isSigned()) {
   1283       handleSignedRelationalComparison(I);
   1284       return;
   1285     }
   1286 
   1287     assert(I.isUnsigned());
   1288     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
   1289       handleRelationalComparisonExact(I);
   1290       return;
   1291     }
   1292 
   1293     handleShadowOr(I);
   1294   }
   1295 
   1296   void visitFCmpInst(FCmpInst &I) {
   1297     handleShadowOr(I);
   1298   }
   1299 
   1300   void handleShift(BinaryOperator &I) {
   1301     IRBuilder<> IRB(&I);
   1302     // If any of the S2 bits are poisoned, the whole thing is poisoned.
   1303     // Otherwise perform the same shift on S1.
   1304     Value *S1 = getShadow(&I, 0);
   1305     Value *S2 = getShadow(&I, 1);
   1306     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
   1307                                    S2->getType());
   1308     Value *V2 = I.getOperand(1);
   1309     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
   1310     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
   1311     setOriginForNaryOp(I);
   1312   }
   1313 
   1314   void visitShl(BinaryOperator &I) { handleShift(I); }
   1315   void visitAShr(BinaryOperator &I) { handleShift(I); }
   1316   void visitLShr(BinaryOperator &I) { handleShift(I); }
   1317 
   1318   /// \brief Instrument llvm.memmove
   1319   ///
   1320   /// At this point we don't know if llvm.memmove will be inlined or not.
   1321   /// If we don't instrument it and it gets inlined,
   1322   /// our interceptor will not kick in and we will lose the memmove.
   1323   /// If we instrument the call here, but it does not get inlined,
   1324   /// we will memove the shadow twice: which is bad in case
   1325   /// of overlapping regions. So, we simply lower the intrinsic to a call.
   1326   ///
   1327   /// Similar situation exists for memcpy and memset.
   1328   void visitMemMoveInst(MemMoveInst &I) {
   1329     IRBuilder<> IRB(&I);
   1330     IRB.CreateCall3(
   1331       MS.MemmoveFn,
   1332       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1333       IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
   1334       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
   1335     I.eraseFromParent();
   1336   }
   1337 
   1338   // Similar to memmove: avoid copying shadow twice.
   1339   // This is somewhat unfortunate as it may slowdown small constant memcpys.
   1340   // FIXME: consider doing manual inline for small constant sizes and proper
   1341   // alignment.
   1342   void visitMemCpyInst(MemCpyInst &I) {
   1343     IRBuilder<> IRB(&I);
   1344     IRB.CreateCall3(
   1345       MS.MemcpyFn,
   1346       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1347       IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
   1348       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
   1349     I.eraseFromParent();
   1350   }
   1351 
   1352   // Same as memcpy.
   1353   void visitMemSetInst(MemSetInst &I) {
   1354     IRBuilder<> IRB(&I);
   1355     IRB.CreateCall3(
   1356       MS.MemsetFn,
   1357       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1358       IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
   1359       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
   1360     I.eraseFromParent();
   1361   }
   1362 
   1363   void visitVAStartInst(VAStartInst &I) {
   1364     VAHelper->visitVAStartInst(I);
   1365   }
   1366 
   1367   void visitVACopyInst(VACopyInst &I) {
   1368     VAHelper->visitVACopyInst(I);
   1369   }
   1370 
   1371   enum IntrinsicKind {
   1372     IK_DoesNotAccessMemory,
   1373     IK_OnlyReadsMemory,
   1374     IK_WritesMemory
   1375   };
   1376 
   1377   static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
   1378     const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
   1379     const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
   1380     const int OnlyReadsMemory = IK_OnlyReadsMemory;
   1381     const int OnlyAccessesArgumentPointees = IK_WritesMemory;
   1382     const int UnknownModRefBehavior = IK_WritesMemory;
   1383 #define GET_INTRINSIC_MODREF_BEHAVIOR
   1384 #define ModRefBehavior IntrinsicKind
   1385 #include "llvm/IR/Intrinsics.gen"
   1386 #undef ModRefBehavior
   1387 #undef GET_INTRINSIC_MODREF_BEHAVIOR
   1388   }
   1389 
   1390   /// \brief Handle vector store-like intrinsics.
   1391   ///
   1392   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
   1393   /// has 1 pointer argument and 1 vector argument, returns void.
   1394   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
   1395     IRBuilder<> IRB(&I);
   1396     Value* Addr = I.getArgOperand(0);
   1397     Value *Shadow = getShadow(&I, 1);
   1398     Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
   1399 
   1400     // We don't know the pointer alignment (could be unaligned SSE store!).
   1401     // Have to assume to worst case.
   1402     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
   1403 
   1404     if (ClCheckAccessAddress)
   1405       insertCheck(Addr, &I);
   1406 
   1407     // FIXME: use ClStoreCleanOrigin
   1408     // FIXME: factor out common code from materializeStores
   1409     if (MS.TrackOrigins)
   1410       IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
   1411     return true;
   1412   }
   1413 
   1414   /// \brief Handle vector load-like intrinsics.
   1415   ///
   1416   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
   1417   /// has 1 pointer argument, returns a vector.
   1418   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
   1419     IRBuilder<> IRB(&I);
   1420     Value *Addr = I.getArgOperand(0);
   1421 
   1422     Type *ShadowTy = getShadowTy(&I);
   1423     if (LoadShadow) {
   1424       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
   1425       // We don't know the pointer alignment (could be unaligned SSE load!).
   1426       // Have to assume to worst case.
   1427       setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
   1428     } else {
   1429       setShadow(&I, getCleanShadow(&I));
   1430     }
   1431 
   1432 
   1433     if (ClCheckAccessAddress)
   1434       insertCheck(Addr, &I);
   1435 
   1436     if (MS.TrackOrigins) {
   1437       if (LoadShadow)
   1438         setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
   1439       else
   1440         setOrigin(&I, getCleanOrigin());
   1441     }
   1442     return true;
   1443   }
   1444 
   1445   /// \brief Handle (SIMD arithmetic)-like intrinsics.
   1446   ///
   1447   /// Instrument intrinsics with any number of arguments of the same type,
   1448   /// equal to the return type. The type should be simple (no aggregates or
   1449   /// pointers; vectors are fine).
   1450   /// Caller guarantees that this intrinsic does not access memory.
   1451   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
   1452     Type *RetTy = I.getType();
   1453     if (!(RetTy->isIntOrIntVectorTy() ||
   1454           RetTy->isFPOrFPVectorTy() ||
   1455           RetTy->isX86_MMXTy()))
   1456       return false;
   1457 
   1458     unsigned NumArgOperands = I.getNumArgOperands();
   1459 
   1460     for (unsigned i = 0; i < NumArgOperands; ++i) {
   1461       Type *Ty = I.getArgOperand(i)->getType();
   1462       if (Ty != RetTy)
   1463         return false;
   1464     }
   1465 
   1466     IRBuilder<> IRB(&I);
   1467     ShadowAndOriginCombiner SC(this, IRB);
   1468     for (unsigned i = 0; i < NumArgOperands; ++i)
   1469       SC.Add(I.getArgOperand(i));
   1470     SC.Done(&I);
   1471 
   1472     return true;
   1473   }
   1474 
   1475   /// \brief Heuristically instrument unknown intrinsics.
   1476   ///
   1477   /// The main purpose of this code is to do something reasonable with all
   1478   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
   1479   /// We recognize several classes of intrinsics by their argument types and
   1480   /// ModRefBehaviour and apply special intrumentation when we are reasonably
   1481   /// sure that we know what the intrinsic does.
   1482   ///
   1483   /// We special-case intrinsics where this approach fails. See llvm.bswap
   1484   /// handling as an example of that.
   1485   bool handleUnknownIntrinsic(IntrinsicInst &I) {
   1486     unsigned NumArgOperands = I.getNumArgOperands();
   1487     if (NumArgOperands == 0)
   1488       return false;
   1489 
   1490     Intrinsic::ID iid = I.getIntrinsicID();
   1491     IntrinsicKind IK = getIntrinsicKind(iid);
   1492     bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
   1493     bool WritesMemory = IK == IK_WritesMemory;
   1494     assert(!(OnlyReadsMemory && WritesMemory));
   1495 
   1496     if (NumArgOperands == 2 &&
   1497         I.getArgOperand(0)->getType()->isPointerTy() &&
   1498         I.getArgOperand(1)->getType()->isVectorTy() &&
   1499         I.getType()->isVoidTy() &&
   1500         WritesMemory) {
   1501       // This looks like a vector store.
   1502       return handleVectorStoreIntrinsic(I);
   1503     }
   1504 
   1505     if (NumArgOperands == 1 &&
   1506         I.getArgOperand(0)->getType()->isPointerTy() &&
   1507         I.getType()->isVectorTy() &&
   1508         OnlyReadsMemory) {
   1509       // This looks like a vector load.
   1510       return handleVectorLoadIntrinsic(I);
   1511     }
   1512 
   1513     if (!OnlyReadsMemory && !WritesMemory)
   1514       if (maybeHandleSimpleNomemIntrinsic(I))
   1515         return true;
   1516 
   1517     // FIXME: detect and handle SSE maskstore/maskload
   1518     return false;
   1519   }
   1520 
   1521   void handleBswap(IntrinsicInst &I) {
   1522     IRBuilder<> IRB(&I);
   1523     Value *Op = I.getArgOperand(0);
   1524     Type *OpType = Op->getType();
   1525     Function *BswapFunc = Intrinsic::getDeclaration(
   1526       F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
   1527     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
   1528     setOrigin(&I, getOrigin(Op));
   1529   }
   1530 
   1531   void visitIntrinsicInst(IntrinsicInst &I) {
   1532     switch (I.getIntrinsicID()) {
   1533     case llvm::Intrinsic::bswap:
   1534       handleBswap(I);
   1535       break;
   1536     default:
   1537       if (!handleUnknownIntrinsic(I))
   1538         visitInstruction(I);
   1539       break;
   1540     }
   1541   }
   1542 
   1543   void visitCallSite(CallSite CS) {
   1544     Instruction &I = *CS.getInstruction();
   1545     assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
   1546     if (CS.isCall()) {
   1547       CallInst *Call = cast<CallInst>(&I);
   1548 
   1549       // For inline asm, do the usual thing: check argument shadow and mark all
   1550       // outputs as clean. Note that any side effects of the inline asm that are
   1551       // not immediately visible in its constraints are not handled.
   1552       if (Call->isInlineAsm()) {
   1553         visitInstruction(I);
   1554         return;
   1555       }
   1556 
   1557       // Allow only tail calls with the same types, otherwise
   1558       // we may have a false positive: shadow for a non-void RetVal
   1559       // will get propagated to a void RetVal.
   1560       if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
   1561         Call->setTailCall(false);
   1562 
   1563       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
   1564 
   1565       // We are going to insert code that relies on the fact that the callee
   1566       // will become a non-readonly function after it is instrumented by us. To
   1567       // prevent this code from being optimized out, mark that function
   1568       // non-readonly in advance.
   1569       if (Function *Func = Call->getCalledFunction()) {
   1570         // Clear out readonly/readnone attributes.
   1571         AttrBuilder B;
   1572         B.addAttribute(Attribute::ReadOnly)
   1573           .addAttribute(Attribute::ReadNone);
   1574         Func->removeAttributes(AttributeSet::FunctionIndex,
   1575                                AttributeSet::get(Func->getContext(),
   1576                                                  AttributeSet::FunctionIndex,
   1577                                                  B));
   1578       }
   1579     }
   1580     IRBuilder<> IRB(&I);
   1581     unsigned ArgOffset = 0;
   1582     DEBUG(dbgs() << "  CallSite: " << I << "\n");
   1583     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
   1584          ArgIt != End; ++ArgIt) {
   1585       Value *A = *ArgIt;
   1586       unsigned i = ArgIt - CS.arg_begin();
   1587       if (!A->getType()->isSized()) {
   1588         DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
   1589         continue;
   1590       }
   1591       unsigned Size = 0;
   1592       Value *Store = 0;
   1593       // Compute the Shadow for arg even if it is ByVal, because
   1594       // in that case getShadow() will copy the actual arg shadow to
   1595       // __msan_param_tls.
   1596       Value *ArgShadow = getShadow(A);
   1597       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
   1598       DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
   1599             " Shadow: " << *ArgShadow << "\n");
   1600       if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
   1601         assert(A->getType()->isPointerTy() &&
   1602                "ByVal argument is not a pointer!");
   1603         Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
   1604         unsigned Alignment = CS.getParamAlignment(i + 1);
   1605         Store = IRB.CreateMemCpy(ArgShadowBase,
   1606                                  getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
   1607                                  Size, Alignment);
   1608       } else {
   1609         Size = MS.TD->getTypeAllocSize(A->getType());
   1610         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
   1611                                        kShadowTLSAlignment);
   1612       }
   1613       if (MS.TrackOrigins)
   1614         IRB.CreateStore(getOrigin(A),
   1615                         getOriginPtrForArgument(A, IRB, ArgOffset));
   1616       (void)Store;
   1617       assert(Size != 0 && Store != 0);
   1618       DEBUG(dbgs() << "  Param:" << *Store << "\n");
   1619       ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
   1620     }
   1621     DEBUG(dbgs() << "  done with call args\n");
   1622 
   1623     FunctionType *FT =
   1624       cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
   1625     if (FT->isVarArg()) {
   1626       VAHelper->visitCallSite(CS, IRB);
   1627     }
   1628 
   1629     // Now, get the shadow for the RetVal.
   1630     if (!I.getType()->isSized()) return;
   1631     IRBuilder<> IRBBefore(&I);
   1632     // Untill we have full dynamic coverage, make sure the retval shadow is 0.
   1633     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
   1634     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
   1635     Instruction *NextInsn = 0;
   1636     if (CS.isCall()) {
   1637       NextInsn = I.getNextNode();
   1638     } else {
   1639       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
   1640       if (!NormalDest->getSinglePredecessor()) {
   1641         // FIXME: this case is tricky, so we are just conservative here.
   1642         // Perhaps we need to split the edge between this BB and NormalDest,
   1643         // but a naive attempt to use SplitEdge leads to a crash.
   1644         setShadow(&I, getCleanShadow(&I));
   1645         setOrigin(&I, getCleanOrigin());
   1646         return;
   1647       }
   1648       NextInsn = NormalDest->getFirstInsertionPt();
   1649       assert(NextInsn &&
   1650              "Could not find insertion point for retval shadow load");
   1651     }
   1652     IRBuilder<> IRBAfter(NextInsn);
   1653     Value *RetvalShadow =
   1654       IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
   1655                                  kShadowTLSAlignment, "_msret");
   1656     setShadow(&I, RetvalShadow);
   1657     if (MS.TrackOrigins)
   1658       setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
   1659   }
   1660 
   1661   void visitReturnInst(ReturnInst &I) {
   1662     IRBuilder<> IRB(&I);
   1663     if (Value *RetVal = I.getReturnValue()) {
   1664       // Set the shadow for the RetVal.
   1665       Value *Shadow = getShadow(RetVal);
   1666       Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
   1667       DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
   1668       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
   1669       if (MS.TrackOrigins)
   1670         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
   1671     }
   1672   }
   1673 
   1674   void visitPHINode(PHINode &I) {
   1675     IRBuilder<> IRB(&I);
   1676     ShadowPHINodes.push_back(&I);
   1677     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
   1678                                 "_msphi_s"));
   1679     if (MS.TrackOrigins)
   1680       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
   1681                                   "_msphi_o"));
   1682   }
   1683 
   1684   void visitAllocaInst(AllocaInst &I) {
   1685     setShadow(&I, getCleanShadow(&I));
   1686     if (!ClPoisonStack) return;
   1687     IRBuilder<> IRB(I.getNextNode());
   1688     uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
   1689     if (ClPoisonStackWithCall) {
   1690       IRB.CreateCall2(MS.MsanPoisonStackFn,
   1691                       IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
   1692                       ConstantInt::get(MS.IntptrTy, Size));
   1693     } else {
   1694       Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
   1695       IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
   1696                        Size, I.getAlignment());
   1697     }
   1698 
   1699     if (MS.TrackOrigins) {
   1700       setOrigin(&I, getCleanOrigin());
   1701       SmallString<2048> StackDescriptionStorage;
   1702       raw_svector_ostream StackDescription(StackDescriptionStorage);
   1703       // We create a string with a description of the stack allocation and
   1704       // pass it into __msan_set_alloca_origin.
   1705       // It will be printed by the run-time if stack-originated UMR is found.
   1706       // The first 4 bytes of the string are set to '----' and will be replaced
   1707       // by __msan_va_arg_overflow_size_tls at the first call.
   1708       StackDescription << "----" << I.getName() << "@" << F.getName();
   1709       Value *Descr =
   1710           createPrivateNonConstGlobalForString(*F.getParent(),
   1711                                                StackDescription.str());
   1712       IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
   1713                       IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
   1714                       ConstantInt::get(MS.IntptrTy, Size),
   1715                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
   1716     }
   1717   }
   1718 
   1719   void visitSelectInst(SelectInst& I) {
   1720     IRBuilder<> IRB(&I);
   1721     setShadow(&I,  IRB.CreateSelect(I.getCondition(),
   1722               getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
   1723               "_msprop"));
   1724     if (MS.TrackOrigins) {
   1725       // Origins are always i32, so any vector conditions must be flattened.
   1726       // FIXME: consider tracking vector origins for app vectors?
   1727       Value *Cond = I.getCondition();
   1728       if (Cond->getType()->isVectorTy()) {
   1729         Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
   1730         Cond = IRB.CreateICmpNE(ConvertedShadow,
   1731                                 getCleanShadow(ConvertedShadow), "_mso_select");
   1732       }
   1733       setOrigin(&I, IRB.CreateSelect(Cond,
   1734                 getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
   1735     }
   1736   }
   1737 
   1738   void visitLandingPadInst(LandingPadInst &I) {
   1739     // Do nothing.
   1740     // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
   1741     setShadow(&I, getCleanShadow(&I));
   1742     setOrigin(&I, getCleanOrigin());
   1743   }
   1744 
   1745   void visitGetElementPtrInst(GetElementPtrInst &I) {
   1746     handleShadowOr(I);
   1747   }
   1748 
   1749   void visitExtractValueInst(ExtractValueInst &I) {
   1750     IRBuilder<> IRB(&I);
   1751     Value *Agg = I.getAggregateOperand();
   1752     DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
   1753     Value *AggShadow = getShadow(Agg);
   1754     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
   1755     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
   1756     DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
   1757     setShadow(&I, ResShadow);
   1758     setOrigin(&I, getCleanOrigin());
   1759   }
   1760 
   1761   void visitInsertValueInst(InsertValueInst &I) {
   1762     IRBuilder<> IRB(&I);
   1763     DEBUG(dbgs() << "InsertValue:  " << I << "\n");
   1764     Value *AggShadow = getShadow(I.getAggregateOperand());
   1765     Value *InsShadow = getShadow(I.getInsertedValueOperand());
   1766     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
   1767     DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
   1768     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
   1769     DEBUG(dbgs() << "   Res:        " << *Res << "\n");
   1770     setShadow(&I, Res);
   1771     setOrigin(&I, getCleanOrigin());
   1772   }
   1773 
   1774   void dumpInst(Instruction &I) {
   1775     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
   1776       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
   1777     } else {
   1778       errs() << "ZZZ " << I.getOpcodeName() << "\n";
   1779     }
   1780     errs() << "QQQ " << I << "\n";
   1781   }
   1782 
   1783   void visitResumeInst(ResumeInst &I) {
   1784     DEBUG(dbgs() << "Resume: " << I << "\n");
   1785     // Nothing to do here.
   1786   }
   1787 
   1788   void visitInstruction(Instruction &I) {
   1789     // Everything else: stop propagating and check for poisoned shadow.
   1790     if (ClDumpStrictInstructions)
   1791       dumpInst(I);
   1792     DEBUG(dbgs() << "DEFAULT: " << I << "\n");
   1793     for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
   1794       insertCheck(I.getOperand(i), &I);
   1795     setShadow(&I, getCleanShadow(&I));
   1796     setOrigin(&I, getCleanOrigin());
   1797   }
   1798 };
   1799 
   1800 /// \brief AMD64-specific implementation of VarArgHelper.
   1801 struct VarArgAMD64Helper : public VarArgHelper {
   1802   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
   1803   // See a comment in visitCallSite for more details.
   1804   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
   1805   static const unsigned AMD64FpEndOffset = 176;
   1806 
   1807   Function &F;
   1808   MemorySanitizer &MS;
   1809   MemorySanitizerVisitor &MSV;
   1810   Value *VAArgTLSCopy;
   1811   Value *VAArgOverflowSize;
   1812 
   1813   SmallVector<CallInst*, 16> VAStartInstrumentationList;
   1814 
   1815   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
   1816                     MemorySanitizerVisitor &MSV)
   1817     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
   1818 
   1819   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
   1820 
   1821   ArgKind classifyArgument(Value* arg) {
   1822     // A very rough approximation of X86_64 argument classification rules.
   1823     Type *T = arg->getType();
   1824     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
   1825       return AK_FloatingPoint;
   1826     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
   1827       return AK_GeneralPurpose;
   1828     if (T->isPointerTy())
   1829       return AK_GeneralPurpose;
   1830     return AK_Memory;
   1831   }
   1832 
   1833   // For VarArg functions, store the argument shadow in an ABI-specific format
   1834   // that corresponds to va_list layout.
   1835   // We do this because Clang lowers va_arg in the frontend, and this pass
   1836   // only sees the low level code that deals with va_list internals.
   1837   // A much easier alternative (provided that Clang emits va_arg instructions)
   1838   // would have been to associate each live instance of va_list with a copy of
   1839   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
   1840   // order.
   1841   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
   1842     unsigned GpOffset = 0;
   1843     unsigned FpOffset = AMD64GpEndOffset;
   1844     unsigned OverflowOffset = AMD64FpEndOffset;
   1845     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
   1846          ArgIt != End; ++ArgIt) {
   1847       Value *A = *ArgIt;
   1848       ArgKind AK = classifyArgument(A);
   1849       if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
   1850         AK = AK_Memory;
   1851       if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
   1852         AK = AK_Memory;
   1853       Value *Base;
   1854       switch (AK) {
   1855       case AK_GeneralPurpose:
   1856         Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
   1857         GpOffset += 8;
   1858         break;
   1859       case AK_FloatingPoint:
   1860         Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
   1861         FpOffset += 16;
   1862         break;
   1863       case AK_Memory:
   1864         uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
   1865         Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
   1866         OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
   1867       }
   1868       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
   1869     }
   1870     Constant *OverflowSize =
   1871       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
   1872     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
   1873   }
   1874 
   1875   /// \brief Compute the shadow address for a given va_arg.
   1876   Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
   1877                                    int ArgOffset) {
   1878     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
   1879     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
   1880     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
   1881                               "_msarg");
   1882   }
   1883 
   1884   void visitVAStartInst(VAStartInst &I) {
   1885     IRBuilder<> IRB(&I);
   1886     VAStartInstrumentationList.push_back(&I);
   1887     Value *VAListTag = I.getArgOperand(0);
   1888     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   1889 
   1890     // Unpoison the whole __va_list_tag.
   1891     // FIXME: magic ABI constants.
   1892     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   1893                      /* size */24, /* alignment */8, false);
   1894   }
   1895 
   1896   void visitVACopyInst(VACopyInst &I) {
   1897     IRBuilder<> IRB(&I);
   1898     Value *VAListTag = I.getArgOperand(0);
   1899     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   1900 
   1901     // Unpoison the whole __va_list_tag.
   1902     // FIXME: magic ABI constants.
   1903     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   1904                      /* size */24, /* alignment */8, false);
   1905   }
   1906 
   1907   void finalizeInstrumentation() {
   1908     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
   1909            "finalizeInstrumentation called twice");
   1910     if (!VAStartInstrumentationList.empty()) {
   1911       // If there is a va_start in this function, make a backup copy of
   1912       // va_arg_tls somewhere in the function entry block.
   1913       IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
   1914       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
   1915       Value *CopySize =
   1916         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
   1917                       VAArgOverflowSize);
   1918       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
   1919       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
   1920     }
   1921 
   1922     // Instrument va_start.
   1923     // Copy va_list shadow from the backup copy of the TLS contents.
   1924     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
   1925       CallInst *OrigInst = VAStartInstrumentationList[i];
   1926       IRBuilder<> IRB(OrigInst->getNextNode());
   1927       Value *VAListTag = OrigInst->getArgOperand(0);
   1928 
   1929       Value *RegSaveAreaPtrPtr =
   1930         IRB.CreateIntToPtr(
   1931           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   1932                         ConstantInt::get(MS.IntptrTy, 16)),
   1933           Type::getInt64PtrTy(*MS.C));
   1934       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
   1935       Value *RegSaveAreaShadowPtr =
   1936         MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
   1937       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
   1938                        AMD64FpEndOffset, 16);
   1939 
   1940       Value *OverflowArgAreaPtrPtr =
   1941         IRB.CreateIntToPtr(
   1942           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   1943                         ConstantInt::get(MS.IntptrTy, 8)),
   1944           Type::getInt64PtrTy(*MS.C));
   1945       Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
   1946       Value *OverflowArgAreaShadowPtr =
   1947         MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
   1948       Value *SrcPtr =
   1949         getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
   1950       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
   1951     }
   1952   }
   1953 };
   1954 
   1955 VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
   1956                                  MemorySanitizerVisitor &Visitor) {
   1957   return new VarArgAMD64Helper(Func, Msan, Visitor);
   1958 }
   1959 
   1960 }  // namespace
   1961 
   1962 bool MemorySanitizer::runOnFunction(Function &F) {
   1963   MemorySanitizerVisitor Visitor(F, *this);
   1964 
   1965   // Clear out readonly/readnone attributes.
   1966   AttrBuilder B;
   1967   B.addAttribute(Attribute::ReadOnly)
   1968     .addAttribute(Attribute::ReadNone);
   1969   F.removeAttributes(AttributeSet::FunctionIndex,
   1970                      AttributeSet::get(F.getContext(),
   1971                                        AttributeSet::FunctionIndex, B));
   1972 
   1973   return Visitor.runOnFunction();
   1974 }
   1975