1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #define DEBUG_TYPE "block-placement2" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 36 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include <algorithm> 47 using namespace llvm; 48 49 STATISTIC(NumCondBranches, "Number of conditional branches"); 50 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 51 STATISTIC(CondBranchTakenFreq, 52 "Potential frequency of taking conditional branches"); 53 STATISTIC(UncondBranchTakenFreq, 54 "Potential frequency of taking unconditional branches"); 55 56 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 57 cl::desc("Force the alignment of all " 58 "blocks in the function."), 59 cl::init(0), cl::Hidden); 60 61 namespace { 62 class BlockChain; 63 /// \brief Type for our function-wide basic block -> block chain mapping. 64 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 65 } 66 67 namespace { 68 /// \brief A chain of blocks which will be laid out contiguously. 69 /// 70 /// This is the datastructure representing a chain of consecutive blocks that 71 /// are profitable to layout together in order to maximize fallthrough 72 /// probabilities and code locality. We also can use a block chain to represent 73 /// a sequence of basic blocks which have some external (correctness) 74 /// requirement for sequential layout. 75 /// 76 /// Chains can be built around a single basic block and can be merged to grow 77 /// them. They participate in a block-to-chain mapping, which is updated 78 /// automatically as chains are merged together. 79 class BlockChain { 80 /// \brief The sequence of blocks belonging to this chain. 81 /// 82 /// This is the sequence of blocks for a particular chain. These will be laid 83 /// out in-order within the function. 84 SmallVector<MachineBasicBlock *, 4> Blocks; 85 86 /// \brief A handle to the function-wide basic block to block chain mapping. 87 /// 88 /// This is retained in each block chain to simplify the computation of child 89 /// block chains for SCC-formation and iteration. We store the edges to child 90 /// basic blocks, and map them back to their associated chains using this 91 /// structure. 92 BlockToChainMapType &BlockToChain; 93 94 public: 95 /// \brief Construct a new BlockChain. 96 /// 97 /// This builds a new block chain representing a single basic block in the 98 /// function. It also registers itself as the chain that block participates 99 /// in with the BlockToChain mapping. 100 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 101 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 102 assert(BB && "Cannot create a chain with a null basic block"); 103 BlockToChain[BB] = this; 104 } 105 106 /// \brief Iterator over blocks within the chain. 107 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 108 109 /// \brief Beginning of blocks within the chain. 110 iterator begin() { return Blocks.begin(); } 111 112 /// \brief End of blocks within the chain. 113 iterator end() { return Blocks.end(); } 114 115 /// \brief Merge a block chain into this one. 116 /// 117 /// This routine merges a block chain into this one. It takes care of forming 118 /// a contiguous sequence of basic blocks, updating the edge list, and 119 /// updating the block -> chain mapping. It does not free or tear down the 120 /// old chain, but the old chain's block list is no longer valid. 121 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 122 assert(BB); 123 assert(!Blocks.empty()); 124 125 // Fast path in case we don't have a chain already. 126 if (!Chain) { 127 assert(!BlockToChain[BB]); 128 Blocks.push_back(BB); 129 BlockToChain[BB] = this; 130 return; 131 } 132 133 assert(BB == *Chain->begin()); 134 assert(Chain->begin() != Chain->end()); 135 136 // Update the incoming blocks to point to this chain, and add them to the 137 // chain structure. 138 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 139 BI != BE; ++BI) { 140 Blocks.push_back(*BI); 141 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 142 BlockToChain[*BI] = this; 143 } 144 } 145 146 #ifndef NDEBUG 147 /// \brief Dump the blocks in this chain. 148 void dump() LLVM_ATTRIBUTE_USED { 149 for (iterator I = begin(), E = end(); I != E; ++I) 150 (*I)->dump(); 151 } 152 #endif // NDEBUG 153 154 /// \brief Count of predecessors within the loop currently being processed. 155 /// 156 /// This count is updated at each loop we process to represent the number of 157 /// in-loop predecessors of this chain. 158 unsigned LoopPredecessors; 159 }; 160 } 161 162 namespace { 163 class MachineBlockPlacement : public MachineFunctionPass { 164 /// \brief A typedef for a block filter set. 165 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 166 167 /// \brief A handle to the branch probability pass. 168 const MachineBranchProbabilityInfo *MBPI; 169 170 /// \brief A handle to the function-wide block frequency pass. 171 const MachineBlockFrequencyInfo *MBFI; 172 173 /// \brief A handle to the loop info. 174 const MachineLoopInfo *MLI; 175 176 /// \brief A handle to the target's instruction info. 177 const TargetInstrInfo *TII; 178 179 /// \brief A handle to the target's lowering info. 180 const TargetLoweringBase *TLI; 181 182 /// \brief Allocator and owner of BlockChain structures. 183 /// 184 /// We build BlockChains lazily while processing the loop structure of 185 /// a function. To reduce malloc traffic, we allocate them using this 186 /// slab-like allocator, and destroy them after the pass completes. An 187 /// important guarantee is that this allocator produces stable pointers to 188 /// the chains. 189 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 190 191 /// \brief Function wide BasicBlock to BlockChain mapping. 192 /// 193 /// This mapping allows efficiently moving from any given basic block to the 194 /// BlockChain it participates in, if any. We use it to, among other things, 195 /// allow implicitly defining edges between chains as the existing edges 196 /// between basic blocks. 197 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 198 199 void markChainSuccessors(BlockChain &Chain, 200 MachineBasicBlock *LoopHeaderBB, 201 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 202 const BlockFilterSet *BlockFilter = 0); 203 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 204 BlockChain &Chain, 205 const BlockFilterSet *BlockFilter); 206 MachineBasicBlock *selectBestCandidateBlock( 207 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 208 const BlockFilterSet *BlockFilter); 209 MachineBasicBlock *getFirstUnplacedBlock( 210 MachineFunction &F, 211 const BlockChain &PlacedChain, 212 MachineFunction::iterator &PrevUnplacedBlockIt, 213 const BlockFilterSet *BlockFilter); 214 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 215 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 216 const BlockFilterSet *BlockFilter = 0); 217 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 218 const BlockFilterSet &LoopBlockSet); 219 MachineBasicBlock *findBestLoopExit(MachineFunction &F, 220 MachineLoop &L, 221 const BlockFilterSet &LoopBlockSet); 222 void buildLoopChains(MachineFunction &F, MachineLoop &L); 223 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 224 const BlockFilterSet &LoopBlockSet); 225 void buildCFGChains(MachineFunction &F); 226 227 public: 228 static char ID; // Pass identification, replacement for typeid 229 MachineBlockPlacement() : MachineFunctionPass(ID) { 230 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 231 } 232 233 bool runOnMachineFunction(MachineFunction &F); 234 235 void getAnalysisUsage(AnalysisUsage &AU) const { 236 AU.addRequired<MachineBranchProbabilityInfo>(); 237 AU.addRequired<MachineBlockFrequencyInfo>(); 238 AU.addRequired<MachineLoopInfo>(); 239 MachineFunctionPass::getAnalysisUsage(AU); 240 } 241 }; 242 } 243 244 char MachineBlockPlacement::ID = 0; 245 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 246 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 247 "Branch Probability Basic Block Placement", false, false) 248 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 249 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 250 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 251 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 252 "Branch Probability Basic Block Placement", false, false) 253 254 #ifndef NDEBUG 255 /// \brief Helper to print the name of a MBB. 256 /// 257 /// Only used by debug logging. 258 static std::string getBlockName(MachineBasicBlock *BB) { 259 std::string Result; 260 raw_string_ostream OS(Result); 261 OS << "BB#" << BB->getNumber() 262 << " (derived from LLVM BB '" << BB->getName() << "')"; 263 OS.flush(); 264 return Result; 265 } 266 267 /// \brief Helper to print the number of a MBB. 268 /// 269 /// Only used by debug logging. 270 static std::string getBlockNum(MachineBasicBlock *BB) { 271 std::string Result; 272 raw_string_ostream OS(Result); 273 OS << "BB#" << BB->getNumber(); 274 OS.flush(); 275 return Result; 276 } 277 #endif 278 279 /// \brief Mark a chain's successors as having one fewer preds. 280 /// 281 /// When a chain is being merged into the "placed" chain, this routine will 282 /// quickly walk the successors of each block in the chain and mark them as 283 /// having one fewer active predecessor. It also adds any successors of this 284 /// chain which reach the zero-predecessor state to the worklist passed in. 285 void MachineBlockPlacement::markChainSuccessors( 286 BlockChain &Chain, 287 MachineBasicBlock *LoopHeaderBB, 288 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 289 const BlockFilterSet *BlockFilter) { 290 // Walk all the blocks in this chain, marking their successors as having 291 // a predecessor placed. 292 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 293 CBI != CBE; ++CBI) { 294 // Add any successors for which this is the only un-placed in-loop 295 // predecessor to the worklist as a viable candidate for CFG-neutral 296 // placement. No subsequent placement of this block will violate the CFG 297 // shape, so we get to use heuristics to choose a favorable placement. 298 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 299 SE = (*CBI)->succ_end(); 300 SI != SE; ++SI) { 301 if (BlockFilter && !BlockFilter->count(*SI)) 302 continue; 303 BlockChain &SuccChain = *BlockToChain[*SI]; 304 // Disregard edges within a fixed chain, or edges to the loop header. 305 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 306 continue; 307 308 // This is a cross-chain edge that is within the loop, so decrement the 309 // loop predecessor count of the destination chain. 310 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 311 BlockWorkList.push_back(*SuccChain.begin()); 312 } 313 } 314 } 315 316 /// \brief Select the best successor for a block. 317 /// 318 /// This looks across all successors of a particular block and attempts to 319 /// select the "best" one to be the layout successor. It only considers direct 320 /// successors which also pass the block filter. It will attempt to avoid 321 /// breaking CFG structure, but cave and break such structures in the case of 322 /// very hot successor edges. 323 /// 324 /// \returns The best successor block found, or null if none are viable. 325 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 326 MachineBasicBlock *BB, BlockChain &Chain, 327 const BlockFilterSet *BlockFilter) { 328 const BranchProbability HotProb(4, 5); // 80% 329 330 MachineBasicBlock *BestSucc = 0; 331 // FIXME: Due to the performance of the probability and weight routines in 332 // the MBPI analysis, we manually compute probabilities using the edge 333 // weights. This is suboptimal as it means that the somewhat subtle 334 // definition of edge weight semantics is encoded here as well. We should 335 // improve the MBPI interface to efficiently support query patterns such as 336 // this. 337 uint32_t BestWeight = 0; 338 uint32_t WeightScale = 0; 339 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 340 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 341 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 342 SE = BB->succ_end(); 343 SI != SE; ++SI) { 344 if (BlockFilter && !BlockFilter->count(*SI)) 345 continue; 346 BlockChain &SuccChain = *BlockToChain[*SI]; 347 if (&SuccChain == &Chain) { 348 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 349 continue; 350 } 351 if (*SI != *SuccChain.begin()) { 352 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 353 continue; 354 } 355 356 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 357 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 358 359 // Only consider successors which are either "hot", or wouldn't violate 360 // any CFG constraints. 361 if (SuccChain.LoopPredecessors != 0) { 362 if (SuccProb < HotProb) { 363 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n"); 364 continue; 365 } 366 367 // Make sure that a hot successor doesn't have a globally more important 368 // predecessor. 369 BlockFrequency CandidateEdgeFreq 370 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 371 bool BadCFGConflict = false; 372 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 373 PE = (*SI)->pred_end(); 374 PI != PE; ++PI) { 375 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 376 BlockToChain[*PI] == &Chain) 377 continue; 378 BlockFrequency PredEdgeFreq 379 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 380 if (PredEdgeFreq >= CandidateEdgeFreq) { 381 BadCFGConflict = true; 382 break; 383 } 384 } 385 if (BadCFGConflict) { 386 DEBUG(dbgs() << " " << getBlockName(*SI) 387 << " -> non-cold CFG conflict\n"); 388 continue; 389 } 390 } 391 392 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 393 << " (prob)" 394 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 395 << "\n"); 396 if (BestSucc && BestWeight >= SuccWeight) 397 continue; 398 BestSucc = *SI; 399 BestWeight = SuccWeight; 400 } 401 return BestSucc; 402 } 403 404 namespace { 405 /// \brief Predicate struct to detect blocks already placed. 406 class IsBlockPlaced { 407 const BlockChain &PlacedChain; 408 const BlockToChainMapType &BlockToChain; 409 410 public: 411 IsBlockPlaced(const BlockChain &PlacedChain, 412 const BlockToChainMapType &BlockToChain) 413 : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {} 414 415 bool operator()(MachineBasicBlock *BB) const { 416 return BlockToChain.lookup(BB) == &PlacedChain; 417 } 418 }; 419 } 420 421 /// \brief Select the best block from a worklist. 422 /// 423 /// This looks through the provided worklist as a list of candidate basic 424 /// blocks and select the most profitable one to place. The definition of 425 /// profitable only really makes sense in the context of a loop. This returns 426 /// the most frequently visited block in the worklist, which in the case of 427 /// a loop, is the one most desirable to be physically close to the rest of the 428 /// loop body in order to improve icache behavior. 429 /// 430 /// \returns The best block found, or null if none are viable. 431 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 432 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 433 const BlockFilterSet *BlockFilter) { 434 // Once we need to walk the worklist looking for a candidate, cleanup the 435 // worklist of already placed entries. 436 // FIXME: If this shows up on profiles, it could be folded (at the cost of 437 // some code complexity) into the loop below. 438 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 439 IsBlockPlaced(Chain, BlockToChain)), 440 WorkList.end()); 441 442 MachineBasicBlock *BestBlock = 0; 443 BlockFrequency BestFreq; 444 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 445 WBE = WorkList.end(); 446 WBI != WBE; ++WBI) { 447 BlockChain &SuccChain = *BlockToChain[*WBI]; 448 if (&SuccChain == &Chain) { 449 DEBUG(dbgs() << " " << getBlockName(*WBI) 450 << " -> Already merged!\n"); 451 continue; 452 } 453 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 454 455 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 456 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq 457 << " (freq)\n"); 458 if (BestBlock && BestFreq >= CandidateFreq) 459 continue; 460 BestBlock = *WBI; 461 BestFreq = CandidateFreq; 462 } 463 return BestBlock; 464 } 465 466 /// \brief Retrieve the first unplaced basic block. 467 /// 468 /// This routine is called when we are unable to use the CFG to walk through 469 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 470 /// We walk through the function's blocks in order, starting from the 471 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 472 /// re-scanning the entire sequence on repeated calls to this routine. 473 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 474 MachineFunction &F, const BlockChain &PlacedChain, 475 MachineFunction::iterator &PrevUnplacedBlockIt, 476 const BlockFilterSet *BlockFilter) { 477 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 478 ++I) { 479 if (BlockFilter && !BlockFilter->count(I)) 480 continue; 481 if (BlockToChain[I] != &PlacedChain) { 482 PrevUnplacedBlockIt = I; 483 // Now select the head of the chain to which the unplaced block belongs 484 // as the block to place. This will force the entire chain to be placed, 485 // and satisfies the requirements of merging chains. 486 return *BlockToChain[I]->begin(); 487 } 488 } 489 return 0; 490 } 491 492 void MachineBlockPlacement::buildChain( 493 MachineBasicBlock *BB, 494 BlockChain &Chain, 495 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 496 const BlockFilterSet *BlockFilter) { 497 assert(BB); 498 assert(BlockToChain[BB] == &Chain); 499 MachineFunction &F = *BB->getParent(); 500 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 501 502 MachineBasicBlock *LoopHeaderBB = BB; 503 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 504 BB = *llvm::prior(Chain.end()); 505 for (;;) { 506 assert(BB); 507 assert(BlockToChain[BB] == &Chain); 508 assert(*llvm::prior(Chain.end()) == BB); 509 510 // Look for the best viable successor if there is one to place immediately 511 // after this block. 512 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 513 514 // If an immediate successor isn't available, look for the best viable 515 // block among those we've identified as not violating the loop's CFG at 516 // this point. This won't be a fallthrough, but it will increase locality. 517 if (!BestSucc) 518 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 519 520 if (!BestSucc) { 521 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 522 BlockFilter); 523 if (!BestSucc) 524 break; 525 526 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 527 "layout successor until the CFG reduces\n"); 528 } 529 530 // Place this block, updating the datastructures to reflect its placement. 531 BlockChain &SuccChain = *BlockToChain[BestSucc]; 532 // Zero out LoopPredecessors for the successor we're about to merge in case 533 // we selected a successor that didn't fit naturally into the CFG. 534 SuccChain.LoopPredecessors = 0; 535 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 536 << " to " << getBlockNum(BestSucc) << "\n"); 537 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 538 Chain.merge(BestSucc, &SuccChain); 539 BB = *llvm::prior(Chain.end()); 540 } 541 542 DEBUG(dbgs() << "Finished forming chain for header block " 543 << getBlockNum(*Chain.begin()) << "\n"); 544 } 545 546 /// \brief Find the best loop top block for layout. 547 /// 548 /// Look for a block which is strictly better than the loop header for laying 549 /// out at the top of the loop. This looks for one and only one pattern: 550 /// a latch block with no conditional exit. This block will cause a conditional 551 /// jump around it or will be the bottom of the loop if we lay it out in place, 552 /// but if it it doesn't end up at the bottom of the loop for any reason, 553 /// rotation alone won't fix it. Because such a block will always result in an 554 /// unconditional jump (for the backedge) rotating it in front of the loop 555 /// header is always profitable. 556 MachineBasicBlock * 557 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 558 const BlockFilterSet &LoopBlockSet) { 559 // Check that the header hasn't been fused with a preheader block due to 560 // crazy branches. If it has, we need to start with the header at the top to 561 // prevent pulling the preheader into the loop body. 562 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 563 if (!LoopBlockSet.count(*HeaderChain.begin())) 564 return L.getHeader(); 565 566 DEBUG(dbgs() << "Finding best loop top for: " 567 << getBlockName(L.getHeader()) << "\n"); 568 569 BlockFrequency BestPredFreq; 570 MachineBasicBlock *BestPred = 0; 571 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 572 PE = L.getHeader()->pred_end(); 573 PI != PE; ++PI) { 574 MachineBasicBlock *Pred = *PI; 575 if (!LoopBlockSet.count(Pred)) 576 continue; 577 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 578 << Pred->succ_size() << " successors, " 579 << MBFI->getBlockFreq(Pred) << " freq\n"); 580 if (Pred->succ_size() > 1) 581 continue; 582 583 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 584 if (!BestPred || PredFreq > BestPredFreq || 585 (!(PredFreq < BestPredFreq) && 586 Pred->isLayoutSuccessor(L.getHeader()))) { 587 BestPred = Pred; 588 BestPredFreq = PredFreq; 589 } 590 } 591 592 // If no direct predecessor is fine, just use the loop header. 593 if (!BestPred) 594 return L.getHeader(); 595 596 // Walk backwards through any straight line of predecessors. 597 while (BestPred->pred_size() == 1 && 598 (*BestPred->pred_begin())->succ_size() == 1 && 599 *BestPred->pred_begin() != L.getHeader()) 600 BestPred = *BestPred->pred_begin(); 601 602 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 603 return BestPred; 604 } 605 606 607 /// \brief Find the best loop exiting block for layout. 608 /// 609 /// This routine implements the logic to analyze the loop looking for the best 610 /// block to layout at the top of the loop. Typically this is done to maximize 611 /// fallthrough opportunities. 612 MachineBasicBlock * 613 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, 614 MachineLoop &L, 615 const BlockFilterSet &LoopBlockSet) { 616 // We don't want to layout the loop linearly in all cases. If the loop header 617 // is just a normal basic block in the loop, we want to look for what block 618 // within the loop is the best one to layout at the top. However, if the loop 619 // header has be pre-merged into a chain due to predecessors not having 620 // analyzable branches, *and* the predecessor it is merged with is *not* part 621 // of the loop, rotating the header into the middle of the loop will create 622 // a non-contiguous range of blocks which is Very Bad. So start with the 623 // header and only rotate if safe. 624 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 625 if (!LoopBlockSet.count(*HeaderChain.begin())) 626 return 0; 627 628 BlockFrequency BestExitEdgeFreq; 629 unsigned BestExitLoopDepth = 0; 630 MachineBasicBlock *ExitingBB = 0; 631 // If there are exits to outer loops, loop rotation can severely limit 632 // fallthrough opportunites unless it selects such an exit. Keep a set of 633 // blocks where rotating to exit with that block will reach an outer loop. 634 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 635 636 DEBUG(dbgs() << "Finding best loop exit for: " 637 << getBlockName(L.getHeader()) << "\n"); 638 for (MachineLoop::block_iterator I = L.block_begin(), 639 E = L.block_end(); 640 I != E; ++I) { 641 BlockChain &Chain = *BlockToChain[*I]; 642 // Ensure that this block is at the end of a chain; otherwise it could be 643 // mid-way through an inner loop or a successor of an analyzable branch. 644 if (*I != *llvm::prior(Chain.end())) 645 continue; 646 647 // Now walk the successors. We need to establish whether this has a viable 648 // exiting successor and whether it has a viable non-exiting successor. 649 // We store the old exiting state and restore it if a viable looping 650 // successor isn't found. 651 MachineBasicBlock *OldExitingBB = ExitingBB; 652 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 653 bool HasLoopingSucc = false; 654 // FIXME: Due to the performance of the probability and weight routines in 655 // the MBPI analysis, we use the internal weights and manually compute the 656 // probabilities to avoid quadratic behavior. 657 uint32_t WeightScale = 0; 658 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 659 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 660 SE = (*I)->succ_end(); 661 SI != SE; ++SI) { 662 if ((*SI)->isLandingPad()) 663 continue; 664 if (*SI == *I) 665 continue; 666 BlockChain &SuccChain = *BlockToChain[*SI]; 667 // Don't split chains, either this chain or the successor's chain. 668 if (&Chain == &SuccChain) { 669 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 670 << getBlockName(*SI) << " (chain conflict)\n"); 671 continue; 672 } 673 674 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 675 if (LoopBlockSet.count(*SI)) { 676 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 677 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 678 HasLoopingSucc = true; 679 continue; 680 } 681 682 unsigned SuccLoopDepth = 0; 683 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 684 SuccLoopDepth = ExitLoop->getLoopDepth(); 685 if (ExitLoop->contains(&L)) 686 BlocksExitingToOuterLoop.insert(*I); 687 } 688 689 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 690 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 691 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 692 << getBlockName(*SI) << " [L:" << SuccLoopDepth 693 << "] (" << ExitEdgeFreq << ")\n"); 694 // Note that we slightly bias this toward an existing layout successor to 695 // retain incoming order in the absence of better information. 696 // FIXME: Should we bias this more strongly? It's pretty weak. 697 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 698 ExitEdgeFreq > BestExitEdgeFreq || 699 ((*I)->isLayoutSuccessor(*SI) && 700 !(ExitEdgeFreq < BestExitEdgeFreq))) { 701 BestExitEdgeFreq = ExitEdgeFreq; 702 ExitingBB = *I; 703 } 704 } 705 706 // Restore the old exiting state, no viable looping successor was found. 707 if (!HasLoopingSucc) { 708 ExitingBB = OldExitingBB; 709 BestExitEdgeFreq = OldBestExitEdgeFreq; 710 continue; 711 } 712 } 713 // Without a candidate exiting block or with only a single block in the 714 // loop, just use the loop header to layout the loop. 715 if (!ExitingBB || L.getNumBlocks() == 1) 716 return 0; 717 718 // Also, if we have exit blocks which lead to outer loops but didn't select 719 // one of them as the exiting block we are rotating toward, disable loop 720 // rotation altogether. 721 if (!BlocksExitingToOuterLoop.empty() && 722 !BlocksExitingToOuterLoop.count(ExitingBB)) 723 return 0; 724 725 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 726 return ExitingBB; 727 } 728 729 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 730 /// 731 /// Once we have built a chain, try to rotate it to line up the hot exit block 732 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 733 /// branches. For example, if the loop has fallthrough into its header and out 734 /// of its bottom already, don't rotate it. 735 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 736 MachineBasicBlock *ExitingBB, 737 const BlockFilterSet &LoopBlockSet) { 738 if (!ExitingBB) 739 return; 740 741 MachineBasicBlock *Top = *LoopChain.begin(); 742 bool ViableTopFallthrough = false; 743 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 744 PE = Top->pred_end(); 745 PI != PE; ++PI) { 746 BlockChain *PredChain = BlockToChain[*PI]; 747 if (!LoopBlockSet.count(*PI) && 748 (!PredChain || *PI == *llvm::prior(PredChain->end()))) { 749 ViableTopFallthrough = true; 750 break; 751 } 752 } 753 754 // If the header has viable fallthrough, check whether the current loop 755 // bottom is a viable exiting block. If so, bail out as rotating will 756 // introduce an unnecessary branch. 757 if (ViableTopFallthrough) { 758 MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end()); 759 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 760 SE = Bottom->succ_end(); 761 SI != SE; ++SI) { 762 BlockChain *SuccChain = BlockToChain[*SI]; 763 if (!LoopBlockSet.count(*SI) && 764 (!SuccChain || *SI == *SuccChain->begin())) 765 return; 766 } 767 } 768 769 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), 770 ExitingBB); 771 if (ExitIt == LoopChain.end()) 772 return; 773 774 std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end()); 775 } 776 777 /// \brief Forms basic block chains from the natural loop structures. 778 /// 779 /// These chains are designed to preserve the existing *structure* of the code 780 /// as much as possible. We can then stitch the chains together in a way which 781 /// both preserves the topological structure and minimizes taken conditional 782 /// branches. 783 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 784 MachineLoop &L) { 785 // First recurse through any nested loops, building chains for those inner 786 // loops. 787 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 788 buildLoopChains(F, **LI); 789 790 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 791 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 792 793 // First check to see if there is an obviously preferable top block for the 794 // loop. This will default to the header, but may end up as one of the 795 // predecessors to the header if there is one which will result in strictly 796 // fewer branches in the loop body. 797 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 798 799 // If we selected just the header for the loop top, look for a potentially 800 // profitable exit block in the event that rotating the loop can eliminate 801 // branches by placing an exit edge at the bottom. 802 MachineBasicBlock *ExitingBB = 0; 803 if (LoopTop == L.getHeader()) 804 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 805 806 BlockChain &LoopChain = *BlockToChain[LoopTop]; 807 808 // FIXME: This is a really lame way of walking the chains in the loop: we 809 // walk the blocks, and use a set to prevent visiting a particular chain 810 // twice. 811 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 812 assert(LoopChain.LoopPredecessors == 0); 813 UpdatedPreds.insert(&LoopChain); 814 for (MachineLoop::block_iterator BI = L.block_begin(), 815 BE = L.block_end(); 816 BI != BE; ++BI) { 817 BlockChain &Chain = *BlockToChain[*BI]; 818 if (!UpdatedPreds.insert(&Chain)) 819 continue; 820 821 assert(Chain.LoopPredecessors == 0); 822 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 823 BCI != BCE; ++BCI) { 824 assert(BlockToChain[*BCI] == &Chain); 825 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 826 PE = (*BCI)->pred_end(); 827 PI != PE; ++PI) { 828 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 829 continue; 830 ++Chain.LoopPredecessors; 831 } 832 } 833 834 if (Chain.LoopPredecessors == 0) 835 BlockWorkList.push_back(*Chain.begin()); 836 } 837 838 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 839 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 840 841 DEBUG({ 842 // Crash at the end so we get all of the debugging output first. 843 bool BadLoop = false; 844 if (LoopChain.LoopPredecessors) { 845 BadLoop = true; 846 dbgs() << "Loop chain contains a block without its preds placed!\n" 847 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 848 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 849 } 850 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 851 BCI != BCE; ++BCI) { 852 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 853 if (!LoopBlockSet.erase(*BCI)) { 854 // We don't mark the loop as bad here because there are real situations 855 // where this can occur. For example, with an unanalyzable fallthrough 856 // from a loop block to a non-loop block or vice versa. 857 dbgs() << "Loop chain contains a block not contained by the loop!\n" 858 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 859 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 860 << " Bad block: " << getBlockName(*BCI) << "\n"; 861 } 862 } 863 864 if (!LoopBlockSet.empty()) { 865 BadLoop = true; 866 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 867 LBE = LoopBlockSet.end(); 868 LBI != LBE; ++LBI) 869 dbgs() << "Loop contains blocks never placed into a chain!\n" 870 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 871 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 872 << " Bad block: " << getBlockName(*LBI) << "\n"; 873 } 874 assert(!BadLoop && "Detected problems with the placement of this loop."); 875 }); 876 } 877 878 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 879 // Ensure that every BB in the function has an associated chain to simplify 880 // the assumptions of the remaining algorithm. 881 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 882 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 883 MachineBasicBlock *BB = FI; 884 BlockChain *Chain 885 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 886 // Also, merge any blocks which we cannot reason about and must preserve 887 // the exact fallthrough behavior for. 888 for (;;) { 889 Cond.clear(); 890 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 891 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 892 break; 893 894 MachineFunction::iterator NextFI(llvm::next(FI)); 895 MachineBasicBlock *NextBB = NextFI; 896 // Ensure that the layout successor is a viable block, as we know that 897 // fallthrough is a possibility. 898 assert(NextFI != FE && "Can't fallthrough past the last block."); 899 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 900 << getBlockName(BB) << " -> " << getBlockName(NextBB) 901 << "\n"); 902 Chain->merge(NextBB, 0); 903 FI = NextFI; 904 BB = NextBB; 905 } 906 } 907 908 // Build any loop-based chains. 909 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 910 ++LI) 911 buildLoopChains(F, **LI); 912 913 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 914 915 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 916 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 917 MachineBasicBlock *BB = &*FI; 918 BlockChain &Chain = *BlockToChain[BB]; 919 if (!UpdatedPreds.insert(&Chain)) 920 continue; 921 922 assert(Chain.LoopPredecessors == 0); 923 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 924 BCI != BCE; ++BCI) { 925 assert(BlockToChain[*BCI] == &Chain); 926 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 927 PE = (*BCI)->pred_end(); 928 PI != PE; ++PI) { 929 if (BlockToChain[*PI] == &Chain) 930 continue; 931 ++Chain.LoopPredecessors; 932 } 933 } 934 935 if (Chain.LoopPredecessors == 0) 936 BlockWorkList.push_back(*Chain.begin()); 937 } 938 939 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 940 buildChain(&F.front(), FunctionChain, BlockWorkList); 941 942 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 943 DEBUG({ 944 // Crash at the end so we get all of the debugging output first. 945 bool BadFunc = false; 946 FunctionBlockSetType FunctionBlockSet; 947 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 948 FunctionBlockSet.insert(FI); 949 950 for (BlockChain::iterator BCI = FunctionChain.begin(), 951 BCE = FunctionChain.end(); 952 BCI != BCE; ++BCI) 953 if (!FunctionBlockSet.erase(*BCI)) { 954 BadFunc = true; 955 dbgs() << "Function chain contains a block not in the function!\n" 956 << " Bad block: " << getBlockName(*BCI) << "\n"; 957 } 958 959 if (!FunctionBlockSet.empty()) { 960 BadFunc = true; 961 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 962 FBE = FunctionBlockSet.end(); 963 FBI != FBE; ++FBI) 964 dbgs() << "Function contains blocks never placed into a chain!\n" 965 << " Bad block: " << getBlockName(*FBI) << "\n"; 966 } 967 assert(!BadFunc && "Detected problems with the block placement."); 968 }); 969 970 // Splice the blocks into place. 971 MachineFunction::iterator InsertPos = F.begin(); 972 for (BlockChain::iterator BI = FunctionChain.begin(), 973 BE = FunctionChain.end(); 974 BI != BE; ++BI) { 975 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 976 : " ... ") 977 << getBlockName(*BI) << "\n"); 978 if (InsertPos != MachineFunction::iterator(*BI)) 979 F.splice(InsertPos, *BI); 980 else 981 ++InsertPos; 982 983 // Update the terminator of the previous block. 984 if (BI == FunctionChain.begin()) 985 continue; 986 MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI)); 987 988 // FIXME: It would be awesome of updateTerminator would just return rather 989 // than assert when the branch cannot be analyzed in order to remove this 990 // boiler plate. 991 Cond.clear(); 992 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 993 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 994 // The "PrevBB" is not yet updated to reflect current code layout, so, 995 // o. it may fall-through to a block without explict "goto" instruction 996 // before layout, and no longer fall-through it after layout; or 997 // o. just opposite. 998 // 999 // AnalyzeBranch() may return erroneous value for FBB when these two 1000 // situations take place. For the first scenario FBB is mistakenly set 1001 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1002 // is mistakenly pointing to "*BI". 1003 // 1004 bool needUpdateBr = true; 1005 if (!Cond.empty() && (!FBB || FBB == *BI)) { 1006 PrevBB->updateTerminator(); 1007 needUpdateBr = false; 1008 Cond.clear(); 1009 TBB = FBB = 0; 1010 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1011 // FIXME: This should never take place. 1012 TBB = FBB = 0; 1013 } 1014 } 1015 1016 // If PrevBB has a two-way branch, try to re-order the branches 1017 // such that we branch to the successor with higher weight first. 1018 if (TBB && !Cond.empty() && FBB && 1019 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1020 !TII->ReverseBranchCondition(Cond)) { 1021 DEBUG(dbgs() << "Reverse order of the two branches: " 1022 << getBlockName(PrevBB) << "\n"); 1023 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1024 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1025 DebugLoc dl; // FIXME: this is nowhere 1026 TII->RemoveBranch(*PrevBB); 1027 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1028 needUpdateBr = true; 1029 } 1030 if (needUpdateBr) 1031 PrevBB->updateTerminator(); 1032 } 1033 } 1034 1035 // Fixup the last block. 1036 Cond.clear(); 1037 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 1038 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1039 F.back().updateTerminator(); 1040 1041 // Walk through the backedges of the function now that we have fully laid out 1042 // the basic blocks and align the destination of each backedge. We don't rely 1043 // exclusively on the loop info here so that we can align backedges in 1044 // unnatural CFGs and backedges that were introduced purely because of the 1045 // loop rotations done during this layout pass. 1046 if (F.getFunction()->getAttributes(). 1047 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize)) 1048 return; 1049 unsigned Align = TLI->getPrefLoopAlignment(); 1050 if (!Align) 1051 return; // Don't care about loop alignment. 1052 if (FunctionChain.begin() == FunctionChain.end()) 1053 return; // Empty chain. 1054 1055 const BranchProbability ColdProb(1, 5); // 20% 1056 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1057 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1058 for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()), 1059 BE = FunctionChain.end(); 1060 BI != BE; ++BI) { 1061 // Don't align non-looping basic blocks. These are unlikely to execute 1062 // enough times to matter in practice. Note that we'll still handle 1063 // unnatural CFGs inside of a natural outer loop (the common case) and 1064 // rotated loops. 1065 MachineLoop *L = MLI->getLoopFor(*BI); 1066 if (!L) 1067 continue; 1068 1069 // If the block is cold relative to the function entry don't waste space 1070 // aligning it. 1071 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 1072 if (Freq < WeightedEntryFreq) 1073 continue; 1074 1075 // If the block is cold relative to its loop header, don't align it 1076 // regardless of what edges into the block exist. 1077 MachineBasicBlock *LoopHeader = L->getHeader(); 1078 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1079 if (Freq < (LoopHeaderFreq * ColdProb)) 1080 continue; 1081 1082 // Check for the existence of a non-layout predecessor which would benefit 1083 // from aligning this block. 1084 MachineBasicBlock *LayoutPred = *llvm::prior(BI); 1085 1086 // Force alignment if all the predecessors are jumps. We already checked 1087 // that the block isn't cold above. 1088 if (!LayoutPred->isSuccessor(*BI)) { 1089 (*BI)->setAlignment(Align); 1090 continue; 1091 } 1092 1093 // Align this block if the layout predecessor's edge into this block is 1094 // cold relative to the block. When this is true, other predecessors make up 1095 // all of the hot entries into the block and thus alignment is likely to be 1096 // important. 1097 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 1098 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1099 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1100 (*BI)->setAlignment(Align); 1101 } 1102 } 1103 1104 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1105 // Check for single-block functions and skip them. 1106 if (llvm::next(F.begin()) == F.end()) 1107 return false; 1108 1109 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1110 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1111 MLI = &getAnalysis<MachineLoopInfo>(); 1112 TII = F.getTarget().getInstrInfo(); 1113 TLI = F.getTarget().getTargetLowering(); 1114 assert(BlockToChain.empty()); 1115 1116 buildCFGChains(F); 1117 1118 BlockToChain.clear(); 1119 ChainAllocator.DestroyAll(); 1120 1121 if (AlignAllBlock) 1122 // Align all of the blocks in the function to a specific alignment. 1123 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 1124 FI != FE; ++FI) 1125 FI->setAlignment(AlignAllBlock); 1126 1127 // We always return true as we have no way to track whether the final order 1128 // differs from the original order. 1129 return true; 1130 } 1131 1132 namespace { 1133 /// \brief A pass to compute block placement statistics. 1134 /// 1135 /// A separate pass to compute interesting statistics for evaluating block 1136 /// placement. This is separate from the actual placement pass so that they can 1137 /// be computed in the absence of any placement transformations or when using 1138 /// alternative placement strategies. 1139 class MachineBlockPlacementStats : public MachineFunctionPass { 1140 /// \brief A handle to the branch probability pass. 1141 const MachineBranchProbabilityInfo *MBPI; 1142 1143 /// \brief A handle to the function-wide block frequency pass. 1144 const MachineBlockFrequencyInfo *MBFI; 1145 1146 public: 1147 static char ID; // Pass identification, replacement for typeid 1148 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1149 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1150 } 1151 1152 bool runOnMachineFunction(MachineFunction &F); 1153 1154 void getAnalysisUsage(AnalysisUsage &AU) const { 1155 AU.addRequired<MachineBranchProbabilityInfo>(); 1156 AU.addRequired<MachineBlockFrequencyInfo>(); 1157 AU.setPreservesAll(); 1158 MachineFunctionPass::getAnalysisUsage(AU); 1159 } 1160 }; 1161 } 1162 1163 char MachineBlockPlacementStats::ID = 0; 1164 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1165 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1166 "Basic Block Placement Stats", false, false) 1167 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1168 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1169 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1170 "Basic Block Placement Stats", false, false) 1171 1172 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1173 // Check for single-block functions and skip them. 1174 if (llvm::next(F.begin()) == F.end()) 1175 return false; 1176 1177 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1178 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1179 1180 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 1181 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 1182 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 1183 : NumUncondBranches; 1184 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 1185 : UncondBranchTakenFreq; 1186 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1187 SE = I->succ_end(); 1188 SI != SE; ++SI) { 1189 // Skip if this successor is a fallthrough. 1190 if (I->isLayoutSuccessor(*SI)) 1191 continue; 1192 1193 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1194 ++NumBranches; 1195 BranchTakenFreq += EdgeFreq.getFrequency(); 1196 } 1197 } 1198 1199 return false; 1200 } 1201 1202