Home | History | Annotate | Download | only in base
      1 /*
      2  * libjingle
      3  * Copyright 2004 Google Inc.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions are met:
      7  *
      8  *  1. Redistributions of source code must retain the above copyright notice,
      9  *     this list of conditions and the following disclaimer.
     10  *  2. Redistributions in binary form must reproduce the above copyright notice,
     11  *     this list of conditions and the following disclaimer in the documentation
     12  *     and/or other materials provided with the distribution.
     13  *  3. The name of the author may not be used to endorse or promote products
     14  *     derived from this software without specific prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
     19  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     20  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     21  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     22  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     24  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     25  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include "talk/base/crc32.h"
     29 #include "talk/base/gunit.h"
     30 #include "talk/base/helpers.h"
     31 #include "talk/base/logging.h"
     32 #include "talk/base/natserver.h"
     33 #include "talk/base/natsocketfactory.h"
     34 #include "talk/base/physicalsocketserver.h"
     35 #include "talk/base/scoped_ptr.h"
     36 #include "talk/base/socketaddress.h"
     37 #include "talk/base/stringutils.h"
     38 #include "talk/base/thread.h"
     39 #include "talk/base/virtualsocketserver.h"
     40 #include "talk/p2p/base/basicpacketsocketfactory.h"
     41 #include "talk/p2p/base/portproxy.h"
     42 #include "talk/p2p/base/relayport.h"
     43 #include "talk/p2p/base/stunport.h"
     44 #include "talk/p2p/base/tcpport.h"
     45 #include "talk/p2p/base/testrelayserver.h"
     46 #include "talk/p2p/base/teststunserver.h"
     47 #include "talk/p2p/base/testturnserver.h"
     48 #include "talk/p2p/base/transport.h"
     49 #include "talk/p2p/base/turnport.h"
     50 
     51 using talk_base::AsyncPacketSocket;
     52 using talk_base::ByteBuffer;
     53 using talk_base::NATType;
     54 using talk_base::NAT_OPEN_CONE;
     55 using talk_base::NAT_ADDR_RESTRICTED;
     56 using talk_base::NAT_PORT_RESTRICTED;
     57 using talk_base::NAT_SYMMETRIC;
     58 using talk_base::PacketSocketFactory;
     59 using talk_base::scoped_ptr;
     60 using talk_base::Socket;
     61 using talk_base::SocketAddress;
     62 using namespace cricket;
     63 
     64 static const int kTimeout = 1000;
     65 static const SocketAddress kLocalAddr1("192.168.1.2", 0);
     66 static const SocketAddress kLocalAddr2("192.168.1.3", 0);
     67 static const SocketAddress kNatAddr1("77.77.77.77", talk_base::NAT_SERVER_PORT);
     68 static const SocketAddress kNatAddr2("88.88.88.88", talk_base::NAT_SERVER_PORT);
     69 static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
     70 static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
     71 static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
     72 static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
     73 static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
     74 static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
     75 static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
     76 static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
     77 static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
     78 static const RelayCredentials kRelayCredentials("test", "test");
     79 
     80 // TODO: Update these when RFC5245 is completely supported.
     81 // Magic value of 30 is from RFC3484, for IPv4 addresses.
     82 static const uint32 kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
     83              30 << 8 | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
     84 static const int STUN_ERROR_BAD_REQUEST_AS_GICE =
     85     STUN_ERROR_BAD_REQUEST / 256 * 100 + STUN_ERROR_BAD_REQUEST % 256;
     86 static const int STUN_ERROR_UNAUTHORIZED_AS_GICE =
     87     STUN_ERROR_UNAUTHORIZED / 256 * 100 + STUN_ERROR_UNAUTHORIZED % 256;
     88 static const int STUN_ERROR_SERVER_ERROR_AS_GICE =
     89     STUN_ERROR_SERVER_ERROR / 256 * 100 + STUN_ERROR_SERVER_ERROR % 256;
     90 
     91 static const int kTiebreaker1 = 11111;
     92 static const int kTiebreaker2 = 22222;
     93 
     94 static Candidate GetCandidate(Port* port) {
     95   assert(port->Candidates().size() == 1);
     96   return port->Candidates()[0];
     97 }
     98 
     99 static SocketAddress GetAddress(Port* port) {
    100   return GetCandidate(port).address();
    101 }
    102 
    103 static IceMessage* CopyStunMessage(const IceMessage* src) {
    104   IceMessage* dst = new IceMessage();
    105   ByteBuffer buf;
    106   src->Write(&buf);
    107   dst->Read(&buf);
    108   return dst;
    109 }
    110 
    111 static bool WriteStunMessage(const StunMessage* msg, ByteBuffer* buf) {
    112   buf->Resize(0);  // clear out any existing buffer contents
    113   return msg->Write(buf);
    114 }
    115 
    116 // Stub port class for testing STUN generation and processing.
    117 class TestPort : public Port {
    118  public:
    119   TestPort(talk_base::Thread* thread, const std::string& type,
    120            talk_base::PacketSocketFactory* factory, talk_base::Network* network,
    121            const talk_base::IPAddress& ip, int min_port, int max_port,
    122            const std::string& username_fragment, const std::string& password)
    123       : Port(thread, type, factory, network, ip,
    124              min_port, max_port, username_fragment, password) {
    125   }
    126   ~TestPort() {}
    127 
    128   // Expose GetStunMessage so that we can test it.
    129   using cricket::Port::GetStunMessage;
    130 
    131   // The last StunMessage that was sent on this Port.
    132   // TODO: Make these const; requires changes to SendXXXXResponse.
    133   ByteBuffer* last_stun_buf() { return last_stun_buf_.get(); }
    134   IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
    135   int last_stun_error_code() {
    136     int code = 0;
    137     if (last_stun_msg_) {
    138       const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
    139       if (error_attr) {
    140         code = error_attr->code();
    141       }
    142     }
    143     return code;
    144   }
    145 
    146   virtual void PrepareAddress() {
    147     talk_base::SocketAddress addr(ip(), min_port());
    148     AddAddress(addr, addr, "udp", Type(), ICE_TYPE_PREFERENCE_HOST, true);
    149   }
    150 
    151   // Exposed for testing candidate building.
    152   void AddCandidateAddress(const talk_base::SocketAddress& addr) {
    153     AddAddress(addr, addr, "udp", Type(), type_preference_, false);
    154   }
    155   void AddCandidateAddress(const talk_base::SocketAddress& addr,
    156                            const talk_base::SocketAddress& base_address,
    157                            const std::string& type,
    158                            int type_preference,
    159                            bool final) {
    160     AddAddress(addr, base_address, "udp", type,
    161                type_preference, final);
    162   }
    163 
    164   virtual Connection* CreateConnection(const Candidate& remote_candidate,
    165                                        CandidateOrigin origin) {
    166     Connection* conn = new ProxyConnection(this, 0, remote_candidate);
    167     AddConnection(conn);
    168     // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
    169     // in STUN binding requests.
    170     conn->set_use_candidate_attr(true);
    171     return conn;
    172   }
    173   virtual int SendTo(
    174       const void* data, size_t size, const talk_base::SocketAddress& addr,
    175       bool payload) {
    176     if (!payload) {
    177       IceMessage* msg = new IceMessage;
    178       ByteBuffer* buf = new ByteBuffer(static_cast<const char*>(data), size);
    179       ByteBuffer::ReadPosition pos(buf->GetReadPosition());
    180       if (!msg->Read(buf)) {
    181         delete msg;
    182         delete buf;
    183         return -1;
    184       }
    185       buf->SetReadPosition(pos);
    186       last_stun_buf_.reset(buf);
    187       last_stun_msg_.reset(msg);
    188     }
    189     return static_cast<int>(size);
    190   }
    191   virtual int SetOption(talk_base::Socket::Option opt, int value) {
    192     return 0;
    193   }
    194   virtual int GetOption(talk_base::Socket::Option opt, int* value) {
    195     return -1;
    196   }
    197   virtual int GetError() {
    198     return 0;
    199   }
    200   void Reset() {
    201     last_stun_buf_.reset();
    202     last_stun_msg_.reset();
    203   }
    204   void set_type_preference(int type_preference) {
    205     type_preference_ = type_preference;
    206   }
    207 
    208  private:
    209   talk_base::scoped_ptr<ByteBuffer> last_stun_buf_;
    210   talk_base::scoped_ptr<IceMessage> last_stun_msg_;
    211   int type_preference_;
    212 };
    213 
    214 class TestChannel : public sigslot::has_slots<> {
    215  public:
    216   TestChannel(Port* p1, Port* p2)
    217       : ice_mode_(ICEMODE_FULL), src_(p1), dst_(p2), complete_count_(0),
    218 	conn_(NULL), remote_request_(NULL), nominated_(false) {
    219     src_->SignalPortComplete.connect(
    220         this, &TestChannel::OnPortComplete);
    221     src_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
    222   }
    223 
    224   int complete_count() { return complete_count_; }
    225   Connection* conn() { return conn_; }
    226   const SocketAddress& remote_address() { return remote_address_; }
    227   const std::string remote_fragment() { return remote_frag_; }
    228 
    229   void Start() {
    230     src_->PrepareAddress();
    231   }
    232   void CreateConnection() {
    233     conn_ = src_->CreateConnection(GetCandidate(dst_), Port::ORIGIN_MESSAGE);
    234     IceMode remote_ice_mode =
    235         (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
    236     conn_->set_remote_ice_mode(remote_ice_mode);
    237     conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
    238     conn_->SignalStateChange.connect(
    239         this, &TestChannel::OnConnectionStateChange);
    240   }
    241   void OnConnectionStateChange(Connection* conn) {
    242     if (conn->write_state() == Connection::STATE_WRITABLE) {
    243       conn->set_use_candidate_attr(true);
    244       nominated_ = true;
    245     }
    246   }
    247   void AcceptConnection() {
    248     ASSERT_TRUE(remote_request_.get() != NULL);
    249     Candidate c = GetCandidate(dst_);
    250     c.set_address(remote_address_);
    251     conn_ = src_->CreateConnection(c, Port::ORIGIN_MESSAGE);
    252     src_->SendBindingResponse(remote_request_.get(), remote_address_);
    253     remote_request_.reset();
    254   }
    255   void Ping() {
    256     Ping(0);
    257   }
    258   void Ping(uint32 now) {
    259     conn_->Ping(now);
    260   }
    261   void Stop() {
    262     conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
    263     conn_->Destroy();
    264   }
    265 
    266   void OnPortComplete(Port* port) {
    267     complete_count_++;
    268   }
    269   void SetIceMode(IceMode ice_mode) {
    270     ice_mode_ = ice_mode;
    271   }
    272 
    273   void OnUnknownAddress(PortInterface* port, const SocketAddress& addr,
    274                         ProtocolType proto,
    275                         IceMessage* msg, const std::string& rf,
    276                         bool /*port_muxed*/) {
    277     ASSERT_EQ(src_.get(), port);
    278     if (!remote_address_.IsNil()) {
    279       ASSERT_EQ(remote_address_, addr);
    280     }
    281     // MI and PRIORITY attribute should be present in ping requests when port
    282     // is in ICEPROTO_RFC5245 mode.
    283     const cricket::StunUInt32Attribute* priority_attr =
    284         msg->GetUInt32(STUN_ATTR_PRIORITY);
    285     const cricket::StunByteStringAttribute* mi_attr =
    286         msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
    287     const cricket::StunUInt32Attribute* fingerprint_attr =
    288         msg->GetUInt32(STUN_ATTR_FINGERPRINT);
    289     if (src_->IceProtocol() == cricket::ICEPROTO_RFC5245) {
    290       EXPECT_TRUE(priority_attr != NULL);
    291       EXPECT_TRUE(mi_attr != NULL);
    292       EXPECT_TRUE(fingerprint_attr != NULL);
    293     } else {
    294       EXPECT_TRUE(priority_attr == NULL);
    295       EXPECT_TRUE(mi_attr == NULL);
    296       EXPECT_TRUE(fingerprint_attr == NULL);
    297     }
    298     remote_address_ = addr;
    299     remote_request_.reset(CopyStunMessage(msg));
    300     remote_frag_ = rf;
    301   }
    302 
    303   void OnDestroyed(Connection* conn) {
    304     ASSERT_EQ(conn_, conn);
    305     conn_ = NULL;
    306   }
    307 
    308   bool nominated() const { return nominated_; }
    309 
    310  private:
    311   IceMode ice_mode_;
    312   talk_base::scoped_ptr<Port> src_;
    313   Port* dst_;
    314 
    315   int complete_count_;
    316   Connection* conn_;
    317   SocketAddress remote_address_;
    318   talk_base::scoped_ptr<StunMessage> remote_request_;
    319   std::string remote_frag_;
    320   bool nominated_;
    321 };
    322 
    323 class PortTest : public testing::Test, public sigslot::has_slots<> {
    324  public:
    325   PortTest()
    326       : main_(talk_base::Thread::Current()),
    327         pss_(new talk_base::PhysicalSocketServer),
    328         ss_(new talk_base::VirtualSocketServer(pss_.get())),
    329         ss_scope_(ss_.get()),
    330         network_("unittest", "unittest", talk_base::IPAddress(INADDR_ANY), 32),
    331         socket_factory_(talk_base::Thread::Current()),
    332         nat_factory1_(ss_.get(), kNatAddr1),
    333         nat_factory2_(ss_.get(), kNatAddr2),
    334         nat_socket_factory1_(&nat_factory1_),
    335         nat_socket_factory2_(&nat_factory2_),
    336         stun_server_(main_, kStunAddr),
    337         turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
    338         relay_server_(main_, kRelayUdpIntAddr, kRelayUdpExtAddr,
    339                       kRelayTcpIntAddr, kRelayTcpExtAddr,
    340                       kRelaySslTcpIntAddr, kRelaySslTcpExtAddr),
    341         username_(talk_base::CreateRandomString(ICE_UFRAG_LENGTH)),
    342         password_(talk_base::CreateRandomString(ICE_PWD_LENGTH)),
    343         ice_protocol_(cricket::ICEPROTO_GOOGLE),
    344         role_conflict_(false) {
    345     network_.AddIP(talk_base::IPAddress(INADDR_ANY));
    346   }
    347 
    348  protected:
    349   static void SetUpTestCase() {
    350     // Ensure the RNG is inited.
    351     talk_base::InitRandom(NULL, 0);
    352   }
    353 
    354   void TestLocalToLocal() {
    355     Port* port1 = CreateUdpPort(kLocalAddr1);
    356     Port* port2 = CreateUdpPort(kLocalAddr2);
    357     TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
    358   }
    359   void TestLocalToStun(NATType ntype) {
    360     Port* port1 = CreateUdpPort(kLocalAddr1);
    361     nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
    362     Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
    363     TestConnectivity("udp", port1, StunName(ntype), port2,
    364                      ntype == NAT_OPEN_CONE, true,
    365                      ntype != NAT_SYMMETRIC, true);
    366   }
    367   void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
    368     Port* port1 = CreateUdpPort(kLocalAddr1);
    369     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
    370     TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
    371                      rtype == RELAY_GTURN, true, true, true);
    372   }
    373   void TestStunToLocal(NATType ntype) {
    374     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
    375     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
    376     Port* port2 = CreateUdpPort(kLocalAddr2);
    377     TestConnectivity(StunName(ntype), port1, "udp", port2,
    378                      true, ntype != NAT_SYMMETRIC, true, true);
    379   }
    380   void TestStunToStun(NATType ntype1, NATType ntype2) {
    381     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
    382     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
    383     nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
    384     Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
    385     TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
    386                      ntype2 == NAT_OPEN_CONE,
    387                      ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
    388                      ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
    389   }
    390   void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
    391     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
    392     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
    393     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
    394     TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
    395                      rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
    396   }
    397   void TestTcpToTcp() {
    398     Port* port1 = CreateTcpPort(kLocalAddr1);
    399     Port* port2 = CreateTcpPort(kLocalAddr2);
    400     TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
    401   }
    402   void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
    403     Port* port1 = CreateTcpPort(kLocalAddr1);
    404     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
    405     TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
    406                      rtype == RELAY_GTURN, false, true, true);
    407   }
    408   void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
    409     Port* port1 = CreateTcpPort(kLocalAddr1);
    410     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
    411     TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
    412                      rtype == RELAY_GTURN, false, true, true);
    413   }
    414 
    415   // helpers for above functions
    416   UDPPort* CreateUdpPort(const SocketAddress& addr) {
    417     return CreateUdpPort(addr, &socket_factory_);
    418   }
    419   UDPPort* CreateUdpPort(const SocketAddress& addr,
    420                          PacketSocketFactory* socket_factory) {
    421     UDPPort* port = UDPPort::Create(main_, socket_factory, &network_,
    422                                     addr.ipaddr(), 0, 0, username_, password_);
    423     port->SetIceProtocolType(ice_protocol_);
    424     return port;
    425   }
    426   TCPPort* CreateTcpPort(const SocketAddress& addr) {
    427     TCPPort* port = CreateTcpPort(addr, &socket_factory_);
    428     port->SetIceProtocolType(ice_protocol_);
    429     return port;
    430   }
    431   TCPPort* CreateTcpPort(const SocketAddress& addr,
    432                         PacketSocketFactory* socket_factory) {
    433     TCPPort* port = TCPPort::Create(main_, socket_factory, &network_,
    434                                     addr.ipaddr(), 0, 0, username_, password_,
    435                                     true);
    436     port->SetIceProtocolType(ice_protocol_);
    437     return port;
    438   }
    439   StunPort* CreateStunPort(const SocketAddress& addr,
    440                            talk_base::PacketSocketFactory* factory) {
    441     StunPort* port = StunPort::Create(main_, factory, &network_,
    442                                       addr.ipaddr(), 0, 0,
    443                                       username_, password_, kStunAddr);
    444     port->SetIceProtocolType(ice_protocol_);
    445     return port;
    446   }
    447   Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype,
    448                         ProtocolType int_proto, ProtocolType ext_proto) {
    449     if (rtype == RELAY_TURN) {
    450       return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
    451     } else {
    452       return CreateGturnPort(addr, int_proto, ext_proto);
    453     }
    454   }
    455   TurnPort* CreateTurnPort(const SocketAddress& addr,
    456                            PacketSocketFactory* socket_factory,
    457                            ProtocolType int_proto, ProtocolType ext_proto) {
    458     TurnPort* port = TurnPort::Create(main_, socket_factory, &network_,
    459                                       addr.ipaddr(), 0, 0,
    460                                       username_, password_, ProtocolAddress(
    461                                           kTurnUdpIntAddr, PROTO_UDP),
    462                                       kRelayCredentials);
    463     port->SetIceProtocolType(ice_protocol_);
    464     return port;
    465   }
    466   RelayPort* CreateGturnPort(const SocketAddress& addr,
    467                              ProtocolType int_proto, ProtocolType ext_proto) {
    468     RelayPort* port = CreateGturnPort(addr);
    469     SocketAddress addrs[] =
    470         { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr };
    471     port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
    472     return port;
    473   }
    474   RelayPort* CreateGturnPort(const SocketAddress& addr) {
    475     RelayPort* port = RelayPort::Create(main_, &socket_factory_, &network_,
    476                                         addr.ipaddr(), 0, 0,
    477                                         username_, password_);
    478     // TODO: Add an external address for ext_proto, so that the
    479     // other side can connect to this port using a non-UDP protocol.
    480     port->SetIceProtocolType(ice_protocol_);
    481     return port;
    482   }
    483   talk_base::NATServer* CreateNatServer(const SocketAddress& addr,
    484                                         talk_base::NATType type) {
    485     return new talk_base::NATServer(type, ss_.get(), addr, ss_.get(), addr);
    486   }
    487   static const char* StunName(NATType type) {
    488     switch (type) {
    489       case NAT_OPEN_CONE:       return "stun(open cone)";
    490       case NAT_ADDR_RESTRICTED: return "stun(addr restricted)";
    491       case NAT_PORT_RESTRICTED: return "stun(port restricted)";
    492       case NAT_SYMMETRIC:       return "stun(symmetric)";
    493       default:                  return "stun(?)";
    494     }
    495   }
    496   static const char* RelayName(RelayType type, ProtocolType proto) {
    497     if (type == RELAY_TURN) {
    498       switch (proto) {
    499         case PROTO_UDP:           return "turn(udp)";
    500         case PROTO_TCP:           return "turn(tcp)";
    501         case PROTO_SSLTCP:        return "turn(ssltcp)";
    502         default:                  return "turn(?)";
    503       }
    504     } else {
    505       switch (proto) {
    506         case PROTO_UDP:           return "gturn(udp)";
    507         case PROTO_TCP:           return "gturn(tcp)";
    508         case PROTO_SSLTCP:        return "gturn(ssltcp)";
    509         default:                  return "gturn(?)";
    510       }
    511     }
    512   }
    513 
    514   void TestCrossFamilyPorts(int type);
    515 
    516   // this does all the work
    517   void TestConnectivity(const char* name1, Port* port1,
    518                         const char* name2, Port* port2,
    519                         bool accept, bool same_addr1,
    520                         bool same_addr2, bool possible);
    521 
    522   void SetIceProtocolType(cricket::IceProtocolType protocol) {
    523     ice_protocol_ = protocol;
    524   }
    525 
    526   IceMessage* CreateStunMessage(int type) {
    527     IceMessage* msg = new IceMessage();
    528     msg->SetType(type);
    529     msg->SetTransactionID("TESTTESTTEST");
    530     return msg;
    531   }
    532   IceMessage* CreateStunMessageWithUsername(int type,
    533                                             const std::string& username) {
    534     IceMessage* msg = CreateStunMessage(type);
    535     msg->AddAttribute(
    536         new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
    537     return msg;
    538   }
    539   TestPort* CreateTestPort(const talk_base::SocketAddress& addr,
    540                            const std::string& username,
    541                            const std::string& password) {
    542     TestPort* port =  new TestPort(main_, "test", &socket_factory_, &network_,
    543                                    addr.ipaddr(), 0, 0, username, password);
    544     port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
    545     return port;
    546   }
    547   TestPort* CreateTestPort(const talk_base::SocketAddress& addr,
    548                            const std::string& username,
    549                            const std::string& password,
    550                            cricket::IceProtocolType type,
    551                            cricket::IceRole role,
    552                            int tiebreaker) {
    553     TestPort* port = CreateTestPort(addr, username, password);
    554     port->SetIceProtocolType(type);
    555     port->SetIceRole(role);
    556     port->SetIceTiebreaker(tiebreaker);
    557     return port;
    558   }
    559 
    560   void OnRoleConflict(PortInterface* port) {
    561     role_conflict_ = true;
    562   }
    563   bool role_conflict() const { return role_conflict_; }
    564 
    565   talk_base::BasicPacketSocketFactory* nat_socket_factory1() {
    566     return &nat_socket_factory1_;
    567   }
    568 
    569  private:
    570   talk_base::Thread* main_;
    571   talk_base::scoped_ptr<talk_base::PhysicalSocketServer> pss_;
    572   talk_base::scoped_ptr<talk_base::VirtualSocketServer> ss_;
    573   talk_base::SocketServerScope ss_scope_;
    574   talk_base::Network network_;
    575   talk_base::BasicPacketSocketFactory socket_factory_;
    576   talk_base::scoped_ptr<talk_base::NATServer> nat_server1_;
    577   talk_base::scoped_ptr<talk_base::NATServer> nat_server2_;
    578   talk_base::NATSocketFactory nat_factory1_;
    579   talk_base::NATSocketFactory nat_factory2_;
    580   talk_base::BasicPacketSocketFactory nat_socket_factory1_;
    581   talk_base::BasicPacketSocketFactory nat_socket_factory2_;
    582   TestStunServer stun_server_;
    583   TestTurnServer turn_server_;
    584   TestRelayServer relay_server_;
    585   std::string username_;
    586   std::string password_;
    587   cricket::IceProtocolType ice_protocol_;
    588   bool role_conflict_;
    589 };
    590 
    591 void PortTest::TestConnectivity(const char* name1, Port* port1,
    592                                 const char* name2, Port* port2,
    593                                 bool accept, bool same_addr1,
    594                                 bool same_addr2, bool possible) {
    595   LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
    596   port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
    597   port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
    598 
    599   // Set up channels.
    600   TestChannel ch1(port1, port2);
    601   TestChannel ch2(port2, port1);
    602   EXPECT_EQ(0, ch1.complete_count());
    603   EXPECT_EQ(0, ch2.complete_count());
    604 
    605   // Acquire addresses.
    606   ch1.Start();
    607   ch2.Start();
    608   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
    609   ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
    610 
    611   // Send a ping from src to dst. This may or may not make it.
    612   ch1.CreateConnection();
    613   ASSERT_TRUE(ch1.conn() != NULL);
    614   EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);  // for TCP connect
    615   ch1.Ping();
    616   WAIT(!ch2.remote_address().IsNil(), kTimeout);
    617 
    618   if (accept) {
    619     // We are able to send a ping from src to dst. This is the case when
    620     // sending to UDP ports and cone NATs.
    621     EXPECT_TRUE(ch1.remote_address().IsNil());
    622     EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
    623 
    624     // Ensure the ping came from the same address used for src.
    625     // This is the case unless the source NAT was symmetric.
    626     if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
    627     EXPECT_TRUE(same_addr2);
    628 
    629     // Send a ping from dst to src.
    630     ch2.AcceptConnection();
    631     ASSERT_TRUE(ch2.conn() != NULL);
    632     ch2.Ping();
    633     EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
    634                    kTimeout);
    635   } else {
    636     // We can't send a ping from src to dst, so flip it around. This will happen
    637     // when the destination NAT is addr/port restricted or symmetric.
    638     EXPECT_TRUE(ch1.remote_address().IsNil());
    639     EXPECT_TRUE(ch2.remote_address().IsNil());
    640 
    641     // Send a ping from dst to src. Again, this may or may not make it.
    642     ch2.CreateConnection();
    643     ASSERT_TRUE(ch2.conn() != NULL);
    644     ch2.Ping();
    645     WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout);
    646 
    647     if (same_addr1 && same_addr2) {
    648       // The new ping got back to the source.
    649       EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
    650       EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
    651 
    652       // First connection may not be writable if the first ping did not get
    653       // through.  So we will have to do another.
    654       if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
    655         ch1.Ping();
    656         EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
    657                        kTimeout);
    658       }
    659     } else if (!same_addr1 && possible) {
    660       // The new ping went to the candidate address, but that address was bad.
    661       // This will happen when the source NAT is symmetric.
    662       EXPECT_TRUE(ch1.remote_address().IsNil());
    663       EXPECT_TRUE(ch2.remote_address().IsNil());
    664 
    665       // However, since we have now sent a ping to the source IP, we should be
    666       // able to get a ping from it. This gives us the real source address.
    667       ch1.Ping();
    668       EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout);
    669       EXPECT_EQ(Connection::STATE_READ_INIT, ch2.conn()->read_state());
    670       EXPECT_TRUE(ch1.remote_address().IsNil());
    671 
    672       // Pick up the actual address and establish the connection.
    673       ch2.AcceptConnection();
    674       ASSERT_TRUE(ch2.conn() != NULL);
    675       ch2.Ping();
    676       EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
    677                      kTimeout);
    678     } else if (!same_addr2 && possible) {
    679       // The new ping came in, but from an unexpected address. This will happen
    680       // when the destination NAT is symmetric.
    681       EXPECT_FALSE(ch1.remote_address().IsNil());
    682       EXPECT_EQ(Connection::STATE_READ_INIT, ch1.conn()->read_state());
    683 
    684       // Update our address and complete the connection.
    685       ch1.AcceptConnection();
    686       ch1.Ping();
    687       EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
    688                      kTimeout);
    689     } else {  // (!possible)
    690       // There should be s no way for the pings to reach each other. Check it.
    691       EXPECT_TRUE(ch1.remote_address().IsNil());
    692       EXPECT_TRUE(ch2.remote_address().IsNil());
    693       ch1.Ping();
    694       WAIT(!ch2.remote_address().IsNil(), kTimeout);
    695       EXPECT_TRUE(ch1.remote_address().IsNil());
    696       EXPECT_TRUE(ch2.remote_address().IsNil());
    697     }
    698   }
    699 
    700   // Everything should be good, unless we know the situation is impossible.
    701   ASSERT_TRUE(ch1.conn() != NULL);
    702   ASSERT_TRUE(ch2.conn() != NULL);
    703   if (possible) {
    704     EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
    705     EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
    706     EXPECT_EQ(Connection::STATE_READABLE, ch2.conn()->read_state());
    707     EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
    708   } else {
    709     EXPECT_NE(Connection::STATE_READABLE, ch1.conn()->read_state());
    710     EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
    711     EXPECT_NE(Connection::STATE_READABLE, ch2.conn()->read_state());
    712     EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
    713   }
    714 
    715   // Tear down and ensure that goes smoothly.
    716   ch1.Stop();
    717   ch2.Stop();
    718   EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
    719   EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
    720 }
    721 
    722 class FakePacketSocketFactory : public talk_base::PacketSocketFactory {
    723  public:
    724   FakePacketSocketFactory()
    725       : next_udp_socket_(NULL),
    726         next_server_tcp_socket_(NULL),
    727         next_client_tcp_socket_(NULL) {
    728   }
    729   virtual ~FakePacketSocketFactory() { }
    730 
    731   virtual AsyncPacketSocket* CreateUdpSocket(
    732       const SocketAddress& address, int min_port, int max_port) {
    733     EXPECT_TRUE(next_udp_socket_ != NULL);
    734     AsyncPacketSocket* result = next_udp_socket_;
    735     next_udp_socket_ = NULL;
    736     return result;
    737   }
    738 
    739   virtual AsyncPacketSocket* CreateServerTcpSocket(
    740       const SocketAddress& local_address, int min_port, int max_port,
    741       int opts) {
    742     EXPECT_TRUE(next_server_tcp_socket_ != NULL);
    743     AsyncPacketSocket* result = next_server_tcp_socket_;
    744     next_server_tcp_socket_ = NULL;
    745     return result;
    746   }
    747 
    748   // TODO: |proxy_info| and |user_agent| should be set
    749   // per-factory and not when socket is created.
    750   virtual AsyncPacketSocket* CreateClientTcpSocket(
    751       const SocketAddress& local_address, const SocketAddress& remote_address,
    752       const talk_base::ProxyInfo& proxy_info,
    753       const std::string& user_agent, int opts) {
    754     EXPECT_TRUE(next_client_tcp_socket_ != NULL);
    755     AsyncPacketSocket* result = next_client_tcp_socket_;
    756     next_client_tcp_socket_ = NULL;
    757     return result;
    758   }
    759 
    760   void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
    761     next_udp_socket_ = next_udp_socket;
    762   }
    763   void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
    764     next_server_tcp_socket_ = next_server_tcp_socket;
    765   }
    766   void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
    767     next_client_tcp_socket_ = next_client_tcp_socket;
    768   }
    769 
    770  private:
    771   AsyncPacketSocket* next_udp_socket_;
    772   AsyncPacketSocket* next_server_tcp_socket_;
    773   AsyncPacketSocket* next_client_tcp_socket_;
    774 };
    775 
    776 class FakeAsyncPacketSocket : public AsyncPacketSocket {
    777  public:
    778   // Returns current local address. Address may be set to NULL if the
    779   // socket is not bound yet (GetState() returns STATE_BINDING).
    780   virtual SocketAddress GetLocalAddress() const {
    781     return SocketAddress();
    782   }
    783 
    784   // Returns remote address. Returns zeroes if this is not a client TCP socket.
    785   virtual SocketAddress GetRemoteAddress() const {
    786     return SocketAddress();
    787   }
    788 
    789   // Send a packet.
    790   virtual int Send(const void *pv, size_t cb) {
    791     return static_cast<int>(cb);
    792   }
    793   virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr) {
    794     return static_cast<int>(cb);
    795   }
    796   virtual int Close() {
    797     return 0;
    798   }
    799 
    800   virtual State GetState() const { return state_; }
    801   virtual int GetOption(Socket::Option opt, int* value) { return 0; }
    802   virtual int SetOption(Socket::Option opt, int value) { return 0; }
    803   virtual int GetError() const { return 0; }
    804   virtual void SetError(int error) { }
    805 
    806   void set_state(State state) { state_ = state; }
    807 
    808  private:
    809   State state_;
    810 };
    811 
    812 // Local -> XXXX
    813 TEST_F(PortTest, TestLocalToLocal) {
    814   TestLocalToLocal();
    815 }
    816 
    817 TEST_F(PortTest, TestLocalToConeNat) {
    818   TestLocalToStun(NAT_OPEN_CONE);
    819 }
    820 
    821 TEST_F(PortTest, TestLocalToARNat) {
    822   TestLocalToStun(NAT_ADDR_RESTRICTED);
    823 }
    824 
    825 TEST_F(PortTest, TestLocalToPRNat) {
    826   TestLocalToStun(NAT_PORT_RESTRICTED);
    827 }
    828 
    829 TEST_F(PortTest, TestLocalToSymNat) {
    830   TestLocalToStun(NAT_SYMMETRIC);
    831 }
    832 
    833 TEST_F(PortTest, TestLocalToTurn) {
    834   TestLocalToRelay(RELAY_TURN, PROTO_UDP);
    835 }
    836 
    837 TEST_F(PortTest, TestLocalToGturn) {
    838   TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
    839 }
    840 
    841 TEST_F(PortTest, TestLocalToTcpGturn) {
    842   TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
    843 }
    844 
    845 TEST_F(PortTest, TestLocalToSslTcpGturn) {
    846   TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
    847 }
    848 
    849 // Cone NAT -> XXXX
    850 TEST_F(PortTest, TestConeNatToLocal) {
    851   TestStunToLocal(NAT_OPEN_CONE);
    852 }
    853 
    854 TEST_F(PortTest, TestConeNatToConeNat) {
    855   TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
    856 }
    857 
    858 TEST_F(PortTest, TestConeNatToARNat) {
    859   TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
    860 }
    861 
    862 TEST_F(PortTest, TestConeNatToPRNat) {
    863   TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
    864 }
    865 
    866 TEST_F(PortTest, TestConeNatToSymNat) {
    867   TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
    868 }
    869 
    870 TEST_F(PortTest, TestConeNatToTurn) {
    871   TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
    872 }
    873 
    874 TEST_F(PortTest, TestConeNatToGturn) {
    875   TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
    876 }
    877 
    878 TEST_F(PortTest, TestConeNatToTcpGturn) {
    879   TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
    880 }
    881 
    882 // Address-restricted NAT -> XXXX
    883 TEST_F(PortTest, TestARNatToLocal) {
    884   TestStunToLocal(NAT_ADDR_RESTRICTED);
    885 }
    886 
    887 TEST_F(PortTest, TestARNatToConeNat) {
    888   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
    889 }
    890 
    891 TEST_F(PortTest, TestARNatToARNat) {
    892   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
    893 }
    894 
    895 TEST_F(PortTest, TestARNatToPRNat) {
    896   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
    897 }
    898 
    899 TEST_F(PortTest, TestARNatToSymNat) {
    900   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
    901 }
    902 
    903 TEST_F(PortTest, TestARNatToTurn) {
    904   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
    905 }
    906 
    907 TEST_F(PortTest, TestARNatToGturn) {
    908   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
    909 }
    910 
    911 TEST_F(PortTest, TestARNATNatToTcpGturn) {
    912   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
    913 }
    914 
    915 // Port-restricted NAT -> XXXX
    916 TEST_F(PortTest, TestPRNatToLocal) {
    917   TestStunToLocal(NAT_PORT_RESTRICTED);
    918 }
    919 
    920 TEST_F(PortTest, TestPRNatToConeNat) {
    921   TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
    922 }
    923 
    924 TEST_F(PortTest, TestPRNatToARNat) {
    925   TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
    926 }
    927 
    928 TEST_F(PortTest, TestPRNatToPRNat) {
    929   TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
    930 }
    931 
    932 TEST_F(PortTest, TestPRNatToSymNat) {
    933   // Will "fail"
    934   TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
    935 }
    936 
    937 TEST_F(PortTest, TestPRNatToTurn) {
    938   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
    939 }
    940 
    941 TEST_F(PortTest, TestPRNatToGturn) {
    942   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
    943 }
    944 
    945 TEST_F(PortTest, TestPRNatToTcpGturn) {
    946   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
    947 }
    948 
    949 // Symmetric NAT -> XXXX
    950 TEST_F(PortTest, TestSymNatToLocal) {
    951   TestStunToLocal(NAT_SYMMETRIC);
    952 }
    953 
    954 TEST_F(PortTest, TestSymNatToConeNat) {
    955   TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
    956 }
    957 
    958 TEST_F(PortTest, TestSymNatToARNat) {
    959   TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
    960 }
    961 
    962 TEST_F(PortTest, TestSymNatToPRNat) {
    963   // Will "fail"
    964   TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
    965 }
    966 
    967 TEST_F(PortTest, TestSymNatToSymNat) {
    968   // Will "fail"
    969   TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
    970 }
    971 
    972 TEST_F(PortTest, TestSymNatToTurn) {
    973   TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
    974 }
    975 
    976 TEST_F(PortTest, TestSymNatToGturn) {
    977   TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
    978 }
    979 
    980 TEST_F(PortTest, TestSymNatToTcpGturn) {
    981   TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
    982 }
    983 
    984 // Outbound TCP -> XXXX
    985 TEST_F(PortTest, TestTcpToTcp) {
    986   TestTcpToTcp();
    987 }
    988 
    989 /* TODO: Enable these once testrelayserver can accept external TCP.
    990 TEST_F(PortTest, TestTcpToTcpRelay) {
    991   TestTcpToRelay(PROTO_TCP);
    992 }
    993 
    994 TEST_F(PortTest, TestTcpToSslTcpRelay) {
    995   TestTcpToRelay(PROTO_SSLTCP);
    996 }
    997 */
    998 
    999 // Outbound SSLTCP -> XXXX
   1000 /* TODO: Enable these once testrelayserver can accept external SSL.
   1001 TEST_F(PortTest, TestSslTcpToTcpRelay) {
   1002   TestSslTcpToRelay(PROTO_TCP);
   1003 }
   1004 
   1005 TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
   1006   TestSslTcpToRelay(PROTO_SSLTCP);
   1007 }
   1008 */
   1009 
   1010 // This test case verifies standard ICE features in STUN messages. Currently it
   1011 // verifies Message Integrity attribute in STUN messages and username in STUN
   1012 // binding request will have colon (":") between remote and local username.
   1013 TEST_F(PortTest, TestLocalToLocalAsIce) {
   1014   SetIceProtocolType(cricket::ICEPROTO_RFC5245);
   1015   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
   1016   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1017   port1->SetIceTiebreaker(kTiebreaker1);
   1018   ASSERT_EQ(cricket::ICEPROTO_RFC5245, port1->IceProtocol());
   1019   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
   1020   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
   1021   port2->SetIceTiebreaker(kTiebreaker2);
   1022   ASSERT_EQ(cricket::ICEPROTO_RFC5245, port2->IceProtocol());
   1023   // Same parameters as TestLocalToLocal above.
   1024   TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
   1025 }
   1026 
   1027 // This test is trying to validate a successful and failure scenario in a
   1028 // loopback test when protocol is RFC5245. For success IceTiebreaker, username
   1029 // should remain equal to the request generated by the port and role of port
   1030 // must be in controlling.
   1031 TEST_F(PortTest, TestLoopbackCallAsIce) {
   1032   talk_base::scoped_ptr<TestPort> lport(
   1033       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1034   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1035   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1036   lport->SetIceTiebreaker(kTiebreaker1);
   1037   lport->PrepareAddress();
   1038   ASSERT_FALSE(lport->Candidates().empty());
   1039   Connection* conn = lport->CreateConnection(lport->Candidates()[0],
   1040                                              Port::ORIGIN_MESSAGE);
   1041   conn->Ping(0);
   1042 
   1043   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1044   IceMessage* msg = lport->last_stun_msg();
   1045   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1046   conn->OnReadPacket(lport->last_stun_buf()->Data(),
   1047                      lport->last_stun_buf()->Length());
   1048   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1049   msg = lport->last_stun_msg();
   1050   EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
   1051 
   1052   // If the tiebreaker value is different from port, we expect a error
   1053   // response.
   1054   lport->Reset();
   1055   lport->AddCandidateAddress(kLocalAddr2);
   1056   // Creating a different connection as |conn| is in STATE_READABLE.
   1057   Connection* conn1 = lport->CreateConnection(lport->Candidates()[1],
   1058                                               Port::ORIGIN_MESSAGE);
   1059   conn1->Ping(0);
   1060 
   1061   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1062   msg = lport->last_stun_msg();
   1063   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1064   talk_base::scoped_ptr<IceMessage> modified_req(
   1065       CreateStunMessage(STUN_BINDING_REQUEST));
   1066   const StunByteStringAttribute* username_attr = msg->GetByteString(
   1067       STUN_ATTR_USERNAME);
   1068   modified_req->AddAttribute(new StunByteStringAttribute(
   1069       STUN_ATTR_USERNAME, username_attr->GetString()));
   1070   // To make sure we receive error response, adding tiebreaker less than
   1071   // what's present in request.
   1072   modified_req->AddAttribute(new StunUInt64Attribute(
   1073       STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
   1074   modified_req->AddMessageIntegrity("lpass");
   1075   modified_req->AddFingerprint();
   1076 
   1077   lport->Reset();
   1078   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1079   WriteStunMessage(modified_req.get(), buf.get());
   1080   conn1->OnReadPacket(buf->Data(), buf->Length());
   1081   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1082   msg = lport->last_stun_msg();
   1083   EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
   1084 }
   1085 
   1086 // This test verifies role conflict signal is received when there is
   1087 // conflict in the role. In this case both ports are in controlling and
   1088 // |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
   1089 // value of tiebreaker, when it receives ping request from |rport| it will
   1090 // send role conflict signal.
   1091 TEST_F(PortTest, TestIceRoleConflict) {
   1092   talk_base::scoped_ptr<TestPort> lport(
   1093       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1094   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1095   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1096   lport->SetIceTiebreaker(kTiebreaker1);
   1097   talk_base::scoped_ptr<TestPort> rport(
   1098       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1099   rport->SetIceProtocolType(ICEPROTO_RFC5245);
   1100   rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1101   rport->SetIceTiebreaker(kTiebreaker2);
   1102 
   1103   lport->PrepareAddress();
   1104   rport->PrepareAddress();
   1105   ASSERT_FALSE(lport->Candidates().empty());
   1106   ASSERT_FALSE(rport->Candidates().empty());
   1107   Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
   1108                                               Port::ORIGIN_MESSAGE);
   1109   Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
   1110                                               Port::ORIGIN_MESSAGE);
   1111   rconn->Ping(0);
   1112 
   1113   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
   1114   IceMessage* msg = rport->last_stun_msg();
   1115   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1116   // Send rport binding request to lport.
   1117   lconn->OnReadPacket(rport->last_stun_buf()->Data(),
   1118                       rport->last_stun_buf()->Length());
   1119 
   1120   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1121   EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
   1122   EXPECT_TRUE(role_conflict());
   1123 }
   1124 
   1125 TEST_F(PortTest, TestTcpNoDelay) {
   1126   TCPPort* port1 = CreateTcpPort(kLocalAddr1);
   1127   int option_value = -1;
   1128   int success = port1->GetOption(talk_base::Socket::OPT_NODELAY,
   1129                                  &option_value);
   1130   ASSERT_EQ(0, success);  // GetOption() should complete successfully w/ 0
   1131   ASSERT_EQ(1, option_value);
   1132   delete port1;
   1133 }
   1134 
   1135 TEST_F(PortTest, TestDelayedBindingUdp) {
   1136   FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
   1137   FakePacketSocketFactory socket_factory;
   1138 
   1139   socket_factory.set_next_udp_socket(socket);
   1140   scoped_ptr<UDPPort> port(
   1141       CreateUdpPort(kLocalAddr1, &socket_factory));
   1142 
   1143   socket->set_state(AsyncPacketSocket::STATE_BINDING);
   1144   port->PrepareAddress();
   1145 
   1146   EXPECT_EQ(0U, port->Candidates().size());
   1147   socket->SignalAddressReady(socket, kLocalAddr2);
   1148 
   1149   EXPECT_EQ(1U, port->Candidates().size());
   1150 }
   1151 
   1152 TEST_F(PortTest, TestDelayedBindingTcp) {
   1153   FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
   1154   FakePacketSocketFactory socket_factory;
   1155 
   1156   socket_factory.set_next_server_tcp_socket(socket);
   1157   scoped_ptr<TCPPort> port(
   1158       CreateTcpPort(kLocalAddr1, &socket_factory));
   1159 
   1160   socket->set_state(AsyncPacketSocket::STATE_BINDING);
   1161   port->PrepareAddress();
   1162 
   1163   EXPECT_EQ(0U, port->Candidates().size());
   1164   socket->SignalAddressReady(socket, kLocalAddr2);
   1165 
   1166   EXPECT_EQ(1U, port->Candidates().size());
   1167 }
   1168 
   1169 void PortTest::TestCrossFamilyPorts(int type) {
   1170   FakePacketSocketFactory factory;
   1171   scoped_ptr<Port> ports[4];
   1172   SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0),
   1173                                 SocketAddress("192.168.1.4", 0),
   1174                                 SocketAddress("2001:db8::1", 0),
   1175                                 SocketAddress("2001:db8::2", 0)};
   1176   for (int i = 0; i < 4; i++) {
   1177     FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
   1178     if (type == SOCK_DGRAM) {
   1179       factory.set_next_udp_socket(socket);
   1180       ports[i].reset(CreateUdpPort(addresses[i], &factory));
   1181     } else if (type == SOCK_STREAM) {
   1182       factory.set_next_server_tcp_socket(socket);
   1183       ports[i].reset(CreateTcpPort(addresses[i], &factory));
   1184     }
   1185     socket->set_state(AsyncPacketSocket::STATE_BINDING);
   1186     socket->SignalAddressReady(socket, addresses[i]);
   1187     ports[i]->PrepareAddress();
   1188   }
   1189 
   1190   // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
   1191   if (type == SOCK_STREAM) {
   1192     FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
   1193     factory.set_next_client_tcp_socket(clientsocket);
   1194   }
   1195   Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
   1196                                              Port::ORIGIN_MESSAGE);
   1197   EXPECT_TRUE(NULL == c);
   1198   EXPECT_EQ(0U, ports[0]->connections().size());
   1199   c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
   1200                                  Port::ORIGIN_MESSAGE);
   1201   EXPECT_FALSE(NULL == c);
   1202   EXPECT_EQ(1U, ports[0]->connections().size());
   1203 
   1204   // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
   1205   if (type == SOCK_STREAM) {
   1206     FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
   1207     factory.set_next_client_tcp_socket(clientsocket);
   1208   }
   1209   c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
   1210                                  Port::ORIGIN_MESSAGE);
   1211   EXPECT_TRUE(NULL == c);
   1212   EXPECT_EQ(0U, ports[2]->connections().size());
   1213   c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
   1214                                  Port::ORIGIN_MESSAGE);
   1215   EXPECT_FALSE(NULL == c);
   1216   EXPECT_EQ(1U, ports[2]->connections().size());
   1217 }
   1218 
   1219 TEST_F(PortTest, TestSkipCrossFamilyTcp) {
   1220   TestCrossFamilyPorts(SOCK_STREAM);
   1221 }
   1222 
   1223 TEST_F(PortTest, TestSkipCrossFamilyUdp) {
   1224   TestCrossFamilyPorts(SOCK_DGRAM);
   1225 }
   1226 
   1227 // Test sending STUN messages in GICE format.
   1228 TEST_F(PortTest, TestSendStunMessageAsGice) {
   1229   talk_base::scoped_ptr<TestPort> lport(
   1230       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1231   talk_base::scoped_ptr<TestPort> rport(
   1232       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1233   lport->SetIceProtocolType(ICEPROTO_GOOGLE);
   1234   rport->SetIceProtocolType(ICEPROTO_GOOGLE);
   1235 
   1236   // Send a fake ping from lport to rport.
   1237   lport->PrepareAddress();
   1238   rport->PrepareAddress();
   1239   ASSERT_FALSE(rport->Candidates().empty());
   1240   Connection* conn = lport->CreateConnection(rport->Candidates()[0],
   1241       Port::ORIGIN_MESSAGE);
   1242   rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
   1243   conn->Ping(0);
   1244 
   1245   // Check that it's a proper BINDING-REQUEST.
   1246   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1247   IceMessage* msg = lport->last_stun_msg();
   1248   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1249   EXPECT_FALSE(msg->IsLegacy());
   1250   const StunByteStringAttribute* username_attr = msg->GetByteString(
   1251       STUN_ATTR_USERNAME);
   1252   ASSERT_TRUE(username_attr != NULL);
   1253   EXPECT_EQ("rfraglfrag", username_attr->GetString());
   1254   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
   1255   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1256   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
   1257 
   1258   // Save a copy of the BINDING-REQUEST for use below.
   1259   talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
   1260 
   1261   // Respond with a BINDING-RESPONSE.
   1262   rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
   1263   msg = rport->last_stun_msg();
   1264   ASSERT_TRUE(msg != NULL);
   1265   EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
   1266   EXPECT_FALSE(msg->IsLegacy());
   1267   username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
   1268   ASSERT_TRUE(username_attr != NULL);  // GICE has a username in the response.
   1269   EXPECT_EQ("rfraglfrag", username_attr->GetString());
   1270   const StunAddressAttribute* addr_attr = msg->GetAddress(
   1271       STUN_ATTR_MAPPED_ADDRESS);
   1272   ASSERT_TRUE(addr_attr != NULL);
   1273   EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
   1274   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_XOR_MAPPED_ADDRESS) == NULL);
   1275   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
   1276   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1277   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
   1278 
   1279   // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
   1280   // but we can do it here.
   1281   rport->SendBindingErrorResponse(request.get(),
   1282                                   rport->Candidates()[0].address(),
   1283                                   STUN_ERROR_SERVER_ERROR,
   1284                                   STUN_ERROR_REASON_SERVER_ERROR);
   1285   msg = rport->last_stun_msg();
   1286   ASSERT_TRUE(msg != NULL);
   1287   EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
   1288   EXPECT_FALSE(msg->IsLegacy());
   1289   username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
   1290   ASSERT_TRUE(username_attr != NULL);  // GICE has a username in the response.
   1291   EXPECT_EQ("rfraglfrag", username_attr->GetString());
   1292   const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
   1293   ASSERT_TRUE(error_attr != NULL);
   1294   // The GICE wire format for error codes is incorrect.
   1295   EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, error_attr->code());
   1296   EXPECT_EQ(STUN_ERROR_SERVER_ERROR / 256, error_attr->eclass());
   1297   EXPECT_EQ(STUN_ERROR_SERVER_ERROR % 256, error_attr->number());
   1298   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
   1299   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1300   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
   1301   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
   1302 }
   1303 
   1304 // Test sending STUN messages in ICE format.
   1305 TEST_F(PortTest, TestSendStunMessageAsIce) {
   1306   talk_base::scoped_ptr<TestPort> lport(
   1307       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1308   talk_base::scoped_ptr<TestPort> rport(
   1309       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1310   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1311   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1312   lport->SetIceTiebreaker(kTiebreaker1);
   1313   rport->SetIceProtocolType(ICEPROTO_RFC5245);
   1314   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   1315   rport->SetIceTiebreaker(kTiebreaker2);
   1316 
   1317   // Send a fake ping from lport to rport.
   1318   lport->PrepareAddress();
   1319   rport->PrepareAddress();
   1320   ASSERT_FALSE(rport->Candidates().empty());
   1321   Connection* lconn = lport->CreateConnection(
   1322       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
   1323   Connection* rconn = rport->CreateConnection(
   1324       lport->Candidates()[0], Port::ORIGIN_MESSAGE);
   1325   lconn->Ping(0);
   1326 
   1327   // Check that it's a proper BINDING-REQUEST.
   1328   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1329   IceMessage* msg = lport->last_stun_msg();
   1330   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1331   EXPECT_FALSE(msg->IsLegacy());
   1332   const StunByteStringAttribute* username_attr =
   1333       msg->GetByteString(STUN_ATTR_USERNAME);
   1334   ASSERT_TRUE(username_attr != NULL);
   1335   const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
   1336   ASSERT_TRUE(priority_attr != NULL);
   1337   EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
   1338   EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
   1339   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
   1340   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
   1341       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length(),
   1342       "rpass"));
   1343   const StunUInt64Attribute* ice_controlling_attr =
   1344       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
   1345   ASSERT_TRUE(ice_controlling_attr != NULL);
   1346   EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
   1347   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
   1348   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
   1349   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
   1350   EXPECT_TRUE(StunMessage::ValidateFingerprint(
   1351       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
   1352 
   1353   // Request should not include ping count.
   1354   ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
   1355 
   1356   // Save a copy of the BINDING-REQUEST for use below.
   1357   talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
   1358 
   1359   // Respond with a BINDING-RESPONSE.
   1360   rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
   1361   msg = rport->last_stun_msg();
   1362   ASSERT_TRUE(msg != NULL);
   1363   EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
   1364 
   1365 
   1366   EXPECT_FALSE(msg->IsLegacy());
   1367   const StunAddressAttribute* addr_attr = msg->GetAddress(
   1368       STUN_ATTR_XOR_MAPPED_ADDRESS);
   1369   ASSERT_TRUE(addr_attr != NULL);
   1370   EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
   1371   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
   1372   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
   1373       rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
   1374       "rpass"));
   1375   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
   1376   EXPECT_TRUE(StunMessage::ValidateFingerprint(
   1377       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
   1378   // No USERNAME or PRIORITY in ICE responses.
   1379   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
   1380   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1381   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
   1382   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
   1383   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
   1384   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
   1385 
   1386   // Response should not include ping count.
   1387   ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
   1388 
   1389   // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
   1390   // but we can do it here.
   1391   rport->SendBindingErrorResponse(request.get(),
   1392                                   lport->Candidates()[0].address(),
   1393                                   STUN_ERROR_SERVER_ERROR,
   1394                                   STUN_ERROR_REASON_SERVER_ERROR);
   1395   msg = rport->last_stun_msg();
   1396   ASSERT_TRUE(msg != NULL);
   1397   EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
   1398   EXPECT_FALSE(msg->IsLegacy());
   1399   const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
   1400   ASSERT_TRUE(error_attr != NULL);
   1401   EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
   1402   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
   1403   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
   1404   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
   1405       rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
   1406       "rpass"));
   1407   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
   1408   EXPECT_TRUE(StunMessage::ValidateFingerprint(
   1409       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
   1410   // No USERNAME with ICE.
   1411   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
   1412   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1413 
   1414   // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
   1415   // and (incremented) RETRANSMIT_COUNT attributes.
   1416   rport->Reset();
   1417   rport->set_send_retransmit_count_attribute(true);
   1418   rconn->Ping(0);
   1419   rconn->Ping(0);
   1420   rconn->Ping(0);
   1421   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
   1422   msg = rport->last_stun_msg();
   1423   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1424   const StunUInt64Attribute* ice_controlled_attr =
   1425       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
   1426   ASSERT_TRUE(ice_controlled_attr != NULL);
   1427   EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
   1428   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
   1429 
   1430   // Request should include ping count.
   1431   const StunUInt32Attribute* retransmit_attr =
   1432       msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
   1433   ASSERT_TRUE(retransmit_attr != NULL);
   1434   EXPECT_EQ(2U, retransmit_attr->value());
   1435 
   1436   // Respond with a BINDING-RESPONSE.
   1437   request.reset(CopyStunMessage(msg));
   1438   lport->SendBindingResponse(request.get(), rport->Candidates()[0].address());
   1439   msg = lport->last_stun_msg();
   1440 
   1441   // Response should include same ping count.
   1442   retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
   1443   ASSERT_TRUE(retransmit_attr != NULL);
   1444   EXPECT_EQ(2U, retransmit_attr->value());
   1445 }
   1446 
   1447 TEST_F(PortTest, TestUseCandidateAttribute) {
   1448   talk_base::scoped_ptr<TestPort> lport(
   1449       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1450   talk_base::scoped_ptr<TestPort> rport(
   1451       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1452   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1453   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1454   lport->SetIceTiebreaker(kTiebreaker1);
   1455   rport->SetIceProtocolType(ICEPROTO_RFC5245);
   1456   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   1457   rport->SetIceTiebreaker(kTiebreaker2);
   1458 
   1459   // Send a fake ping from lport to rport.
   1460   lport->PrepareAddress();
   1461   rport->PrepareAddress();
   1462   ASSERT_FALSE(rport->Candidates().empty());
   1463   Connection* lconn = lport->CreateConnection(
   1464       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
   1465   lconn->Ping(0);
   1466   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1467   IceMessage* msg = lport->last_stun_msg();
   1468   const StunUInt64Attribute* ice_controlling_attr =
   1469       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
   1470   ASSERT_TRUE(ice_controlling_attr != NULL);
   1471   const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(
   1472       STUN_ATTR_USE_CANDIDATE);
   1473   ASSERT_TRUE(use_candidate_attr != NULL);
   1474 }
   1475 
   1476 // Test handling STUN messages in GICE format.
   1477 TEST_F(PortTest, TestHandleStunMessageAsGice) {
   1478   // Our port will act as the "remote" port.
   1479   talk_base::scoped_ptr<TestPort> port(
   1480       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1481   port->SetIceProtocolType(ICEPROTO_GOOGLE);
   1482 
   1483   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1484   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1485   talk_base::SocketAddress addr(kLocalAddr1);
   1486   std::string username;
   1487 
   1488   // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
   1489   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1490                                              "rfraglfrag"));
   1491   WriteStunMessage(in_msg.get(), buf.get());
   1492   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1493                                    out_msg.accept(), &username));
   1494   EXPECT_TRUE(out_msg.get() != NULL);  // Succeeds, since this is GICE.
   1495   EXPECT_EQ("lfrag", username);
   1496 
   1497   // Add M-I; should be ignored and rest of message parsed normally.
   1498   in_msg->AddMessageIntegrity("password");
   1499   WriteStunMessage(in_msg.get(), buf.get());
   1500   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1501                                    out_msg.accept(), &username));
   1502   EXPECT_TRUE(out_msg.get() != NULL);
   1503   EXPECT_EQ("lfrag", username);
   1504 
   1505   // BINDING-RESPONSE with username, as done in GICE. Should succeed.
   1506   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_RESPONSE,
   1507                                              "rfraglfrag"));
   1508   in_msg->AddAttribute(
   1509       new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
   1510   WriteStunMessage(in_msg.get(), buf.get());
   1511   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1512                                    out_msg.accept(), &username));
   1513   EXPECT_TRUE(out_msg.get() != NULL);
   1514   EXPECT_EQ("", username);
   1515 
   1516   // BINDING-RESPONSE without username. Should be tolerated as well.
   1517   in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
   1518   in_msg->AddAttribute(
   1519       new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
   1520   WriteStunMessage(in_msg.get(), buf.get());
   1521   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1522                                    out_msg.accept(), &username));
   1523   EXPECT_TRUE(out_msg.get() != NULL);
   1524   EXPECT_EQ("", username);
   1525 
   1526   // BINDING-ERROR-RESPONSE with username and error code.
   1527   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_ERROR_RESPONSE,
   1528                                              "rfraglfrag"));
   1529   in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
   1530       STUN_ERROR_SERVER_ERROR_AS_GICE, STUN_ERROR_REASON_SERVER_ERROR));
   1531   WriteStunMessage(in_msg.get(), buf.get());
   1532   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1533                                    out_msg.accept(), &username));
   1534   ASSERT_TRUE(out_msg.get() != NULL);
   1535   EXPECT_EQ("", username);
   1536   ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
   1537   // GetStunMessage doesn't unmunge the GICE error code (happens downstream).
   1538   EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, out_msg->GetErrorCode()->code());
   1539   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
   1540       out_msg->GetErrorCode()->reason());
   1541 }
   1542 
   1543 // Test handling STUN messages in ICE format.
   1544 TEST_F(PortTest, TestHandleStunMessageAsIce) {
   1545   // Our port will act as the "remote" port.
   1546   talk_base::scoped_ptr<TestPort> port(
   1547       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1548   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1549 
   1550   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1551   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1552   talk_base::SocketAddress addr(kLocalAddr1);
   1553   std::string username;
   1554 
   1555   // BINDING-REQUEST from local to remote with valid ICE username,
   1556   // MESSAGE-INTEGRITY, and FINGERPRINT.
   1557   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1558                                              "rfrag:lfrag"));
   1559   in_msg->AddMessageIntegrity("rpass");
   1560   in_msg->AddFingerprint();
   1561   WriteStunMessage(in_msg.get(), buf.get());
   1562   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1563                                    out_msg.accept(), &username));
   1564   EXPECT_TRUE(out_msg.get() != NULL);
   1565   EXPECT_EQ("lfrag", username);
   1566 
   1567   // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
   1568   in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
   1569   in_msg->AddAttribute(
   1570       new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
   1571   in_msg->AddMessageIntegrity("rpass");
   1572   in_msg->AddFingerprint();
   1573   WriteStunMessage(in_msg.get(), buf.get());
   1574   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1575                                    out_msg.accept(), &username));
   1576   EXPECT_TRUE(out_msg.get() != NULL);
   1577   EXPECT_EQ("", username);
   1578 
   1579   // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
   1580   in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
   1581   in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
   1582       STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
   1583   in_msg->AddFingerprint();
   1584   WriteStunMessage(in_msg.get(), buf.get());
   1585   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1586                                    out_msg.accept(), &username));
   1587   EXPECT_TRUE(out_msg.get() != NULL);
   1588   EXPECT_EQ("", username);
   1589   ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
   1590   EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
   1591   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
   1592       out_msg->GetErrorCode()->reason());
   1593 }
   1594 
   1595 // Tests handling of GICE binding requests with missing or incorrect usernames.
   1596 TEST_F(PortTest, TestHandleStunMessageAsGiceBadUsername) {
   1597   talk_base::scoped_ptr<TestPort> port(
   1598       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1599   port->SetIceProtocolType(ICEPROTO_GOOGLE);
   1600 
   1601   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1602   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1603   talk_base::SocketAddress addr(kLocalAddr1);
   1604   std::string username;
   1605 
   1606   // BINDING-REQUEST with no username.
   1607   in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
   1608   WriteStunMessage(in_msg.get(), buf.get());
   1609   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1610                                    out_msg.accept(), &username));
   1611   EXPECT_TRUE(out_msg.get() == NULL);
   1612   EXPECT_EQ("", username);
   1613   EXPECT_EQ(STUN_ERROR_BAD_REQUEST_AS_GICE, port->last_stun_error_code());
   1614 
   1615   // BINDING-REQUEST with empty username.
   1616   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
   1617   WriteStunMessage(in_msg.get(), buf.get());
   1618   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1619                                    out_msg.accept(), &username));
   1620   EXPECT_TRUE(out_msg.get() == NULL);
   1621   EXPECT_EQ("", username);
   1622   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
   1623 
   1624   // BINDING-REQUEST with too-short username.
   1625   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfra"));
   1626   WriteStunMessage(in_msg.get(), buf.get());
   1627   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1628                                    out_msg.accept(), &username));
   1629   EXPECT_TRUE(out_msg.get() == NULL);
   1630   EXPECT_EQ("", username);
   1631   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
   1632 
   1633   // BINDING-REQUEST with reversed username.
   1634   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1635                                              "lfragrfrag"));
   1636   WriteStunMessage(in_msg.get(), buf.get());
   1637   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1638                                    out_msg.accept(), &username));
   1639   EXPECT_TRUE(out_msg.get() == NULL);
   1640   EXPECT_EQ("", username);
   1641   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
   1642 
   1643   // BINDING-REQUEST with garbage username.
   1644   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1645                                              "abcdefgh"));
   1646   WriteStunMessage(in_msg.get(), buf.get());
   1647   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1648                                    out_msg.accept(), &username));
   1649   EXPECT_TRUE(out_msg.get() == NULL);
   1650   EXPECT_EQ("", username);
   1651   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
   1652 }
   1653 
   1654 // Tests handling of ICE binding requests with missing or incorrect usernames.
   1655 TEST_F(PortTest, TestHandleStunMessageAsIceBadUsername) {
   1656   talk_base::scoped_ptr<TestPort> port(
   1657       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1658   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1659 
   1660   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1661   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1662   talk_base::SocketAddress addr(kLocalAddr1);
   1663   std::string username;
   1664 
   1665   // BINDING-REQUEST with no username.
   1666   in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
   1667   in_msg->AddMessageIntegrity("rpass");
   1668   in_msg->AddFingerprint();
   1669   WriteStunMessage(in_msg.get(), buf.get());
   1670   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1671                                    out_msg.accept(), &username));
   1672   EXPECT_TRUE(out_msg.get() == NULL);
   1673   EXPECT_EQ("", username);
   1674   EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
   1675 
   1676   // BINDING-REQUEST with empty username.
   1677   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
   1678   in_msg->AddMessageIntegrity("rpass");
   1679   in_msg->AddFingerprint();
   1680   WriteStunMessage(in_msg.get(), buf.get());
   1681   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1682                                    out_msg.accept(), &username));
   1683   EXPECT_TRUE(out_msg.get() == NULL);
   1684   EXPECT_EQ("", username);
   1685   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1686 
   1687   // BINDING-REQUEST with too-short username.
   1688   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
   1689   in_msg->AddMessageIntegrity("rpass");
   1690   in_msg->AddFingerprint();
   1691   WriteStunMessage(in_msg.get(), buf.get());
   1692   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1693                                    out_msg.accept(), &username));
   1694   EXPECT_TRUE(out_msg.get() == NULL);
   1695   EXPECT_EQ("", username);
   1696   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1697 
   1698   // BINDING-REQUEST with reversed username.
   1699   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1700                                             "lfrag:rfrag"));
   1701   in_msg->AddMessageIntegrity("rpass");
   1702   in_msg->AddFingerprint();
   1703   WriteStunMessage(in_msg.get(), buf.get());
   1704   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1705                                    out_msg.accept(), &username));
   1706   EXPECT_TRUE(out_msg.get() == NULL);
   1707   EXPECT_EQ("", username);
   1708   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1709 
   1710   // BINDING-REQUEST with garbage username.
   1711   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1712                                              "abcd:efgh"));
   1713   in_msg->AddMessageIntegrity("rpass");
   1714   in_msg->AddFingerprint();
   1715   WriteStunMessage(in_msg.get(), buf.get());
   1716   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1717                                    out_msg.accept(), &username));
   1718   EXPECT_TRUE(out_msg.get() == NULL);
   1719   EXPECT_EQ("", username);
   1720   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1721 }
   1722 
   1723 // Test handling STUN messages (as ICE) with missing or malformed M-I.
   1724 TEST_F(PortTest, TestHandleStunMessageAsIceBadMessageIntegrity) {
   1725   // Our port will act as the "remote" port.
   1726   talk_base::scoped_ptr<TestPort> port(
   1727       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1728   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1729 
   1730   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1731   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1732   talk_base::SocketAddress addr(kLocalAddr1);
   1733   std::string username;
   1734 
   1735   // BINDING-REQUEST from local to remote with valid ICE username and
   1736   // FINGERPRINT, but no MESSAGE-INTEGRITY.
   1737   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1738                                              "rfrag:lfrag"));
   1739   in_msg->AddFingerprint();
   1740   WriteStunMessage(in_msg.get(), buf.get());
   1741   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1742                                    out_msg.accept(), &username));
   1743   EXPECT_TRUE(out_msg.get() == NULL);
   1744   EXPECT_EQ("", username);
   1745   EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
   1746 
   1747   // BINDING-REQUEST from local to remote with valid ICE username and
   1748   // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
   1749   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1750                                              "rfrag:lfrag"));
   1751   in_msg->AddMessageIntegrity("invalid");
   1752   in_msg->AddFingerprint();
   1753   WriteStunMessage(in_msg.get(), buf.get());
   1754   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1755                                    out_msg.accept(), &username));
   1756   EXPECT_TRUE(out_msg.get() == NULL);
   1757   EXPECT_EQ("", username);
   1758   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1759 
   1760   // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
   1761   // by the Connection, not the Port, since they require the remote username.
   1762   // Change this test to pass in data via Connection::OnReadPacket instead.
   1763 }
   1764 
   1765 // Test handling STUN messages (as ICE) with missing or malformed FINGERPRINT.
   1766 TEST_F(PortTest, TestHandleStunMessageAsIceBadFingerprint) {
   1767   // Our port will act as the "remote" port.
   1768   talk_base::scoped_ptr<TestPort> port(
   1769       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1770   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1771 
   1772   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1773   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1774   talk_base::SocketAddress addr(kLocalAddr1);
   1775   std::string username;
   1776 
   1777   // BINDING-REQUEST from local to remote with valid ICE username and
   1778   // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
   1779   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1780                                              "rfrag:lfrag"));
   1781   in_msg->AddMessageIntegrity("rpass");
   1782   WriteStunMessage(in_msg.get(), buf.get());
   1783   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1784                                     out_msg.accept(), &username));
   1785   EXPECT_EQ(0, port->last_stun_error_code());
   1786 
   1787   // Now, add a fingerprint, but munge the message so it's not valid.
   1788   in_msg->AddFingerprint();
   1789   in_msg->SetTransactionID("TESTTESTBADD");
   1790   WriteStunMessage(in_msg.get(), buf.get());
   1791   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1792                                     out_msg.accept(), &username));
   1793   EXPECT_EQ(0, port->last_stun_error_code());
   1794 
   1795   // Valid BINDING-RESPONSE, except no FINGERPRINT.
   1796   in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
   1797   in_msg->AddAttribute(
   1798       new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
   1799   in_msg->AddMessageIntegrity("rpass");
   1800   WriteStunMessage(in_msg.get(), buf.get());
   1801   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1802                                     out_msg.accept(), &username));
   1803   EXPECT_EQ(0, port->last_stun_error_code());
   1804 
   1805   // Now, add a fingerprint, but munge the message so it's not valid.
   1806   in_msg->AddFingerprint();
   1807   in_msg->SetTransactionID("TESTTESTBADD");
   1808   WriteStunMessage(in_msg.get(), buf.get());
   1809   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1810                                     out_msg.accept(), &username));
   1811   EXPECT_EQ(0, port->last_stun_error_code());
   1812 
   1813   // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
   1814   in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
   1815   in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
   1816       STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
   1817   in_msg->AddMessageIntegrity("rpass");
   1818   WriteStunMessage(in_msg.get(), buf.get());
   1819   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1820                                     out_msg.accept(), &username));
   1821   EXPECT_EQ(0, port->last_stun_error_code());
   1822 
   1823   // Now, add a fingerprint, but munge the message so it's not valid.
   1824   in_msg->AddFingerprint();
   1825   in_msg->SetTransactionID("TESTTESTBADD");
   1826   WriteStunMessage(in_msg.get(), buf.get());
   1827   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1828                                     out_msg.accept(), &username));
   1829   EXPECT_EQ(0, port->last_stun_error_code());
   1830 }
   1831 
   1832 // Test handling of STUN binding indication messages (as ICE). STUN binding
   1833 // indications are allowed only to the connection which is in read mode.
   1834 TEST_F(PortTest, TestHandleStunBindingIndication) {
   1835   talk_base::scoped_ptr<TestPort> lport(
   1836       CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
   1837   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1838   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1839   lport->SetIceTiebreaker(kTiebreaker1);
   1840 
   1841   // Verifying encoding and decoding STUN indication message.
   1842   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1843   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1844   talk_base::SocketAddress addr(kLocalAddr1);
   1845   std::string username;
   1846 
   1847   in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
   1848   in_msg->AddFingerprint();
   1849   WriteStunMessage(in_msg.get(), buf.get());
   1850   EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr,
   1851                                     out_msg.accept(), &username));
   1852   EXPECT_TRUE(out_msg.get() != NULL);
   1853   EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
   1854   EXPECT_EQ("", username);
   1855 
   1856   // Verify connection can handle STUN indication and updates
   1857   // last_ping_received.
   1858   talk_base::scoped_ptr<TestPort> rport(
   1859       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1860   rport->SetIceProtocolType(ICEPROTO_RFC5245);
   1861   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   1862   rport->SetIceTiebreaker(kTiebreaker2);
   1863 
   1864   lport->PrepareAddress();
   1865   rport->PrepareAddress();
   1866   ASSERT_FALSE(lport->Candidates().empty());
   1867   ASSERT_FALSE(rport->Candidates().empty());
   1868 
   1869   Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
   1870                                               Port::ORIGIN_MESSAGE);
   1871   Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
   1872                                               Port::ORIGIN_MESSAGE);
   1873   rconn->Ping(0);
   1874 
   1875   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
   1876   IceMessage* msg = rport->last_stun_msg();
   1877   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1878   // Send rport binding request to lport.
   1879   lconn->OnReadPacket(rport->last_stun_buf()->Data(),
   1880                       rport->last_stun_buf()->Length());
   1881   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1882   EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
   1883   uint32 last_ping_received1 = lconn->last_ping_received();
   1884 
   1885   // Adding a delay of 100ms.
   1886   talk_base::Thread::Current()->ProcessMessages(100);
   1887   // Pinging lconn using stun indication message.
   1888   lconn->OnReadPacket(buf->Data(), buf->Length());
   1889   uint32 last_ping_received2 = lconn->last_ping_received();
   1890   EXPECT_GT(last_ping_received2, last_ping_received1);
   1891 }
   1892 
   1893 TEST_F(PortTest, TestComputeCandidatePriority) {
   1894   talk_base::scoped_ptr<TestPort> port(
   1895       CreateTestPort(kLocalAddr1, "name", "pass"));
   1896   port->set_type_preference(90);
   1897   port->set_component(177);
   1898   port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
   1899   port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
   1900   port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
   1901   port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
   1902   port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
   1903   port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
   1904   port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
   1905   port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
   1906   port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
   1907   // These should all be:
   1908   // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
   1909   uint32 expected_priority_v4 = 1509957199U;
   1910   uint32 expected_priority_v6 = 1509959759U;
   1911   uint32 expected_priority_ula = 1509962319U;
   1912   uint32 expected_priority_v4mapped = expected_priority_v4;
   1913   uint32 expected_priority_v4compat = 1509949775U;
   1914   uint32 expected_priority_6to4 = 1509954639U;
   1915   uint32 expected_priority_teredo = 1509952079U;
   1916   uint32 expected_priority_sitelocal = 1509949775U;
   1917   uint32 expected_priority_6bone = 1509949775U;
   1918   ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
   1919   ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
   1920   ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
   1921   ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
   1922   ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
   1923   ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
   1924   ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
   1925   ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
   1926   ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
   1927 }
   1928 
   1929 TEST_F(PortTest, TestPortProxyProperties) {
   1930   talk_base::scoped_ptr<TestPort> port(
   1931       CreateTestPort(kLocalAddr1, "name", "pass"));
   1932   port->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1933   port->SetIceTiebreaker(kTiebreaker1);
   1934 
   1935   // Create a proxy port.
   1936   talk_base::scoped_ptr<PortProxy> proxy(new PortProxy());
   1937   proxy->set_impl(port.get());
   1938   EXPECT_EQ(port->Type(), proxy->Type());
   1939   EXPECT_EQ(port->Network(), proxy->Network());
   1940   EXPECT_EQ(port->GetIceRole(), proxy->GetIceRole());
   1941   EXPECT_EQ(port->IceTiebreaker(), proxy->IceTiebreaker());
   1942 }
   1943 
   1944 // In the case of shared socket, one port may be shared by local and stun.
   1945 // Test that candidates with different types will have different foundation.
   1946 TEST_F(PortTest, TestFoundation) {
   1947   talk_base::scoped_ptr<TestPort> testport(
   1948       CreateTestPort(kLocalAddr1, "name", "pass"));
   1949   testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1,
   1950                                 LOCAL_PORT_TYPE,
   1951                                 cricket::ICE_TYPE_PREFERENCE_HOST, false);
   1952   testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1,
   1953                                 STUN_PORT_TYPE,
   1954                                 cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
   1955   EXPECT_NE(testport->Candidates()[0].foundation(),
   1956             testport->Candidates()[1].foundation());
   1957 }
   1958 
   1959 // This test verifies the foundation of different types of ICE candidates.
   1960 TEST_F(PortTest, TestCandidateFoundation) {
   1961   talk_base::scoped_ptr<talk_base::NATServer> nat_server(
   1962       CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
   1963   talk_base::scoped_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
   1964   udpport1->PrepareAddress();
   1965   talk_base::scoped_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
   1966   udpport2->PrepareAddress();
   1967   EXPECT_EQ(udpport1->Candidates()[0].foundation(),
   1968             udpport2->Candidates()[0].foundation());
   1969   talk_base::scoped_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
   1970   tcpport1->PrepareAddress();
   1971   talk_base::scoped_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
   1972   tcpport2->PrepareAddress();
   1973   EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
   1974             tcpport2->Candidates()[0].foundation());
   1975   talk_base::scoped_ptr<Port> stunport(
   1976       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
   1977   stunport->PrepareAddress();
   1978   ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
   1979   EXPECT_NE(tcpport1->Candidates()[0].foundation(),
   1980             stunport->Candidates()[0].foundation());
   1981   EXPECT_NE(tcpport2->Candidates()[0].foundation(),
   1982             stunport->Candidates()[0].foundation());
   1983   EXPECT_NE(udpport1->Candidates()[0].foundation(),
   1984             stunport->Candidates()[0].foundation());
   1985   EXPECT_NE(udpport2->Candidates()[0].foundation(),
   1986             stunport->Candidates()[0].foundation());
   1987   // Verify GTURN candidate foundation.
   1988   talk_base::scoped_ptr<RelayPort> relayport(
   1989       CreateGturnPort(kLocalAddr1));
   1990   relayport->AddServerAddress(
   1991       cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
   1992   relayport->PrepareAddress();
   1993   ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
   1994   EXPECT_NE(udpport1->Candidates()[0].foundation(),
   1995             relayport->Candidates()[0].foundation());
   1996   EXPECT_NE(udpport2->Candidates()[0].foundation(),
   1997             relayport->Candidates()[0].foundation());
   1998   // Verifying TURN candidate foundation.
   1999   talk_base::scoped_ptr<Port> turnport(CreateTurnPort(
   2000       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
   2001   turnport->PrepareAddress();
   2002   ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
   2003   EXPECT_NE(udpport1->Candidates()[0].foundation(),
   2004             turnport->Candidates()[0].foundation());
   2005   EXPECT_NE(udpport2->Candidates()[0].foundation(),
   2006             turnport->Candidates()[0].foundation());
   2007   EXPECT_NE(stunport->Candidates()[0].foundation(),
   2008             turnport->Candidates()[0].foundation());
   2009 }
   2010 
   2011 // This test verifies the related addresses of different types of
   2012 // ICE candiates.
   2013 TEST_F(PortTest, TestCandidateRelatedAddress) {
   2014   talk_base::scoped_ptr<talk_base::NATServer> nat_server(
   2015       CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
   2016   talk_base::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
   2017   udpport->PrepareAddress();
   2018   // For UDPPort, related address will be empty.
   2019   EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
   2020   // Testing related address for stun candidates.
   2021   // For stun candidate related address must be equal to the base
   2022   // socket address.
   2023   talk_base::scoped_ptr<StunPort> stunport(
   2024       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
   2025   stunport->PrepareAddress();
   2026   ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
   2027   // Check STUN candidate address.
   2028   EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(),
   2029             kNatAddr1.ipaddr());
   2030   // Check STUN candidate related address.
   2031   EXPECT_EQ(stunport->Candidates()[0].related_address(),
   2032             stunport->GetLocalAddress());
   2033   // Verifying the related address for the GTURN candidates.
   2034   // NOTE: In case of GTURN related address will be equal to the mapped
   2035   // address, but address(mapped) will not be XOR.
   2036   talk_base::scoped_ptr<RelayPort> relayport(
   2037       CreateGturnPort(kLocalAddr1));
   2038   relayport->AddServerAddress(
   2039       cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
   2040   relayport->PrepareAddress();
   2041   ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
   2042   // For Gturn related address is set to "0.0.0.0:0"
   2043   EXPECT_EQ(talk_base::SocketAddress(),
   2044             relayport->Candidates()[0].related_address());
   2045   // Verifying the related address for TURN candidate.
   2046   // For TURN related address must be equal to the mapped address.
   2047   talk_base::scoped_ptr<Port> turnport(CreateTurnPort(
   2048       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
   2049   turnport->PrepareAddress();
   2050   ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
   2051   EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
   2052             turnport->Candidates()[0].address().ipaddr());
   2053   EXPECT_EQ(kNatAddr1.ipaddr(),
   2054             turnport->Candidates()[0].related_address().ipaddr());
   2055 }
   2056 
   2057 // Test priority value overflow handling when preference is set to 3.
   2058 TEST_F(PortTest, TestCandidatePreference) {
   2059   cricket::Candidate cand1;
   2060   cand1.set_preference(3);
   2061   cricket::Candidate cand2;
   2062   cand2.set_preference(1);
   2063   EXPECT_TRUE(cand1.preference() > cand2.preference());
   2064 }
   2065 
   2066 // Test the Connection priority is calculated correctly.
   2067 TEST_F(PortTest, TestConnectionPriority) {
   2068   talk_base::scoped_ptr<TestPort> lport(
   2069       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   2070   lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
   2071   talk_base::scoped_ptr<TestPort> rport(
   2072       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   2073   rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY);
   2074   lport->set_component(123);
   2075   lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
   2076   rport->set_component(23);
   2077   rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
   2078 
   2079   EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
   2080   EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
   2081 
   2082   // RFC 5245
   2083   // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
   2084   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   2085   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   2086   Connection* lconn = lport->CreateConnection(
   2087       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
   2088 #if defined(WIN32)
   2089   EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
   2090 #else
   2091   EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
   2092 #endif
   2093 
   2094   lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   2095   rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   2096   Connection* rconn = rport->CreateConnection(
   2097       lport->Candidates()[0], Port::ORIGIN_MESSAGE);
   2098 #if defined(WIN32)
   2099   EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
   2100 #else
   2101   EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
   2102 #endif
   2103 }
   2104 
   2105 TEST_F(PortTest, TestWritableState) {
   2106   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
   2107   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
   2108 
   2109   // Set up channels.
   2110   TestChannel ch1(port1, port2);
   2111   TestChannel ch2(port2, port1);
   2112 
   2113   // Acquire addresses.
   2114   ch1.Start();
   2115   ch2.Start();
   2116   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
   2117   ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
   2118 
   2119   // Send a ping from src to dst.
   2120   ch1.CreateConnection();
   2121   ASSERT_TRUE(ch1.conn() != NULL);
   2122   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
   2123   EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);  // for TCP connect
   2124   ch1.Ping();
   2125   WAIT(!ch2.remote_address().IsNil(), kTimeout);
   2126 
   2127   // Data should be unsendable until the connection is accepted.
   2128   char data[] = "abcd";
   2129   int data_size = ARRAY_SIZE(data);
   2130   EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size));
   2131 
   2132   // Accept the connection to return the binding response, transition to
   2133   // writable, and allow data to be sent.
   2134   ch2.AcceptConnection();
   2135   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
   2136                  kTimeout);
   2137   EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size));
   2138 
   2139   // Ask the connection to update state as if enough time has passed to lose
   2140   // full writability and 5 pings went unresponded to. We'll accomplish the
   2141   // latter by sending pings but not pumping messages.
   2142   for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
   2143     ch1.Ping(i);
   2144   }
   2145   uint32 unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500u;
   2146   ch1.conn()->UpdateState(unreliable_timeout_delay);
   2147   EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
   2148 
   2149   // Data should be able to be sent in this state.
   2150   EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size));
   2151 
   2152   // And now allow the other side to process the pings and send binding
   2153   // responses.
   2154   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
   2155                  kTimeout);
   2156 
   2157   // Wait long enough for a full timeout (past however long we've already
   2158   // waited).
   2159   for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
   2160     ch1.Ping(unreliable_timeout_delay + i);
   2161   }
   2162   ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
   2163                           500u);
   2164   EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
   2165 
   2166   // Now that the connection has completely timed out, data send should fail.
   2167   EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size));
   2168 
   2169   ch1.Stop();
   2170   ch2.Stop();
   2171 }
   2172 
   2173 TEST_F(PortTest, TestTimeoutForNeverWritable) {
   2174   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
   2175   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
   2176 
   2177   // Set up channels.
   2178   TestChannel ch1(port1, port2);
   2179   TestChannel ch2(port2, port1);
   2180 
   2181   // Acquire addresses.
   2182   ch1.Start();
   2183   ch2.Start();
   2184 
   2185   ch1.CreateConnection();
   2186   ASSERT_TRUE(ch1.conn() != NULL);
   2187   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
   2188 
   2189   // Attempt to go directly to write timeout.
   2190   for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
   2191     ch1.Ping(i);
   2192   }
   2193   ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u);
   2194   EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
   2195 }
   2196 
   2197 // This test verifies the connection setup between ICEMODE_FULL
   2198 // and ICEMODE_LITE.
   2199 // In this test |ch1| behaves like FULL mode client and we have created
   2200 // port which responds to the ping message just like LITE client.
   2201 TEST_F(PortTest, TestIceLiteConnectivity) {
   2202   TestPort* ice_full_port = CreateTestPort(
   2203       kLocalAddr1, "lfrag", "lpass", cricket::ICEPROTO_RFC5245,
   2204       cricket::ICEROLE_CONTROLLING, kTiebreaker1);
   2205 
   2206   talk_base::scoped_ptr<TestPort> ice_lite_port(CreateTestPort(
   2207       kLocalAddr2, "rfrag", "rpass", cricket::ICEPROTO_RFC5245,
   2208       cricket::ICEROLE_CONTROLLED, kTiebreaker2));
   2209   // Setup TestChannel. This behaves like FULL mode client.
   2210   TestChannel ch1(ice_full_port, ice_lite_port.get());
   2211   ch1.SetIceMode(ICEMODE_FULL);
   2212 
   2213   // Start gathering candidates.
   2214   ch1.Start();
   2215   ice_lite_port->PrepareAddress();
   2216 
   2217   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
   2218   ASSERT_FALSE(ice_lite_port->Candidates().empty());
   2219 
   2220   ch1.CreateConnection();
   2221   ASSERT_TRUE(ch1.conn() != NULL);
   2222   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
   2223 
   2224   // Send ping from full mode client.
   2225   // This ping must not have USE_CANDIDATE_ATTR.
   2226   ch1.Ping();
   2227 
   2228   // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
   2229   // from port.
   2230   ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
   2231   IceMessage* msg = ice_full_port->last_stun_msg();
   2232   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
   2233 
   2234   // Respond with a BINDING-RESPONSE from litemode client.
   2235   // NOTE: Ideally we should't create connection at this stage from lite
   2236   // port, as it should be done only after receiving ping with USE_CANDIDATE.
   2237   // But we need a connection to send a response message.
   2238   ice_lite_port->CreateConnection(
   2239       ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
   2240   talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
   2241   ice_lite_port->SendBindingResponse(
   2242       request.get(), ice_full_port->Candidates()[0].address());
   2243 
   2244   // Feeding the respone message from litemode to the full mode connection.
   2245   ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->Data(),
   2246                            ice_lite_port->last_stun_buf()->Length());
   2247   // Verifying full mode connection becomes writable from the response.
   2248   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
   2249                  kTimeout);
   2250   EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout);
   2251 
   2252   // Clear existing stun messsages. Otherwise we will process old stun
   2253   // message right after we send ping.
   2254   ice_full_port->Reset();
   2255   // Send ping. This must have USE_CANDIDATE_ATTR.
   2256   ch1.Ping();
   2257   ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
   2258   msg = ice_full_port->last_stun_msg();
   2259   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
   2260   ch1.Stop();
   2261 }
   2262