1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/LiveRangeEdit.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/VirtRegMap.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 STATISTIC(NumFinished, "Number of splits finished"); 33 STATISTIC(NumSimple, "Number of splits that were simple"); 34 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 35 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 36 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 37 38 //===----------------------------------------------------------------------===// 39 // Split Analysis 40 //===----------------------------------------------------------------------===// 41 42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 43 const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), 46 VRM(vrm), 47 LIS(lis), 48 Loops(mli), 49 TII(*MF.getTarget().getInstrInfo()), 50 CurLI(0), 51 LastSplitPoint(MF.getNumBlockIDs()) {} 52 53 void SplitAnalysis::clear() { 54 UseSlots.clear(); 55 UseBlocks.clear(); 56 ThroughBlocks.clear(); 57 CurLI = 0; 58 DidRepairRange = false; 59 } 60 61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 65 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 66 67 // Compute split points on the first call. The pair is independent of the 68 // current live interval. 69 if (!LSP.first.isValid()) { 70 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 71 if (FirstTerm == MBB->end()) 72 LSP.first = MBBEnd; 73 else 74 LSP.first = LIS.getInstructionIndex(FirstTerm); 75 76 // If there is a landing pad successor, also find the call instruction. 77 if (!LPad) 78 return LSP.first; 79 // There may not be a call instruction (?) in which case we ignore LPad. 80 LSP.second = LSP.first; 81 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 82 I != E;) { 83 --I; 84 if (I->isCall()) { 85 LSP.second = LIS.getInstructionIndex(I); 86 break; 87 } 88 } 89 } 90 91 // If CurLI is live into a landing pad successor, move the last split point 92 // back to the call that may throw. 93 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad)) 94 return LSP.first; 95 96 // Find the value leaving MBB. 97 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 98 if (!VNI) 99 return LSP.first; 100 101 // If the value leaving MBB was defined after the call in MBB, it can't 102 // really be live-in to the landing pad. This can happen if the landing pad 103 // has a PHI, and this register is undef on the exceptional edge. 104 // <rdar://problem/10664933> 105 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 106 return LSP.first; 107 108 // Value is properly live-in to the landing pad. 109 // Only allow splits before the call. 110 return LSP.second; 111 } 112 113 MachineBasicBlock::iterator 114 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 115 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 116 if (LSP == LIS.getMBBEndIdx(MBB)) 117 return MBB->end(); 118 return LIS.getInstructionFromIndex(LSP); 119 } 120 121 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 122 void SplitAnalysis::analyzeUses() { 123 assert(UseSlots.empty() && "Call clear first"); 124 125 // First get all the defs from the interval values. This provides the correct 126 // slots for early clobbers. 127 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 128 E = CurLI->vni_end(); I != E; ++I) 129 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 130 UseSlots.push_back((*I)->def); 131 132 // Get use slots form the use-def chain. 133 const MachineRegisterInfo &MRI = MF.getRegInfo(); 134 for (MachineRegisterInfo::use_nodbg_iterator 135 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 136 ++I) 137 if (!I.getOperand().isUndef()) 138 UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot()); 139 140 array_pod_sort(UseSlots.begin(), UseSlots.end()); 141 142 // Remove duplicates, keeping the smaller slot for each instruction. 143 // That is what we want for early clobbers. 144 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 145 SlotIndex::isSameInstr), 146 UseSlots.end()); 147 148 // Compute per-live block info. 149 if (!calcLiveBlockInfo()) { 150 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 151 // I am looking at you, RegisterCoalescer! 152 DidRepairRange = true; 153 ++NumRepairs; 154 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 155 const_cast<LiveIntervals&>(LIS) 156 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 157 UseBlocks.clear(); 158 ThroughBlocks.clear(); 159 bool fixed = calcLiveBlockInfo(); 160 (void)fixed; 161 assert(fixed && "Couldn't fix broken live interval"); 162 } 163 164 DEBUG(dbgs() << "Analyze counted " 165 << UseSlots.size() << " instrs in " 166 << UseBlocks.size() << " blocks, through " 167 << NumThroughBlocks << " blocks.\n"); 168 } 169 170 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 171 /// where CurLI is live. 172 bool SplitAnalysis::calcLiveBlockInfo() { 173 ThroughBlocks.resize(MF.getNumBlockIDs()); 174 NumThroughBlocks = NumGapBlocks = 0; 175 if (CurLI->empty()) 176 return true; 177 178 LiveInterval::const_iterator LVI = CurLI->begin(); 179 LiveInterval::const_iterator LVE = CurLI->end(); 180 181 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 182 UseI = UseSlots.begin(); 183 UseE = UseSlots.end(); 184 185 // Loop over basic blocks where CurLI is live. 186 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 187 for (;;) { 188 BlockInfo BI; 189 BI.MBB = MFI; 190 SlotIndex Start, Stop; 191 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 192 193 // If the block contains no uses, the range must be live through. At one 194 // point, RegisterCoalescer could create dangling ranges that ended 195 // mid-block. 196 if (UseI == UseE || *UseI >= Stop) { 197 ++NumThroughBlocks; 198 ThroughBlocks.set(BI.MBB->getNumber()); 199 // The range shouldn't end mid-block if there are no uses. This shouldn't 200 // happen. 201 if (LVI->end < Stop) 202 return false; 203 } else { 204 // This block has uses. Find the first and last uses in the block. 205 BI.FirstInstr = *UseI; 206 assert(BI.FirstInstr >= Start); 207 do ++UseI; 208 while (UseI != UseE && *UseI < Stop); 209 BI.LastInstr = UseI[-1]; 210 assert(BI.LastInstr < Stop); 211 212 // LVI is the first live segment overlapping MBB. 213 BI.LiveIn = LVI->start <= Start; 214 215 // When not live in, the first use should be a def. 216 if (!BI.LiveIn) { 217 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 218 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 219 BI.FirstDef = BI.FirstInstr; 220 } 221 222 // Look for gaps in the live range. 223 BI.LiveOut = true; 224 while (LVI->end < Stop) { 225 SlotIndex LastStop = LVI->end; 226 if (++LVI == LVE || LVI->start >= Stop) { 227 BI.LiveOut = false; 228 BI.LastInstr = LastStop; 229 break; 230 } 231 232 if (LastStop < LVI->start) { 233 // There is a gap in the live range. Create duplicate entries for the 234 // live-in snippet and the live-out snippet. 235 ++NumGapBlocks; 236 237 // Push the Live-in part. 238 BI.LiveOut = false; 239 UseBlocks.push_back(BI); 240 UseBlocks.back().LastInstr = LastStop; 241 242 // Set up BI for the live-out part. 243 BI.LiveIn = false; 244 BI.LiveOut = true; 245 BI.FirstInstr = BI.FirstDef = LVI->start; 246 } 247 248 // A LiveRange that starts in the middle of the block must be a def. 249 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 250 if (!BI.FirstDef) 251 BI.FirstDef = LVI->start; 252 } 253 254 UseBlocks.push_back(BI); 255 256 // LVI is now at LVE or LVI->end >= Stop. 257 if (LVI == LVE) 258 break; 259 } 260 261 // Live segment ends exactly at Stop. Move to the next segment. 262 if (LVI->end == Stop && ++LVI == LVE) 263 break; 264 265 // Pick the next basic block. 266 if (LVI->start < Stop) 267 ++MFI; 268 else 269 MFI = LIS.getMBBFromIndex(LVI->start); 270 } 271 272 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 273 return true; 274 } 275 276 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 277 if (cli->empty()) 278 return 0; 279 LiveInterval *li = const_cast<LiveInterval*>(cli); 280 LiveInterval::iterator LVI = li->begin(); 281 LiveInterval::iterator LVE = li->end(); 282 unsigned Count = 0; 283 284 // Loop over basic blocks where li is live. 285 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 286 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 287 for (;;) { 288 ++Count; 289 LVI = li->advanceTo(LVI, Stop); 290 if (LVI == LVE) 291 return Count; 292 do { 293 ++MFI; 294 Stop = LIS.getMBBEndIdx(MFI); 295 } while (Stop <= LVI->start); 296 } 297 } 298 299 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 300 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 301 const LiveInterval &Orig = LIS.getInterval(OrigReg); 302 assert(!Orig.empty() && "Splitting empty interval?"); 303 LiveInterval::const_iterator I = Orig.find(Idx); 304 305 // Range containing Idx should begin at Idx. 306 if (I != Orig.end() && I->start <= Idx) 307 return I->start == Idx; 308 309 // Range does not contain Idx, previous must end at Idx. 310 return I != Orig.begin() && (--I)->end == Idx; 311 } 312 313 void SplitAnalysis::analyze(const LiveInterval *li) { 314 clear(); 315 CurLI = li; 316 analyzeUses(); 317 } 318 319 320 //===----------------------------------------------------------------------===// 321 // Split Editor 322 //===----------------------------------------------------------------------===// 323 324 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 325 SplitEditor::SplitEditor(SplitAnalysis &sa, 326 LiveIntervals &lis, 327 VirtRegMap &vrm, 328 MachineDominatorTree &mdt, 329 MachineBlockFrequencyInfo &mbfi) 330 : SA(sa), LIS(lis), VRM(vrm), 331 MRI(vrm.getMachineFunction().getRegInfo()), 332 MDT(mdt), 333 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 334 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 335 MBFI(mbfi), 336 Edit(0), 337 OpenIdx(0), 338 SpillMode(SM_Partition), 339 RegAssign(Allocator) 340 {} 341 342 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 343 Edit = &LRE; 344 SpillMode = SM; 345 OpenIdx = 0; 346 RegAssign.clear(); 347 Values.clear(); 348 349 // Reset the LiveRangeCalc instances needed for this spill mode. 350 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 351 &LIS.getVNInfoAllocator()); 352 if (SpillMode) 353 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 354 &LIS.getVNInfoAllocator()); 355 356 // We don't need an AliasAnalysis since we will only be performing 357 // cheap-as-a-copy remats anyway. 358 Edit->anyRematerializable(0); 359 } 360 361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 362 void SplitEditor::dump() const { 363 if (RegAssign.empty()) { 364 dbgs() << " empty\n"; 365 return; 366 } 367 368 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 369 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 370 dbgs() << '\n'; 371 } 372 #endif 373 374 VNInfo *SplitEditor::defValue(unsigned RegIdx, 375 const VNInfo *ParentVNI, 376 SlotIndex Idx) { 377 assert(ParentVNI && "Mapping NULL value"); 378 assert(Idx.isValid() && "Invalid SlotIndex"); 379 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 380 LiveInterval *LI = Edit->get(RegIdx); 381 382 // Create a new value. 383 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 384 385 // Use insert for lookup, so we can add missing values with a second lookup. 386 std::pair<ValueMap::iterator, bool> InsP = 387 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 388 ValueForcePair(VNI, false))); 389 390 // This was the first time (RegIdx, ParentVNI) was mapped. 391 // Keep it as a simple def without any liveness. 392 if (InsP.second) 393 return VNI; 394 395 // If the previous value was a simple mapping, add liveness for it now. 396 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 397 SlotIndex Def = OldVNI->def; 398 LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI)); 399 // No longer a simple mapping. Switch to a complex, non-forced mapping. 400 InsP.first->second = ValueForcePair(); 401 } 402 403 // This is a complex mapping, add liveness for VNI 404 SlotIndex Def = VNI->def; 405 LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI)); 406 407 return VNI; 408 } 409 410 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 411 assert(ParentVNI && "Mapping NULL value"); 412 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 413 VNInfo *VNI = VFP.getPointer(); 414 415 // ParentVNI was either unmapped or already complex mapped. Either way, just 416 // set the force bit. 417 if (!VNI) { 418 VFP.setInt(true); 419 return; 420 } 421 422 // This was previously a single mapping. Make sure the old def is represented 423 // by a trivial live range. 424 SlotIndex Def = VNI->def; 425 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI)); 426 // Mark as complex mapped, forced. 427 VFP = ValueForcePair(0, true); 428 } 429 430 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 431 VNInfo *ParentVNI, 432 SlotIndex UseIdx, 433 MachineBasicBlock &MBB, 434 MachineBasicBlock::iterator I) { 435 MachineInstr *CopyMI = 0; 436 SlotIndex Def; 437 LiveInterval *LI = Edit->get(RegIdx); 438 439 // We may be trying to avoid interference that ends at a deleted instruction, 440 // so always begin RegIdx 0 early and all others late. 441 bool Late = RegIdx != 0; 442 443 // Attempt cheap-as-a-copy rematerialization. 444 LiveRangeEdit::Remat RM(ParentVNI); 445 if (Edit->canRematerializeAt(RM, UseIdx, true)) { 446 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 447 ++NumRemats; 448 } else { 449 // Can't remat, just insert a copy from parent. 450 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 451 .addReg(Edit->getReg()); 452 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 453 .getRegSlot(); 454 ++NumCopies; 455 } 456 457 // Define the value in Reg. 458 return defValue(RegIdx, ParentVNI, Def); 459 } 460 461 /// Create a new virtual register and live interval. 462 unsigned SplitEditor::openIntv() { 463 // Create the complement as index 0. 464 if (Edit->empty()) 465 Edit->create(); 466 467 // Create the open interval. 468 OpenIdx = Edit->size(); 469 Edit->create(); 470 return OpenIdx; 471 } 472 473 void SplitEditor::selectIntv(unsigned Idx) { 474 assert(Idx != 0 && "Cannot select the complement interval"); 475 assert(Idx < Edit->size() && "Can only select previously opened interval"); 476 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 477 OpenIdx = Idx; 478 } 479 480 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 481 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 482 DEBUG(dbgs() << " enterIntvBefore " << Idx); 483 Idx = Idx.getBaseIndex(); 484 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 485 if (!ParentVNI) { 486 DEBUG(dbgs() << ": not live\n"); 487 return Idx; 488 } 489 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 490 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 491 assert(MI && "enterIntvBefore called with invalid index"); 492 493 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 494 return VNI->def; 495 } 496 497 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 498 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 499 DEBUG(dbgs() << " enterIntvAfter " << Idx); 500 Idx = Idx.getBoundaryIndex(); 501 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 502 if (!ParentVNI) { 503 DEBUG(dbgs() << ": not live\n"); 504 return Idx; 505 } 506 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 507 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 508 assert(MI && "enterIntvAfter called with invalid index"); 509 510 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 511 llvm::next(MachineBasicBlock::iterator(MI))); 512 return VNI->def; 513 } 514 515 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 516 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 517 SlotIndex End = LIS.getMBBEndIdx(&MBB); 518 SlotIndex Last = End.getPrevSlot(); 519 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 520 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 521 if (!ParentVNI) { 522 DEBUG(dbgs() << ": not live\n"); 523 return End; 524 } 525 DEBUG(dbgs() << ": valno " << ParentVNI->id); 526 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 527 SA.getLastSplitPointIter(&MBB)); 528 RegAssign.insert(VNI->def, End, OpenIdx); 529 DEBUG(dump()); 530 return VNI->def; 531 } 532 533 /// useIntv - indicate that all instructions in MBB should use OpenLI. 534 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 535 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 536 } 537 538 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 539 assert(OpenIdx && "openIntv not called before useIntv"); 540 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 541 RegAssign.insert(Start, End, OpenIdx); 542 DEBUG(dump()); 543 } 544 545 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 546 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 547 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 548 549 // The interval must be live beyond the instruction at Idx. 550 SlotIndex Boundary = Idx.getBoundaryIndex(); 551 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 552 if (!ParentVNI) { 553 DEBUG(dbgs() << ": not live\n"); 554 return Boundary.getNextSlot(); 555 } 556 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 557 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 558 assert(MI && "No instruction at index"); 559 560 // In spill mode, make live ranges as short as possible by inserting the copy 561 // before MI. This is only possible if that instruction doesn't redefine the 562 // value. The inserted COPY is not a kill, and we don't need to recompute 563 // the source live range. The spiller also won't try to hoist this copy. 564 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 565 MI->readsVirtualRegister(Edit->getReg())) { 566 forceRecompute(0, ParentVNI); 567 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 568 return Idx; 569 } 570 571 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 572 llvm::next(MachineBasicBlock::iterator(MI))); 573 return VNI->def; 574 } 575 576 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 577 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 578 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 579 580 // The interval must be live into the instruction at Idx. 581 Idx = Idx.getBaseIndex(); 582 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 583 if (!ParentVNI) { 584 DEBUG(dbgs() << ": not live\n"); 585 return Idx.getNextSlot(); 586 } 587 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 588 589 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 590 assert(MI && "No instruction at index"); 591 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 592 return VNI->def; 593 } 594 595 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 596 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 597 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 598 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 599 600 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 601 if (!ParentVNI) { 602 DEBUG(dbgs() << ": not live\n"); 603 return Start; 604 } 605 606 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 607 MBB.SkipPHIsAndLabels(MBB.begin())); 608 RegAssign.insert(Start, VNI->def, OpenIdx); 609 DEBUG(dump()); 610 return VNI->def; 611 } 612 613 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 614 assert(OpenIdx && "openIntv not called before overlapIntv"); 615 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 616 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 617 "Parent changes value in extended range"); 618 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 619 "Range cannot span basic blocks"); 620 621 // The complement interval will be extended as needed by LRCalc.extend(). 622 if (ParentVNI) 623 forceRecompute(0, ParentVNI); 624 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 625 RegAssign.insert(Start, End, OpenIdx); 626 DEBUG(dump()); 627 } 628 629 //===----------------------------------------------------------------------===// 630 // Spill modes 631 //===----------------------------------------------------------------------===// 632 633 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 634 LiveInterval *LI = Edit->get(0); 635 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 636 RegAssignMap::iterator AssignI; 637 AssignI.setMap(RegAssign); 638 639 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 640 VNInfo *VNI = Copies[i]; 641 SlotIndex Def = VNI->def; 642 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 643 assert(MI && "No instruction for back-copy"); 644 645 MachineBasicBlock *MBB = MI->getParent(); 646 MachineBasicBlock::iterator MBBI(MI); 647 bool AtBegin; 648 do AtBegin = MBBI == MBB->begin(); 649 while (!AtBegin && (--MBBI)->isDebugValue()); 650 651 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 652 LI->removeValNo(VNI); 653 LIS.RemoveMachineInstrFromMaps(MI); 654 MI->eraseFromParent(); 655 656 // Adjust RegAssign if a register assignment is killed at VNI->def. We 657 // want to avoid calculating the live range of the source register if 658 // possible. 659 AssignI.find(Def.getPrevSlot()); 660 if (!AssignI.valid() || AssignI.start() >= Def) 661 continue; 662 // If MI doesn't kill the assigned register, just leave it. 663 if (AssignI.stop() != Def) 664 continue; 665 unsigned RegIdx = AssignI.value(); 666 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 667 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 668 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 669 } else { 670 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 671 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 672 AssignI.setStop(Kill); 673 } 674 } 675 } 676 677 MachineBasicBlock* 678 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 679 MachineBasicBlock *DefMBB) { 680 if (MBB == DefMBB) 681 return MBB; 682 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 683 684 const MachineLoopInfo &Loops = SA.Loops; 685 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 686 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 687 688 // Best candidate so far. 689 MachineBasicBlock *BestMBB = MBB; 690 unsigned BestDepth = UINT_MAX; 691 692 for (;;) { 693 const MachineLoop *Loop = Loops.getLoopFor(MBB); 694 695 // MBB isn't in a loop, it doesn't get any better. All dominators have a 696 // higher frequency by definition. 697 if (!Loop) { 698 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 699 << MBB->getNumber() << " at depth 0\n"); 700 return MBB; 701 } 702 703 // We'll never be able to exit the DefLoop. 704 if (Loop == DefLoop) { 705 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 706 << MBB->getNumber() << " in the same loop\n"); 707 return MBB; 708 } 709 710 // Least busy dominator seen so far. 711 unsigned Depth = Loop->getLoopDepth(); 712 if (Depth < BestDepth) { 713 BestMBB = MBB; 714 BestDepth = Depth; 715 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 716 << MBB->getNumber() << " at depth " << Depth << '\n'); 717 } 718 719 // Leave loop by going to the immediate dominator of the loop header. 720 // This is a bigger stride than simply walking up the dominator tree. 721 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 722 723 // Too far up the dominator tree? 724 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 725 return BestMBB; 726 727 MBB = IDom->getBlock(); 728 } 729 } 730 731 void SplitEditor::hoistCopiesForSize() { 732 // Get the complement interval, always RegIdx 0. 733 LiveInterval *LI = Edit->get(0); 734 LiveInterval *Parent = &Edit->getParent(); 735 736 // Track the nearest common dominator for all back-copies for each ParentVNI, 737 // indexed by ParentVNI->id. 738 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 739 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 740 741 // Find the nearest common dominator for parent values with multiple 742 // back-copies. If a single back-copy dominates, put it in DomPair.second. 743 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 744 VI != VE; ++VI) { 745 VNInfo *VNI = *VI; 746 if (VNI->isUnused()) 747 continue; 748 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 749 assert(ParentVNI && "Parent not live at complement def"); 750 751 // Don't hoist remats. The complement is probably going to disappear 752 // completely anyway. 753 if (Edit->didRematerialize(ParentVNI)) 754 continue; 755 756 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 757 DomPair &Dom = NearestDom[ParentVNI->id]; 758 759 // Keep directly defined parent values. This is either a PHI or an 760 // instruction in the complement range. All other copies of ParentVNI 761 // should be eliminated. 762 if (VNI->def == ParentVNI->def) { 763 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 764 Dom = DomPair(ValMBB, VNI->def); 765 continue; 766 } 767 // Skip the singly mapped values. There is nothing to gain from hoisting a 768 // single back-copy. 769 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 770 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 771 continue; 772 } 773 774 if (!Dom.first) { 775 // First time we see ParentVNI. VNI dominates itself. 776 Dom = DomPair(ValMBB, VNI->def); 777 } else if (Dom.first == ValMBB) { 778 // Two defs in the same block. Pick the earlier def. 779 if (!Dom.second.isValid() || VNI->def < Dom.second) 780 Dom.second = VNI->def; 781 } else { 782 // Different basic blocks. Check if one dominates. 783 MachineBasicBlock *Near = 784 MDT.findNearestCommonDominator(Dom.first, ValMBB); 785 if (Near == ValMBB) 786 // Def ValMBB dominates. 787 Dom = DomPair(ValMBB, VNI->def); 788 else if (Near != Dom.first) 789 // None dominate. Hoist to common dominator, need new def. 790 Dom = DomPair(Near, SlotIndex()); 791 } 792 793 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 794 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 795 << " hoist to BB#" << Dom.first->getNumber() << ' ' 796 << Dom.second << '\n'); 797 } 798 799 // Insert the hoisted copies. 800 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 801 DomPair &Dom = NearestDom[i]; 802 if (!Dom.first || Dom.second.isValid()) 803 continue; 804 // This value needs a hoisted copy inserted at the end of Dom.first. 805 VNInfo *ParentVNI = Parent->getValNumInfo(i); 806 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 807 // Get a less loopy dominator than Dom.first. 808 Dom.first = findShallowDominator(Dom.first, DefMBB); 809 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 810 Dom.second = 811 defFromParent(0, ParentVNI, Last, *Dom.first, 812 SA.getLastSplitPointIter(Dom.first))->def; 813 } 814 815 // Remove redundant back-copies that are now known to be dominated by another 816 // def with the same value. 817 SmallVector<VNInfo*, 8> BackCopies; 818 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 819 VI != VE; ++VI) { 820 VNInfo *VNI = *VI; 821 if (VNI->isUnused()) 822 continue; 823 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 824 const DomPair &Dom = NearestDom[ParentVNI->id]; 825 if (!Dom.first || Dom.second == VNI->def) 826 continue; 827 BackCopies.push_back(VNI); 828 forceRecompute(0, ParentVNI); 829 } 830 removeBackCopies(BackCopies); 831 } 832 833 834 /// transferValues - Transfer all possible values to the new live ranges. 835 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 836 bool SplitEditor::transferValues() { 837 bool Skipped = false; 838 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 839 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 840 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 841 DEBUG(dbgs() << " blit " << *ParentI << ':'); 842 VNInfo *ParentVNI = ParentI->valno; 843 // RegAssign has holes where RegIdx 0 should be used. 844 SlotIndex Start = ParentI->start; 845 AssignI.advanceTo(Start); 846 do { 847 unsigned RegIdx; 848 SlotIndex End = ParentI->end; 849 if (!AssignI.valid()) { 850 RegIdx = 0; 851 } else if (AssignI.start() <= Start) { 852 RegIdx = AssignI.value(); 853 if (AssignI.stop() < End) { 854 End = AssignI.stop(); 855 ++AssignI; 856 } 857 } else { 858 RegIdx = 0; 859 End = std::min(End, AssignI.start()); 860 } 861 862 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 863 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 864 LiveInterval *LI = Edit->get(RegIdx); 865 866 // Check for a simply defined value that can be blitted directly. 867 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 868 if (VNInfo *VNI = VFP.getPointer()) { 869 DEBUG(dbgs() << ':' << VNI->id); 870 LI->addRange(LiveRange(Start, End, VNI)); 871 Start = End; 872 continue; 873 } 874 875 // Skip values with forced recomputation. 876 if (VFP.getInt()) { 877 DEBUG(dbgs() << "(recalc)"); 878 Skipped = true; 879 Start = End; 880 continue; 881 } 882 883 LiveRangeCalc &LRC = getLRCalc(RegIdx); 884 885 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 886 // so the live range is accurate. Add live-in blocks in [Start;End) to the 887 // LiveInBlocks. 888 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 889 SlotIndex BlockStart, BlockEnd; 890 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 891 892 // The first block may be live-in, or it may have its own def. 893 if (Start != BlockStart) { 894 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 895 assert(VNI && "Missing def for complex mapped value"); 896 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 897 // MBB has its own def. Is it also live-out? 898 if (BlockEnd <= End) 899 LRC.setLiveOutValue(MBB, VNI); 900 901 // Skip to the next block for live-in. 902 ++MBB; 903 BlockStart = BlockEnd; 904 } 905 906 // Handle the live-in blocks covered by [Start;End). 907 assert(Start <= BlockStart && "Expected live-in block"); 908 while (BlockStart < End) { 909 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 910 BlockEnd = LIS.getMBBEndIdx(MBB); 911 if (BlockStart == ParentVNI->def) { 912 // This block has the def of a parent PHI, so it isn't live-in. 913 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 914 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 915 assert(VNI && "Missing def for complex mapped parent PHI"); 916 if (End >= BlockEnd) 917 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 918 } else { 919 // This block needs a live-in value. The last block covered may not 920 // be live-out. 921 if (End < BlockEnd) 922 LRC.addLiveInBlock(LI, MDT[MBB], End); 923 else { 924 // Live-through, and we don't know the value. 925 LRC.addLiveInBlock(LI, MDT[MBB]); 926 LRC.setLiveOutValue(MBB, 0); 927 } 928 } 929 BlockStart = BlockEnd; 930 ++MBB; 931 } 932 Start = End; 933 } while (Start != ParentI->end); 934 DEBUG(dbgs() << '\n'); 935 } 936 937 LRCalc[0].calculateValues(); 938 if (SpillMode) 939 LRCalc[1].calculateValues(); 940 941 return Skipped; 942 } 943 944 void SplitEditor::extendPHIKillRanges() { 945 // Extend live ranges to be live-out for successor PHI values. 946 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 947 E = Edit->getParent().vni_end(); I != E; ++I) { 948 const VNInfo *PHIVNI = *I; 949 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 950 continue; 951 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 952 LiveInterval *LI = Edit->get(RegIdx); 953 LiveRangeCalc &LRC = getLRCalc(RegIdx); 954 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 955 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 956 PE = MBB->pred_end(); PI != PE; ++PI) { 957 SlotIndex End = LIS.getMBBEndIdx(*PI); 958 SlotIndex LastUse = End.getPrevSlot(); 959 // The predecessor may not have a live-out value. That is OK, like an 960 // undef PHI operand. 961 if (Edit->getParent().liveAt(LastUse)) { 962 assert(RegAssign.lookup(LastUse) == RegIdx && 963 "Different register assignment in phi predecessor"); 964 LRC.extend(LI, End); 965 } 966 } 967 } 968 } 969 970 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 971 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 972 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 973 RE = MRI.reg_end(); RI != RE;) { 974 MachineOperand &MO = RI.getOperand(); 975 MachineInstr *MI = MO.getParent(); 976 ++RI; 977 // LiveDebugVariables should have handled all DBG_VALUE instructions. 978 if (MI->isDebugValue()) { 979 DEBUG(dbgs() << "Zapping " << *MI); 980 MO.setReg(0); 981 continue; 982 } 983 984 // <undef> operands don't really read the register, so it doesn't matter 985 // which register we choose. When the use operand is tied to a def, we must 986 // use the same register as the def, so just do that always. 987 SlotIndex Idx = LIS.getInstructionIndex(MI); 988 if (MO.isDef() || MO.isUndef()) 989 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 990 991 // Rewrite to the mapped register at Idx. 992 unsigned RegIdx = RegAssign.lookup(Idx); 993 LiveInterval *LI = Edit->get(RegIdx); 994 MO.setReg(LI->reg); 995 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 996 << Idx << ':' << RegIdx << '\t' << *MI); 997 998 // Extend liveness to Idx if the instruction reads reg. 999 if (!ExtendRanges || MO.isUndef()) 1000 continue; 1001 1002 // Skip instructions that don't read Reg. 1003 if (MO.isDef()) { 1004 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1005 continue; 1006 // We may wan't to extend a live range for a partial redef, or for a use 1007 // tied to an early clobber. 1008 Idx = Idx.getPrevSlot(); 1009 if (!Edit->getParent().liveAt(Idx)) 1010 continue; 1011 } else 1012 Idx = Idx.getRegSlot(true); 1013 1014 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot()); 1015 } 1016 } 1017 1018 void SplitEditor::deleteRematVictims() { 1019 SmallVector<MachineInstr*, 8> Dead; 1020 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1021 LiveInterval *LI = *I; 1022 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 1023 LII != LIE; ++LII) { 1024 // Dead defs end at the dead slot. 1025 if (LII->end != LII->valno->def.getDeadSlot()) 1026 continue; 1027 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 1028 assert(MI && "Missing instruction for dead def"); 1029 MI->addRegisterDead(LI->reg, &TRI); 1030 1031 if (!MI->allDefsAreDead()) 1032 continue; 1033 1034 DEBUG(dbgs() << "All defs dead: " << *MI); 1035 Dead.push_back(MI); 1036 } 1037 } 1038 1039 if (Dead.empty()) 1040 return; 1041 1042 Edit->eliminateDeadDefs(Dead); 1043 } 1044 1045 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1046 ++NumFinished; 1047 1048 // At this point, the live intervals in Edit contain VNInfos corresponding to 1049 // the inserted copies. 1050 1051 // Add the original defs from the parent interval. 1052 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1053 E = Edit->getParent().vni_end(); I != E; ++I) { 1054 const VNInfo *ParentVNI = *I; 1055 if (ParentVNI->isUnused()) 1056 continue; 1057 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1058 defValue(RegIdx, ParentVNI, ParentVNI->def); 1059 1060 // Force rematted values to be recomputed everywhere. 1061 // The new live ranges may be truncated. 1062 if (Edit->didRematerialize(ParentVNI)) 1063 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1064 forceRecompute(i, ParentVNI); 1065 } 1066 1067 // Hoist back-copies to the complement interval when in spill mode. 1068 switch (SpillMode) { 1069 case SM_Partition: 1070 // Leave all back-copies as is. 1071 break; 1072 case SM_Size: 1073 hoistCopiesForSize(); 1074 break; 1075 case SM_Speed: 1076 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1077 } 1078 1079 // Transfer the simply mapped values, check if any are skipped. 1080 bool Skipped = transferValues(); 1081 if (Skipped) 1082 extendPHIKillRanges(); 1083 else 1084 ++NumSimple; 1085 1086 // Rewrite virtual registers, possibly extending ranges. 1087 rewriteAssigned(Skipped); 1088 1089 // Delete defs that were rematted everywhere. 1090 if (Skipped) 1091 deleteRematVictims(); 1092 1093 // Get rid of unused values and set phi-kill flags. 1094 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1095 (*I)->RenumberValues(LIS); 1096 1097 // Provide a reverse mapping from original indices to Edit ranges. 1098 if (LRMap) { 1099 LRMap->clear(); 1100 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1101 LRMap->push_back(i); 1102 } 1103 1104 // Now check if any registers were separated into multiple components. 1105 ConnectedVNInfoEqClasses ConEQ(LIS); 1106 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1107 // Don't use iterators, they are invalidated by create() below. 1108 LiveInterval *li = Edit->get(i); 1109 unsigned NumComp = ConEQ.Classify(li); 1110 if (NumComp <= 1) 1111 continue; 1112 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1113 SmallVector<LiveInterval*, 8> dups; 1114 dups.push_back(li); 1115 for (unsigned j = 1; j != NumComp; ++j) 1116 dups.push_back(&Edit->create()); 1117 ConEQ.Distribute(&dups[0], MRI); 1118 // The new intervals all map back to i. 1119 if (LRMap) 1120 LRMap->resize(Edit->size(), i); 1121 } 1122 1123 // Calculate spill weight and allocation hints for new intervals. 1124 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1125 1126 assert(!LRMap || LRMap->size() == Edit->size()); 1127 } 1128 1129 1130 //===----------------------------------------------------------------------===// 1131 // Single Block Splitting 1132 //===----------------------------------------------------------------------===// 1133 1134 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1135 bool SingleInstrs) const { 1136 // Always split for multiple instructions. 1137 if (!BI.isOneInstr()) 1138 return true; 1139 // Don't split for single instructions unless explicitly requested. 1140 if (!SingleInstrs) 1141 return false; 1142 // Splitting a live-through range always makes progress. 1143 if (BI.LiveIn && BI.LiveOut) 1144 return true; 1145 // No point in isolating a copy. It has no register class constraints. 1146 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1147 return false; 1148 // Finally, don't isolate an end point that was created by earlier splits. 1149 return isOriginalEndpoint(BI.FirstInstr); 1150 } 1151 1152 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1153 openIntv(); 1154 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1155 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1156 LastSplitPoint)); 1157 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1158 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1159 } else { 1160 // The last use is after the last valid split point. 1161 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1162 useIntv(SegStart, SegStop); 1163 overlapIntv(SegStop, BI.LastInstr); 1164 } 1165 } 1166 1167 1168 //===----------------------------------------------------------------------===// 1169 // Global Live Range Splitting Support 1170 //===----------------------------------------------------------------------===// 1171 1172 // These methods support a method of global live range splitting that uses a 1173 // global algorithm to decide intervals for CFG edges. They will insert split 1174 // points and color intervals in basic blocks while avoiding interference. 1175 // 1176 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1177 // are on the stack. 1178 1179 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1180 unsigned IntvIn, SlotIndex LeaveBefore, 1181 unsigned IntvOut, SlotIndex EnterAfter){ 1182 SlotIndex Start, Stop; 1183 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1184 1185 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1186 << ") intf " << LeaveBefore << '-' << EnterAfter 1187 << ", live-through " << IntvIn << " -> " << IntvOut); 1188 1189 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1190 1191 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1192 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1193 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1194 1195 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1196 1197 if (!IntvOut) { 1198 DEBUG(dbgs() << ", spill on entry.\n"); 1199 // 1200 // <<<<<<<<< Possible LeaveBefore interference. 1201 // |-----------| Live through. 1202 // -____________ Spill on entry. 1203 // 1204 selectIntv(IntvIn); 1205 SlotIndex Idx = leaveIntvAtTop(*MBB); 1206 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1207 (void)Idx; 1208 return; 1209 } 1210 1211 if (!IntvIn) { 1212 DEBUG(dbgs() << ", reload on exit.\n"); 1213 // 1214 // >>>>>>> Possible EnterAfter interference. 1215 // |-----------| Live through. 1216 // ___________-- Reload on exit. 1217 // 1218 selectIntv(IntvOut); 1219 SlotIndex Idx = enterIntvAtEnd(*MBB); 1220 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1221 (void)Idx; 1222 return; 1223 } 1224 1225 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1226 DEBUG(dbgs() << ", straight through.\n"); 1227 // 1228 // |-----------| Live through. 1229 // ------------- Straight through, same intv, no interference. 1230 // 1231 selectIntv(IntvOut); 1232 useIntv(Start, Stop); 1233 return; 1234 } 1235 1236 // We cannot legally insert splits after LSP. 1237 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1238 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1239 1240 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1241 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1242 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1243 // 1244 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1245 // |-----------| Live through. 1246 // ------======= Switch intervals between interference. 1247 // 1248 selectIntv(IntvOut); 1249 SlotIndex Idx; 1250 if (LeaveBefore && LeaveBefore < LSP) { 1251 Idx = enterIntvBefore(LeaveBefore); 1252 useIntv(Idx, Stop); 1253 } else { 1254 Idx = enterIntvAtEnd(*MBB); 1255 } 1256 selectIntv(IntvIn); 1257 useIntv(Start, Idx); 1258 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1259 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1260 return; 1261 } 1262 1263 DEBUG(dbgs() << ", create local intv for interference.\n"); 1264 // 1265 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1266 // |-----------| Live through. 1267 // ==---------== Switch intervals before/after interference. 1268 // 1269 assert(LeaveBefore <= EnterAfter && "Missed case"); 1270 1271 selectIntv(IntvOut); 1272 SlotIndex Idx = enterIntvAfter(EnterAfter); 1273 useIntv(Idx, Stop); 1274 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1275 1276 selectIntv(IntvIn); 1277 Idx = leaveIntvBefore(LeaveBefore); 1278 useIntv(Start, Idx); 1279 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1280 } 1281 1282 1283 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1284 unsigned IntvIn, SlotIndex LeaveBefore) { 1285 SlotIndex Start, Stop; 1286 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1287 1288 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1289 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1290 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1291 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1292 1293 assert(IntvIn && "Must have register in"); 1294 assert(BI.LiveIn && "Must be live-in"); 1295 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1296 1297 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1298 DEBUG(dbgs() << " before interference.\n"); 1299 // 1300 // <<< Interference after kill. 1301 // |---o---x | Killed in block. 1302 // ========= Use IntvIn everywhere. 1303 // 1304 selectIntv(IntvIn); 1305 useIntv(Start, BI.LastInstr); 1306 return; 1307 } 1308 1309 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1310 1311 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1312 // 1313 // <<< Possible interference after last use. 1314 // |---o---o---| Live-out on stack. 1315 // =========____ Leave IntvIn after last use. 1316 // 1317 // < Interference after last use. 1318 // |---o---o--o| Live-out on stack, late last use. 1319 // ============ Copy to stack after LSP, overlap IntvIn. 1320 // \_____ Stack interval is live-out. 1321 // 1322 if (BI.LastInstr < LSP) { 1323 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1324 selectIntv(IntvIn); 1325 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1326 useIntv(Start, Idx); 1327 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1328 } else { 1329 DEBUG(dbgs() << ", spill before last split point.\n"); 1330 selectIntv(IntvIn); 1331 SlotIndex Idx = leaveIntvBefore(LSP); 1332 overlapIntv(Idx, BI.LastInstr); 1333 useIntv(Start, Idx); 1334 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1335 } 1336 return; 1337 } 1338 1339 // The interference is overlapping somewhere we wanted to use IntvIn. That 1340 // means we need to create a local interval that can be allocated a 1341 // different register. 1342 unsigned LocalIntv = openIntv(); 1343 (void)LocalIntv; 1344 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1345 1346 if (!BI.LiveOut || BI.LastInstr < LSP) { 1347 // 1348 // <<<<<<< Interference overlapping uses. 1349 // |---o---o---| Live-out on stack. 1350 // =====----____ Leave IntvIn before interference, then spill. 1351 // 1352 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1353 SlotIndex From = enterIntvBefore(LeaveBefore); 1354 useIntv(From, To); 1355 selectIntv(IntvIn); 1356 useIntv(Start, From); 1357 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1358 return; 1359 } 1360 1361 // <<<<<<< Interference overlapping uses. 1362 // |---o---o--o| Live-out on stack, late last use. 1363 // =====------- Copy to stack before LSP, overlap LocalIntv. 1364 // \_____ Stack interval is live-out. 1365 // 1366 SlotIndex To = leaveIntvBefore(LSP); 1367 overlapIntv(To, BI.LastInstr); 1368 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1369 useIntv(From, To); 1370 selectIntv(IntvIn); 1371 useIntv(Start, From); 1372 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1373 } 1374 1375 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1376 unsigned IntvOut, SlotIndex EnterAfter) { 1377 SlotIndex Start, Stop; 1378 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1379 1380 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1381 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1382 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1383 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1384 1385 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1386 1387 assert(IntvOut && "Must have register out"); 1388 assert(BI.LiveOut && "Must be live-out"); 1389 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1390 1391 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1392 DEBUG(dbgs() << " after interference.\n"); 1393 // 1394 // >>>> Interference before def. 1395 // | o---o---| Defined in block. 1396 // ========= Use IntvOut everywhere. 1397 // 1398 selectIntv(IntvOut); 1399 useIntv(BI.FirstInstr, Stop); 1400 return; 1401 } 1402 1403 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1404 DEBUG(dbgs() << ", reload after interference.\n"); 1405 // 1406 // >>>> Interference before def. 1407 // |---o---o---| Live-through, stack-in. 1408 // ____========= Enter IntvOut before first use. 1409 // 1410 selectIntv(IntvOut); 1411 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1412 useIntv(Idx, Stop); 1413 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1414 return; 1415 } 1416 1417 // The interference is overlapping somewhere we wanted to use IntvOut. That 1418 // means we need to create a local interval that can be allocated a 1419 // different register. 1420 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1421 // 1422 // >>>>>>> Interference overlapping uses. 1423 // |---o---o---| Live-through, stack-in. 1424 // ____---====== Create local interval for interference range. 1425 // 1426 selectIntv(IntvOut); 1427 SlotIndex Idx = enterIntvAfter(EnterAfter); 1428 useIntv(Idx, Stop); 1429 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1430 1431 openIntv(); 1432 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1433 useIntv(From, Idx); 1434 } 1435