Home | History | Annotate | Download | only in CodeGen
      1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the SplitAnalysis class as well as mutator functions for
     11 // live range splitting.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "SplitKit.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "llvm/CodeGen/LiveRangeEdit.h"
     20 #include "llvm/CodeGen/MachineDominators.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineLoopInfo.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/VirtRegMap.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Target/TargetInstrInfo.h"
     28 #include "llvm/Target/TargetMachine.h"
     29 
     30 using namespace llvm;
     31 
     32 STATISTIC(NumFinished, "Number of splits finished");
     33 STATISTIC(NumSimple,   "Number of splits that were simple");
     34 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
     35 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
     36 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
     37 
     38 //===----------------------------------------------------------------------===//
     39 //                                 Split Analysis
     40 //===----------------------------------------------------------------------===//
     41 
     42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
     43                              const LiveIntervals &lis,
     44                              const MachineLoopInfo &mli)
     45   : MF(vrm.getMachineFunction()),
     46     VRM(vrm),
     47     LIS(lis),
     48     Loops(mli),
     49     TII(*MF.getTarget().getInstrInfo()),
     50     CurLI(0),
     51     LastSplitPoint(MF.getNumBlockIDs()) {}
     52 
     53 void SplitAnalysis::clear() {
     54   UseSlots.clear();
     55   UseBlocks.clear();
     56   ThroughBlocks.clear();
     57   CurLI = 0;
     58   DidRepairRange = false;
     59 }
     60 
     61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
     62   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
     63   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
     64   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
     65   SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
     66 
     67   // Compute split points on the first call. The pair is independent of the
     68   // current live interval.
     69   if (!LSP.first.isValid()) {
     70     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
     71     if (FirstTerm == MBB->end())
     72       LSP.first = MBBEnd;
     73     else
     74       LSP.first = LIS.getInstructionIndex(FirstTerm);
     75 
     76     // If there is a landing pad successor, also find the call instruction.
     77     if (!LPad)
     78       return LSP.first;
     79     // There may not be a call instruction (?) in which case we ignore LPad.
     80     LSP.second = LSP.first;
     81     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
     82          I != E;) {
     83       --I;
     84       if (I->isCall()) {
     85         LSP.second = LIS.getInstructionIndex(I);
     86         break;
     87       }
     88     }
     89   }
     90 
     91   // If CurLI is live into a landing pad successor, move the last split point
     92   // back to the call that may throw.
     93   if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
     94     return LSP.first;
     95 
     96   // Find the value leaving MBB.
     97   const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
     98   if (!VNI)
     99     return LSP.first;
    100 
    101   // If the value leaving MBB was defined after the call in MBB, it can't
    102   // really be live-in to the landing pad.  This can happen if the landing pad
    103   // has a PHI, and this register is undef on the exceptional edge.
    104   // <rdar://problem/10664933>
    105   if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
    106     return LSP.first;
    107 
    108   // Value is properly live-in to the landing pad.
    109   // Only allow splits before the call.
    110   return LSP.second;
    111 }
    112 
    113 MachineBasicBlock::iterator
    114 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
    115   SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
    116   if (LSP == LIS.getMBBEndIdx(MBB))
    117     return MBB->end();
    118   return LIS.getInstructionFromIndex(LSP);
    119 }
    120 
    121 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
    122 void SplitAnalysis::analyzeUses() {
    123   assert(UseSlots.empty() && "Call clear first");
    124 
    125   // First get all the defs from the interval values. This provides the correct
    126   // slots for early clobbers.
    127   for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
    128        E = CurLI->vni_end(); I != E; ++I)
    129     if (!(*I)->isPHIDef() && !(*I)->isUnused())
    130       UseSlots.push_back((*I)->def);
    131 
    132   // Get use slots form the use-def chain.
    133   const MachineRegisterInfo &MRI = MF.getRegInfo();
    134   for (MachineRegisterInfo::use_nodbg_iterator
    135        I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
    136        ++I)
    137     if (!I.getOperand().isUndef())
    138       UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
    139 
    140   array_pod_sort(UseSlots.begin(), UseSlots.end());
    141 
    142   // Remove duplicates, keeping the smaller slot for each instruction.
    143   // That is what we want for early clobbers.
    144   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
    145                              SlotIndex::isSameInstr),
    146                  UseSlots.end());
    147 
    148   // Compute per-live block info.
    149   if (!calcLiveBlockInfo()) {
    150     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
    151     // I am looking at you, RegisterCoalescer!
    152     DidRepairRange = true;
    153     ++NumRepairs;
    154     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
    155     const_cast<LiveIntervals&>(LIS)
    156       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
    157     UseBlocks.clear();
    158     ThroughBlocks.clear();
    159     bool fixed = calcLiveBlockInfo();
    160     (void)fixed;
    161     assert(fixed && "Couldn't fix broken live interval");
    162   }
    163 
    164   DEBUG(dbgs() << "Analyze counted "
    165                << UseSlots.size() << " instrs in "
    166                << UseBlocks.size() << " blocks, through "
    167                << NumThroughBlocks << " blocks.\n");
    168 }
    169 
    170 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
    171 /// where CurLI is live.
    172 bool SplitAnalysis::calcLiveBlockInfo() {
    173   ThroughBlocks.resize(MF.getNumBlockIDs());
    174   NumThroughBlocks = NumGapBlocks = 0;
    175   if (CurLI->empty())
    176     return true;
    177 
    178   LiveInterval::const_iterator LVI = CurLI->begin();
    179   LiveInterval::const_iterator LVE = CurLI->end();
    180 
    181   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
    182   UseI = UseSlots.begin();
    183   UseE = UseSlots.end();
    184 
    185   // Loop over basic blocks where CurLI is live.
    186   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
    187   for (;;) {
    188     BlockInfo BI;
    189     BI.MBB = MFI;
    190     SlotIndex Start, Stop;
    191     tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
    192 
    193     // If the block contains no uses, the range must be live through. At one
    194     // point, RegisterCoalescer could create dangling ranges that ended
    195     // mid-block.
    196     if (UseI == UseE || *UseI >= Stop) {
    197       ++NumThroughBlocks;
    198       ThroughBlocks.set(BI.MBB->getNumber());
    199       // The range shouldn't end mid-block if there are no uses. This shouldn't
    200       // happen.
    201       if (LVI->end < Stop)
    202         return false;
    203     } else {
    204       // This block has uses. Find the first and last uses in the block.
    205       BI.FirstInstr = *UseI;
    206       assert(BI.FirstInstr >= Start);
    207       do ++UseI;
    208       while (UseI != UseE && *UseI < Stop);
    209       BI.LastInstr = UseI[-1];
    210       assert(BI.LastInstr < Stop);
    211 
    212       // LVI is the first live segment overlapping MBB.
    213       BI.LiveIn = LVI->start <= Start;
    214 
    215       // When not live in, the first use should be a def.
    216       if (!BI.LiveIn) {
    217         assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
    218         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
    219         BI.FirstDef = BI.FirstInstr;
    220       }
    221 
    222       // Look for gaps in the live range.
    223       BI.LiveOut = true;
    224       while (LVI->end < Stop) {
    225         SlotIndex LastStop = LVI->end;
    226         if (++LVI == LVE || LVI->start >= Stop) {
    227           BI.LiveOut = false;
    228           BI.LastInstr = LastStop;
    229           break;
    230         }
    231 
    232         if (LastStop < LVI->start) {
    233           // There is a gap in the live range. Create duplicate entries for the
    234           // live-in snippet and the live-out snippet.
    235           ++NumGapBlocks;
    236 
    237           // Push the Live-in part.
    238           BI.LiveOut = false;
    239           UseBlocks.push_back(BI);
    240           UseBlocks.back().LastInstr = LastStop;
    241 
    242           // Set up BI for the live-out part.
    243           BI.LiveIn = false;
    244           BI.LiveOut = true;
    245           BI.FirstInstr = BI.FirstDef = LVI->start;
    246         }
    247 
    248         // A LiveRange that starts in the middle of the block must be a def.
    249         assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
    250         if (!BI.FirstDef)
    251           BI.FirstDef = LVI->start;
    252       }
    253 
    254       UseBlocks.push_back(BI);
    255 
    256       // LVI is now at LVE or LVI->end >= Stop.
    257       if (LVI == LVE)
    258         break;
    259     }
    260 
    261     // Live segment ends exactly at Stop. Move to the next segment.
    262     if (LVI->end == Stop && ++LVI == LVE)
    263       break;
    264 
    265     // Pick the next basic block.
    266     if (LVI->start < Stop)
    267       ++MFI;
    268     else
    269       MFI = LIS.getMBBFromIndex(LVI->start);
    270   }
    271 
    272   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
    273   return true;
    274 }
    275 
    276 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
    277   if (cli->empty())
    278     return 0;
    279   LiveInterval *li = const_cast<LiveInterval*>(cli);
    280   LiveInterval::iterator LVI = li->begin();
    281   LiveInterval::iterator LVE = li->end();
    282   unsigned Count = 0;
    283 
    284   // Loop over basic blocks where li is live.
    285   MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
    286   SlotIndex Stop = LIS.getMBBEndIdx(MFI);
    287   for (;;) {
    288     ++Count;
    289     LVI = li->advanceTo(LVI, Stop);
    290     if (LVI == LVE)
    291       return Count;
    292     do {
    293       ++MFI;
    294       Stop = LIS.getMBBEndIdx(MFI);
    295     } while (Stop <= LVI->start);
    296   }
    297 }
    298 
    299 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
    300   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
    301   const LiveInterval &Orig = LIS.getInterval(OrigReg);
    302   assert(!Orig.empty() && "Splitting empty interval?");
    303   LiveInterval::const_iterator I = Orig.find(Idx);
    304 
    305   // Range containing Idx should begin at Idx.
    306   if (I != Orig.end() && I->start <= Idx)
    307     return I->start == Idx;
    308 
    309   // Range does not contain Idx, previous must end at Idx.
    310   return I != Orig.begin() && (--I)->end == Idx;
    311 }
    312 
    313 void SplitAnalysis::analyze(const LiveInterval *li) {
    314   clear();
    315   CurLI = li;
    316   analyzeUses();
    317 }
    318 
    319 
    320 //===----------------------------------------------------------------------===//
    321 //                               Split Editor
    322 //===----------------------------------------------------------------------===//
    323 
    324 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
    325 SplitEditor::SplitEditor(SplitAnalysis &sa,
    326                          LiveIntervals &lis,
    327                          VirtRegMap &vrm,
    328                          MachineDominatorTree &mdt,
    329                          MachineBlockFrequencyInfo &mbfi)
    330   : SA(sa), LIS(lis), VRM(vrm),
    331     MRI(vrm.getMachineFunction().getRegInfo()),
    332     MDT(mdt),
    333     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
    334     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
    335     MBFI(mbfi),
    336     Edit(0),
    337     OpenIdx(0),
    338     SpillMode(SM_Partition),
    339     RegAssign(Allocator)
    340 {}
    341 
    342 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
    343   Edit = &LRE;
    344   SpillMode = SM;
    345   OpenIdx = 0;
    346   RegAssign.clear();
    347   Values.clear();
    348 
    349   // Reset the LiveRangeCalc instances needed for this spill mode.
    350   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
    351                   &LIS.getVNInfoAllocator());
    352   if (SpillMode)
    353     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
    354                     &LIS.getVNInfoAllocator());
    355 
    356   // We don't need an AliasAnalysis since we will only be performing
    357   // cheap-as-a-copy remats anyway.
    358   Edit->anyRematerializable(0);
    359 }
    360 
    361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    362 void SplitEditor::dump() const {
    363   if (RegAssign.empty()) {
    364     dbgs() << " empty\n";
    365     return;
    366   }
    367 
    368   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
    369     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
    370   dbgs() << '\n';
    371 }
    372 #endif
    373 
    374 VNInfo *SplitEditor::defValue(unsigned RegIdx,
    375                               const VNInfo *ParentVNI,
    376                               SlotIndex Idx) {
    377   assert(ParentVNI && "Mapping  NULL value");
    378   assert(Idx.isValid() && "Invalid SlotIndex");
    379   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
    380   LiveInterval *LI = Edit->get(RegIdx);
    381 
    382   // Create a new value.
    383   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
    384 
    385   // Use insert for lookup, so we can add missing values with a second lookup.
    386   std::pair<ValueMap::iterator, bool> InsP =
    387     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
    388                                  ValueForcePair(VNI, false)));
    389 
    390   // This was the first time (RegIdx, ParentVNI) was mapped.
    391   // Keep it as a simple def without any liveness.
    392   if (InsP.second)
    393     return VNI;
    394 
    395   // If the previous value was a simple mapping, add liveness for it now.
    396   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
    397     SlotIndex Def = OldVNI->def;
    398     LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
    399     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
    400     InsP.first->second = ValueForcePair();
    401   }
    402 
    403   // This is a complex mapping, add liveness for VNI
    404   SlotIndex Def = VNI->def;
    405   LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
    406 
    407   return VNI;
    408 }
    409 
    410 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
    411   assert(ParentVNI && "Mapping  NULL value");
    412   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
    413   VNInfo *VNI = VFP.getPointer();
    414 
    415   // ParentVNI was either unmapped or already complex mapped. Either way, just
    416   // set the force bit.
    417   if (!VNI) {
    418     VFP.setInt(true);
    419     return;
    420   }
    421 
    422   // This was previously a single mapping. Make sure the old def is represented
    423   // by a trivial live range.
    424   SlotIndex Def = VNI->def;
    425   Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
    426   // Mark as complex mapped, forced.
    427   VFP = ValueForcePair(0, true);
    428 }
    429 
    430 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
    431                                    VNInfo *ParentVNI,
    432                                    SlotIndex UseIdx,
    433                                    MachineBasicBlock &MBB,
    434                                    MachineBasicBlock::iterator I) {
    435   MachineInstr *CopyMI = 0;
    436   SlotIndex Def;
    437   LiveInterval *LI = Edit->get(RegIdx);
    438 
    439   // We may be trying to avoid interference that ends at a deleted instruction,
    440   // so always begin RegIdx 0 early and all others late.
    441   bool Late = RegIdx != 0;
    442 
    443   // Attempt cheap-as-a-copy rematerialization.
    444   LiveRangeEdit::Remat RM(ParentVNI);
    445   if (Edit->canRematerializeAt(RM, UseIdx, true)) {
    446     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
    447     ++NumRemats;
    448   } else {
    449     // Can't remat, just insert a copy from parent.
    450     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
    451                .addReg(Edit->getReg());
    452     Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
    453             .getRegSlot();
    454     ++NumCopies;
    455   }
    456 
    457   // Define the value in Reg.
    458   return defValue(RegIdx, ParentVNI, Def);
    459 }
    460 
    461 /// Create a new virtual register and live interval.
    462 unsigned SplitEditor::openIntv() {
    463   // Create the complement as index 0.
    464   if (Edit->empty())
    465     Edit->create();
    466 
    467   // Create the open interval.
    468   OpenIdx = Edit->size();
    469   Edit->create();
    470   return OpenIdx;
    471 }
    472 
    473 void SplitEditor::selectIntv(unsigned Idx) {
    474   assert(Idx != 0 && "Cannot select the complement interval");
    475   assert(Idx < Edit->size() && "Can only select previously opened interval");
    476   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
    477   OpenIdx = Idx;
    478 }
    479 
    480 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
    481   assert(OpenIdx && "openIntv not called before enterIntvBefore");
    482   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
    483   Idx = Idx.getBaseIndex();
    484   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    485   if (!ParentVNI) {
    486     DEBUG(dbgs() << ": not live\n");
    487     return Idx;
    488   }
    489   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    490   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    491   assert(MI && "enterIntvBefore called with invalid index");
    492 
    493   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
    494   return VNI->def;
    495 }
    496 
    497 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
    498   assert(OpenIdx && "openIntv not called before enterIntvAfter");
    499   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
    500   Idx = Idx.getBoundaryIndex();
    501   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    502   if (!ParentVNI) {
    503     DEBUG(dbgs() << ": not live\n");
    504     return Idx;
    505   }
    506   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    507   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    508   assert(MI && "enterIntvAfter called with invalid index");
    509 
    510   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
    511                               llvm::next(MachineBasicBlock::iterator(MI)));
    512   return VNI->def;
    513 }
    514 
    515 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
    516   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
    517   SlotIndex End = LIS.getMBBEndIdx(&MBB);
    518   SlotIndex Last = End.getPrevSlot();
    519   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
    520   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
    521   if (!ParentVNI) {
    522     DEBUG(dbgs() << ": not live\n");
    523     return End;
    524   }
    525   DEBUG(dbgs() << ": valno " << ParentVNI->id);
    526   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
    527                               SA.getLastSplitPointIter(&MBB));
    528   RegAssign.insert(VNI->def, End, OpenIdx);
    529   DEBUG(dump());
    530   return VNI->def;
    531 }
    532 
    533 /// useIntv - indicate that all instructions in MBB should use OpenLI.
    534 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
    535   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
    536 }
    537 
    538 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
    539   assert(OpenIdx && "openIntv not called before useIntv");
    540   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
    541   RegAssign.insert(Start, End, OpenIdx);
    542   DEBUG(dump());
    543 }
    544 
    545 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
    546   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
    547   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
    548 
    549   // The interval must be live beyond the instruction at Idx.
    550   SlotIndex Boundary = Idx.getBoundaryIndex();
    551   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
    552   if (!ParentVNI) {
    553     DEBUG(dbgs() << ": not live\n");
    554     return Boundary.getNextSlot();
    555   }
    556   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    557   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
    558   assert(MI && "No instruction at index");
    559 
    560   // In spill mode, make live ranges as short as possible by inserting the copy
    561   // before MI.  This is only possible if that instruction doesn't redefine the
    562   // value.  The inserted COPY is not a kill, and we don't need to recompute
    563   // the source live range.  The spiller also won't try to hoist this copy.
    564   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
    565       MI->readsVirtualRegister(Edit->getReg())) {
    566     forceRecompute(0, ParentVNI);
    567     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
    568     return Idx;
    569   }
    570 
    571   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
    572                               llvm::next(MachineBasicBlock::iterator(MI)));
    573   return VNI->def;
    574 }
    575 
    576 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
    577   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
    578   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
    579 
    580   // The interval must be live into the instruction at Idx.
    581   Idx = Idx.getBaseIndex();
    582   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    583   if (!ParentVNI) {
    584     DEBUG(dbgs() << ": not live\n");
    585     return Idx.getNextSlot();
    586   }
    587   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    588 
    589   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    590   assert(MI && "No instruction at index");
    591   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
    592   return VNI->def;
    593 }
    594 
    595 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
    596   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
    597   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
    598   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
    599 
    600   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
    601   if (!ParentVNI) {
    602     DEBUG(dbgs() << ": not live\n");
    603     return Start;
    604   }
    605 
    606   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
    607                               MBB.SkipPHIsAndLabels(MBB.begin()));
    608   RegAssign.insert(Start, VNI->def, OpenIdx);
    609   DEBUG(dump());
    610   return VNI->def;
    611 }
    612 
    613 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
    614   assert(OpenIdx && "openIntv not called before overlapIntv");
    615   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
    616   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
    617          "Parent changes value in extended range");
    618   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
    619          "Range cannot span basic blocks");
    620 
    621   // The complement interval will be extended as needed by LRCalc.extend().
    622   if (ParentVNI)
    623     forceRecompute(0, ParentVNI);
    624   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
    625   RegAssign.insert(Start, End, OpenIdx);
    626   DEBUG(dump());
    627 }
    628 
    629 //===----------------------------------------------------------------------===//
    630 //                                  Spill modes
    631 //===----------------------------------------------------------------------===//
    632 
    633 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
    634   LiveInterval *LI = Edit->get(0);
    635   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
    636   RegAssignMap::iterator AssignI;
    637   AssignI.setMap(RegAssign);
    638 
    639   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
    640     VNInfo *VNI = Copies[i];
    641     SlotIndex Def = VNI->def;
    642     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
    643     assert(MI && "No instruction for back-copy");
    644 
    645     MachineBasicBlock *MBB = MI->getParent();
    646     MachineBasicBlock::iterator MBBI(MI);
    647     bool AtBegin;
    648     do AtBegin = MBBI == MBB->begin();
    649     while (!AtBegin && (--MBBI)->isDebugValue());
    650 
    651     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
    652     LI->removeValNo(VNI);
    653     LIS.RemoveMachineInstrFromMaps(MI);
    654     MI->eraseFromParent();
    655 
    656     // Adjust RegAssign if a register assignment is killed at VNI->def.  We
    657     // want to avoid calculating the live range of the source register if
    658     // possible.
    659     AssignI.find(Def.getPrevSlot());
    660     if (!AssignI.valid() || AssignI.start() >= Def)
    661       continue;
    662     // If MI doesn't kill the assigned register, just leave it.
    663     if (AssignI.stop() != Def)
    664       continue;
    665     unsigned RegIdx = AssignI.value();
    666     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
    667       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
    668       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
    669     } else {
    670       SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
    671       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
    672       AssignI.setStop(Kill);
    673     }
    674   }
    675 }
    676 
    677 MachineBasicBlock*
    678 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
    679                                   MachineBasicBlock *DefMBB) {
    680   if (MBB == DefMBB)
    681     return MBB;
    682   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
    683 
    684   const MachineLoopInfo &Loops = SA.Loops;
    685   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
    686   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
    687 
    688   // Best candidate so far.
    689   MachineBasicBlock *BestMBB = MBB;
    690   unsigned BestDepth = UINT_MAX;
    691 
    692   for (;;) {
    693     const MachineLoop *Loop = Loops.getLoopFor(MBB);
    694 
    695     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
    696     // higher frequency by definition.
    697     if (!Loop) {
    698       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    699                    << MBB->getNumber() << " at depth 0\n");
    700       return MBB;
    701     }
    702 
    703     // We'll never be able to exit the DefLoop.
    704     if (Loop == DefLoop) {
    705       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    706                    << MBB->getNumber() << " in the same loop\n");
    707       return MBB;
    708     }
    709 
    710     // Least busy dominator seen so far.
    711     unsigned Depth = Loop->getLoopDepth();
    712     if (Depth < BestDepth) {
    713       BestMBB = MBB;
    714       BestDepth = Depth;
    715       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    716                    << MBB->getNumber() << " at depth " << Depth << '\n');
    717     }
    718 
    719     // Leave loop by going to the immediate dominator of the loop header.
    720     // This is a bigger stride than simply walking up the dominator tree.
    721     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
    722 
    723     // Too far up the dominator tree?
    724     if (!IDom || !MDT.dominates(DefDomNode, IDom))
    725       return BestMBB;
    726 
    727     MBB = IDom->getBlock();
    728   }
    729 }
    730 
    731 void SplitEditor::hoistCopiesForSize() {
    732   // Get the complement interval, always RegIdx 0.
    733   LiveInterval *LI = Edit->get(0);
    734   LiveInterval *Parent = &Edit->getParent();
    735 
    736   // Track the nearest common dominator for all back-copies for each ParentVNI,
    737   // indexed by ParentVNI->id.
    738   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
    739   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
    740 
    741   // Find the nearest common dominator for parent values with multiple
    742   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
    743   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
    744        VI != VE; ++VI) {
    745     VNInfo *VNI = *VI;
    746     if (VNI->isUnused())
    747       continue;
    748     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    749     assert(ParentVNI && "Parent not live at complement def");
    750 
    751     // Don't hoist remats.  The complement is probably going to disappear
    752     // completely anyway.
    753     if (Edit->didRematerialize(ParentVNI))
    754       continue;
    755 
    756     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
    757     DomPair &Dom = NearestDom[ParentVNI->id];
    758 
    759     // Keep directly defined parent values.  This is either a PHI or an
    760     // instruction in the complement range.  All other copies of ParentVNI
    761     // should be eliminated.
    762     if (VNI->def == ParentVNI->def) {
    763       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
    764       Dom = DomPair(ValMBB, VNI->def);
    765       continue;
    766     }
    767     // Skip the singly mapped values.  There is nothing to gain from hoisting a
    768     // single back-copy.
    769     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
    770       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
    771       continue;
    772     }
    773 
    774     if (!Dom.first) {
    775       // First time we see ParentVNI.  VNI dominates itself.
    776       Dom = DomPair(ValMBB, VNI->def);
    777     } else if (Dom.first == ValMBB) {
    778       // Two defs in the same block.  Pick the earlier def.
    779       if (!Dom.second.isValid() || VNI->def < Dom.second)
    780         Dom.second = VNI->def;
    781     } else {
    782       // Different basic blocks. Check if one dominates.
    783       MachineBasicBlock *Near =
    784         MDT.findNearestCommonDominator(Dom.first, ValMBB);
    785       if (Near == ValMBB)
    786         // Def ValMBB dominates.
    787         Dom = DomPair(ValMBB, VNI->def);
    788       else if (Near != Dom.first)
    789         // None dominate. Hoist to common dominator, need new def.
    790         Dom = DomPair(Near, SlotIndex());
    791     }
    792 
    793     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
    794                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
    795                  << " hoist to BB#" << Dom.first->getNumber() << ' '
    796                  << Dom.second << '\n');
    797   }
    798 
    799   // Insert the hoisted copies.
    800   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
    801     DomPair &Dom = NearestDom[i];
    802     if (!Dom.first || Dom.second.isValid())
    803       continue;
    804     // This value needs a hoisted copy inserted at the end of Dom.first.
    805     VNInfo *ParentVNI = Parent->getValNumInfo(i);
    806     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
    807     // Get a less loopy dominator than Dom.first.
    808     Dom.first = findShallowDominator(Dom.first, DefMBB);
    809     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
    810     Dom.second =
    811       defFromParent(0, ParentVNI, Last, *Dom.first,
    812                     SA.getLastSplitPointIter(Dom.first))->def;
    813   }
    814 
    815   // Remove redundant back-copies that are now known to be dominated by another
    816   // def with the same value.
    817   SmallVector<VNInfo*, 8> BackCopies;
    818   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
    819        VI != VE; ++VI) {
    820     VNInfo *VNI = *VI;
    821     if (VNI->isUnused())
    822       continue;
    823     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    824     const DomPair &Dom = NearestDom[ParentVNI->id];
    825     if (!Dom.first || Dom.second == VNI->def)
    826       continue;
    827     BackCopies.push_back(VNI);
    828     forceRecompute(0, ParentVNI);
    829   }
    830   removeBackCopies(BackCopies);
    831 }
    832 
    833 
    834 /// transferValues - Transfer all possible values to the new live ranges.
    835 /// Values that were rematerialized are left alone, they need LRCalc.extend().
    836 bool SplitEditor::transferValues() {
    837   bool Skipped = false;
    838   RegAssignMap::const_iterator AssignI = RegAssign.begin();
    839   for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
    840          ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
    841     DEBUG(dbgs() << "  blit " << *ParentI << ':');
    842     VNInfo *ParentVNI = ParentI->valno;
    843     // RegAssign has holes where RegIdx 0 should be used.
    844     SlotIndex Start = ParentI->start;
    845     AssignI.advanceTo(Start);
    846     do {
    847       unsigned RegIdx;
    848       SlotIndex End = ParentI->end;
    849       if (!AssignI.valid()) {
    850         RegIdx = 0;
    851       } else if (AssignI.start() <= Start) {
    852         RegIdx = AssignI.value();
    853         if (AssignI.stop() < End) {
    854           End = AssignI.stop();
    855           ++AssignI;
    856         }
    857       } else {
    858         RegIdx = 0;
    859         End = std::min(End, AssignI.start());
    860       }
    861 
    862       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
    863       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
    864       LiveInterval *LI = Edit->get(RegIdx);
    865 
    866       // Check for a simply defined value that can be blitted directly.
    867       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
    868       if (VNInfo *VNI = VFP.getPointer()) {
    869         DEBUG(dbgs() << ':' << VNI->id);
    870         LI->addRange(LiveRange(Start, End, VNI));
    871         Start = End;
    872         continue;
    873       }
    874 
    875       // Skip values with forced recomputation.
    876       if (VFP.getInt()) {
    877         DEBUG(dbgs() << "(recalc)");
    878         Skipped = true;
    879         Start = End;
    880         continue;
    881       }
    882 
    883       LiveRangeCalc &LRC = getLRCalc(RegIdx);
    884 
    885       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
    886       // so the live range is accurate. Add live-in blocks in [Start;End) to the
    887       // LiveInBlocks.
    888       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
    889       SlotIndex BlockStart, BlockEnd;
    890       tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
    891 
    892       // The first block may be live-in, or it may have its own def.
    893       if (Start != BlockStart) {
    894         VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
    895         assert(VNI && "Missing def for complex mapped value");
    896         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
    897         // MBB has its own def. Is it also live-out?
    898         if (BlockEnd <= End)
    899           LRC.setLiveOutValue(MBB, VNI);
    900 
    901         // Skip to the next block for live-in.
    902         ++MBB;
    903         BlockStart = BlockEnd;
    904       }
    905 
    906       // Handle the live-in blocks covered by [Start;End).
    907       assert(Start <= BlockStart && "Expected live-in block");
    908       while (BlockStart < End) {
    909         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
    910         BlockEnd = LIS.getMBBEndIdx(MBB);
    911         if (BlockStart == ParentVNI->def) {
    912           // This block has the def of a parent PHI, so it isn't live-in.
    913           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
    914           VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
    915           assert(VNI && "Missing def for complex mapped parent PHI");
    916           if (End >= BlockEnd)
    917             LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
    918         } else {
    919           // This block needs a live-in value.  The last block covered may not
    920           // be live-out.
    921           if (End < BlockEnd)
    922             LRC.addLiveInBlock(LI, MDT[MBB], End);
    923           else {
    924             // Live-through, and we don't know the value.
    925             LRC.addLiveInBlock(LI, MDT[MBB]);
    926             LRC.setLiveOutValue(MBB, 0);
    927           }
    928         }
    929         BlockStart = BlockEnd;
    930         ++MBB;
    931       }
    932       Start = End;
    933     } while (Start != ParentI->end);
    934     DEBUG(dbgs() << '\n');
    935   }
    936 
    937   LRCalc[0].calculateValues();
    938   if (SpillMode)
    939     LRCalc[1].calculateValues();
    940 
    941   return Skipped;
    942 }
    943 
    944 void SplitEditor::extendPHIKillRanges() {
    945     // Extend live ranges to be live-out for successor PHI values.
    946   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
    947        E = Edit->getParent().vni_end(); I != E; ++I) {
    948     const VNInfo *PHIVNI = *I;
    949     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
    950       continue;
    951     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
    952     LiveInterval *LI = Edit->get(RegIdx);
    953     LiveRangeCalc &LRC = getLRCalc(RegIdx);
    954     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
    955     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
    956          PE = MBB->pred_end(); PI != PE; ++PI) {
    957       SlotIndex End = LIS.getMBBEndIdx(*PI);
    958       SlotIndex LastUse = End.getPrevSlot();
    959       // The predecessor may not have a live-out value. That is OK, like an
    960       // undef PHI operand.
    961       if (Edit->getParent().liveAt(LastUse)) {
    962         assert(RegAssign.lookup(LastUse) == RegIdx &&
    963                "Different register assignment in phi predecessor");
    964         LRC.extend(LI, End);
    965       }
    966     }
    967   }
    968 }
    969 
    970 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
    971 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
    972   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
    973        RE = MRI.reg_end(); RI != RE;) {
    974     MachineOperand &MO = RI.getOperand();
    975     MachineInstr *MI = MO.getParent();
    976     ++RI;
    977     // LiveDebugVariables should have handled all DBG_VALUE instructions.
    978     if (MI->isDebugValue()) {
    979       DEBUG(dbgs() << "Zapping " << *MI);
    980       MO.setReg(0);
    981       continue;
    982     }
    983 
    984     // <undef> operands don't really read the register, so it doesn't matter
    985     // which register we choose.  When the use operand is tied to a def, we must
    986     // use the same register as the def, so just do that always.
    987     SlotIndex Idx = LIS.getInstructionIndex(MI);
    988     if (MO.isDef() || MO.isUndef())
    989       Idx = Idx.getRegSlot(MO.isEarlyClobber());
    990 
    991     // Rewrite to the mapped register at Idx.
    992     unsigned RegIdx = RegAssign.lookup(Idx);
    993     LiveInterval *LI = Edit->get(RegIdx);
    994     MO.setReg(LI->reg);
    995     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
    996                  << Idx << ':' << RegIdx << '\t' << *MI);
    997 
    998     // Extend liveness to Idx if the instruction reads reg.
    999     if (!ExtendRanges || MO.isUndef())
   1000       continue;
   1001 
   1002     // Skip instructions that don't read Reg.
   1003     if (MO.isDef()) {
   1004       if (!MO.getSubReg() && !MO.isEarlyClobber())
   1005         continue;
   1006       // We may wan't to extend a live range for a partial redef, or for a use
   1007       // tied to an early clobber.
   1008       Idx = Idx.getPrevSlot();
   1009       if (!Edit->getParent().liveAt(Idx))
   1010         continue;
   1011     } else
   1012       Idx = Idx.getRegSlot(true);
   1013 
   1014     getLRCalc(RegIdx).extend(LI, Idx.getNextSlot());
   1015   }
   1016 }
   1017 
   1018 void SplitEditor::deleteRematVictims() {
   1019   SmallVector<MachineInstr*, 8> Dead;
   1020   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
   1021     LiveInterval *LI = *I;
   1022     for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
   1023            LII != LIE; ++LII) {
   1024       // Dead defs end at the dead slot.
   1025       if (LII->end != LII->valno->def.getDeadSlot())
   1026         continue;
   1027       MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
   1028       assert(MI && "Missing instruction for dead def");
   1029       MI->addRegisterDead(LI->reg, &TRI);
   1030 
   1031       if (!MI->allDefsAreDead())
   1032         continue;
   1033 
   1034       DEBUG(dbgs() << "All defs dead: " << *MI);
   1035       Dead.push_back(MI);
   1036     }
   1037   }
   1038 
   1039   if (Dead.empty())
   1040     return;
   1041 
   1042   Edit->eliminateDeadDefs(Dead);
   1043 }
   1044 
   1045 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
   1046   ++NumFinished;
   1047 
   1048   // At this point, the live intervals in Edit contain VNInfos corresponding to
   1049   // the inserted copies.
   1050 
   1051   // Add the original defs from the parent interval.
   1052   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
   1053          E = Edit->getParent().vni_end(); I != E; ++I) {
   1054     const VNInfo *ParentVNI = *I;
   1055     if (ParentVNI->isUnused())
   1056       continue;
   1057     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
   1058     defValue(RegIdx, ParentVNI, ParentVNI->def);
   1059 
   1060     // Force rematted values to be recomputed everywhere.
   1061     // The new live ranges may be truncated.
   1062     if (Edit->didRematerialize(ParentVNI))
   1063       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
   1064         forceRecompute(i, ParentVNI);
   1065   }
   1066 
   1067   // Hoist back-copies to the complement interval when in spill mode.
   1068   switch (SpillMode) {
   1069   case SM_Partition:
   1070     // Leave all back-copies as is.
   1071     break;
   1072   case SM_Size:
   1073     hoistCopiesForSize();
   1074     break;
   1075   case SM_Speed:
   1076     llvm_unreachable("Spill mode 'speed' not implemented yet");
   1077   }
   1078 
   1079   // Transfer the simply mapped values, check if any are skipped.
   1080   bool Skipped = transferValues();
   1081   if (Skipped)
   1082     extendPHIKillRanges();
   1083   else
   1084     ++NumSimple;
   1085 
   1086   // Rewrite virtual registers, possibly extending ranges.
   1087   rewriteAssigned(Skipped);
   1088 
   1089   // Delete defs that were rematted everywhere.
   1090   if (Skipped)
   1091     deleteRematVictims();
   1092 
   1093   // Get rid of unused values and set phi-kill flags.
   1094   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
   1095     (*I)->RenumberValues(LIS);
   1096 
   1097   // Provide a reverse mapping from original indices to Edit ranges.
   1098   if (LRMap) {
   1099     LRMap->clear();
   1100     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
   1101       LRMap->push_back(i);
   1102   }
   1103 
   1104   // Now check if any registers were separated into multiple components.
   1105   ConnectedVNInfoEqClasses ConEQ(LIS);
   1106   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
   1107     // Don't use iterators, they are invalidated by create() below.
   1108     LiveInterval *li = Edit->get(i);
   1109     unsigned NumComp = ConEQ.Classify(li);
   1110     if (NumComp <= 1)
   1111       continue;
   1112     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
   1113     SmallVector<LiveInterval*, 8> dups;
   1114     dups.push_back(li);
   1115     for (unsigned j = 1; j != NumComp; ++j)
   1116       dups.push_back(&Edit->create());
   1117     ConEQ.Distribute(&dups[0], MRI);
   1118     // The new intervals all map back to i.
   1119     if (LRMap)
   1120       LRMap->resize(Edit->size(), i);
   1121   }
   1122 
   1123   // Calculate spill weight and allocation hints for new intervals.
   1124   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
   1125 
   1126   assert(!LRMap || LRMap->size() == Edit->size());
   1127 }
   1128 
   1129 
   1130 //===----------------------------------------------------------------------===//
   1131 //                            Single Block Splitting
   1132 //===----------------------------------------------------------------------===//
   1133 
   1134 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
   1135                                            bool SingleInstrs) const {
   1136   // Always split for multiple instructions.
   1137   if (!BI.isOneInstr())
   1138     return true;
   1139   // Don't split for single instructions unless explicitly requested.
   1140   if (!SingleInstrs)
   1141     return false;
   1142   // Splitting a live-through range always makes progress.
   1143   if (BI.LiveIn && BI.LiveOut)
   1144     return true;
   1145   // No point in isolating a copy. It has no register class constraints.
   1146   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
   1147     return false;
   1148   // Finally, don't isolate an end point that was created by earlier splits.
   1149   return isOriginalEndpoint(BI.FirstInstr);
   1150 }
   1151 
   1152 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
   1153   openIntv();
   1154   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
   1155   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
   1156     LastSplitPoint));
   1157   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
   1158     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
   1159   } else {
   1160       // The last use is after the last valid split point.
   1161     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
   1162     useIntv(SegStart, SegStop);
   1163     overlapIntv(SegStop, BI.LastInstr);
   1164   }
   1165 }
   1166 
   1167 
   1168 //===----------------------------------------------------------------------===//
   1169 //                    Global Live Range Splitting Support
   1170 //===----------------------------------------------------------------------===//
   1171 
   1172 // These methods support a method of global live range splitting that uses a
   1173 // global algorithm to decide intervals for CFG edges. They will insert split
   1174 // points and color intervals in basic blocks while avoiding interference.
   1175 //
   1176 // Note that splitSingleBlock is also useful for blocks where both CFG edges
   1177 // are on the stack.
   1178 
   1179 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
   1180                                         unsigned IntvIn, SlotIndex LeaveBefore,
   1181                                         unsigned IntvOut, SlotIndex EnterAfter){
   1182   SlotIndex Start, Stop;
   1183   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
   1184 
   1185   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
   1186                << ") intf " << LeaveBefore << '-' << EnterAfter
   1187                << ", live-through " << IntvIn << " -> " << IntvOut);
   1188 
   1189   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
   1190 
   1191   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
   1192   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
   1193   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
   1194 
   1195   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
   1196 
   1197   if (!IntvOut) {
   1198     DEBUG(dbgs() << ", spill on entry.\n");
   1199     //
   1200     //        <<<<<<<<<    Possible LeaveBefore interference.
   1201     //    |-----------|    Live through.
   1202     //    -____________    Spill on entry.
   1203     //
   1204     selectIntv(IntvIn);
   1205     SlotIndex Idx = leaveIntvAtTop(*MBB);
   1206     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1207     (void)Idx;
   1208     return;
   1209   }
   1210 
   1211   if (!IntvIn) {
   1212     DEBUG(dbgs() << ", reload on exit.\n");
   1213     //
   1214     //    >>>>>>>          Possible EnterAfter interference.
   1215     //    |-----------|    Live through.
   1216     //    ___________--    Reload on exit.
   1217     //
   1218     selectIntv(IntvOut);
   1219     SlotIndex Idx = enterIntvAtEnd(*MBB);
   1220     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1221     (void)Idx;
   1222     return;
   1223   }
   1224 
   1225   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
   1226     DEBUG(dbgs() << ", straight through.\n");
   1227     //
   1228     //    |-----------|    Live through.
   1229     //    -------------    Straight through, same intv, no interference.
   1230     //
   1231     selectIntv(IntvOut);
   1232     useIntv(Start, Stop);
   1233     return;
   1234   }
   1235 
   1236   // We cannot legally insert splits after LSP.
   1237   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
   1238   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
   1239 
   1240   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
   1241                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
   1242     DEBUG(dbgs() << ", switch avoiding interference.\n");
   1243     //
   1244     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
   1245     //    |-----------|    Live through.
   1246     //    ------=======    Switch intervals between interference.
   1247     //
   1248     selectIntv(IntvOut);
   1249     SlotIndex Idx;
   1250     if (LeaveBefore && LeaveBefore < LSP) {
   1251       Idx = enterIntvBefore(LeaveBefore);
   1252       useIntv(Idx, Stop);
   1253     } else {
   1254       Idx = enterIntvAtEnd(*MBB);
   1255     }
   1256     selectIntv(IntvIn);
   1257     useIntv(Start, Idx);
   1258     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1259     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1260     return;
   1261   }
   1262 
   1263   DEBUG(dbgs() << ", create local intv for interference.\n");
   1264   //
   1265   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
   1266   //    |-----------|    Live through.
   1267   //    ==---------==    Switch intervals before/after interference.
   1268   //
   1269   assert(LeaveBefore <= EnterAfter && "Missed case");
   1270 
   1271   selectIntv(IntvOut);
   1272   SlotIndex Idx = enterIntvAfter(EnterAfter);
   1273   useIntv(Idx, Stop);
   1274   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1275 
   1276   selectIntv(IntvIn);
   1277   Idx = leaveIntvBefore(LeaveBefore);
   1278   useIntv(Start, Idx);
   1279   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1280 }
   1281 
   1282 
   1283 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
   1284                                   unsigned IntvIn, SlotIndex LeaveBefore) {
   1285   SlotIndex Start, Stop;
   1286   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
   1287 
   1288   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
   1289                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
   1290                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
   1291                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
   1292 
   1293   assert(IntvIn && "Must have register in");
   1294   assert(BI.LiveIn && "Must be live-in");
   1295   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
   1296 
   1297   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
   1298     DEBUG(dbgs() << " before interference.\n");
   1299     //
   1300     //               <<<    Interference after kill.
   1301     //     |---o---x   |    Killed in block.
   1302     //     =========        Use IntvIn everywhere.
   1303     //
   1304     selectIntv(IntvIn);
   1305     useIntv(Start, BI.LastInstr);
   1306     return;
   1307   }
   1308 
   1309   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
   1310 
   1311   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
   1312     //
   1313     //               <<<    Possible interference after last use.
   1314     //     |---o---o---|    Live-out on stack.
   1315     //     =========____    Leave IntvIn after last use.
   1316     //
   1317     //                 <    Interference after last use.
   1318     //     |---o---o--o|    Live-out on stack, late last use.
   1319     //     ============     Copy to stack after LSP, overlap IntvIn.
   1320     //            \_____    Stack interval is live-out.
   1321     //
   1322     if (BI.LastInstr < LSP) {
   1323       DEBUG(dbgs() << ", spill after last use before interference.\n");
   1324       selectIntv(IntvIn);
   1325       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
   1326       useIntv(Start, Idx);
   1327       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1328     } else {
   1329       DEBUG(dbgs() << ", spill before last split point.\n");
   1330       selectIntv(IntvIn);
   1331       SlotIndex Idx = leaveIntvBefore(LSP);
   1332       overlapIntv(Idx, BI.LastInstr);
   1333       useIntv(Start, Idx);
   1334       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1335     }
   1336     return;
   1337   }
   1338 
   1339   // The interference is overlapping somewhere we wanted to use IntvIn. That
   1340   // means we need to create a local interval that can be allocated a
   1341   // different register.
   1342   unsigned LocalIntv = openIntv();
   1343   (void)LocalIntv;
   1344   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
   1345 
   1346   if (!BI.LiveOut || BI.LastInstr < LSP) {
   1347     //
   1348     //           <<<<<<<    Interference overlapping uses.
   1349     //     |---o---o---|    Live-out on stack.
   1350     //     =====----____    Leave IntvIn before interference, then spill.
   1351     //
   1352     SlotIndex To = leaveIntvAfter(BI.LastInstr);
   1353     SlotIndex From = enterIntvBefore(LeaveBefore);
   1354     useIntv(From, To);
   1355     selectIntv(IntvIn);
   1356     useIntv(Start, From);
   1357     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
   1358     return;
   1359   }
   1360 
   1361   //           <<<<<<<    Interference overlapping uses.
   1362   //     |---o---o--o|    Live-out on stack, late last use.
   1363   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
   1364   //            \_____    Stack interval is live-out.
   1365   //
   1366   SlotIndex To = leaveIntvBefore(LSP);
   1367   overlapIntv(To, BI.LastInstr);
   1368   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
   1369   useIntv(From, To);
   1370   selectIntv(IntvIn);
   1371   useIntv(Start, From);
   1372   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
   1373 }
   1374 
   1375 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
   1376                                    unsigned IntvOut, SlotIndex EnterAfter) {
   1377   SlotIndex Start, Stop;
   1378   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
   1379 
   1380   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
   1381                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
   1382                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
   1383                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
   1384 
   1385   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
   1386 
   1387   assert(IntvOut && "Must have register out");
   1388   assert(BI.LiveOut && "Must be live-out");
   1389   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
   1390 
   1391   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
   1392     DEBUG(dbgs() << " after interference.\n");
   1393     //
   1394     //    >>>>             Interference before def.
   1395     //    |   o---o---|    Defined in block.
   1396     //        =========    Use IntvOut everywhere.
   1397     //
   1398     selectIntv(IntvOut);
   1399     useIntv(BI.FirstInstr, Stop);
   1400     return;
   1401   }
   1402 
   1403   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
   1404     DEBUG(dbgs() << ", reload after interference.\n");
   1405     //
   1406     //    >>>>             Interference before def.
   1407     //    |---o---o---|    Live-through, stack-in.
   1408     //    ____=========    Enter IntvOut before first use.
   1409     //
   1410     selectIntv(IntvOut);
   1411     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
   1412     useIntv(Idx, Stop);
   1413     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1414     return;
   1415   }
   1416 
   1417   // The interference is overlapping somewhere we wanted to use IntvOut. That
   1418   // means we need to create a local interval that can be allocated a
   1419   // different register.
   1420   DEBUG(dbgs() << ", interference overlaps uses.\n");
   1421   //
   1422   //    >>>>>>>          Interference overlapping uses.
   1423   //    |---o---o---|    Live-through, stack-in.
   1424   //    ____---======    Create local interval for interference range.
   1425   //
   1426   selectIntv(IntvOut);
   1427   SlotIndex Idx = enterIntvAfter(EnterAfter);
   1428   useIntv(Idx, Stop);
   1429   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1430 
   1431   openIntv();
   1432   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
   1433   useIntv(From, Idx);
   1434 }
   1435