Home | History | Annotate | Download | only in Analysis
      1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic AliasAnalysis interface which is used as the
     11 // common interface used by all clients and implementations of alias analysis.
     12 //
     13 // This file also implements the default version of the AliasAnalysis interface
     14 // that is to be used when no other implementation is specified.  This does some
     15 // simple tests that detect obvious cases: two different global pointers cannot
     16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
     17 // etc.
     18 //
     19 // This alias analysis implementation really isn't very good for anything, but
     20 // it is very fast, and makes a nice clean default implementation.  Because it
     21 // handles lots of little corner cases, other, more complex, alias analysis
     22 // implementations may choose to rely on this pass to resolve these simple and
     23 // easy cases.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/CaptureTracking.h"
     29 #include "llvm/Analysis/CFG.h"
     30 #include "llvm/Analysis/Dominators.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/IR/BasicBlock.h"
     33 #include "llvm/IR/DataLayout.h"
     34 #include "llvm/IR/Function.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/IR/LLVMContext.h"
     38 #include "llvm/IR/Type.h"
     39 #include "llvm/Pass.h"
     40 #include "llvm/Target/TargetLibraryInfo.h"
     41 using namespace llvm;
     42 
     43 // Register the AliasAnalysis interface, providing a nice name to refer to.
     44 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
     45 char AliasAnalysis::ID = 0;
     46 
     47 //===----------------------------------------------------------------------===//
     48 // Default chaining methods
     49 //===----------------------------------------------------------------------===//
     50 
     51 AliasAnalysis::AliasResult
     52 AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
     53   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     54   return AA->alias(LocA, LocB);
     55 }
     56 
     57 bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
     58                                            bool OrLocal) {
     59   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     60   return AA->pointsToConstantMemory(Loc, OrLocal);
     61 }
     62 
     63 void AliasAnalysis::deleteValue(Value *V) {
     64   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     65   AA->deleteValue(V);
     66 }
     67 
     68 void AliasAnalysis::copyValue(Value *From, Value *To) {
     69   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     70   AA->copyValue(From, To);
     71 }
     72 
     73 void AliasAnalysis::addEscapingUse(Use &U) {
     74   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     75   AA->addEscapingUse(U);
     76 }
     77 
     78 
     79 AliasAnalysis::ModRefResult
     80 AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
     81                              const Location &Loc) {
     82   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     83 
     84   ModRefBehavior MRB = getModRefBehavior(CS);
     85   if (MRB == DoesNotAccessMemory)
     86     return NoModRef;
     87 
     88   ModRefResult Mask = ModRef;
     89   if (onlyReadsMemory(MRB))
     90     Mask = Ref;
     91 
     92   if (onlyAccessesArgPointees(MRB)) {
     93     bool doesAlias = false;
     94     if (doesAccessArgPointees(MRB)) {
     95       MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
     96       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
     97            AI != AE; ++AI) {
     98         const Value *Arg = *AI;
     99         if (!Arg->getType()->isPointerTy())
    100           continue;
    101         Location CSLoc(Arg, UnknownSize, CSTag);
    102         if (!isNoAlias(CSLoc, Loc)) {
    103           doesAlias = true;
    104           break;
    105         }
    106       }
    107     }
    108     if (!doesAlias)
    109       return NoModRef;
    110   }
    111 
    112   // If Loc is a constant memory location, the call definitely could not
    113   // modify the memory location.
    114   if ((Mask & Mod) && pointsToConstantMemory(Loc))
    115     Mask = ModRefResult(Mask & ~Mod);
    116 
    117   // If this is the end of the chain, don't forward.
    118   if (!AA) return Mask;
    119 
    120   // Otherwise, fall back to the next AA in the chain. But we can merge
    121   // in any mask we've managed to compute.
    122   return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
    123 }
    124 
    125 AliasAnalysis::ModRefResult
    126 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    127   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    128 
    129   // If CS1 or CS2 are readnone, they don't interact.
    130   ModRefBehavior CS1B = getModRefBehavior(CS1);
    131   if (CS1B == DoesNotAccessMemory) return NoModRef;
    132 
    133   ModRefBehavior CS2B = getModRefBehavior(CS2);
    134   if (CS2B == DoesNotAccessMemory) return NoModRef;
    135 
    136   // If they both only read from memory, there is no dependence.
    137   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
    138     return NoModRef;
    139 
    140   AliasAnalysis::ModRefResult Mask = ModRef;
    141 
    142   // If CS1 only reads memory, the only dependence on CS2 can be
    143   // from CS1 reading memory written by CS2.
    144   if (onlyReadsMemory(CS1B))
    145     Mask = ModRefResult(Mask & Ref);
    146 
    147   // If CS2 only access memory through arguments, accumulate the mod/ref
    148   // information from CS1's references to the memory referenced by
    149   // CS2's arguments.
    150   if (onlyAccessesArgPointees(CS2B)) {
    151     AliasAnalysis::ModRefResult R = NoModRef;
    152     if (doesAccessArgPointees(CS2B)) {
    153       MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
    154       for (ImmutableCallSite::arg_iterator
    155            I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
    156         const Value *Arg = *I;
    157         if (!Arg->getType()->isPointerTy())
    158           continue;
    159         Location CS2Loc(Arg, UnknownSize, CS2Tag);
    160         R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask);
    161         if (R == Mask)
    162           break;
    163       }
    164     }
    165     return R;
    166   }
    167 
    168   // If CS1 only accesses memory through arguments, check if CS2 references
    169   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
    170   if (onlyAccessesArgPointees(CS1B)) {
    171     AliasAnalysis::ModRefResult R = NoModRef;
    172     if (doesAccessArgPointees(CS1B)) {
    173       MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
    174       for (ImmutableCallSite::arg_iterator
    175            I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
    176         const Value *Arg = *I;
    177         if (!Arg->getType()->isPointerTy())
    178           continue;
    179         Location CS1Loc(Arg, UnknownSize, CS1Tag);
    180         if (getModRefInfo(CS2, CS1Loc) != NoModRef) {
    181           R = Mask;
    182           break;
    183         }
    184       }
    185     }
    186     if (R == NoModRef)
    187       return R;
    188   }
    189 
    190   // If this is the end of the chain, don't forward.
    191   if (!AA) return Mask;
    192 
    193   // Otherwise, fall back to the next AA in the chain. But we can merge
    194   // in any mask we've managed to compute.
    195   return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
    196 }
    197 
    198 AliasAnalysis::ModRefBehavior
    199 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    200   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    201 
    202   ModRefBehavior Min = UnknownModRefBehavior;
    203 
    204   // Call back into the alias analysis with the other form of getModRefBehavior
    205   // to see if it can give a better response.
    206   if (const Function *F = CS.getCalledFunction())
    207     Min = getModRefBehavior(F);
    208 
    209   // If this is the end of the chain, don't forward.
    210   if (!AA) return Min;
    211 
    212   // Otherwise, fall back to the next AA in the chain. But we can merge
    213   // in any result we've managed to compute.
    214   return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
    215 }
    216 
    217 AliasAnalysis::ModRefBehavior
    218 AliasAnalysis::getModRefBehavior(const Function *F) {
    219   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    220   return AA->getModRefBehavior(F);
    221 }
    222 
    223 //===----------------------------------------------------------------------===//
    224 // AliasAnalysis non-virtual helper method implementation
    225 //===----------------------------------------------------------------------===//
    226 
    227 AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
    228   return Location(LI->getPointerOperand(),
    229                   getTypeStoreSize(LI->getType()),
    230                   LI->getMetadata(LLVMContext::MD_tbaa));
    231 }
    232 
    233 AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
    234   return Location(SI->getPointerOperand(),
    235                   getTypeStoreSize(SI->getValueOperand()->getType()),
    236                   SI->getMetadata(LLVMContext::MD_tbaa));
    237 }
    238 
    239 AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
    240   return Location(VI->getPointerOperand(),
    241                   UnknownSize,
    242                   VI->getMetadata(LLVMContext::MD_tbaa));
    243 }
    244 
    245 AliasAnalysis::Location
    246 AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
    247   return Location(CXI->getPointerOperand(),
    248                   getTypeStoreSize(CXI->getCompareOperand()->getType()),
    249                   CXI->getMetadata(LLVMContext::MD_tbaa));
    250 }
    251 
    252 AliasAnalysis::Location
    253 AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
    254   return Location(RMWI->getPointerOperand(),
    255                   getTypeStoreSize(RMWI->getValOperand()->getType()),
    256                   RMWI->getMetadata(LLVMContext::MD_tbaa));
    257 }
    258 
    259 AliasAnalysis::Location
    260 AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
    261   uint64_t Size = UnknownSize;
    262   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    263     Size = C->getValue().getZExtValue();
    264 
    265   // memcpy/memmove can have TBAA tags. For memcpy, they apply
    266   // to both the source and the destination.
    267   MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
    268 
    269   return Location(MTI->getRawSource(), Size, TBAATag);
    270 }
    271 
    272 AliasAnalysis::Location
    273 AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
    274   uint64_t Size = UnknownSize;
    275   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    276     Size = C->getValue().getZExtValue();
    277 
    278   // memcpy/memmove can have TBAA tags. For memcpy, they apply
    279   // to both the source and the destination.
    280   MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
    281 
    282   return Location(MTI->getRawDest(), Size, TBAATag);
    283 }
    284 
    285 
    286 
    287 AliasAnalysis::ModRefResult
    288 AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
    289   // Be conservative in the face of volatile/atomic.
    290   if (!L->isUnordered())
    291     return ModRef;
    292 
    293   // If the load address doesn't alias the given address, it doesn't read
    294   // or write the specified memory.
    295   if (!alias(getLocation(L), Loc))
    296     return NoModRef;
    297 
    298   // Otherwise, a load just reads.
    299   return Ref;
    300 }
    301 
    302 AliasAnalysis::ModRefResult
    303 AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
    304   // Be conservative in the face of volatile/atomic.
    305   if (!S->isUnordered())
    306     return ModRef;
    307 
    308   // If the store address cannot alias the pointer in question, then the
    309   // specified memory cannot be modified by the store.
    310   if (!alias(getLocation(S), Loc))
    311     return NoModRef;
    312 
    313   // If the pointer is a pointer to constant memory, then it could not have been
    314   // modified by this store.
    315   if (pointsToConstantMemory(Loc))
    316     return NoModRef;
    317 
    318   // Otherwise, a store just writes.
    319   return Mod;
    320 }
    321 
    322 AliasAnalysis::ModRefResult
    323 AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
    324   // If the va_arg address cannot alias the pointer in question, then the
    325   // specified memory cannot be accessed by the va_arg.
    326   if (!alias(getLocation(V), Loc))
    327     return NoModRef;
    328 
    329   // If the pointer is a pointer to constant memory, then it could not have been
    330   // modified by this va_arg.
    331   if (pointsToConstantMemory(Loc))
    332     return NoModRef;
    333 
    334   // Otherwise, a va_arg reads and writes.
    335   return ModRef;
    336 }
    337 
    338 AliasAnalysis::ModRefResult
    339 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
    340   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
    341   if (CX->getOrdering() > Monotonic)
    342     return ModRef;
    343 
    344   // If the cmpxchg address does not alias the location, it does not access it.
    345   if (!alias(getLocation(CX), Loc))
    346     return NoModRef;
    347 
    348   return ModRef;
    349 }
    350 
    351 AliasAnalysis::ModRefResult
    352 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
    353   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
    354   if (RMW->getOrdering() > Monotonic)
    355     return ModRef;
    356 
    357   // If the atomicrmw address does not alias the location, it does not access it.
    358   if (!alias(getLocation(RMW), Loc))
    359     return NoModRef;
    360 
    361   return ModRef;
    362 }
    363 
    364 namespace {
    365   /// Only find pointer captures which happen before the given instruction. Uses
    366   /// the dominator tree to determine whether one instruction is before another.
    367   /// Only support the case where the Value is defined in the same basic block
    368   /// as the given instruction and the use.
    369   struct CapturesBefore : public CaptureTracker {
    370     CapturesBefore(const Instruction *I, DominatorTree *DT)
    371       : BeforeHere(I), DT(DT), Captured(false) {}
    372 
    373     void tooManyUses() { Captured = true; }
    374 
    375     bool shouldExplore(Use *U) {
    376       Instruction *I = cast<Instruction>(U->getUser());
    377       BasicBlock *BB = I->getParent();
    378       // We explore this usage only if the usage can reach "BeforeHere".
    379       // If use is not reachable from entry, there is no need to explore.
    380       if (BeforeHere != I && !DT->isReachableFromEntry(BB))
    381         return false;
    382       // If the value is defined in the same basic block as use and BeforeHere,
    383       // there is no need to explore the use if BeforeHere dominates use.
    384       // Check whether there is a path from I to BeforeHere.
    385       if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
    386           !isPotentiallyReachable(I, BeforeHere, DT))
    387         return false;
    388       return true;
    389     }
    390 
    391     bool captured(Use *U) {
    392       Instruction *I = cast<Instruction>(U->getUser());
    393       BasicBlock *BB = I->getParent();
    394       // Same logic as in shouldExplore.
    395       if (BeforeHere != I && !DT->isReachableFromEntry(BB))
    396         return false;
    397       if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
    398           !isPotentiallyReachable(I, BeforeHere, DT))
    399         return false;
    400       Captured = true;
    401       return true;
    402     }
    403 
    404     const Instruction *BeforeHere;
    405     DominatorTree *DT;
    406 
    407     bool Captured;
    408   };
    409 }
    410 
    411 // FIXME: this is really just shoring-up a deficiency in alias analysis.
    412 // BasicAA isn't willing to spend linear time determining whether an alloca
    413 // was captured before or after this particular call, while we are. However,
    414 // with a smarter AA in place, this test is just wasting compile time.
    415 AliasAnalysis::ModRefResult
    416 AliasAnalysis::callCapturesBefore(const Instruction *I,
    417                                   const AliasAnalysis::Location &MemLoc,
    418                                   DominatorTree *DT) {
    419   if (!DT || !TD) return AliasAnalysis::ModRef;
    420 
    421   const Value *Object = GetUnderlyingObject(MemLoc.Ptr, TD);
    422   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
    423       isa<Constant>(Object))
    424     return AliasAnalysis::ModRef;
    425 
    426   ImmutableCallSite CS(I);
    427   if (!CS.getInstruction() || CS.getInstruction() == Object)
    428     return AliasAnalysis::ModRef;
    429 
    430   CapturesBefore CB(I, DT);
    431   llvm::PointerMayBeCaptured(Object, &CB);
    432   if (CB.Captured)
    433     return AliasAnalysis::ModRef;
    434 
    435   unsigned ArgNo = 0;
    436   AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
    437   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    438        CI != CE; ++CI, ++ArgNo) {
    439     // Only look at the no-capture or byval pointer arguments.  If this
    440     // pointer were passed to arguments that were neither of these, then it
    441     // couldn't be no-capture.
    442     if (!(*CI)->getType()->isPointerTy() ||
    443         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    444       continue;
    445 
    446     // If this is a no-capture pointer argument, see if we can tell that it
    447     // is impossible to alias the pointer we're checking.  If not, we have to
    448     // assume that the call could touch the pointer, even though it doesn't
    449     // escape.
    450     if (isNoAlias(AliasAnalysis::Location(*CI),
    451 		  AliasAnalysis::Location(Object)))
    452       continue;
    453     if (CS.doesNotAccessMemory(ArgNo))
    454       continue;
    455     if (CS.onlyReadsMemory(ArgNo)) {
    456       R = AliasAnalysis::Ref;
    457       continue;
    458     }
    459     return AliasAnalysis::ModRef;
    460   }
    461   return R;
    462 }
    463 
    464 // AliasAnalysis destructor: DO NOT move this to the header file for
    465 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
    466 // the AliasAnalysis.o file in the current .a file, causing alias analysis
    467 // support to not be included in the tool correctly!
    468 //
    469 AliasAnalysis::~AliasAnalysis() {}
    470 
    471 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
    472 /// AliasAnalysis interface before any other methods are called.
    473 ///
    474 void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
    475   TD = P->getAnalysisIfAvailable<DataLayout>();
    476   TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
    477   AA = &P->getAnalysis<AliasAnalysis>();
    478 }
    479 
    480 // getAnalysisUsage - All alias analysis implementations should invoke this
    481 // directly (using AliasAnalysis::getAnalysisUsage(AU)).
    482 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    483   AU.addRequired<AliasAnalysis>();         // All AA's chain
    484 }
    485 
    486 /// getTypeStoreSize - Return the DataLayout store size for the given type,
    487 /// if known, or a conservative value otherwise.
    488 ///
    489 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
    490   return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
    491 }
    492 
    493 /// canBasicBlockModify - Return true if it is possible for execution of the
    494 /// specified basic block to modify the value pointed to by Ptr.
    495 ///
    496 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
    497                                         const Location &Loc) {
    498   return canInstructionRangeModify(BB.front(), BB.back(), Loc);
    499 }
    500 
    501 /// canInstructionRangeModify - Return true if it is possible for the execution
    502 /// of the specified instructions to modify the value pointed to by Ptr.  The
    503 /// instructions to consider are all of the instructions in the range of [I1,I2]
    504 /// INCLUSIVE.  I1 and I2 must be in the same basic block.
    505 ///
    506 bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
    507                                               const Instruction &I2,
    508                                               const Location &Loc) {
    509   assert(I1.getParent() == I2.getParent() &&
    510          "Instructions not in same basic block!");
    511   BasicBlock::const_iterator I = &I1;
    512   BasicBlock::const_iterator E = &I2;
    513   ++E;  // Convert from inclusive to exclusive range.
    514 
    515   for (; I != E; ++I) // Check every instruction in range
    516     if (getModRefInfo(I, Loc) & Mod)
    517       return true;
    518   return false;
    519 }
    520 
    521 /// isNoAliasCall - Return true if this pointer is returned by a noalias
    522 /// function.
    523 bool llvm::isNoAliasCall(const Value *V) {
    524   if (isa<CallInst>(V) || isa<InvokeInst>(V))
    525     return ImmutableCallSite(cast<Instruction>(V))
    526       .paramHasAttr(0, Attribute::NoAlias);
    527   return false;
    528 }
    529 
    530 /// isNoAliasArgument - Return true if this is an argument with the noalias
    531 /// attribute.
    532 bool llvm::isNoAliasArgument(const Value *V)
    533 {
    534   if (const Argument *A = dyn_cast<Argument>(V))
    535     return A->hasNoAliasAttr();
    536   return false;
    537 }
    538 
    539 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
    540 /// identifiable object.  This returns true for:
    541 ///    Global Variables and Functions (but not Global Aliases)
    542 ///    Allocas and Mallocs
    543 ///    ByVal and NoAlias Arguments
    544 ///    NoAlias returns
    545 ///
    546 bool llvm::isIdentifiedObject(const Value *V) {
    547   if (isa<AllocaInst>(V))
    548     return true;
    549   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    550     return true;
    551   if (isNoAliasCall(V))
    552     return true;
    553   if (const Argument *A = dyn_cast<Argument>(V))
    554     return A->hasNoAliasAttr() || A->hasByValAttr();
    555   return false;
    556 }
    557