Home | History | Annotate | Download | only in Scalar
      1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass munges the code in the input function to better prepare it for
     11 // SelectionDAG-based code generation. This works around limitations in it's
     12 // basic-block-at-a-time approach. It should eventually be removed.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "codegenprepare"
     17 #include "llvm/Transforms/Scalar.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/SmallSet.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/DominatorInternals.h"
     22 #include "llvm/Analysis/Dominators.h"
     23 #include "llvm/Analysis/InstructionSimplify.h"
     24 #include "llvm/Analysis/ProfileInfo.h"
     25 #include "llvm/Assembly/Writer.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/IRBuilder.h"
     31 #include "llvm/IR/InlineAsm.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/CallSite.h"
     36 #include "llvm/Support/CommandLine.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/GetElementPtrTypeIterator.h"
     39 #include "llvm/Support/PatternMatch.h"
     40 #include "llvm/Support/ValueHandle.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Target/TargetLibraryInfo.h"
     43 #include "llvm/Target/TargetLowering.h"
     44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     45 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     46 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
     47 #include "llvm/Transforms/Utils/Local.h"
     48 using namespace llvm;
     49 using namespace llvm::PatternMatch;
     50 
     51 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
     52 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
     53 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
     54 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
     55                       "sunken Cmps");
     56 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
     57                        "of sunken Casts");
     58 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
     59                           "computations were sunk");
     60 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
     61 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
     62 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
     63 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
     64 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
     65 
     66 static cl::opt<bool> DisableBranchOpts(
     67   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
     68   cl::desc("Disable branch optimizations in CodeGenPrepare"));
     69 
     70 static cl::opt<bool> DisableSelectToBranch(
     71   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
     72   cl::desc("Disable select to branch conversion."));
     73 
     74 namespace {
     75   class CodeGenPrepare : public FunctionPass {
     76     /// TLI - Keep a pointer of a TargetLowering to consult for determining
     77     /// transformation profitability.
     78     const TargetLowering *TLI;
     79     const TargetLibraryInfo *TLInfo;
     80     DominatorTree *DT;
     81     ProfileInfo *PFI;
     82 
     83     /// CurInstIterator - As we scan instructions optimizing them, this is the
     84     /// next instruction to optimize.  Xforms that can invalidate this should
     85     /// update it.
     86     BasicBlock::iterator CurInstIterator;
     87 
     88     /// Keeps track of non-local addresses that have been sunk into a block.
     89     /// This allows us to avoid inserting duplicate code for blocks with
     90     /// multiple load/stores of the same address.
     91     DenseMap<Value*, Value*> SunkAddrs;
     92 
     93     /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
     94     /// be updated.
     95     bool ModifiedDT;
     96 
     97     /// OptSize - True if optimizing for size.
     98     bool OptSize;
     99 
    100   public:
    101     static char ID; // Pass identification, replacement for typeid
    102     explicit CodeGenPrepare(const TargetLowering *tli = 0)
    103       : FunctionPass(ID), TLI(tli) {
    104         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
    105       }
    106     bool runOnFunction(Function &F);
    107 
    108     const char *getPassName() const { return "CodeGen Prepare"; }
    109 
    110     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    111       AU.addPreserved<DominatorTree>();
    112       AU.addPreserved<ProfileInfo>();
    113       AU.addRequired<TargetLibraryInfo>();
    114     }
    115 
    116   private:
    117     bool EliminateFallThrough(Function &F);
    118     bool EliminateMostlyEmptyBlocks(Function &F);
    119     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    120     void EliminateMostlyEmptyBlock(BasicBlock *BB);
    121     bool OptimizeBlock(BasicBlock &BB);
    122     bool OptimizeInst(Instruction *I);
    123     bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
    124     bool OptimizeInlineAsmInst(CallInst *CS);
    125     bool OptimizeCallInst(CallInst *CI);
    126     bool MoveExtToFormExtLoad(Instruction *I);
    127     bool OptimizeExtUses(Instruction *I);
    128     bool OptimizeSelectInst(SelectInst *SI);
    129     bool DupRetToEnableTailCallOpts(BasicBlock *BB);
    130     bool PlaceDbgValues(Function &F);
    131   };
    132 }
    133 
    134 char CodeGenPrepare::ID = 0;
    135 INITIALIZE_PASS_BEGIN(CodeGenPrepare, "codegenprepare",
    136                 "Optimize for code generation", false, false)
    137 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    138 INITIALIZE_PASS_END(CodeGenPrepare, "codegenprepare",
    139                 "Optimize for code generation", false, false)
    140 
    141 FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
    142   return new CodeGenPrepare(TLI);
    143 }
    144 
    145 bool CodeGenPrepare::runOnFunction(Function &F) {
    146   bool EverMadeChange = false;
    147 
    148   ModifiedDT = false;
    149   TLInfo = &getAnalysis<TargetLibraryInfo>();
    150   DT = getAnalysisIfAvailable<DominatorTree>();
    151   PFI = getAnalysisIfAvailable<ProfileInfo>();
    152   OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    153                                            Attribute::OptimizeForSize);
    154 
    155   /// This optimization identifies DIV instructions that can be
    156   /// profitably bypassed and carried out with a shorter, faster divide.
    157   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
    158     const DenseMap<unsigned int, unsigned int> &BypassWidths =
    159        TLI->getBypassSlowDivWidths();
    160     for (Function::iterator I = F.begin(); I != F.end(); I++)
    161       EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
    162   }
    163 
    164   // Eliminate blocks that contain only PHI nodes and an
    165   // unconditional branch.
    166   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
    167 
    168   // llvm.dbg.value is far away from the value then iSel may not be able
    169   // handle it properly. iSel will drop llvm.dbg.value if it can not
    170   // find a node corresponding to the value.
    171   EverMadeChange |= PlaceDbgValues(F);
    172 
    173   bool MadeChange = true;
    174   while (MadeChange) {
    175     MadeChange = false;
    176     for (Function::iterator I = F.begin(); I != F.end(); ) {
    177       BasicBlock *BB = I++;
    178       MadeChange |= OptimizeBlock(*BB);
    179     }
    180     EverMadeChange |= MadeChange;
    181   }
    182 
    183   SunkAddrs.clear();
    184 
    185   if (!DisableBranchOpts) {
    186     MadeChange = false;
    187     SmallPtrSet<BasicBlock*, 8> WorkList;
    188     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    189       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
    190       MadeChange |= ConstantFoldTerminator(BB, true);
    191       if (!MadeChange) continue;
    192 
    193       for (SmallVectorImpl<BasicBlock*>::iterator
    194              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
    195         if (pred_begin(*II) == pred_end(*II))
    196           WorkList.insert(*II);
    197     }
    198 
    199     // Delete the dead blocks and any of their dead successors.
    200     MadeChange |= !WorkList.empty();
    201     while (!WorkList.empty()) {
    202       BasicBlock *BB = *WorkList.begin();
    203       WorkList.erase(BB);
    204       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
    205 
    206       DeleteDeadBlock(BB);
    207 
    208       for (SmallVectorImpl<BasicBlock*>::iterator
    209              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
    210         if (pred_begin(*II) == pred_end(*II))
    211           WorkList.insert(*II);
    212     }
    213 
    214     // Merge pairs of basic blocks with unconditional branches, connected by
    215     // a single edge.
    216     if (EverMadeChange || MadeChange)
    217       MadeChange |= EliminateFallThrough(F);
    218 
    219     if (MadeChange)
    220       ModifiedDT = true;
    221     EverMadeChange |= MadeChange;
    222   }
    223 
    224   if (ModifiedDT && DT)
    225     DT->DT->recalculate(F);
    226 
    227   return EverMadeChange;
    228 }
    229 
    230 /// EliminateFallThrough - Merge basic blocks which are connected
    231 /// by a single edge, where one of the basic blocks has a single successor
    232 /// pointing to the other basic block, which has a single predecessor.
    233 bool CodeGenPrepare::EliminateFallThrough(Function &F) {
    234   bool Changed = false;
    235   // Scan all of the blocks in the function, except for the entry block.
    236   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
    237     BasicBlock *BB = I++;
    238     // If the destination block has a single pred, then this is a trivial
    239     // edge, just collapse it.
    240     BasicBlock *SinglePred = BB->getSinglePredecessor();
    241 
    242     // Don't merge if BB's address is taken.
    243     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
    244 
    245     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
    246     if (Term && !Term->isConditional()) {
    247       Changed = true;
    248       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
    249       // Remember if SinglePred was the entry block of the function.
    250       // If so, we will need to move BB back to the entry position.
    251       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    252       MergeBasicBlockIntoOnlyPred(BB, this);
    253 
    254       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    255         BB->moveBefore(&BB->getParent()->getEntryBlock());
    256 
    257       // We have erased a block. Update the iterator.
    258       I = BB;
    259     }
    260   }
    261   return Changed;
    262 }
    263 
    264 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
    265 /// debug info directives, and an unconditional branch.  Passes before isel
    266 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
    267 /// isel.  Start by eliminating these blocks so we can split them the way we
    268 /// want them.
    269 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
    270   bool MadeChange = false;
    271   // Note that this intentionally skips the entry block.
    272   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
    273     BasicBlock *BB = I++;
    274 
    275     // If this block doesn't end with an uncond branch, ignore it.
    276     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    277     if (!BI || !BI->isUnconditional())
    278       continue;
    279 
    280     // If the instruction before the branch (skipping debug info) isn't a phi
    281     // node, then other stuff is happening here.
    282     BasicBlock::iterator BBI = BI;
    283     if (BBI != BB->begin()) {
    284       --BBI;
    285       while (isa<DbgInfoIntrinsic>(BBI)) {
    286         if (BBI == BB->begin())
    287           break;
    288         --BBI;
    289       }
    290       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
    291         continue;
    292     }
    293 
    294     // Do not break infinite loops.
    295     BasicBlock *DestBB = BI->getSuccessor(0);
    296     if (DestBB == BB)
    297       continue;
    298 
    299     if (!CanMergeBlocks(BB, DestBB))
    300       continue;
    301 
    302     EliminateMostlyEmptyBlock(BB);
    303     MadeChange = true;
    304   }
    305   return MadeChange;
    306 }
    307 
    308 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
    309 /// single uncond branch between them, and BB contains no other non-phi
    310 /// instructions.
    311 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
    312                                     const BasicBlock *DestBB) const {
    313   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
    314   // the successor.  If there are more complex condition (e.g. preheaders),
    315   // don't mess around with them.
    316   BasicBlock::const_iterator BBI = BB->begin();
    317   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    318     for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
    319          UI != E; ++UI) {
    320       const Instruction *User = cast<Instruction>(*UI);
    321       if (User->getParent() != DestBB || !isa<PHINode>(User))
    322         return false;
    323       // If User is inside DestBB block and it is a PHINode then check
    324       // incoming value. If incoming value is not from BB then this is
    325       // a complex condition (e.g. preheaders) we want to avoid here.
    326       if (User->getParent() == DestBB) {
    327         if (const PHINode *UPN = dyn_cast<PHINode>(User))
    328           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
    329             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
    330             if (Insn && Insn->getParent() == BB &&
    331                 Insn->getParent() != UPN->getIncomingBlock(I))
    332               return false;
    333           }
    334       }
    335     }
    336   }
    337 
    338   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
    339   // and DestBB may have conflicting incoming values for the block.  If so, we
    340   // can't merge the block.
    341   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
    342   if (!DestBBPN) return true;  // no conflict.
    343 
    344   // Collect the preds of BB.
    345   SmallPtrSet<const BasicBlock*, 16> BBPreds;
    346   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    347     // It is faster to get preds from a PHI than with pred_iterator.
    348     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    349       BBPreds.insert(BBPN->getIncomingBlock(i));
    350   } else {
    351     BBPreds.insert(pred_begin(BB), pred_end(BB));
    352   }
    353 
    354   // Walk the preds of DestBB.
    355   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    356     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    357     if (BBPreds.count(Pred)) {   // Common predecessor?
    358       BBI = DestBB->begin();
    359       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    360         const Value *V1 = PN->getIncomingValueForBlock(Pred);
    361         const Value *V2 = PN->getIncomingValueForBlock(BB);
    362 
    363         // If V2 is a phi node in BB, look up what the mapped value will be.
    364         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
    365           if (V2PN->getParent() == BB)
    366             V2 = V2PN->getIncomingValueForBlock(Pred);
    367 
    368         // If there is a conflict, bail out.
    369         if (V1 != V2) return false;
    370       }
    371     }
    372   }
    373 
    374   return true;
    375 }
    376 
    377 
    378 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
    379 /// an unconditional branch in it.
    380 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
    381   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
    382   BasicBlock *DestBB = BI->getSuccessor(0);
    383 
    384   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
    385 
    386   // If the destination block has a single pred, then this is a trivial edge,
    387   // just collapse it.
    388   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
    389     if (SinglePred != DestBB) {
    390       // Remember if SinglePred was the entry block of the function.  If so, we
    391       // will need to move BB back to the entry position.
    392       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    393       MergeBasicBlockIntoOnlyPred(DestBB, this);
    394 
    395       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    396         BB->moveBefore(&BB->getParent()->getEntryBlock());
    397 
    398       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    399       return;
    400     }
    401   }
    402 
    403   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
    404   // to handle the new incoming edges it is about to have.
    405   PHINode *PN;
    406   for (BasicBlock::iterator BBI = DestBB->begin();
    407        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    408     // Remove the incoming value for BB, and remember it.
    409     Value *InVal = PN->removeIncomingValue(BB, false);
    410 
    411     // Two options: either the InVal is a phi node defined in BB or it is some
    412     // value that dominates BB.
    413     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    414     if (InValPhi && InValPhi->getParent() == BB) {
    415       // Add all of the input values of the input PHI as inputs of this phi.
    416       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
    417         PN->addIncoming(InValPhi->getIncomingValue(i),
    418                         InValPhi->getIncomingBlock(i));
    419     } else {
    420       // Otherwise, add one instance of the dominating value for each edge that
    421       // we will be adding.
    422       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    423         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    424           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
    425       } else {
    426         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    427           PN->addIncoming(InVal, *PI);
    428       }
    429     }
    430   }
    431 
    432   // The PHIs are now updated, change everything that refers to BB to use
    433   // DestBB and remove BB.
    434   BB->replaceAllUsesWith(DestBB);
    435   if (DT && !ModifiedDT) {
    436     BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
    437     BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
    438     BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
    439     DT->changeImmediateDominator(DestBB, NewIDom);
    440     DT->eraseNode(BB);
    441   }
    442   if (PFI) {
    443     PFI->replaceAllUses(BB, DestBB);
    444     PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
    445   }
    446   BB->eraseFromParent();
    447   ++NumBlocksElim;
    448 
    449   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    450 }
    451 
    452 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
    453 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
    454 /// sink it into user blocks to reduce the number of virtual
    455 /// registers that must be created and coalesced.
    456 ///
    457 /// Return true if any changes are made.
    458 ///
    459 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
    460   // If this is a noop copy,
    461   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
    462   EVT DstVT = TLI.getValueType(CI->getType());
    463 
    464   // This is an fp<->int conversion?
    465   if (SrcVT.isInteger() != DstVT.isInteger())
    466     return false;
    467 
    468   // If this is an extension, it will be a zero or sign extension, which
    469   // isn't a noop.
    470   if (SrcVT.bitsLT(DstVT)) return false;
    471 
    472   // If these values will be promoted, find out what they will be promoted
    473   // to.  This helps us consider truncates on PPC as noop copies when they
    474   // are.
    475   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
    476       TargetLowering::TypePromoteInteger)
    477     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
    478   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
    479       TargetLowering::TypePromoteInteger)
    480     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
    481 
    482   // If, after promotion, these are the same types, this is a noop copy.
    483   if (SrcVT != DstVT)
    484     return false;
    485 
    486   BasicBlock *DefBB = CI->getParent();
    487 
    488   /// InsertedCasts - Only insert a cast in each block once.
    489   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
    490 
    491   bool MadeChange = false;
    492   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
    493        UI != E; ) {
    494     Use &TheUse = UI.getUse();
    495     Instruction *User = cast<Instruction>(*UI);
    496 
    497     // Figure out which BB this cast is used in.  For PHI's this is the
    498     // appropriate predecessor block.
    499     BasicBlock *UserBB = User->getParent();
    500     if (PHINode *PN = dyn_cast<PHINode>(User)) {
    501       UserBB = PN->getIncomingBlock(UI);
    502     }
    503 
    504     // Preincrement use iterator so we don't invalidate it.
    505     ++UI;
    506 
    507     // If this user is in the same block as the cast, don't change the cast.
    508     if (UserBB == DefBB) continue;
    509 
    510     // If we have already inserted a cast into this block, use it.
    511     CastInst *&InsertedCast = InsertedCasts[UserBB];
    512 
    513     if (!InsertedCast) {
    514       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    515       InsertedCast =
    516         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
    517                          InsertPt);
    518       MadeChange = true;
    519     }
    520 
    521     // Replace a use of the cast with a use of the new cast.
    522     TheUse = InsertedCast;
    523     ++NumCastUses;
    524   }
    525 
    526   // If we removed all uses, nuke the cast.
    527   if (CI->use_empty()) {
    528     CI->eraseFromParent();
    529     MadeChange = true;
    530   }
    531 
    532   return MadeChange;
    533 }
    534 
    535 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
    536 /// the number of virtual registers that must be created and coalesced.  This is
    537 /// a clear win except on targets with multiple condition code registers
    538 ///  (PowerPC), where it might lose; some adjustment may be wanted there.
    539 ///
    540 /// Return true if any changes are made.
    541 static bool OptimizeCmpExpression(CmpInst *CI) {
    542   BasicBlock *DefBB = CI->getParent();
    543 
    544   /// InsertedCmp - Only insert a cmp in each block once.
    545   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
    546 
    547   bool MadeChange = false;
    548   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
    549        UI != E; ) {
    550     Use &TheUse = UI.getUse();
    551     Instruction *User = cast<Instruction>(*UI);
    552 
    553     // Preincrement use iterator so we don't invalidate it.
    554     ++UI;
    555 
    556     // Don't bother for PHI nodes.
    557     if (isa<PHINode>(User))
    558       continue;
    559 
    560     // Figure out which BB this cmp is used in.
    561     BasicBlock *UserBB = User->getParent();
    562 
    563     // If this user is in the same block as the cmp, don't change the cmp.
    564     if (UserBB == DefBB) continue;
    565 
    566     // If we have already inserted a cmp into this block, use it.
    567     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
    568 
    569     if (!InsertedCmp) {
    570       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    571       InsertedCmp =
    572         CmpInst::Create(CI->getOpcode(),
    573                         CI->getPredicate(),  CI->getOperand(0),
    574                         CI->getOperand(1), "", InsertPt);
    575       MadeChange = true;
    576     }
    577 
    578     // Replace a use of the cmp with a use of the new cmp.
    579     TheUse = InsertedCmp;
    580     ++NumCmpUses;
    581   }
    582 
    583   // If we removed all uses, nuke the cmp.
    584   if (CI->use_empty())
    585     CI->eraseFromParent();
    586 
    587   return MadeChange;
    588 }
    589 
    590 namespace {
    591 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
    592 protected:
    593   void replaceCall(Value *With) {
    594     CI->replaceAllUsesWith(With);
    595     CI->eraseFromParent();
    596   }
    597   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
    598       if (ConstantInt *SizeCI =
    599                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
    600         return SizeCI->isAllOnesValue();
    601     return false;
    602   }
    603 };
    604 } // end anonymous namespace
    605 
    606 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
    607   BasicBlock *BB = CI->getParent();
    608 
    609   // Lower inline assembly if we can.
    610   // If we found an inline asm expession, and if the target knows how to
    611   // lower it to normal LLVM code, do so now.
    612   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
    613     if (TLI->ExpandInlineAsm(CI)) {
    614       // Avoid invalidating the iterator.
    615       CurInstIterator = BB->begin();
    616       // Avoid processing instructions out of order, which could cause
    617       // reuse before a value is defined.
    618       SunkAddrs.clear();
    619       return true;
    620     }
    621     // Sink address computing for memory operands into the block.
    622     if (OptimizeInlineAsmInst(CI))
    623       return true;
    624   }
    625 
    626   // Lower all uses of llvm.objectsize.*
    627   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
    628   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
    629     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
    630     Type *ReturnTy = CI->getType();
    631     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
    632 
    633     // Substituting this can cause recursive simplifications, which can
    634     // invalidate our iterator.  Use a WeakVH to hold onto it in case this
    635     // happens.
    636     WeakVH IterHandle(CurInstIterator);
    637 
    638     replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0,
    639                                   TLInfo, ModifiedDT ? 0 : DT);
    640 
    641     // If the iterator instruction was recursively deleted, start over at the
    642     // start of the block.
    643     if (IterHandle != CurInstIterator) {
    644       CurInstIterator = BB->begin();
    645       SunkAddrs.clear();
    646     }
    647     return true;
    648   }
    649 
    650   if (II && TLI) {
    651     SmallVector<Value*, 2> PtrOps;
    652     Type *AccessTy;
    653     if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
    654       while (!PtrOps.empty())
    655         if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
    656           return true;
    657   }
    658 
    659   // From here on out we're working with named functions.
    660   if (CI->getCalledFunction() == 0) return false;
    661 
    662   // We'll need DataLayout from here on out.
    663   const DataLayout *TD = TLI ? TLI->getDataLayout() : 0;
    664   if (!TD) return false;
    665 
    666   // Lower all default uses of _chk calls.  This is very similar
    667   // to what InstCombineCalls does, but here we are only lowering calls
    668   // that have the default "don't know" as the objectsize.  Anything else
    669   // should be left alone.
    670   CodeGenPrepareFortifiedLibCalls Simplifier;
    671   return Simplifier.fold(CI, TD, TLInfo);
    672 }
    673 
    674 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
    675 /// instructions to the predecessor to enable tail call optimizations. The
    676 /// case it is currently looking for is:
    677 /// @code
    678 /// bb0:
    679 ///   %tmp0 = tail call i32 @f0()
    680 ///   br label %return
    681 /// bb1:
    682 ///   %tmp1 = tail call i32 @f1()
    683 ///   br label %return
    684 /// bb2:
    685 ///   %tmp2 = tail call i32 @f2()
    686 ///   br label %return
    687 /// return:
    688 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
    689 ///   ret i32 %retval
    690 /// @endcode
    691 ///
    692 /// =>
    693 ///
    694 /// @code
    695 /// bb0:
    696 ///   %tmp0 = tail call i32 @f0()
    697 ///   ret i32 %tmp0
    698 /// bb1:
    699 ///   %tmp1 = tail call i32 @f1()
    700 ///   ret i32 %tmp1
    701 /// bb2:
    702 ///   %tmp2 = tail call i32 @f2()
    703 ///   ret i32 %tmp2
    704 /// @endcode
    705 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
    706   if (!TLI)
    707     return false;
    708 
    709   ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
    710   if (!RI)
    711     return false;
    712 
    713   PHINode *PN = 0;
    714   BitCastInst *BCI = 0;
    715   Value *V = RI->getReturnValue();
    716   if (V) {
    717     BCI = dyn_cast<BitCastInst>(V);
    718     if (BCI)
    719       V = BCI->getOperand(0);
    720 
    721     PN = dyn_cast<PHINode>(V);
    722     if (!PN)
    723       return false;
    724   }
    725 
    726   if (PN && PN->getParent() != BB)
    727     return false;
    728 
    729   // It's not safe to eliminate the sign / zero extension of the return value.
    730   // See llvm::isInTailCallPosition().
    731   const Function *F = BB->getParent();
    732   AttributeSet CallerAttrs = F->getAttributes();
    733   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
    734       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
    735     return false;
    736 
    737   // Make sure there are no instructions between the PHI and return, or that the
    738   // return is the first instruction in the block.
    739   if (PN) {
    740     BasicBlock::iterator BI = BB->begin();
    741     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
    742     if (&*BI == BCI)
    743       // Also skip over the bitcast.
    744       ++BI;
    745     if (&*BI != RI)
    746       return false;
    747   } else {
    748     BasicBlock::iterator BI = BB->begin();
    749     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
    750     if (&*BI != RI)
    751       return false;
    752   }
    753 
    754   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
    755   /// call.
    756   SmallVector<CallInst*, 4> TailCalls;
    757   if (PN) {
    758     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
    759       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
    760       // Make sure the phi value is indeed produced by the tail call.
    761       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
    762           TLI->mayBeEmittedAsTailCall(CI))
    763         TailCalls.push_back(CI);
    764     }
    765   } else {
    766     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
    767     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
    768       if (!VisitedBBs.insert(*PI))
    769         continue;
    770 
    771       BasicBlock::InstListType &InstList = (*PI)->getInstList();
    772       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
    773       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
    774       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
    775       if (RI == RE)
    776         continue;
    777 
    778       CallInst *CI = dyn_cast<CallInst>(&*RI);
    779       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
    780         TailCalls.push_back(CI);
    781     }
    782   }
    783 
    784   bool Changed = false;
    785   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
    786     CallInst *CI = TailCalls[i];
    787     CallSite CS(CI);
    788 
    789     // Conservatively require the attributes of the call to match those of the
    790     // return. Ignore noalias because it doesn't affect the call sequence.
    791     AttributeSet CalleeAttrs = CS.getAttributes();
    792     if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
    793           removeAttribute(Attribute::NoAlias) !=
    794         AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
    795           removeAttribute(Attribute::NoAlias))
    796       continue;
    797 
    798     // Make sure the call instruction is followed by an unconditional branch to
    799     // the return block.
    800     BasicBlock *CallBB = CI->getParent();
    801     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
    802     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
    803       continue;
    804 
    805     // Duplicate the return into CallBB.
    806     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
    807     ModifiedDT = Changed = true;
    808     ++NumRetsDup;
    809   }
    810 
    811   // If we eliminated all predecessors of the block, delete the block now.
    812   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
    813     BB->eraseFromParent();
    814 
    815   return Changed;
    816 }
    817 
    818 //===----------------------------------------------------------------------===//
    819 // Memory Optimization
    820 //===----------------------------------------------------------------------===//
    821 
    822 namespace {
    823 
    824 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
    825 /// which holds actual Value*'s for register values.
    826 struct ExtAddrMode : public TargetLowering::AddrMode {
    827   Value *BaseReg;
    828   Value *ScaledReg;
    829   ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
    830   void print(raw_ostream &OS) const;
    831   void dump() const;
    832 
    833   bool operator==(const ExtAddrMode& O) const {
    834     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
    835            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
    836            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
    837   }
    838 };
    839 
    840 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
    841   AM.print(OS);
    842   return OS;
    843 }
    844 
    845 void ExtAddrMode::print(raw_ostream &OS) const {
    846   bool NeedPlus = false;
    847   OS << "[";
    848   if (BaseGV) {
    849     OS << (NeedPlus ? " + " : "")
    850        << "GV:";
    851     WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
    852     NeedPlus = true;
    853   }
    854 
    855   if (BaseOffs)
    856     OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
    857 
    858   if (BaseReg) {
    859     OS << (NeedPlus ? " + " : "")
    860        << "Base:";
    861     WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
    862     NeedPlus = true;
    863   }
    864   if (Scale) {
    865     OS << (NeedPlus ? " + " : "")
    866        << Scale << "*";
    867     WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
    868     NeedPlus = true;
    869   }
    870 
    871   OS << ']';
    872 }
    873 
    874 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    875 void ExtAddrMode::dump() const {
    876   print(dbgs());
    877   dbgs() << '\n';
    878 }
    879 #endif
    880 
    881 
    882 /// \brief A helper class for matching addressing modes.
    883 ///
    884 /// This encapsulates the logic for matching the target-legal addressing modes.
    885 class AddressingModeMatcher {
    886   SmallVectorImpl<Instruction*> &AddrModeInsts;
    887   const TargetLowering &TLI;
    888 
    889   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
    890   /// the memory instruction that we're computing this address for.
    891   Type *AccessTy;
    892   Instruction *MemoryInst;
    893 
    894   /// AddrMode - This is the addressing mode that we're building up.  This is
    895   /// part of the return value of this addressing mode matching stuff.
    896   ExtAddrMode &AddrMode;
    897 
    898   /// IgnoreProfitability - This is set to true when we should not do
    899   /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
    900   /// always returns true.
    901   bool IgnoreProfitability;
    902 
    903   AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
    904                         const TargetLowering &T, Type *AT,
    905                         Instruction *MI, ExtAddrMode &AM)
    906     : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
    907     IgnoreProfitability = false;
    908   }
    909 public:
    910 
    911   /// Match - Find the maximal addressing mode that a load/store of V can fold,
    912   /// give an access type of AccessTy.  This returns a list of involved
    913   /// instructions in AddrModeInsts.
    914   static ExtAddrMode Match(Value *V, Type *AccessTy,
    915                            Instruction *MemoryInst,
    916                            SmallVectorImpl<Instruction*> &AddrModeInsts,
    917                            const TargetLowering &TLI) {
    918     ExtAddrMode Result;
    919 
    920     bool Success =
    921       AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
    922                             MemoryInst, Result).MatchAddr(V, 0);
    923     (void)Success; assert(Success && "Couldn't select *anything*?");
    924     return Result;
    925   }
    926 private:
    927   bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
    928   bool MatchAddr(Value *V, unsigned Depth);
    929   bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
    930   bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
    931                                             ExtAddrMode &AMBefore,
    932                                             ExtAddrMode &AMAfter);
    933   bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
    934 };
    935 
    936 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
    937 /// Return true and update AddrMode if this addr mode is legal for the target,
    938 /// false if not.
    939 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
    940                                              unsigned Depth) {
    941   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
    942   // mode.  Just process that directly.
    943   if (Scale == 1)
    944     return MatchAddr(ScaleReg, Depth);
    945 
    946   // If the scale is 0, it takes nothing to add this.
    947   if (Scale == 0)
    948     return true;
    949 
    950   // If we already have a scale of this value, we can add to it, otherwise, we
    951   // need an available scale field.
    952   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
    953     return false;
    954 
    955   ExtAddrMode TestAddrMode = AddrMode;
    956 
    957   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
    958   // [A+B + A*7] -> [B+A*8].
    959   TestAddrMode.Scale += Scale;
    960   TestAddrMode.ScaledReg = ScaleReg;
    961 
    962   // If the new address isn't legal, bail out.
    963   if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
    964     return false;
    965 
    966   // It was legal, so commit it.
    967   AddrMode = TestAddrMode;
    968 
    969   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
    970   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
    971   // X*Scale + C*Scale to addr mode.
    972   ConstantInt *CI = 0; Value *AddLHS = 0;
    973   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
    974       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
    975     TestAddrMode.ScaledReg = AddLHS;
    976     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
    977 
    978     // If this addressing mode is legal, commit it and remember that we folded
    979     // this instruction.
    980     if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
    981       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
    982       AddrMode = TestAddrMode;
    983       return true;
    984     }
    985   }
    986 
    987   // Otherwise, not (x+c)*scale, just return what we have.
    988   return true;
    989 }
    990 
    991 /// MightBeFoldableInst - This is a little filter, which returns true if an
    992 /// addressing computation involving I might be folded into a load/store
    993 /// accessing it.  This doesn't need to be perfect, but needs to accept at least
    994 /// the set of instructions that MatchOperationAddr can.
    995 static bool MightBeFoldableInst(Instruction *I) {
    996   switch (I->getOpcode()) {
    997   case Instruction::BitCast:
    998     // Don't touch identity bitcasts.
    999     if (I->getType() == I->getOperand(0)->getType())
   1000       return false;
   1001     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
   1002   case Instruction::PtrToInt:
   1003     // PtrToInt is always a noop, as we know that the int type is pointer sized.
   1004     return true;
   1005   case Instruction::IntToPtr:
   1006     // We know the input is intptr_t, so this is foldable.
   1007     return true;
   1008   case Instruction::Add:
   1009     return true;
   1010   case Instruction::Mul:
   1011   case Instruction::Shl:
   1012     // Can only handle X*C and X << C.
   1013     return isa<ConstantInt>(I->getOperand(1));
   1014   case Instruction::GetElementPtr:
   1015     return true;
   1016   default:
   1017     return false;
   1018   }
   1019 }
   1020 
   1021 /// MatchOperationAddr - Given an instruction or constant expr, see if we can
   1022 /// fold the operation into the addressing mode.  If so, update the addressing
   1023 /// mode and return true, otherwise return false without modifying AddrMode.
   1024 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
   1025                                                unsigned Depth) {
   1026   // Avoid exponential behavior on extremely deep expression trees.
   1027   if (Depth >= 5) return false;
   1028 
   1029   switch (Opcode) {
   1030   case Instruction::PtrToInt:
   1031     // PtrToInt is always a noop, as we know that the int type is pointer sized.
   1032     return MatchAddr(AddrInst->getOperand(0), Depth);
   1033   case Instruction::IntToPtr:
   1034     // This inttoptr is a no-op if the integer type is pointer sized.
   1035     if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
   1036         TLI.getPointerTy())
   1037       return MatchAddr(AddrInst->getOperand(0), Depth);
   1038     return false;
   1039   case Instruction::BitCast:
   1040     // BitCast is always a noop, and we can handle it as long as it is
   1041     // int->int or pointer->pointer (we don't want int<->fp or something).
   1042     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
   1043          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
   1044         // Don't touch identity bitcasts.  These were probably put here by LSR,
   1045         // and we don't want to mess around with them.  Assume it knows what it
   1046         // is doing.
   1047         AddrInst->getOperand(0)->getType() != AddrInst->getType())
   1048       return MatchAddr(AddrInst->getOperand(0), Depth);
   1049     return false;
   1050   case Instruction::Add: {
   1051     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
   1052     ExtAddrMode BackupAddrMode = AddrMode;
   1053     unsigned OldSize = AddrModeInsts.size();
   1054     if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
   1055         MatchAddr(AddrInst->getOperand(0), Depth+1))
   1056       return true;
   1057 
   1058     // Restore the old addr mode info.
   1059     AddrMode = BackupAddrMode;
   1060     AddrModeInsts.resize(OldSize);
   1061 
   1062     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
   1063     if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
   1064         MatchAddr(AddrInst->getOperand(1), Depth+1))
   1065       return true;
   1066 
   1067     // Otherwise we definitely can't merge the ADD in.
   1068     AddrMode = BackupAddrMode;
   1069     AddrModeInsts.resize(OldSize);
   1070     break;
   1071   }
   1072   //case Instruction::Or:
   1073   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
   1074   //break;
   1075   case Instruction::Mul:
   1076   case Instruction::Shl: {
   1077     // Can only handle X*C and X << C.
   1078     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
   1079     if (!RHS) return false;
   1080     int64_t Scale = RHS->getSExtValue();
   1081     if (Opcode == Instruction::Shl)
   1082       Scale = 1LL << Scale;
   1083 
   1084     return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
   1085   }
   1086   case Instruction::GetElementPtr: {
   1087     // Scan the GEP.  We check it if it contains constant offsets and at most
   1088     // one variable offset.
   1089     int VariableOperand = -1;
   1090     unsigned VariableScale = 0;
   1091 
   1092     int64_t ConstantOffset = 0;
   1093     const DataLayout *TD = TLI.getDataLayout();
   1094     gep_type_iterator GTI = gep_type_begin(AddrInst);
   1095     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
   1096       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
   1097         const StructLayout *SL = TD->getStructLayout(STy);
   1098         unsigned Idx =
   1099           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
   1100         ConstantOffset += SL->getElementOffset(Idx);
   1101       } else {
   1102         uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
   1103         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
   1104           ConstantOffset += CI->getSExtValue()*TypeSize;
   1105         } else if (TypeSize) {  // Scales of zero don't do anything.
   1106           // We only allow one variable index at the moment.
   1107           if (VariableOperand != -1)
   1108             return false;
   1109 
   1110           // Remember the variable index.
   1111           VariableOperand = i;
   1112           VariableScale = TypeSize;
   1113         }
   1114       }
   1115     }
   1116 
   1117     // A common case is for the GEP to only do a constant offset.  In this case,
   1118     // just add it to the disp field and check validity.
   1119     if (VariableOperand == -1) {
   1120       AddrMode.BaseOffs += ConstantOffset;
   1121       if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
   1122         // Check to see if we can fold the base pointer in too.
   1123         if (MatchAddr(AddrInst->getOperand(0), Depth+1))
   1124           return true;
   1125       }
   1126       AddrMode.BaseOffs -= ConstantOffset;
   1127       return false;
   1128     }
   1129 
   1130     // Save the valid addressing mode in case we can't match.
   1131     ExtAddrMode BackupAddrMode = AddrMode;
   1132     unsigned OldSize = AddrModeInsts.size();
   1133 
   1134     // See if the scale and offset amount is valid for this target.
   1135     AddrMode.BaseOffs += ConstantOffset;
   1136 
   1137     // Match the base operand of the GEP.
   1138     if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
   1139       // If it couldn't be matched, just stuff the value in a register.
   1140       if (AddrMode.HasBaseReg) {
   1141         AddrMode = BackupAddrMode;
   1142         AddrModeInsts.resize(OldSize);
   1143         return false;
   1144       }
   1145       AddrMode.HasBaseReg = true;
   1146       AddrMode.BaseReg = AddrInst->getOperand(0);
   1147     }
   1148 
   1149     // Match the remaining variable portion of the GEP.
   1150     if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
   1151                           Depth)) {
   1152       // If it couldn't be matched, try stuffing the base into a register
   1153       // instead of matching it, and retrying the match of the scale.
   1154       AddrMode = BackupAddrMode;
   1155       AddrModeInsts.resize(OldSize);
   1156       if (AddrMode.HasBaseReg)
   1157         return false;
   1158       AddrMode.HasBaseReg = true;
   1159       AddrMode.BaseReg = AddrInst->getOperand(0);
   1160       AddrMode.BaseOffs += ConstantOffset;
   1161       if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
   1162                             VariableScale, Depth)) {
   1163         // If even that didn't work, bail.
   1164         AddrMode = BackupAddrMode;
   1165         AddrModeInsts.resize(OldSize);
   1166         return false;
   1167       }
   1168     }
   1169 
   1170     return true;
   1171   }
   1172   }
   1173   return false;
   1174 }
   1175 
   1176 /// MatchAddr - If we can, try to add the value of 'Addr' into the current
   1177 /// addressing mode.  If Addr can't be added to AddrMode this returns false and
   1178 /// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
   1179 /// or intptr_t for the target.
   1180 ///
   1181 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
   1182   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
   1183     // Fold in immediates if legal for the target.
   1184     AddrMode.BaseOffs += CI->getSExtValue();
   1185     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
   1186       return true;
   1187     AddrMode.BaseOffs -= CI->getSExtValue();
   1188   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
   1189     // If this is a global variable, try to fold it into the addressing mode.
   1190     if (AddrMode.BaseGV == 0) {
   1191       AddrMode.BaseGV = GV;
   1192       if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
   1193         return true;
   1194       AddrMode.BaseGV = 0;
   1195     }
   1196   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
   1197     ExtAddrMode BackupAddrMode = AddrMode;
   1198     unsigned OldSize = AddrModeInsts.size();
   1199 
   1200     // Check to see if it is possible to fold this operation.
   1201     if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
   1202       // Okay, it's possible to fold this.  Check to see if it is actually
   1203       // *profitable* to do so.  We use a simple cost model to avoid increasing
   1204       // register pressure too much.
   1205       if (I->hasOneUse() ||
   1206           IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
   1207         AddrModeInsts.push_back(I);
   1208         return true;
   1209       }
   1210 
   1211       // It isn't profitable to do this, roll back.
   1212       //cerr << "NOT FOLDING: " << *I;
   1213       AddrMode = BackupAddrMode;
   1214       AddrModeInsts.resize(OldSize);
   1215     }
   1216   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
   1217     if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
   1218       return true;
   1219   } else if (isa<ConstantPointerNull>(Addr)) {
   1220     // Null pointer gets folded without affecting the addressing mode.
   1221     return true;
   1222   }
   1223 
   1224   // Worse case, the target should support [reg] addressing modes. :)
   1225   if (!AddrMode.HasBaseReg) {
   1226     AddrMode.HasBaseReg = true;
   1227     AddrMode.BaseReg = Addr;
   1228     // Still check for legality in case the target supports [imm] but not [i+r].
   1229     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
   1230       return true;
   1231     AddrMode.HasBaseReg = false;
   1232     AddrMode.BaseReg = 0;
   1233   }
   1234 
   1235   // If the base register is already taken, see if we can do [r+r].
   1236   if (AddrMode.Scale == 0) {
   1237     AddrMode.Scale = 1;
   1238     AddrMode.ScaledReg = Addr;
   1239     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
   1240       return true;
   1241     AddrMode.Scale = 0;
   1242     AddrMode.ScaledReg = 0;
   1243   }
   1244   // Couldn't match.
   1245   return false;
   1246 }
   1247 
   1248 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
   1249 /// inline asm call are due to memory operands.  If so, return true, otherwise
   1250 /// return false.
   1251 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
   1252                                     const TargetLowering &TLI) {
   1253   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
   1254   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   1255     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   1256 
   1257     // Compute the constraint code and ConstraintType to use.
   1258     TLI.ComputeConstraintToUse(OpInfo, SDValue());
   1259 
   1260     // If this asm operand is our Value*, and if it isn't an indirect memory
   1261     // operand, we can't fold it!
   1262     if (OpInfo.CallOperandVal == OpVal &&
   1263         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
   1264          !OpInfo.isIndirect))
   1265       return false;
   1266   }
   1267 
   1268   return true;
   1269 }
   1270 
   1271 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
   1272 /// memory use.  If we find an obviously non-foldable instruction, return true.
   1273 /// Add the ultimately found memory instructions to MemoryUses.
   1274 static bool FindAllMemoryUses(Instruction *I,
   1275                 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
   1276                               SmallPtrSet<Instruction*, 16> &ConsideredInsts,
   1277                               const TargetLowering &TLI) {
   1278   // If we already considered this instruction, we're done.
   1279   if (!ConsideredInsts.insert(I))
   1280     return false;
   1281 
   1282   // If this is an obviously unfoldable instruction, bail out.
   1283   if (!MightBeFoldableInst(I))
   1284     return true;
   1285 
   1286   // Loop over all the uses, recursively processing them.
   1287   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1288        UI != E; ++UI) {
   1289     User *U = *UI;
   1290 
   1291     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1292       MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
   1293       continue;
   1294     }
   1295 
   1296     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1297       unsigned opNo = UI.getOperandNo();
   1298       if (opNo == 0) return true; // Storing addr, not into addr.
   1299       MemoryUses.push_back(std::make_pair(SI, opNo));
   1300       continue;
   1301     }
   1302 
   1303     if (CallInst *CI = dyn_cast<CallInst>(U)) {
   1304       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
   1305       if (!IA) return true;
   1306 
   1307       // If this is a memory operand, we're cool, otherwise bail out.
   1308       if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
   1309         return true;
   1310       continue;
   1311     }
   1312 
   1313     if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
   1314                           TLI))
   1315       return true;
   1316   }
   1317 
   1318   return false;
   1319 }
   1320 
   1321 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
   1322 /// the use site that we're folding it into.  If so, there is no cost to
   1323 /// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
   1324 /// that we know are live at the instruction already.
   1325 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
   1326                                                    Value *KnownLive2) {
   1327   // If Val is either of the known-live values, we know it is live!
   1328   if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
   1329     return true;
   1330 
   1331   // All values other than instructions and arguments (e.g. constants) are live.
   1332   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
   1333 
   1334   // If Val is a constant sized alloca in the entry block, it is live, this is
   1335   // true because it is just a reference to the stack/frame pointer, which is
   1336   // live for the whole function.
   1337   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
   1338     if (AI->isStaticAlloca())
   1339       return true;
   1340 
   1341   // Check to see if this value is already used in the memory instruction's
   1342   // block.  If so, it's already live into the block at the very least, so we
   1343   // can reasonably fold it.
   1344   return Val->isUsedInBasicBlock(MemoryInst->getParent());
   1345 }
   1346 
   1347 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
   1348 /// mode of the machine to fold the specified instruction into a load or store
   1349 /// that ultimately uses it.  However, the specified instruction has multiple
   1350 /// uses.  Given this, it may actually increase register pressure to fold it
   1351 /// into the load.  For example, consider this code:
   1352 ///
   1353 ///     X = ...
   1354 ///     Y = X+1
   1355 ///     use(Y)   -> nonload/store
   1356 ///     Z = Y+1
   1357 ///     load Z
   1358 ///
   1359 /// In this case, Y has multiple uses, and can be folded into the load of Z
   1360 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
   1361 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
   1362 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
   1363 /// number of computations either.
   1364 ///
   1365 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
   1366 /// X was live across 'load Z' for other reasons, we actually *would* want to
   1367 /// fold the addressing mode in the Z case.  This would make Y die earlier.
   1368 bool AddressingModeMatcher::
   1369 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
   1370                                      ExtAddrMode &AMAfter) {
   1371   if (IgnoreProfitability) return true;
   1372 
   1373   // AMBefore is the addressing mode before this instruction was folded into it,
   1374   // and AMAfter is the addressing mode after the instruction was folded.  Get
   1375   // the set of registers referenced by AMAfter and subtract out those
   1376   // referenced by AMBefore: this is the set of values which folding in this
   1377   // address extends the lifetime of.
   1378   //
   1379   // Note that there are only two potential values being referenced here,
   1380   // BaseReg and ScaleReg (global addresses are always available, as are any
   1381   // folded immediates).
   1382   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
   1383 
   1384   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
   1385   // lifetime wasn't extended by adding this instruction.
   1386   if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
   1387     BaseReg = 0;
   1388   if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
   1389     ScaledReg = 0;
   1390 
   1391   // If folding this instruction (and it's subexprs) didn't extend any live
   1392   // ranges, we're ok with it.
   1393   if (BaseReg == 0 && ScaledReg == 0)
   1394     return true;
   1395 
   1396   // If all uses of this instruction are ultimately load/store/inlineasm's,
   1397   // check to see if their addressing modes will include this instruction.  If
   1398   // so, we can fold it into all uses, so it doesn't matter if it has multiple
   1399   // uses.
   1400   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
   1401   SmallPtrSet<Instruction*, 16> ConsideredInsts;
   1402   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
   1403     return false;  // Has a non-memory, non-foldable use!
   1404 
   1405   // Now that we know that all uses of this instruction are part of a chain of
   1406   // computation involving only operations that could theoretically be folded
   1407   // into a memory use, loop over each of these uses and see if they could
   1408   // *actually* fold the instruction.
   1409   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
   1410   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
   1411     Instruction *User = MemoryUses[i].first;
   1412     unsigned OpNo = MemoryUses[i].second;
   1413 
   1414     // Get the access type of this use.  If the use isn't a pointer, we don't
   1415     // know what it accesses.
   1416     Value *Address = User->getOperand(OpNo);
   1417     if (!Address->getType()->isPointerTy())
   1418       return false;
   1419     Type *AddressAccessTy =
   1420       cast<PointerType>(Address->getType())->getElementType();
   1421 
   1422     // Do a match against the root of this address, ignoring profitability. This
   1423     // will tell us if the addressing mode for the memory operation will
   1424     // *actually* cover the shared instruction.
   1425     ExtAddrMode Result;
   1426     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
   1427                                   MemoryInst, Result);
   1428     Matcher.IgnoreProfitability = true;
   1429     bool Success = Matcher.MatchAddr(Address, 0);
   1430     (void)Success; assert(Success && "Couldn't select *anything*?");
   1431 
   1432     // If the match didn't cover I, then it won't be shared by it.
   1433     if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
   1434                   I) == MatchedAddrModeInsts.end())
   1435       return false;
   1436 
   1437     MatchedAddrModeInsts.clear();
   1438   }
   1439 
   1440   return true;
   1441 }
   1442 
   1443 } // end anonymous namespace
   1444 
   1445 /// IsNonLocalValue - Return true if the specified values are defined in a
   1446 /// different basic block than BB.
   1447 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
   1448   if (Instruction *I = dyn_cast<Instruction>(V))
   1449     return I->getParent() != BB;
   1450   return false;
   1451 }
   1452 
   1453 /// OptimizeMemoryInst - Load and Store Instructions often have
   1454 /// addressing modes that can do significant amounts of computation.  As such,
   1455 /// instruction selection will try to get the load or store to do as much
   1456 /// computation as possible for the program.  The problem is that isel can only
   1457 /// see within a single block.  As such, we sink as much legal addressing mode
   1458 /// stuff into the block as possible.
   1459 ///
   1460 /// This method is used to optimize both load/store and inline asms with memory
   1461 /// operands.
   1462 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
   1463                                         Type *AccessTy) {
   1464   Value *Repl = Addr;
   1465 
   1466   // Try to collapse single-value PHI nodes.  This is necessary to undo
   1467   // unprofitable PRE transformations.
   1468   SmallVector<Value*, 8> worklist;
   1469   SmallPtrSet<Value*, 16> Visited;
   1470   worklist.push_back(Addr);
   1471 
   1472   // Use a worklist to iteratively look through PHI nodes, and ensure that
   1473   // the addressing mode obtained from the non-PHI roots of the graph
   1474   // are equivalent.
   1475   Value *Consensus = 0;
   1476   unsigned NumUsesConsensus = 0;
   1477   bool IsNumUsesConsensusValid = false;
   1478   SmallVector<Instruction*, 16> AddrModeInsts;
   1479   ExtAddrMode AddrMode;
   1480   while (!worklist.empty()) {
   1481     Value *V = worklist.back();
   1482     worklist.pop_back();
   1483 
   1484     // Break use-def graph loops.
   1485     if (!Visited.insert(V)) {
   1486       Consensus = 0;
   1487       break;
   1488     }
   1489 
   1490     // For a PHI node, push all of its incoming values.
   1491     if (PHINode *P = dyn_cast<PHINode>(V)) {
   1492       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
   1493         worklist.push_back(P->getIncomingValue(i));
   1494       continue;
   1495     }
   1496 
   1497     // For non-PHIs, determine the addressing mode being computed.
   1498     SmallVector<Instruction*, 16> NewAddrModeInsts;
   1499     ExtAddrMode NewAddrMode =
   1500       AddressingModeMatcher::Match(V, AccessTy, MemoryInst,
   1501                                    NewAddrModeInsts, *TLI);
   1502 
   1503     // This check is broken into two cases with very similar code to avoid using
   1504     // getNumUses() as much as possible. Some values have a lot of uses, so
   1505     // calling getNumUses() unconditionally caused a significant compile-time
   1506     // regression.
   1507     if (!Consensus) {
   1508       Consensus = V;
   1509       AddrMode = NewAddrMode;
   1510       AddrModeInsts = NewAddrModeInsts;
   1511       continue;
   1512     } else if (NewAddrMode == AddrMode) {
   1513       if (!IsNumUsesConsensusValid) {
   1514         NumUsesConsensus = Consensus->getNumUses();
   1515         IsNumUsesConsensusValid = true;
   1516       }
   1517 
   1518       // Ensure that the obtained addressing mode is equivalent to that obtained
   1519       // for all other roots of the PHI traversal.  Also, when choosing one
   1520       // such root as representative, select the one with the most uses in order
   1521       // to keep the cost modeling heuristics in AddressingModeMatcher
   1522       // applicable.
   1523       unsigned NumUses = V->getNumUses();
   1524       if (NumUses > NumUsesConsensus) {
   1525         Consensus = V;
   1526         NumUsesConsensus = NumUses;
   1527         AddrModeInsts = NewAddrModeInsts;
   1528       }
   1529       continue;
   1530     }
   1531 
   1532     Consensus = 0;
   1533     break;
   1534   }
   1535 
   1536   // If the addressing mode couldn't be determined, or if multiple different
   1537   // ones were determined, bail out now.
   1538   if (!Consensus) return false;
   1539 
   1540   // Check to see if any of the instructions supersumed by this addr mode are
   1541   // non-local to I's BB.
   1542   bool AnyNonLocal = false;
   1543   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
   1544     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
   1545       AnyNonLocal = true;
   1546       break;
   1547     }
   1548   }
   1549 
   1550   // If all the instructions matched are already in this BB, don't do anything.
   1551   if (!AnyNonLocal) {
   1552     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
   1553     return false;
   1554   }
   1555 
   1556   // Insert this computation right after this user.  Since our caller is
   1557   // scanning from the top of the BB to the bottom, reuse of the expr are
   1558   // guaranteed to happen later.
   1559   IRBuilder<> Builder(MemoryInst);
   1560 
   1561   // Now that we determined the addressing expression we want to use and know
   1562   // that we have to sink it into this block.  Check to see if we have already
   1563   // done this for some other load/store instr in this block.  If so, reuse the
   1564   // computation.
   1565   Value *&SunkAddr = SunkAddrs[Addr];
   1566   if (SunkAddr) {
   1567     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
   1568                  << *MemoryInst);
   1569     if (SunkAddr->getType() != Addr->getType())
   1570       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
   1571   } else {
   1572     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
   1573                  << *MemoryInst);
   1574     Type *IntPtrTy =
   1575           TLI->getDataLayout()->getIntPtrType(AccessTy->getContext());
   1576 
   1577     Value *Result = 0;
   1578 
   1579     // Start with the base register. Do this first so that subsequent address
   1580     // matching finds it last, which will prevent it from trying to match it
   1581     // as the scaled value in case it happens to be a mul. That would be
   1582     // problematic if we've sunk a different mul for the scale, because then
   1583     // we'd end up sinking both muls.
   1584     if (AddrMode.BaseReg) {
   1585       Value *V = AddrMode.BaseReg;
   1586       if (V->getType()->isPointerTy())
   1587         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
   1588       if (V->getType() != IntPtrTy)
   1589         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
   1590       Result = V;
   1591     }
   1592 
   1593     // Add the scale value.
   1594     if (AddrMode.Scale) {
   1595       Value *V = AddrMode.ScaledReg;
   1596       if (V->getType() == IntPtrTy) {
   1597         // done.
   1598       } else if (V->getType()->isPointerTy()) {
   1599         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
   1600       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
   1601                  cast<IntegerType>(V->getType())->getBitWidth()) {
   1602         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
   1603       } else {
   1604         V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
   1605       }
   1606       if (AddrMode.Scale != 1)
   1607         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
   1608                               "sunkaddr");
   1609       if (Result)
   1610         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   1611       else
   1612         Result = V;
   1613     }
   1614 
   1615     // Add in the BaseGV if present.
   1616     if (AddrMode.BaseGV) {
   1617       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
   1618       if (Result)
   1619         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   1620       else
   1621         Result = V;
   1622     }
   1623 
   1624     // Add in the Base Offset if present.
   1625     if (AddrMode.BaseOffs) {
   1626       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
   1627       if (Result)
   1628         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   1629       else
   1630         Result = V;
   1631     }
   1632 
   1633     if (Result == 0)
   1634       SunkAddr = Constant::getNullValue(Addr->getType());
   1635     else
   1636       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
   1637   }
   1638 
   1639   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
   1640 
   1641   // If we have no uses, recursively delete the value and all dead instructions
   1642   // using it.
   1643   if (Repl->use_empty()) {
   1644     // This can cause recursive deletion, which can invalidate our iterator.
   1645     // Use a WeakVH to hold onto it in case this happens.
   1646     WeakVH IterHandle(CurInstIterator);
   1647     BasicBlock *BB = CurInstIterator->getParent();
   1648 
   1649     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
   1650 
   1651     if (IterHandle != CurInstIterator) {
   1652       // If the iterator instruction was recursively deleted, start over at the
   1653       // start of the block.
   1654       CurInstIterator = BB->begin();
   1655       SunkAddrs.clear();
   1656     } else {
   1657       // This address is now available for reassignment, so erase the table
   1658       // entry; we don't want to match some completely different instruction.
   1659       SunkAddrs[Addr] = 0;
   1660     }
   1661   }
   1662   ++NumMemoryInsts;
   1663   return true;
   1664 }
   1665 
   1666 /// OptimizeInlineAsmInst - If there are any memory operands, use
   1667 /// OptimizeMemoryInst to sink their address computing into the block when
   1668 /// possible / profitable.
   1669 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
   1670   bool MadeChange = false;
   1671 
   1672   TargetLowering::AsmOperandInfoVector
   1673     TargetConstraints = TLI->ParseConstraints(CS);
   1674   unsigned ArgNo = 0;
   1675   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   1676     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   1677 
   1678     // Compute the constraint code and ConstraintType to use.
   1679     TLI->ComputeConstraintToUse(OpInfo, SDValue());
   1680 
   1681     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   1682         OpInfo.isIndirect) {
   1683       Value *OpVal = CS->getArgOperand(ArgNo++);
   1684       MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
   1685     } else if (OpInfo.Type == InlineAsm::isInput)
   1686       ArgNo++;
   1687   }
   1688 
   1689   return MadeChange;
   1690 }
   1691 
   1692 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
   1693 /// basic block as the load, unless conditions are unfavorable. This allows
   1694 /// SelectionDAG to fold the extend into the load.
   1695 ///
   1696 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
   1697   // Look for a load being extended.
   1698   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
   1699   if (!LI) return false;
   1700 
   1701   // If they're already in the same block, there's nothing to do.
   1702   if (LI->getParent() == I->getParent())
   1703     return false;
   1704 
   1705   // If the load has other users and the truncate is not free, this probably
   1706   // isn't worthwhile.
   1707   if (!LI->hasOneUse() &&
   1708       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
   1709               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
   1710       !TLI->isTruncateFree(I->getType(), LI->getType()))
   1711     return false;
   1712 
   1713   // Check whether the target supports casts folded into loads.
   1714   unsigned LType;
   1715   if (isa<ZExtInst>(I))
   1716     LType = ISD::ZEXTLOAD;
   1717   else {
   1718     assert(isa<SExtInst>(I) && "Unexpected ext type!");
   1719     LType = ISD::SEXTLOAD;
   1720   }
   1721   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
   1722     return false;
   1723 
   1724   // Move the extend into the same block as the load, so that SelectionDAG
   1725   // can fold it.
   1726   I->removeFromParent();
   1727   I->insertAfter(LI);
   1728   ++NumExtsMoved;
   1729   return true;
   1730 }
   1731 
   1732 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
   1733   BasicBlock *DefBB = I->getParent();
   1734 
   1735   // If the result of a {s|z}ext and its source are both live out, rewrite all
   1736   // other uses of the source with result of extension.
   1737   Value *Src = I->getOperand(0);
   1738   if (Src->hasOneUse())
   1739     return false;
   1740 
   1741   // Only do this xform if truncating is free.
   1742   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
   1743     return false;
   1744 
   1745   // Only safe to perform the optimization if the source is also defined in
   1746   // this block.
   1747   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
   1748     return false;
   1749 
   1750   bool DefIsLiveOut = false;
   1751   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1752        UI != E; ++UI) {
   1753     Instruction *User = cast<Instruction>(*UI);
   1754 
   1755     // Figure out which BB this ext is used in.
   1756     BasicBlock *UserBB = User->getParent();
   1757     if (UserBB == DefBB) continue;
   1758     DefIsLiveOut = true;
   1759     break;
   1760   }
   1761   if (!DefIsLiveOut)
   1762     return false;
   1763 
   1764   // Make sure non of the uses are PHI nodes.
   1765   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
   1766        UI != E; ++UI) {
   1767     Instruction *User = cast<Instruction>(*UI);
   1768     BasicBlock *UserBB = User->getParent();
   1769     if (UserBB == DefBB) continue;
   1770     // Be conservative. We don't want this xform to end up introducing
   1771     // reloads just before load / store instructions.
   1772     if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
   1773       return false;
   1774   }
   1775 
   1776   // InsertedTruncs - Only insert one trunc in each block once.
   1777   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
   1778 
   1779   bool MadeChange = false;
   1780   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
   1781        UI != E; ++UI) {
   1782     Use &TheUse = UI.getUse();
   1783     Instruction *User = cast<Instruction>(*UI);
   1784 
   1785     // Figure out which BB this ext is used in.
   1786     BasicBlock *UserBB = User->getParent();
   1787     if (UserBB == DefBB) continue;
   1788 
   1789     // Both src and def are live in this block. Rewrite the use.
   1790     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
   1791 
   1792     if (!InsertedTrunc) {
   1793       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
   1794       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
   1795     }
   1796 
   1797     // Replace a use of the {s|z}ext source with a use of the result.
   1798     TheUse = InsertedTrunc;
   1799     ++NumExtUses;
   1800     MadeChange = true;
   1801   }
   1802 
   1803   return MadeChange;
   1804 }
   1805 
   1806 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
   1807 /// turned into an explicit branch.
   1808 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
   1809   // FIXME: This should use the same heuristics as IfConversion to determine
   1810   // whether a select is better represented as a branch.  This requires that
   1811   // branch probability metadata is preserved for the select, which is not the
   1812   // case currently.
   1813 
   1814   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   1815 
   1816   // If the branch is predicted right, an out of order CPU can avoid blocking on
   1817   // the compare.  Emit cmovs on compares with a memory operand as branches to
   1818   // avoid stalls on the load from memory.  If the compare has more than one use
   1819   // there's probably another cmov or setcc around so it's not worth emitting a
   1820   // branch.
   1821   if (!Cmp)
   1822     return false;
   1823 
   1824   Value *CmpOp0 = Cmp->getOperand(0);
   1825   Value *CmpOp1 = Cmp->getOperand(1);
   1826 
   1827   // We check that the memory operand has one use to avoid uses of the loaded
   1828   // value directly after the compare, making branches unprofitable.
   1829   return Cmp->hasOneUse() &&
   1830          ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
   1831           (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
   1832 }
   1833 
   1834 
   1835 /// If we have a SelectInst that will likely profit from branch prediction,
   1836 /// turn it into a branch.
   1837 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
   1838   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
   1839 
   1840   // Can we convert the 'select' to CF ?
   1841   if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
   1842     return false;
   1843 
   1844   TargetLowering::SelectSupportKind SelectKind;
   1845   if (VectorCond)
   1846     SelectKind = TargetLowering::VectorMaskSelect;
   1847   else if (SI->getType()->isVectorTy())
   1848     SelectKind = TargetLowering::ScalarCondVectorVal;
   1849   else
   1850     SelectKind = TargetLowering::ScalarValSelect;
   1851 
   1852   // Do we have efficient codegen support for this kind of 'selects' ?
   1853   if (TLI->isSelectSupported(SelectKind)) {
   1854     // We have efficient codegen support for the select instruction.
   1855     // Check if it is profitable to keep this 'select'.
   1856     if (!TLI->isPredictableSelectExpensive() ||
   1857         !isFormingBranchFromSelectProfitable(SI))
   1858       return false;
   1859   }
   1860 
   1861   ModifiedDT = true;
   1862 
   1863   // First, we split the block containing the select into 2 blocks.
   1864   BasicBlock *StartBlock = SI->getParent();
   1865   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
   1866   BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
   1867 
   1868   // Create a new block serving as the landing pad for the branch.
   1869   BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
   1870                                              NextBlock->getParent(), NextBlock);
   1871 
   1872   // Move the unconditional branch from the block with the select in it into our
   1873   // landing pad block.
   1874   StartBlock->getTerminator()->eraseFromParent();
   1875   BranchInst::Create(NextBlock, SmallBlock);
   1876 
   1877   // Insert the real conditional branch based on the original condition.
   1878   BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
   1879 
   1880   // The select itself is replaced with a PHI Node.
   1881   PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
   1882   PN->takeName(SI);
   1883   PN->addIncoming(SI->getTrueValue(), StartBlock);
   1884   PN->addIncoming(SI->getFalseValue(), SmallBlock);
   1885   SI->replaceAllUsesWith(PN);
   1886   SI->eraseFromParent();
   1887 
   1888   // Instruct OptimizeBlock to skip to the next block.
   1889   CurInstIterator = StartBlock->end();
   1890   ++NumSelectsExpanded;
   1891   return true;
   1892 }
   1893 
   1894 bool CodeGenPrepare::OptimizeInst(Instruction *I) {
   1895   if (PHINode *P = dyn_cast<PHINode>(I)) {
   1896     // It is possible for very late stage optimizations (such as SimplifyCFG)
   1897     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
   1898     // trivial PHI, go ahead and zap it here.
   1899     if (Value *V = SimplifyInstruction(P)) {
   1900       P->replaceAllUsesWith(V);
   1901       P->eraseFromParent();
   1902       ++NumPHIsElim;
   1903       return true;
   1904     }
   1905     return false;
   1906   }
   1907 
   1908   if (CastInst *CI = dyn_cast<CastInst>(I)) {
   1909     // If the source of the cast is a constant, then this should have
   1910     // already been constant folded.  The only reason NOT to constant fold
   1911     // it is if something (e.g. LSR) was careful to place the constant
   1912     // evaluation in a block other than then one that uses it (e.g. to hoist
   1913     // the address of globals out of a loop).  If this is the case, we don't
   1914     // want to forward-subst the cast.
   1915     if (isa<Constant>(CI->getOperand(0)))
   1916       return false;
   1917 
   1918     if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
   1919       return true;
   1920 
   1921     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
   1922       bool MadeChange = MoveExtToFormExtLoad(I);
   1923       return MadeChange | OptimizeExtUses(I);
   1924     }
   1925     return false;
   1926   }
   1927 
   1928   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   1929     return OptimizeCmpExpression(CI);
   1930 
   1931   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1932     if (TLI)
   1933       return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
   1934     return false;
   1935   }
   1936 
   1937   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1938     if (TLI)
   1939       return OptimizeMemoryInst(I, SI->getOperand(1),
   1940                                 SI->getOperand(0)->getType());
   1941     return false;
   1942   }
   1943 
   1944   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
   1945     if (GEPI->hasAllZeroIndices()) {
   1946       /// The GEP operand must be a pointer, so must its result -> BitCast
   1947       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
   1948                                         GEPI->getName(), GEPI);
   1949       GEPI->replaceAllUsesWith(NC);
   1950       GEPI->eraseFromParent();
   1951       ++NumGEPsElim;
   1952       OptimizeInst(NC);
   1953       return true;
   1954     }
   1955     return false;
   1956   }
   1957 
   1958   if (CallInst *CI = dyn_cast<CallInst>(I))
   1959     return OptimizeCallInst(CI);
   1960 
   1961   if (SelectInst *SI = dyn_cast<SelectInst>(I))
   1962     return OptimizeSelectInst(SI);
   1963 
   1964   return false;
   1965 }
   1966 
   1967 // In this pass we look for GEP and cast instructions that are used
   1968 // across basic blocks and rewrite them to improve basic-block-at-a-time
   1969 // selection.
   1970 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
   1971   SunkAddrs.clear();
   1972   bool MadeChange = false;
   1973 
   1974   CurInstIterator = BB.begin();
   1975   while (CurInstIterator != BB.end())
   1976     MadeChange |= OptimizeInst(CurInstIterator++);
   1977 
   1978   MadeChange |= DupRetToEnableTailCallOpts(&BB);
   1979 
   1980   return MadeChange;
   1981 }
   1982 
   1983 // llvm.dbg.value is far away from the value then iSel may not be able
   1984 // handle it properly. iSel will drop llvm.dbg.value if it can not
   1985 // find a node corresponding to the value.
   1986 bool CodeGenPrepare::PlaceDbgValues(Function &F) {
   1987   bool MadeChange = false;
   1988   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
   1989     Instruction *PrevNonDbgInst = NULL;
   1990     for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
   1991       Instruction *Insn = BI; ++BI;
   1992       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
   1993       if (!DVI) {
   1994         PrevNonDbgInst = Insn;
   1995         continue;
   1996       }
   1997 
   1998       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
   1999       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
   2000         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
   2001         DVI->removeFromParent();
   2002         if (isa<PHINode>(VI))
   2003           DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
   2004         else
   2005           DVI->insertAfter(VI);
   2006         MadeChange = true;
   2007         ++NumDbgValueMoved;
   2008       }
   2009     }
   2010   }
   2011   return MadeChange;
   2012 }
   2013