1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2013 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 31 #include "ceres/incomplete_lq_factorization.h" 32 33 #include <vector> 34 #include <utility> 35 #include <cmath> 36 #include "ceres/compressed_row_sparse_matrix.h" 37 #include "ceres/internal/eigen.h" 38 #include "ceres/internal/port.h" 39 #include "glog/logging.h" 40 41 namespace ceres { 42 namespace internal { 43 44 // Normalize a row and return it's norm. 45 inline double NormalizeRow(const int row, CompressedRowSparseMatrix* matrix) { 46 const int row_begin = matrix->rows()[row]; 47 const int row_end = matrix->rows()[row + 1]; 48 49 double* values = matrix->mutable_values(); 50 double norm = 0.0; 51 for (int i = row_begin; i < row_end; ++i) { 52 norm += values[i] * values[i]; 53 } 54 55 norm = sqrt(norm); 56 const double inverse_norm = 1.0 / norm; 57 for (int i = row_begin; i < row_end; ++i) { 58 values[i] *= inverse_norm; 59 } 60 61 return norm; 62 } 63 64 // Compute a(row_a,:) * b(row_b, :)' 65 inline double RowDotProduct(const CompressedRowSparseMatrix& a, 66 const int row_a, 67 const CompressedRowSparseMatrix& b, 68 const int row_b) { 69 const int* a_rows = a.rows(); 70 const int* a_cols = a.cols(); 71 const double* a_values = a.values(); 72 73 const int* b_rows = b.rows(); 74 const int* b_cols = b.cols(); 75 const double* b_values = b.values(); 76 77 const int row_a_end = a_rows[row_a + 1]; 78 const int row_b_end = b_rows[row_b + 1]; 79 80 int idx_a = a_rows[row_a]; 81 int idx_b = b_rows[row_b]; 82 double dot_product = 0.0; 83 while (idx_a < row_a_end && idx_b < row_b_end) { 84 if (a_cols[idx_a] == b_cols[idx_b]) { 85 dot_product += a_values[idx_a++] * b_values[idx_b++]; 86 } 87 88 while (a_cols[idx_a] < b_cols[idx_b] && idx_a < row_a_end) { 89 ++idx_a; 90 } 91 92 while (a_cols[idx_a] > b_cols[idx_b] && idx_b < row_b_end) { 93 ++idx_b; 94 } 95 } 96 97 return dot_product; 98 } 99 100 struct SecondGreaterThan { 101 public: 102 bool operator()(const pair<int, double>& lhs, 103 const pair<int, double>& rhs) const { 104 return (fabs(lhs.second) > fabs(rhs.second)); 105 } 106 }; 107 108 // In the row vector dense_row(0:num_cols), drop values smaller than 109 // the max_value * drop_tolerance. Of the remaining non-zero values, 110 // choose at most level_of_fill values and then add the resulting row 111 // vector to matrix. 112 113 void DropEntriesAndAddRow(const Vector& dense_row, 114 const int num_entries, 115 const int level_of_fill, 116 const double drop_tolerance, 117 vector<pair<int, double> >* scratch, 118 CompressedRowSparseMatrix* matrix) { 119 int* rows = matrix->mutable_rows(); 120 int* cols = matrix->mutable_cols(); 121 double* values = matrix->mutable_values(); 122 int num_nonzeros = rows[matrix->num_rows()]; 123 124 if (num_entries == 0) { 125 matrix->set_num_rows(matrix->num_rows() + 1); 126 rows[matrix->num_rows()] = num_nonzeros; 127 return; 128 } 129 130 const double max_value = dense_row.head(num_entries).cwiseAbs().maxCoeff(); 131 const double threshold = drop_tolerance * max_value; 132 133 int scratch_count = 0; 134 for (int i = 0; i < num_entries; ++i) { 135 if (fabs(dense_row[i]) > threshold) { 136 pair<int, double>& entry = (*scratch)[scratch_count]; 137 entry.first = i; 138 entry.second = dense_row[i]; 139 ++scratch_count; 140 } 141 } 142 143 if (scratch_count > level_of_fill) { 144 nth_element(scratch->begin(), 145 scratch->begin() + level_of_fill, 146 scratch->begin() + scratch_count, 147 SecondGreaterThan()); 148 scratch_count = level_of_fill; 149 sort(scratch->begin(), scratch->begin() + scratch_count); 150 } 151 152 for (int i = 0; i < scratch_count; ++i) { 153 const pair<int, double>& entry = (*scratch)[i]; 154 cols[num_nonzeros] = entry.first; 155 values[num_nonzeros] = entry.second; 156 ++num_nonzeros; 157 } 158 159 matrix->set_num_rows(matrix->num_rows() + 1); 160 rows[matrix->num_rows()] = num_nonzeros; 161 } 162 163 // Saad's Incomplete LQ factorization algorithm. 164 CompressedRowSparseMatrix* IncompleteLQFactorization( 165 const CompressedRowSparseMatrix& matrix, 166 const int l_level_of_fill, 167 const double l_drop_tolerance, 168 const int q_level_of_fill, 169 const double q_drop_tolerance) { 170 const int num_rows = matrix.num_rows(); 171 const int num_cols = matrix.num_cols(); 172 const int* rows = matrix.rows(); 173 const int* cols = matrix.cols(); 174 const double* values = matrix.values(); 175 176 CompressedRowSparseMatrix* l = 177 new CompressedRowSparseMatrix(num_rows, 178 num_rows, 179 l_level_of_fill * num_rows); 180 l->set_num_rows(0); 181 182 CompressedRowSparseMatrix q(num_rows, num_cols, q_level_of_fill * num_rows); 183 q.set_num_rows(0); 184 185 int* l_rows = l->mutable_rows(); 186 int* l_cols = l->mutable_cols(); 187 double* l_values = l->mutable_values(); 188 189 int* q_rows = q.mutable_rows(); 190 int* q_cols = q.mutable_cols(); 191 double* q_values = q.mutable_values(); 192 193 Vector l_i(num_rows); 194 Vector q_i(num_cols); 195 vector<pair<int, double> > scratch(num_cols); 196 for (int i = 0; i < num_rows; ++i) { 197 // l_i = q * matrix(i,:)'); 198 l_i.setZero(); 199 for (int j = 0; j < i; ++j) { 200 l_i(j) = RowDotProduct(matrix, i, q, j); 201 } 202 DropEntriesAndAddRow(l_i, 203 i, 204 l_level_of_fill, 205 l_drop_tolerance, 206 &scratch, 207 l); 208 209 // q_i = matrix(i,:) - q(0:i-1,:) * l_i); 210 q_i.setZero(); 211 for (int idx = rows[i]; idx < rows[i + 1]; ++idx) { 212 q_i(cols[idx]) = values[idx]; 213 } 214 215 for (int j = l_rows[i]; j < l_rows[i + 1]; ++j) { 216 const int r = l_cols[j]; 217 const double lij = l_values[j]; 218 for (int idx = q_rows[r]; idx < q_rows[r + 1]; ++idx) { 219 q_i(q_cols[idx]) -= lij * q_values[idx]; 220 } 221 } 222 DropEntriesAndAddRow(q_i, 223 num_cols, 224 q_level_of_fill, 225 q_drop_tolerance, 226 &scratch, 227 &q); 228 229 // lii = |qi| 230 l_cols[l->num_nonzeros()] = i; 231 l_values[l->num_nonzeros()] = NormalizeRow(i, &q); 232 l_rows[l->num_rows()] += 1; 233 } 234 235 return l; 236 } 237 238 } // namespace internal 239 } // namespace ceres 240