1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "inline" 17 #include "llvm/Transforms/IPO/InlinerPass.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/CallGraph.h" 21 #include "llvm/Analysis/InlineCost.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/CallSite.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Target/TargetLibraryInfo.h" 31 #include "llvm/Transforms/Utils/Cloning.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 using namespace llvm; 34 35 STATISTIC(NumInlined, "Number of functions inlined"); 36 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 37 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 38 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 39 40 // This weirdly named statistic tracks the number of times that, when attempting 41 // to inline a function A into B, we analyze the callers of B in order to see 42 // if those would be more profitable and blocked inline steps. 43 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 44 45 static cl::opt<int> 46 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 47 cl::desc("Control the amount of inlining to perform (default = 225)")); 48 49 static cl::opt<int> 50 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 51 cl::desc("Threshold for inlining functions with inline hint")); 52 53 // Threshold to use when optsize is specified (and there is no -inline-limit). 54 const int OptSizeThreshold = 75; 55 56 Inliner::Inliner(char &ID) 57 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 58 59 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 60 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 61 InlineLimit : Threshold), 62 InsertLifetime(InsertLifetime) {} 63 64 /// getAnalysisUsage - For this class, we declare that we require and preserve 65 /// the call graph. If the derived class implements this method, it should 66 /// always explicitly call the implementation here. 67 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 68 CallGraphSCCPass::getAnalysisUsage(AU); 69 } 70 71 72 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 73 InlinedArrayAllocasTy; 74 75 /// \brief If the inlined function had a higher stack protection level than the 76 /// calling function, then bump up the caller's stack protection level. 77 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 78 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 79 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 80 // clutter to the IR. 81 AttrBuilder B; 82 B.addAttribute(Attribute::StackProtect) 83 .addAttribute(Attribute::StackProtectStrong); 84 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 85 AttributeSet::FunctionIndex, 86 B); 87 AttributeSet CallerAttr = Caller->getAttributes(), 88 CalleeAttr = Callee->getAttributes(); 89 90 if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 91 Attribute::StackProtectReq)) { 92 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 93 Caller->addFnAttr(Attribute::StackProtectReq); 94 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 95 Attribute::StackProtectStrong) && 96 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 97 Attribute::StackProtectReq)) { 98 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 99 Caller->addFnAttr(Attribute::StackProtectStrong); 100 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 101 Attribute::StackProtect) && 102 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 103 Attribute::StackProtectReq) && 104 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 105 Attribute::StackProtectStrong)) 106 Caller->addFnAttr(Attribute::StackProtect); 107 } 108 109 /// InlineCallIfPossible - If it is possible to inline the specified call site, 110 /// do so and update the CallGraph for this operation. 111 /// 112 /// This function also does some basic book-keeping to update the IR. The 113 /// InlinedArrayAllocas map keeps track of any allocas that are already 114 /// available from other functions inlined into the caller. If we are able to 115 /// inline this call site we attempt to reuse already available allocas or add 116 /// any new allocas to the set if not possible. 117 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI, 118 InlinedArrayAllocasTy &InlinedArrayAllocas, 119 int InlineHistory, bool InsertLifetime, 120 const DataLayout *TD) { 121 Function *Callee = CS.getCalledFunction(); 122 Function *Caller = CS.getCaller(); 123 124 // Try to inline the function. Get the list of static allocas that were 125 // inlined. 126 if (!InlineFunction(CS, IFI, InsertLifetime)) 127 return false; 128 129 AdjustCallerSSPLevel(Caller, Callee); 130 131 // Look at all of the allocas that we inlined through this call site. If we 132 // have already inlined other allocas through other calls into this function, 133 // then we know that they have disjoint lifetimes and that we can merge them. 134 // 135 // There are many heuristics possible for merging these allocas, and the 136 // different options have different tradeoffs. One thing that we *really* 137 // don't want to hurt is SRoA: once inlining happens, often allocas are no 138 // longer address taken and so they can be promoted. 139 // 140 // Our "solution" for that is to only merge allocas whose outermost type is an 141 // array type. These are usually not promoted because someone is using a 142 // variable index into them. These are also often the most important ones to 143 // merge. 144 // 145 // A better solution would be to have real memory lifetime markers in the IR 146 // and not have the inliner do any merging of allocas at all. This would 147 // allow the backend to do proper stack slot coloring of all allocas that 148 // *actually make it to the backend*, which is really what we want. 149 // 150 // Because we don't have this information, we do this simple and useful hack. 151 // 152 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 153 154 // When processing our SCC, check to see if CS was inlined from some other 155 // call site. For example, if we're processing "A" in this code: 156 // A() { B() } 157 // B() { x = alloca ... C() } 158 // C() { y = alloca ... } 159 // Assume that C was not inlined into B initially, and so we're processing A 160 // and decide to inline B into A. Doing this makes an alloca available for 161 // reuse and makes a callsite (C) available for inlining. When we process 162 // the C call site we don't want to do any alloca merging between X and Y 163 // because their scopes are not disjoint. We could make this smarter by 164 // keeping track of the inline history for each alloca in the 165 // InlinedArrayAllocas but this isn't likely to be a significant win. 166 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 167 return true; 168 169 // Loop over all the allocas we have so far and see if they can be merged with 170 // a previously inlined alloca. If not, remember that we had it. 171 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 172 AllocaNo != e; ++AllocaNo) { 173 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 174 175 // Don't bother trying to merge array allocations (they will usually be 176 // canonicalized to be an allocation *of* an array), or allocations whose 177 // type is not itself an array (because we're afraid of pessimizing SRoA). 178 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 179 if (ATy == 0 || AI->isArrayAllocation()) 180 continue; 181 182 // Get the list of all available allocas for this array type. 183 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 184 185 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 186 // that we have to be careful not to reuse the same "available" alloca for 187 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 188 // set to keep track of which "available" allocas are being used by this 189 // function. Also, AllocasForType can be empty of course! 190 bool MergedAwayAlloca = false; 191 for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) { 192 AllocaInst *AvailableAlloca = AllocasForType[i]; 193 194 unsigned Align1 = AI->getAlignment(), 195 Align2 = AvailableAlloca->getAlignment(); 196 // If we don't have data layout information, and only one alloca is using 197 // the target default, then we can't safely merge them because we can't 198 // pick the greater alignment. 199 if (!TD && (!Align1 || !Align2) && Align1 != Align2) 200 continue; 201 202 // The available alloca has to be in the right function, not in some other 203 // function in this SCC. 204 if (AvailableAlloca->getParent() != AI->getParent()) 205 continue; 206 207 // If the inlined function already uses this alloca then we can't reuse 208 // it. 209 if (!UsedAllocas.insert(AvailableAlloca)) 210 continue; 211 212 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 213 // success! 214 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 215 << *AvailableAlloca << '\n'); 216 217 AI->replaceAllUsesWith(AvailableAlloca); 218 219 if (Align1 != Align2) { 220 if (!Align1 || !Align2) { 221 assert(TD && "DataLayout required to compare default alignments"); 222 unsigned TypeAlign = TD->getABITypeAlignment(AI->getAllocatedType()); 223 224 Align1 = Align1 ? Align1 : TypeAlign; 225 Align2 = Align2 ? Align2 : TypeAlign; 226 } 227 228 if (Align1 > Align2) 229 AvailableAlloca->setAlignment(AI->getAlignment()); 230 } 231 232 AI->eraseFromParent(); 233 MergedAwayAlloca = true; 234 ++NumMergedAllocas; 235 IFI.StaticAllocas[AllocaNo] = 0; 236 break; 237 } 238 239 // If we already nuked the alloca, we're done with it. 240 if (MergedAwayAlloca) 241 continue; 242 243 // If we were unable to merge away the alloca either because there are no 244 // allocas of the right type available or because we reused them all 245 // already, remember that this alloca came from an inlined function and mark 246 // it used so we don't reuse it for other allocas from this inline 247 // operation. 248 AllocasForType.push_back(AI); 249 UsedAllocas.insert(AI); 250 } 251 252 return true; 253 } 254 255 unsigned Inliner::getInlineThreshold(CallSite CS) const { 256 int thres = InlineThreshold; // -inline-threshold or else selected by 257 // overall opt level 258 259 // If -inline-threshold is not given, listen to the optsize attribute when it 260 // would decrease the threshold. 261 Function *Caller = CS.getCaller(); 262 bool OptSize = Caller && !Caller->isDeclaration() && 263 Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 264 Attribute::OptimizeForSize); 265 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 266 OptSizeThreshold < thres) 267 thres = OptSizeThreshold; 268 269 // Listen to the inlinehint attribute when it would increase the threshold 270 // and the caller does not need to minimize its size. 271 Function *Callee = CS.getCalledFunction(); 272 bool InlineHint = Callee && !Callee->isDeclaration() && 273 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 274 Attribute::InlineHint); 275 if (InlineHint && HintThreshold > thres 276 && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 277 Attribute::MinSize)) 278 thres = HintThreshold; 279 280 return thres; 281 } 282 283 /// shouldInline - Return true if the inliner should attempt to inline 284 /// at the given CallSite. 285 bool Inliner::shouldInline(CallSite CS) { 286 InlineCost IC = getInlineCost(CS); 287 288 if (IC.isAlways()) { 289 DEBUG(dbgs() << " Inlining: cost=always" 290 << ", Call: " << *CS.getInstruction() << "\n"); 291 return true; 292 } 293 294 if (IC.isNever()) { 295 DEBUG(dbgs() << " NOT Inlining: cost=never" 296 << ", Call: " << *CS.getInstruction() << "\n"); 297 return false; 298 } 299 300 Function *Caller = CS.getCaller(); 301 if (!IC) { 302 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 303 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 304 << ", Call: " << *CS.getInstruction() << "\n"); 305 return false; 306 } 307 308 // Try to detect the case where the current inlining candidate caller (call 309 // it B) is a static or linkonce-ODR function and is an inlining candidate 310 // elsewhere, and the current candidate callee (call it C) is large enough 311 // that inlining it into B would make B too big to inline later. In these 312 // circumstances it may be best not to inline C into B, but to inline B into 313 // its callers. 314 // 315 // This only applies to static and linkonce-ODR functions because those are 316 // expected to be available for inlining in the translation units where they 317 // are used. Thus we will always have the opportunity to make local inlining 318 // decisions. Importantly the linkonce-ODR linkage covers inline functions 319 // and templates in C++. 320 // 321 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 322 // the internal implementation of the inline cost metrics rather than 323 // treating them as truly abstract units etc. 324 if (Caller->hasLocalLinkage() || 325 Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) { 326 int TotalSecondaryCost = 0; 327 // The candidate cost to be imposed upon the current function. 328 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 329 // This bool tracks what happens if we do NOT inline C into B. 330 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 331 // This bool tracks what happens if we DO inline C into B. 332 bool inliningPreventsSomeOuterInline = false; 333 for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end(); 334 I != E; ++I) { 335 CallSite CS2(*I); 336 337 // If this isn't a call to Caller (it could be some other sort 338 // of reference) skip it. Such references will prevent the caller 339 // from being removed. 340 if (!CS2 || CS2.getCalledFunction() != Caller) { 341 callerWillBeRemoved = false; 342 continue; 343 } 344 345 InlineCost IC2 = getInlineCost(CS2); 346 ++NumCallerCallersAnalyzed; 347 if (!IC2) { 348 callerWillBeRemoved = false; 349 continue; 350 } 351 if (IC2.isAlways()) 352 continue; 353 354 // See if inlining or original callsite would erase the cost delta of 355 // this callsite. We subtract off the penalty for the call instruction, 356 // which we would be deleting. 357 if (IC2.getCostDelta() <= CandidateCost) { 358 inliningPreventsSomeOuterInline = true; 359 TotalSecondaryCost += IC2.getCost(); 360 } 361 } 362 // If all outer calls to Caller would get inlined, the cost for the last 363 // one is set very low by getInlineCost, in anticipation that Caller will 364 // be removed entirely. We did not account for this above unless there 365 // is only one caller of Caller. 366 if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end()) 367 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 368 369 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 370 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 371 " Cost = " << IC.getCost() << 372 ", outer Cost = " << TotalSecondaryCost << '\n'); 373 return false; 374 } 375 } 376 377 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 378 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 379 << ", Call: " << *CS.getInstruction() << '\n'); 380 return true; 381 } 382 383 /// InlineHistoryIncludes - Return true if the specified inline history ID 384 /// indicates an inline history that includes the specified function. 385 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 386 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 387 while (InlineHistoryID != -1) { 388 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 389 "Invalid inline history ID"); 390 if (InlineHistory[InlineHistoryID].first == F) 391 return true; 392 InlineHistoryID = InlineHistory[InlineHistoryID].second; 393 } 394 return false; 395 } 396 397 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 398 CallGraph &CG = getAnalysis<CallGraph>(); 399 const DataLayout *TD = getAnalysisIfAvailable<DataLayout>(); 400 const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 401 402 SmallPtrSet<Function*, 8> SCCFunctions; 403 DEBUG(dbgs() << "Inliner visiting SCC:"); 404 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 405 Function *F = (*I)->getFunction(); 406 if (F) SCCFunctions.insert(F); 407 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 408 } 409 410 // Scan through and identify all call sites ahead of time so that we only 411 // inline call sites in the original functions, not call sites that result 412 // from inlining other functions. 413 SmallVector<std::pair<CallSite, int>, 16> CallSites; 414 415 // When inlining a callee produces new call sites, we want to keep track of 416 // the fact that they were inlined from the callee. This allows us to avoid 417 // infinite inlining in some obscure cases. To represent this, we use an 418 // index into the InlineHistory vector. 419 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 420 421 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 422 Function *F = (*I)->getFunction(); 423 if (!F) continue; 424 425 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 426 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 427 CallSite CS(cast<Value>(I)); 428 // If this isn't a call, or it is a call to an intrinsic, it can 429 // never be inlined. 430 if (!CS || isa<IntrinsicInst>(I)) 431 continue; 432 433 // If this is a direct call to an external function, we can never inline 434 // it. If it is an indirect call, inlining may resolve it to be a 435 // direct call, so we keep it. 436 if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration()) 437 continue; 438 439 CallSites.push_back(std::make_pair(CS, -1)); 440 } 441 } 442 443 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 444 445 // If there are no calls in this function, exit early. 446 if (CallSites.empty()) 447 return false; 448 449 // Now that we have all of the call sites, move the ones to functions in the 450 // current SCC to the end of the list. 451 unsigned FirstCallInSCC = CallSites.size(); 452 for (unsigned i = 0; i < FirstCallInSCC; ++i) 453 if (Function *F = CallSites[i].first.getCalledFunction()) 454 if (SCCFunctions.count(F)) 455 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 456 457 458 InlinedArrayAllocasTy InlinedArrayAllocas; 459 InlineFunctionInfo InlineInfo(&CG, TD); 460 461 // Now that we have all of the call sites, loop over them and inline them if 462 // it looks profitable to do so. 463 bool Changed = false; 464 bool LocalChange; 465 do { 466 LocalChange = false; 467 // Iterate over the outer loop because inlining functions can cause indirect 468 // calls to become direct calls. 469 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 470 CallSite CS = CallSites[CSi].first; 471 472 Function *Caller = CS.getCaller(); 473 Function *Callee = CS.getCalledFunction(); 474 475 // If this call site is dead and it is to a readonly function, we should 476 // just delete the call instead of trying to inline it, regardless of 477 // size. This happens because IPSCCP propagates the result out of the 478 // call and then we're left with the dead call. 479 if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) { 480 DEBUG(dbgs() << " -> Deleting dead call: " 481 << *CS.getInstruction() << "\n"); 482 // Update the call graph by deleting the edge from Callee to Caller. 483 CG[Caller]->removeCallEdgeFor(CS); 484 CS.getInstruction()->eraseFromParent(); 485 ++NumCallsDeleted; 486 } else { 487 // We can only inline direct calls to non-declarations. 488 if (Callee == 0 || Callee->isDeclaration()) continue; 489 490 // If this call site was obtained by inlining another function, verify 491 // that the include path for the function did not include the callee 492 // itself. If so, we'd be recursively inlining the same function, 493 // which would provide the same callsites, which would cause us to 494 // infinitely inline. 495 int InlineHistoryID = CallSites[CSi].second; 496 if (InlineHistoryID != -1 && 497 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 498 continue; 499 500 501 // If the policy determines that we should inline this function, 502 // try to do so. 503 if (!shouldInline(CS)) 504 continue; 505 506 // Attempt to inline the function. 507 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 508 InlineHistoryID, InsertLifetime, TD)) 509 continue; 510 ++NumInlined; 511 512 // If inlining this function gave us any new call sites, throw them 513 // onto our worklist to process. They are useful inline candidates. 514 if (!InlineInfo.InlinedCalls.empty()) { 515 // Create a new inline history entry for this, so that we remember 516 // that these new callsites came about due to inlining Callee. 517 int NewHistoryID = InlineHistory.size(); 518 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 519 520 for (unsigned i = 0, e = InlineInfo.InlinedCalls.size(); 521 i != e; ++i) { 522 Value *Ptr = InlineInfo.InlinedCalls[i]; 523 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 524 } 525 } 526 } 527 528 // If we inlined or deleted the last possible call site to the function, 529 // delete the function body now. 530 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 531 // TODO: Can remove if in SCC now. 532 !SCCFunctions.count(Callee) && 533 534 // The function may be apparently dead, but if there are indirect 535 // callgraph references to the node, we cannot delete it yet, this 536 // could invalidate the CGSCC iterator. 537 CG[Callee]->getNumReferences() == 0) { 538 DEBUG(dbgs() << " -> Deleting dead function: " 539 << Callee->getName() << "\n"); 540 CallGraphNode *CalleeNode = CG[Callee]; 541 542 // Remove any call graph edges from the callee to its callees. 543 CalleeNode->removeAllCalledFunctions(); 544 545 // Removing the node for callee from the call graph and delete it. 546 delete CG.removeFunctionFromModule(CalleeNode); 547 ++NumDeleted; 548 } 549 550 // Remove this call site from the list. If possible, use 551 // swap/pop_back for efficiency, but do not use it if doing so would 552 // move a call site to a function in this SCC before the 553 // 'FirstCallInSCC' barrier. 554 if (SCC.isSingular()) { 555 CallSites[CSi] = CallSites.back(); 556 CallSites.pop_back(); 557 } else { 558 CallSites.erase(CallSites.begin()+CSi); 559 } 560 --CSi; 561 562 Changed = true; 563 LocalChange = true; 564 } 565 } while (LocalChange); 566 567 return Changed; 568 } 569 570 // doFinalization - Remove now-dead linkonce functions at the end of 571 // processing to avoid breaking the SCC traversal. 572 bool Inliner::doFinalization(CallGraph &CG) { 573 return removeDeadFunctions(CG); 574 } 575 576 /// removeDeadFunctions - Remove dead functions that are not included in 577 /// DNR (Do Not Remove) list. 578 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 579 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 580 581 // Scan for all of the functions, looking for ones that should now be removed 582 // from the program. Insert the dead ones in the FunctionsToRemove set. 583 for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) { 584 CallGraphNode *CGN = I->second; 585 Function *F = CGN->getFunction(); 586 if (!F || F->isDeclaration()) 587 continue; 588 589 // Handle the case when this function is called and we only want to care 590 // about always-inline functions. This is a bit of a hack to share code 591 // between here and the InlineAlways pass. 592 if (AlwaysInlineOnly && 593 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 594 Attribute::AlwaysInline)) 595 continue; 596 597 // If the only remaining users of the function are dead constants, remove 598 // them. 599 F->removeDeadConstantUsers(); 600 601 if (!F->isDefTriviallyDead()) 602 continue; 603 604 // Remove any call graph edges from the function to its callees. 605 CGN->removeAllCalledFunctions(); 606 607 // Remove any edges from the external node to the function's call graph 608 // node. These edges might have been made irrelegant due to 609 // optimization of the program. 610 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 611 612 // Removing the node for callee from the call graph and delete it. 613 FunctionsToRemove.push_back(CGN); 614 } 615 if (FunctionsToRemove.empty()) 616 return false; 617 618 // Now that we know which functions to delete, do so. We didn't want to do 619 // this inline, because that would invalidate our CallGraph::iterator 620 // objects. :( 621 // 622 // Note that it doesn't matter that we are iterating over a non-stable order 623 // here to do this, it doesn't matter which order the functions are deleted 624 // in. 625 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 626 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 627 FunctionsToRemove.end()), 628 FunctionsToRemove.end()); 629 for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(), 630 E = FunctionsToRemove.end(); 631 I != E; ++I) { 632 delete CG.removeFunctionFromModule(*I); 633 ++NumDeleted; 634 } 635 return true; 636 } 637