Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements an idiom recognizer that transforms simple loops into a
     11 // non-loop form.  In cases that this kicks in, it can be a significant
     12 // performance win.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 //
     16 // TODO List:
     17 //
     18 // Future loop memory idioms to recognize:
     19 //   memcmp, memmove, strlen, etc.
     20 // Future floating point idioms to recognize in -ffast-math mode:
     21 //   fpowi
     22 // Future integer operation idioms to recognize:
     23 //   ctpop, ctlz, cttz
     24 //
     25 // Beware that isel's default lowering for ctpop is highly inefficient for
     26 // i64 and larger types when i64 is legal and the value has few bits set.  It
     27 // would be good to enhance isel to emit a loop for ctpop in this case.
     28 //
     29 // We should enhance the memset/memcpy recognition to handle multiple stores in
     30 // the loop.  This would handle things like:
     31 //   void foo(_Complex float *P)
     32 //     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
     33 //
     34 // We should enhance this to handle negative strides through memory.
     35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
     36 // forward iteration through memory, which is generally better for cache
     37 // behavior.  Negative strides *do* happen for memset/memcpy loops.
     38 //
     39 // This could recognize common matrix multiplies and dot product idioms and
     40 // replace them with calls to BLAS (if linked in??).
     41 //
     42 //===----------------------------------------------------------------------===//
     43 
     44 #define DEBUG_TYPE "loop-idiom"
     45 #include "llvm/Transforms/Scalar.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/Analysis/AliasAnalysis.h"
     48 #include "llvm/Analysis/LoopPass.h"
     49 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     50 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     51 #include "llvm/Analysis/TargetTransformInfo.h"
     52 #include "llvm/Analysis/ValueTracking.h"
     53 #include "llvm/IR/DataLayout.h"
     54 #include "llvm/IR/IRBuilder.h"
     55 #include "llvm/IR/IntrinsicInst.h"
     56 #include "llvm/IR/Module.h"
     57 #include "llvm/Support/Debug.h"
     58 #include "llvm/Support/raw_ostream.h"
     59 #include "llvm/Target/TargetLibraryInfo.h"
     60 #include "llvm/Transforms/Utils/Local.h"
     61 using namespace llvm;
     62 
     63 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
     64 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
     65 
     66 namespace {
     67 
     68   class LoopIdiomRecognize;
     69 
     70   /// This class defines some utility functions for loop idiom recognization.
     71   class LIRUtil {
     72   public:
     73     /// Return true iff the block contains nothing but an uncondition branch
     74     /// (aka goto instruction).
     75     static bool isAlmostEmpty(BasicBlock *);
     76 
     77     static BranchInst *getBranch(BasicBlock *BB) {
     78       return dyn_cast<BranchInst>(BB->getTerminator());
     79     }
     80 
     81     /// Return the condition of the branch terminating the given basic block.
     82     static Value *getBrCondtion(BasicBlock *);
     83 
     84     /// Derive the precondition block (i.e the block that guards the loop
     85     /// preheader) from the given preheader.
     86     static BasicBlock *getPrecondBb(BasicBlock *PreHead);
     87   };
     88 
     89   /// This class is to recoginize idioms of population-count conducted in
     90   /// a noncountable loop. Currently it only recognizes this pattern:
     91   /// \code
     92   ///   while(x) {cnt++; ...; x &= x - 1; ...}
     93   /// \endcode
     94   class NclPopcountRecognize {
     95     LoopIdiomRecognize &LIR;
     96     Loop *CurLoop;
     97     BasicBlock *PreCondBB;
     98 
     99     typedef IRBuilder<> IRBuilderTy;
    100 
    101   public:
    102     explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
    103     bool recognize();
    104 
    105   private:
    106     /// Take a glimpse of the loop to see if we need to go ahead recoginizing
    107     /// the idiom.
    108     bool preliminaryScreen();
    109 
    110     /// Check if the given conditional branch is based on the comparison
    111     /// beween a variable and zero, and if the variable is non-zero, the
    112     /// control yeilds to the loop entry. If the branch matches the behavior,
    113     /// the variable involved in the comparion is returned. This function will
    114     /// be called to see if the precondition and postcondition of the loop
    115     /// are in desirable form.
    116     Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
    117 
    118     /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
    119     /// is set to the instruction counting the pupulation bit. 2) \p CntPhi
    120     /// is set to the corresponding phi node. 3) \p Var is set to the value
    121     /// whose population bits are being counted.
    122     bool detectIdiom
    123       (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
    124 
    125     /// Insert ctpop intrinsic function and some obviously dead instructions.
    126     void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
    127 
    128     /// Create llvm.ctpop.* intrinsic function.
    129     CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
    130   };
    131 
    132   class LoopIdiomRecognize : public LoopPass {
    133     Loop *CurLoop;
    134     const DataLayout *TD;
    135     DominatorTree *DT;
    136     ScalarEvolution *SE;
    137     TargetLibraryInfo *TLI;
    138     const TargetTransformInfo *TTI;
    139   public:
    140     static char ID;
    141     explicit LoopIdiomRecognize() : LoopPass(ID) {
    142       initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
    143       TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
    144     }
    145 
    146     bool runOnLoop(Loop *L, LPPassManager &LPM);
    147     bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
    148                         SmallVectorImpl<BasicBlock*> &ExitBlocks);
    149 
    150     bool processLoopStore(StoreInst *SI, const SCEV *BECount);
    151     bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
    152 
    153     bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
    154                                  unsigned StoreAlignment,
    155                                  Value *SplatValue, Instruction *TheStore,
    156                                  const SCEVAddRecExpr *Ev,
    157                                  const SCEV *BECount);
    158     bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
    159                                     const SCEVAddRecExpr *StoreEv,
    160                                     const SCEVAddRecExpr *LoadEv,
    161                                     const SCEV *BECount);
    162 
    163     /// This transformation requires natural loop information & requires that
    164     /// loop preheaders be inserted into the CFG.
    165     ///
    166     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    167       AU.addRequired<LoopInfo>();
    168       AU.addPreserved<LoopInfo>();
    169       AU.addRequiredID(LoopSimplifyID);
    170       AU.addPreservedID(LoopSimplifyID);
    171       AU.addRequiredID(LCSSAID);
    172       AU.addPreservedID(LCSSAID);
    173       AU.addRequired<AliasAnalysis>();
    174       AU.addPreserved<AliasAnalysis>();
    175       AU.addRequired<ScalarEvolution>();
    176       AU.addPreserved<ScalarEvolution>();
    177       AU.addPreserved<DominatorTree>();
    178       AU.addRequired<DominatorTree>();
    179       AU.addRequired<TargetLibraryInfo>();
    180       AU.addRequired<TargetTransformInfo>();
    181     }
    182 
    183     const DataLayout *getDataLayout() {
    184       return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
    185     }
    186 
    187     DominatorTree *getDominatorTree() {
    188       return DT ? DT : (DT=&getAnalysis<DominatorTree>());
    189     }
    190 
    191     ScalarEvolution *getScalarEvolution() {
    192       return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
    193     }
    194 
    195     TargetLibraryInfo *getTargetLibraryInfo() {
    196       return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
    197     }
    198 
    199     const TargetTransformInfo *getTargetTransformInfo() {
    200       return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
    201     }
    202 
    203     Loop *getLoop() const { return CurLoop; }
    204 
    205   private:
    206     bool runOnNoncountableLoop();
    207     bool runOnCountableLoop();
    208   };
    209 }
    210 
    211 char LoopIdiomRecognize::ID = 0;
    212 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
    213                       false, false)
    214 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    215 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    216 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    217 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    218 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    219 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    220 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    221 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
    222 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
    223                     false, false)
    224 
    225 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
    226 
    227 /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
    228 /// and zero out all the operands of this instruction.  If any of them become
    229 /// dead, delete them and the computation tree that feeds them.
    230 ///
    231 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
    232                                   const TargetLibraryInfo *TLI) {
    233   SmallVector<Instruction*, 32> NowDeadInsts;
    234 
    235   NowDeadInsts.push_back(I);
    236 
    237   // Before we touch this instruction, remove it from SE!
    238   do {
    239     Instruction *DeadInst = NowDeadInsts.pop_back_val();
    240 
    241     // This instruction is dead, zap it, in stages.  Start by removing it from
    242     // SCEV.
    243     SE.forgetValue(DeadInst);
    244 
    245     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
    246       Value *Op = DeadInst->getOperand(op);
    247       DeadInst->setOperand(op, 0);
    248 
    249       // If this operand just became dead, add it to the NowDeadInsts list.
    250       if (!Op->use_empty()) continue;
    251 
    252       if (Instruction *OpI = dyn_cast<Instruction>(Op))
    253         if (isInstructionTriviallyDead(OpI, TLI))
    254           NowDeadInsts.push_back(OpI);
    255     }
    256 
    257     DeadInst->eraseFromParent();
    258 
    259   } while (!NowDeadInsts.empty());
    260 }
    261 
    262 /// deleteIfDeadInstruction - If the specified value is a dead instruction,
    263 /// delete it and any recursively used instructions.
    264 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
    265                                     const TargetLibraryInfo *TLI) {
    266   if (Instruction *I = dyn_cast<Instruction>(V))
    267     if (isInstructionTriviallyDead(I, TLI))
    268       deleteDeadInstruction(I, SE, TLI);
    269 }
    270 
    271 //===----------------------------------------------------------------------===//
    272 //
    273 //          Implementation of LIRUtil
    274 //
    275 //===----------------------------------------------------------------------===//
    276 
    277 // This function will return true iff the given block contains nothing but goto.
    278 // A typical usage of this function is to check if the preheader function is
    279 // "almost" empty such that generated intrinsic functions can be moved across
    280 // the preheader and be placed at the end of the precondition block without
    281 // the concern of breaking data dependence.
    282 bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
    283   if (BranchInst *Br = getBranch(BB)) {
    284     return Br->isUnconditional() && BB->size() == 1;
    285   }
    286   return false;
    287 }
    288 
    289 Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
    290   BranchInst *Br = getBranch(BB);
    291   return Br ? Br->getCondition() : 0;
    292 }
    293 
    294 BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
    295   if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
    296     BranchInst *Br = getBranch(BB);
    297     return Br && Br->isConditional() ? BB : 0;
    298   }
    299   return 0;
    300 }
    301 
    302 //===----------------------------------------------------------------------===//
    303 //
    304 //          Implementation of NclPopcountRecognize
    305 //
    306 //===----------------------------------------------------------------------===//
    307 
    308 NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
    309   LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
    310 }
    311 
    312 bool NclPopcountRecognize::preliminaryScreen() {
    313   const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
    314   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
    315     return false;
    316 
    317   // Counting population are usually conducted by few arithmetic instrutions.
    318   // Such instructions can be easilly "absorbed" by vacant slots in a
    319   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
    320   // in a compact loop.
    321 
    322   // Give up if the loop has multiple blocks or multiple backedges.
    323   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
    324     return false;
    325 
    326   BasicBlock *LoopBody = *(CurLoop->block_begin());
    327   if (LoopBody->size() >= 20) {
    328     // The loop is too big, bail out.
    329     return false;
    330   }
    331 
    332   // It should have a preheader containing nothing but a goto instruction.
    333   BasicBlock *PreHead = CurLoop->getLoopPreheader();
    334   if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
    335     return false;
    336 
    337   // It should have a precondition block where the generated popcount instrinsic
    338   // function will be inserted.
    339   PreCondBB = LIRUtil::getPrecondBb(PreHead);
    340   if (!PreCondBB)
    341     return false;
    342 
    343   return true;
    344 }
    345 
    346 Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
    347                                              BasicBlock *LoopEntry) const {
    348   if (!Br || !Br->isConditional())
    349     return 0;
    350 
    351   ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
    352   if (!Cond)
    353     return 0;
    354 
    355   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
    356   if (!CmpZero || !CmpZero->isZero())
    357     return 0;
    358 
    359   ICmpInst::Predicate Pred = Cond->getPredicate();
    360   if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
    361       (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
    362     return Cond->getOperand(0);
    363 
    364   return 0;
    365 }
    366 
    367 bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
    368                                        PHINode *&CntPhi,
    369                                        Value *&Var) const {
    370   // Following code tries to detect this idiom:
    371   //
    372   //    if (x0 != 0)
    373   //      goto loop-exit // the precondition of the loop
    374   //    cnt0 = init-val;
    375   //    do {
    376   //       x1 = phi (x0, x2);
    377   //       cnt1 = phi(cnt0, cnt2);
    378   //
    379   //       cnt2 = cnt1 + 1;
    380   //        ...
    381   //       x2 = x1 & (x1 - 1);
    382   //        ...
    383   //    } while(x != 0);
    384   //
    385   // loop-exit:
    386   //
    387 
    388   // step 1: Check to see if the look-back branch match this pattern:
    389   //    "if (a!=0) goto loop-entry".
    390   BasicBlock *LoopEntry;
    391   Instruction *DefX2, *CountInst;
    392   Value *VarX1, *VarX0;
    393   PHINode *PhiX, *CountPhi;
    394 
    395   DefX2 = CountInst = 0;
    396   VarX1 = VarX0 = 0;
    397   PhiX = CountPhi = 0;
    398   LoopEntry = *(CurLoop->block_begin());
    399 
    400   // step 1: Check if the loop-back branch is in desirable form.
    401   {
    402     if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
    403       DefX2 = dyn_cast<Instruction>(T);
    404     else
    405       return false;
    406   }
    407 
    408   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
    409   {
    410     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
    411       return false;
    412 
    413     BinaryOperator *SubOneOp;
    414 
    415     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
    416       VarX1 = DefX2->getOperand(1);
    417     else {
    418       VarX1 = DefX2->getOperand(0);
    419       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
    420     }
    421     if (!SubOneOp)
    422       return false;
    423 
    424     Instruction *SubInst = cast<Instruction>(SubOneOp);
    425     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
    426     if (!Dec ||
    427         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
    428           (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
    429       return false;
    430     }
    431   }
    432 
    433   // step 3: Check the recurrence of variable X
    434   {
    435     PhiX = dyn_cast<PHINode>(VarX1);
    436     if (!PhiX ||
    437         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
    438       return false;
    439     }
    440   }
    441 
    442   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
    443   {
    444     CountInst = NULL;
    445     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
    446            IterE = LoopEntry->end(); Iter != IterE; Iter++) {
    447       Instruction *Inst = Iter;
    448       if (Inst->getOpcode() != Instruction::Add)
    449         continue;
    450 
    451       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
    452       if (!Inc || !Inc->isOne())
    453         continue;
    454 
    455       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
    456       if (!Phi || Phi->getParent() != LoopEntry)
    457         continue;
    458 
    459       // Check if the result of the instruction is live of the loop.
    460       bool LiveOutLoop = false;
    461       for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
    462              I != E;  I++) {
    463         if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
    464           LiveOutLoop = true; break;
    465         }
    466       }
    467 
    468       if (LiveOutLoop) {
    469         CountInst = Inst;
    470         CountPhi = Phi;
    471         break;
    472       }
    473     }
    474 
    475     if (!CountInst)
    476       return false;
    477   }
    478 
    479   // step 5: check if the precondition is in this form:
    480   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
    481   {
    482     BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
    483     Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
    484     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
    485       return false;
    486 
    487     CntInst = CountInst;
    488     CntPhi = CountPhi;
    489     Var = T;
    490   }
    491 
    492   return true;
    493 }
    494 
    495 void NclPopcountRecognize::transform(Instruction *CntInst,
    496                                      PHINode *CntPhi, Value *Var) {
    497 
    498   ScalarEvolution *SE = LIR.getScalarEvolution();
    499   TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
    500   BasicBlock *PreHead = CurLoop->getLoopPreheader();
    501   BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
    502   const DebugLoc DL = CntInst->getDebugLoc();
    503 
    504   // Assuming before transformation, the loop is following:
    505   //  if (x) // the precondition
    506   //     do { cnt++; x &= x - 1; } while(x);
    507 
    508   // Step 1: Insert the ctpop instruction at the end of the precondition block
    509   IRBuilderTy Builder(PreCondBr);
    510   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
    511   {
    512     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
    513     NewCount = PopCntZext =
    514       Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
    515 
    516     if (NewCount != PopCnt)
    517       (cast<Instruction>(NewCount))->setDebugLoc(DL);
    518 
    519     // TripCnt is exactly the number of iterations the loop has
    520     TripCnt = NewCount;
    521 
    522     // If the popoulation counter's initial value is not zero, insert Add Inst.
    523     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
    524     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
    525     if (!InitConst || !InitConst->isZero()) {
    526       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
    527       (cast<Instruction>(NewCount))->setDebugLoc(DL);
    528     }
    529   }
    530 
    531   // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
    532   //   "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
    533   //   function would be partial dead code, and downstream passes will drag
    534   //   it back from the precondition block to the preheader.
    535   {
    536     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
    537 
    538     Value *Opnd0 = PopCntZext;
    539     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
    540     if (PreCond->getOperand(0) != Var)
    541       std::swap(Opnd0, Opnd1);
    542 
    543     ICmpInst *NewPreCond =
    544       cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
    545     PreCond->replaceAllUsesWith(NewPreCond);
    546 
    547     deleteDeadInstruction(PreCond, *SE, TLI);
    548   }
    549 
    550   // Step 3: Note that the population count is exactly the trip count of the
    551   // loop in question, which enble us to to convert the loop from noncountable
    552   // loop into a countable one. The benefit is twofold:
    553   //
    554   //  - If the loop only counts population, the entire loop become dead after
    555   //    the transformation. It is lots easier to prove a countable loop dead
    556   //    than to prove a noncountable one. (In some C dialects, a infite loop
    557   //    isn't dead even if it computes nothing useful. In general, DCE needs
    558   //    to prove a noncountable loop finite before safely delete it.)
    559   //
    560   //  - If the loop also performs something else, it remains alive.
    561   //    Since it is transformed to countable form, it can be aggressively
    562   //    optimized by some optimizations which are in general not applicable
    563   //    to a noncountable loop.
    564   //
    565   // After this step, this loop (conceptually) would look like following:
    566   //   newcnt = __builtin_ctpop(x);
    567   //   t = newcnt;
    568   //   if (x)
    569   //     do { cnt++; x &= x-1; t--) } while (t > 0);
    570   BasicBlock *Body = *(CurLoop->block_begin());
    571   {
    572     BranchInst *LbBr = LIRUtil::getBranch(Body);
    573     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
    574     Type *Ty = TripCnt->getType();
    575 
    576     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
    577 
    578     Builder.SetInsertPoint(LbCond);
    579     Value *Opnd1 = cast<Value>(TcPhi);
    580     Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
    581     Instruction *TcDec =
    582       cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
    583 
    584     TcPhi->addIncoming(TripCnt, PreHead);
    585     TcPhi->addIncoming(TcDec, Body);
    586 
    587     CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
    588       CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
    589     LbCond->setPredicate(Pred);
    590     LbCond->setOperand(0, TcDec);
    591     LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
    592   }
    593 
    594   // Step 4: All the references to the original population counter outside
    595   //  the loop are replaced with the NewCount -- the value returned from
    596   //  __builtin_ctpop().
    597   {
    598     SmallVector<Value *, 4> CntUses;
    599     for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
    600          I != E; I++) {
    601       if (cast<Instruction>(*I)->getParent() != Body)
    602         CntUses.push_back(*I);
    603     }
    604     for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
    605       (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
    606     }
    607   }
    608 
    609   // step 5: Forget the "non-computable" trip-count SCEV associated with the
    610   //   loop. The loop would otherwise not be deleted even if it becomes empty.
    611   SE->forgetLoop(CurLoop);
    612 }
    613 
    614 CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
    615                                                       Value *Val, DebugLoc DL) {
    616   Value *Ops[] = { Val };
    617   Type *Tys[] = { Val->getType() };
    618 
    619   Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
    620   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
    621   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
    622   CI->setDebugLoc(DL);
    623 
    624   return CI;
    625 }
    626 
    627 /// recognize - detect population count idiom in a non-countable loop. If
    628 ///   detected, transform the relevant code to popcount intrinsic function
    629 ///   call, and return true; otherwise, return false.
    630 bool NclPopcountRecognize::recognize() {
    631 
    632   if (!LIR.getTargetTransformInfo())
    633     return false;
    634 
    635   LIR.getScalarEvolution();
    636 
    637   if (!preliminaryScreen())
    638     return false;
    639 
    640   Instruction *CntInst;
    641   PHINode *CntPhi;
    642   Value *Val;
    643   if (!detectIdiom(CntInst, CntPhi, Val))
    644     return false;
    645 
    646   transform(CntInst, CntPhi, Val);
    647   return true;
    648 }
    649 
    650 //===----------------------------------------------------------------------===//
    651 //
    652 //          Implementation of LoopIdiomRecognize
    653 //
    654 //===----------------------------------------------------------------------===//
    655 
    656 bool LoopIdiomRecognize::runOnCountableLoop() {
    657   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
    658   if (isa<SCEVCouldNotCompute>(BECount)) return false;
    659 
    660   // If this loop executes exactly one time, then it should be peeled, not
    661   // optimized by this pass.
    662   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    663     if (BECst->getValue()->getValue() == 0)
    664       return false;
    665 
    666   // We require target data for now.
    667   if (!getDataLayout())
    668     return false;
    669 
    670   // set DT
    671   (void)getDominatorTree();
    672 
    673   LoopInfo &LI = getAnalysis<LoopInfo>();
    674   TLI = &getAnalysis<TargetLibraryInfo>();
    675 
    676   // set TLI
    677   (void)getTargetLibraryInfo();
    678 
    679   SmallVector<BasicBlock*, 8> ExitBlocks;
    680   CurLoop->getUniqueExitBlocks(ExitBlocks);
    681 
    682   DEBUG(dbgs() << "loop-idiom Scanning: F["
    683                << CurLoop->getHeader()->getParent()->getName()
    684                << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
    685 
    686   bool MadeChange = false;
    687   // Scan all the blocks in the loop that are not in subloops.
    688   for (Loop::block_iterator BI = CurLoop->block_begin(),
    689          E = CurLoop->block_end(); BI != E; ++BI) {
    690     // Ignore blocks in subloops.
    691     if (LI.getLoopFor(*BI) != CurLoop)
    692       continue;
    693 
    694     MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
    695   }
    696   return MadeChange;
    697 }
    698 
    699 bool LoopIdiomRecognize::runOnNoncountableLoop() {
    700   NclPopcountRecognize Popcount(*this);
    701   if (Popcount.recognize())
    702     return true;
    703 
    704   return false;
    705 }
    706 
    707 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
    708   CurLoop = L;
    709 
    710   // If the loop could not be converted to canonical form, it must have an
    711   // indirectbr in it, just give up.
    712   if (!L->getLoopPreheader())
    713     return false;
    714 
    715   // Disable loop idiom recognition if the function's name is a common idiom.
    716   StringRef Name = L->getHeader()->getParent()->getName();
    717   if (Name == "memset" || Name == "memcpy")
    718     return false;
    719 
    720   SE = &getAnalysis<ScalarEvolution>();
    721   if (SE->hasLoopInvariantBackedgeTakenCount(L))
    722     return runOnCountableLoop();
    723   return runOnNoncountableLoop();
    724 }
    725 
    726 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
    727 /// with the specified backedge count.  This block is known to be in the current
    728 /// loop and not in any subloops.
    729 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
    730                                      SmallVectorImpl<BasicBlock*> &ExitBlocks) {
    731   // We can only promote stores in this block if they are unconditionally
    732   // executed in the loop.  For a block to be unconditionally executed, it has
    733   // to dominate all the exit blocks of the loop.  Verify this now.
    734   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    735     if (!DT->dominates(BB, ExitBlocks[i]))
    736       return false;
    737 
    738   bool MadeChange = false;
    739   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
    740     Instruction *Inst = I++;
    741     // Look for store instructions, which may be optimized to memset/memcpy.
    742     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
    743       WeakVH InstPtr(I);
    744       if (!processLoopStore(SI, BECount)) continue;
    745       MadeChange = true;
    746 
    747       // If processing the store invalidated our iterator, start over from the
    748       // top of the block.
    749       if (InstPtr == 0)
    750         I = BB->begin();
    751       continue;
    752     }
    753 
    754     // Look for memset instructions, which may be optimized to a larger memset.
    755     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
    756       WeakVH InstPtr(I);
    757       if (!processLoopMemSet(MSI, BECount)) continue;
    758       MadeChange = true;
    759 
    760       // If processing the memset invalidated our iterator, start over from the
    761       // top of the block.
    762       if (InstPtr == 0)
    763         I = BB->begin();
    764       continue;
    765     }
    766   }
    767 
    768   return MadeChange;
    769 }
    770 
    771 
    772 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
    773 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
    774   if (!SI->isSimple()) return false;
    775 
    776   Value *StoredVal = SI->getValueOperand();
    777   Value *StorePtr = SI->getPointerOperand();
    778 
    779   // Reject stores that are so large that they overflow an unsigned.
    780   uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
    781   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
    782     return false;
    783 
    784   // See if the pointer expression is an AddRec like {base,+,1} on the current
    785   // loop, which indicates a strided store.  If we have something else, it's a
    786   // random store we can't handle.
    787   const SCEVAddRecExpr *StoreEv =
    788     dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    789   if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
    790     return false;
    791 
    792   // Check to see if the stride matches the size of the store.  If so, then we
    793   // know that every byte is touched in the loop.
    794   unsigned StoreSize = (unsigned)SizeInBits >> 3;
    795   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
    796 
    797   if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
    798     // TODO: Could also handle negative stride here someday, that will require
    799     // the validity check in mayLoopAccessLocation to be updated though.
    800     // Enable this to print exact negative strides.
    801     if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
    802       dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
    803       dbgs() << "BB: " << *SI->getParent();
    804     }
    805 
    806     return false;
    807   }
    808 
    809   // See if we can optimize just this store in isolation.
    810   if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
    811                               StoredVal, SI, StoreEv, BECount))
    812     return true;
    813 
    814   // If the stored value is a strided load in the same loop with the same stride
    815   // this this may be transformable into a memcpy.  This kicks in for stuff like
    816   //   for (i) A[i] = B[i];
    817   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
    818     const SCEVAddRecExpr *LoadEv =
    819       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
    820     if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
    821         StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
    822       if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
    823         return true;
    824   }
    825   //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
    826 
    827   return false;
    828 }
    829 
    830 /// processLoopMemSet - See if this memset can be promoted to a large memset.
    831 bool LoopIdiomRecognize::
    832 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
    833   // We can only handle non-volatile memsets with a constant size.
    834   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
    835 
    836   // If we're not allowed to hack on memset, we fail.
    837   if (!TLI->has(LibFunc::memset))
    838     return false;
    839 
    840   Value *Pointer = MSI->getDest();
    841 
    842   // See if the pointer expression is an AddRec like {base,+,1} on the current
    843   // loop, which indicates a strided store.  If we have something else, it's a
    844   // random store we can't handle.
    845   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
    846   if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
    847     return false;
    848 
    849   // Reject memsets that are so large that they overflow an unsigned.
    850   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    851   if ((SizeInBytes >> 32) != 0)
    852     return false;
    853 
    854   // Check to see if the stride matches the size of the memset.  If so, then we
    855   // know that every byte is touched in the loop.
    856   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
    857 
    858   // TODO: Could also handle negative stride here someday, that will require the
    859   // validity check in mayLoopAccessLocation to be updated though.
    860   if (Stride == 0 || MSI->getLength() != Stride->getValue())
    861     return false;
    862 
    863   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
    864                                  MSI->getAlignment(), MSI->getValue(),
    865                                  MSI, Ev, BECount);
    866 }
    867 
    868 
    869 /// mayLoopAccessLocation - Return true if the specified loop might access the
    870 /// specified pointer location, which is a loop-strided access.  The 'Access'
    871 /// argument specifies what the verboten forms of access are (read or write).
    872 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
    873                                   Loop *L, const SCEV *BECount,
    874                                   unsigned StoreSize, AliasAnalysis &AA,
    875                                   Instruction *IgnoredStore) {
    876   // Get the location that may be stored across the loop.  Since the access is
    877   // strided positively through memory, we say that the modified location starts
    878   // at the pointer and has infinite size.
    879   uint64_t AccessSize = AliasAnalysis::UnknownSize;
    880 
    881   // If the loop iterates a fixed number of times, we can refine the access size
    882   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
    883   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    884     AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
    885 
    886   // TODO: For this to be really effective, we have to dive into the pointer
    887   // operand in the store.  Store to &A[i] of 100 will always return may alias
    888   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
    889   // which will then no-alias a store to &A[100].
    890   AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
    891 
    892   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
    893        ++BI)
    894     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
    895       if (&*I != IgnoredStore &&
    896           (AA.getModRefInfo(I, StoreLoc) & Access))
    897         return true;
    898 
    899   return false;
    900 }
    901 
    902 /// getMemSetPatternValue - If a strided store of the specified value is safe to
    903 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
    904 /// be passed in.  Otherwise, return null.
    905 ///
    906 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
    907 /// just replicate their input array and then pass on to memset_pattern16.
    908 static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
    909   // If the value isn't a constant, we can't promote it to being in a constant
    910   // array.  We could theoretically do a store to an alloca or something, but
    911   // that doesn't seem worthwhile.
    912   Constant *C = dyn_cast<Constant>(V);
    913   if (C == 0) return 0;
    914 
    915   // Only handle simple values that are a power of two bytes in size.
    916   uint64_t Size = TD.getTypeSizeInBits(V->getType());
    917   if (Size == 0 || (Size & 7) || (Size & (Size-1)))
    918     return 0;
    919 
    920   // Don't care enough about darwin/ppc to implement this.
    921   if (TD.isBigEndian())
    922     return 0;
    923 
    924   // Convert to size in bytes.
    925   Size /= 8;
    926 
    927   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
    928   // if the top and bottom are the same (e.g. for vectors and large integers).
    929   if (Size > 16) return 0;
    930 
    931   // If the constant is exactly 16 bytes, just use it.
    932   if (Size == 16) return C;
    933 
    934   // Otherwise, we'll use an array of the constants.
    935   unsigned ArraySize = 16/Size;
    936   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
    937   return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
    938 }
    939 
    940 
    941 /// processLoopStridedStore - We see a strided store of some value.  If we can
    942 /// transform this into a memset or memset_pattern in the loop preheader, do so.
    943 bool LoopIdiomRecognize::
    944 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
    945                         unsigned StoreAlignment, Value *StoredVal,
    946                         Instruction *TheStore, const SCEVAddRecExpr *Ev,
    947                         const SCEV *BECount) {
    948 
    949   // If the stored value is a byte-wise value (like i32 -1), then it may be
    950   // turned into a memset of i8 -1, assuming that all the consecutive bytes
    951   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
    952   // but it can be turned into memset_pattern if the target supports it.
    953   Value *SplatValue = isBytewiseValue(StoredVal);
    954   Constant *PatternValue = 0;
    955 
    956   // If we're allowed to form a memset, and the stored value would be acceptable
    957   // for memset, use it.
    958   if (SplatValue && TLI->has(LibFunc::memset) &&
    959       // Verify that the stored value is loop invariant.  If not, we can't
    960       // promote the memset.
    961       CurLoop->isLoopInvariant(SplatValue)) {
    962     // Keep and use SplatValue.
    963     PatternValue = 0;
    964   } else if (TLI->has(LibFunc::memset_pattern16) &&
    965              (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
    966     // It looks like we can use PatternValue!
    967     SplatValue = 0;
    968   } else {
    969     // Otherwise, this isn't an idiom we can transform.  For example, we can't
    970     // do anything with a 3-byte store.
    971     return false;
    972   }
    973 
    974   // The trip count of the loop and the base pointer of the addrec SCEV is
    975   // guaranteed to be loop invariant, which means that it should dominate the
    976   // header.  This allows us to insert code for it in the preheader.
    977   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    978   IRBuilder<> Builder(Preheader->getTerminator());
    979   SCEVExpander Expander(*SE, "loop-idiom");
    980 
    981   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
    982   // this into a memset in the loop preheader now if we want.  However, this
    983   // would be unsafe to do if there is anything else in the loop that may read
    984   // or write to the aliased location.  Check for any overlap by generating the
    985   // base pointer and checking the region.
    986   unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
    987   Value *BasePtr =
    988     Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
    989                            Preheader->getTerminator());
    990 
    991 
    992   if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
    993                             CurLoop, BECount,
    994                             StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
    995     Expander.clear();
    996     // If we generated new code for the base pointer, clean up.
    997     deleteIfDeadInstruction(BasePtr, *SE, TLI);
    998     return false;
    999   }
   1000 
   1001   // Okay, everything looks good, insert the memset.
   1002 
   1003   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
   1004   // pointer size if it isn't already.
   1005   Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
   1006   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
   1007 
   1008   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
   1009                                          SCEV::FlagNUW);
   1010   if (StoreSize != 1)
   1011     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
   1012                                SCEV::FlagNUW);
   1013 
   1014   Value *NumBytes =
   1015     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
   1016 
   1017   CallInst *NewCall;
   1018   if (SplatValue)
   1019     NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
   1020   else {
   1021     Module *M = TheStore->getParent()->getParent()->getParent();
   1022     Value *MSP = M->getOrInsertFunction("memset_pattern16",
   1023                                         Builder.getVoidTy(),
   1024                                         Builder.getInt8PtrTy(),
   1025                                         Builder.getInt8PtrTy(), IntPtr,
   1026                                         (void*)0);
   1027 
   1028     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
   1029     // an constant array of 16-bytes.  Plop the value into a mergable global.
   1030     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
   1031                                             GlobalValue::InternalLinkage,
   1032                                             PatternValue, ".memset_pattern");
   1033     GV->setUnnamedAddr(true); // Ok to merge these.
   1034     GV->setAlignment(16);
   1035     Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
   1036     NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
   1037   }
   1038 
   1039   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
   1040                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
   1041   NewCall->setDebugLoc(TheStore->getDebugLoc());
   1042 
   1043   // Okay, the memset has been formed.  Zap the original store and anything that
   1044   // feeds into it.
   1045   deleteDeadInstruction(TheStore, *SE, TLI);
   1046   ++NumMemSet;
   1047   return true;
   1048 }
   1049 
   1050 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
   1051 /// same-strided load.
   1052 bool LoopIdiomRecognize::
   1053 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
   1054                            const SCEVAddRecExpr *StoreEv,
   1055                            const SCEVAddRecExpr *LoadEv,
   1056                            const SCEV *BECount) {
   1057   // If we're not allowed to form memcpy, we fail.
   1058   if (!TLI->has(LibFunc::memcpy))
   1059     return false;
   1060 
   1061   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
   1062 
   1063   // The trip count of the loop and the base pointer of the addrec SCEV is
   1064   // guaranteed to be loop invariant, which means that it should dominate the
   1065   // header.  This allows us to insert code for it in the preheader.
   1066   BasicBlock *Preheader = CurLoop->getLoopPreheader();
   1067   IRBuilder<> Builder(Preheader->getTerminator());
   1068   SCEVExpander Expander(*SE, "loop-idiom");
   1069 
   1070   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
   1071   // this into a memcpy in the loop preheader now if we want.  However, this
   1072   // would be unsafe to do if there is anything else in the loop that may read
   1073   // or write the memory region we're storing to.  This includes the load that
   1074   // feeds the stores.  Check for an alias by generating the base address and
   1075   // checking everything.
   1076   Value *StoreBasePtr =
   1077     Expander.expandCodeFor(StoreEv->getStart(),
   1078                            Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
   1079                            Preheader->getTerminator());
   1080 
   1081   if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
   1082                             CurLoop, BECount, StoreSize,
   1083                             getAnalysis<AliasAnalysis>(), SI)) {
   1084     Expander.clear();
   1085     // If we generated new code for the base pointer, clean up.
   1086     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
   1087     return false;
   1088   }
   1089 
   1090   // For a memcpy, we have to make sure that the input array is not being
   1091   // mutated by the loop.
   1092   Value *LoadBasePtr =
   1093     Expander.expandCodeFor(LoadEv->getStart(),
   1094                            Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
   1095                            Preheader->getTerminator());
   1096 
   1097   if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
   1098                             StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
   1099     Expander.clear();
   1100     // If we generated new code for the base pointer, clean up.
   1101     deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
   1102     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
   1103     return false;
   1104   }
   1105 
   1106   // Okay, everything is safe, we can transform this!
   1107 
   1108 
   1109   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
   1110   // pointer size if it isn't already.
   1111   Type *IntPtr = TD->getIntPtrType(SI->getContext());
   1112   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
   1113 
   1114   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
   1115                                          SCEV::FlagNUW);
   1116   if (StoreSize != 1)
   1117     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
   1118                                SCEV::FlagNUW);
   1119 
   1120   Value *NumBytes =
   1121     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
   1122 
   1123   CallInst *NewCall =
   1124     Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
   1125                          std::min(SI->getAlignment(), LI->getAlignment()));
   1126   NewCall->setDebugLoc(SI->getDebugLoc());
   1127 
   1128   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
   1129                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
   1130                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
   1131 
   1132 
   1133   // Okay, the memset has been formed.  Zap the original store and anything that
   1134   // feeds into it.
   1135   deleteDeadInstruction(SI, *SE, TLI);
   1136   ++NumMemCpy;
   1137   return true;
   1138 }
   1139