1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 //===----------------------------------------------------------------------===// 15 // 16 // TODO List: 17 // 18 // Future loop memory idioms to recognize: 19 // memcmp, memmove, strlen, etc. 20 // Future floating point idioms to recognize in -ffast-math mode: 21 // fpowi 22 // Future integer operation idioms to recognize: 23 // ctpop, ctlz, cttz 24 // 25 // Beware that isel's default lowering for ctpop is highly inefficient for 26 // i64 and larger types when i64 is legal and the value has few bits set. It 27 // would be good to enhance isel to emit a loop for ctpop in this case. 28 // 29 // We should enhance the memset/memcpy recognition to handle multiple stores in 30 // the loop. This would handle things like: 31 // void foo(_Complex float *P) 32 // for (i) { __real__(*P) = 0; __imag__(*P) = 0; } 33 // 34 // We should enhance this to handle negative strides through memory. 35 // Alternatively (and perhaps better) we could rely on an earlier pass to force 36 // forward iteration through memory, which is generally better for cache 37 // behavior. Negative strides *do* happen for memset/memcpy loops. 38 // 39 // This could recognize common matrix multiplies and dot product idioms and 40 // replace them with calls to BLAS (if linked in??). 41 // 42 //===----------------------------------------------------------------------===// 43 44 #define DEBUG_TYPE "loop-idiom" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/ADT/Statistic.h" 47 #include "llvm/Analysis/AliasAnalysis.h" 48 #include "llvm/Analysis/LoopPass.h" 49 #include "llvm/Analysis/ScalarEvolutionExpander.h" 50 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 51 #include "llvm/Analysis/TargetTransformInfo.h" 52 #include "llvm/Analysis/ValueTracking.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetLibraryInfo.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 using namespace llvm; 62 63 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 64 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 65 66 namespace { 67 68 class LoopIdiomRecognize; 69 70 /// This class defines some utility functions for loop idiom recognization. 71 class LIRUtil { 72 public: 73 /// Return true iff the block contains nothing but an uncondition branch 74 /// (aka goto instruction). 75 static bool isAlmostEmpty(BasicBlock *); 76 77 static BranchInst *getBranch(BasicBlock *BB) { 78 return dyn_cast<BranchInst>(BB->getTerminator()); 79 } 80 81 /// Return the condition of the branch terminating the given basic block. 82 static Value *getBrCondtion(BasicBlock *); 83 84 /// Derive the precondition block (i.e the block that guards the loop 85 /// preheader) from the given preheader. 86 static BasicBlock *getPrecondBb(BasicBlock *PreHead); 87 }; 88 89 /// This class is to recoginize idioms of population-count conducted in 90 /// a noncountable loop. Currently it only recognizes this pattern: 91 /// \code 92 /// while(x) {cnt++; ...; x &= x - 1; ...} 93 /// \endcode 94 class NclPopcountRecognize { 95 LoopIdiomRecognize &LIR; 96 Loop *CurLoop; 97 BasicBlock *PreCondBB; 98 99 typedef IRBuilder<> IRBuilderTy; 100 101 public: 102 explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR); 103 bool recognize(); 104 105 private: 106 /// Take a glimpse of the loop to see if we need to go ahead recoginizing 107 /// the idiom. 108 bool preliminaryScreen(); 109 110 /// Check if the given conditional branch is based on the comparison 111 /// beween a variable and zero, and if the variable is non-zero, the 112 /// control yeilds to the loop entry. If the branch matches the behavior, 113 /// the variable involved in the comparion is returned. This function will 114 /// be called to see if the precondition and postcondition of the loop 115 /// are in desirable form. 116 Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const; 117 118 /// Return true iff the idiom is detected in the loop. and 1) \p CntInst 119 /// is set to the instruction counting the pupulation bit. 2) \p CntPhi 120 /// is set to the corresponding phi node. 3) \p Var is set to the value 121 /// whose population bits are being counted. 122 bool detectIdiom 123 (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const; 124 125 /// Insert ctpop intrinsic function and some obviously dead instructions. 126 void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var); 127 128 /// Create llvm.ctpop.* intrinsic function. 129 CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL); 130 }; 131 132 class LoopIdiomRecognize : public LoopPass { 133 Loop *CurLoop; 134 const DataLayout *TD; 135 DominatorTree *DT; 136 ScalarEvolution *SE; 137 TargetLibraryInfo *TLI; 138 const TargetTransformInfo *TTI; 139 public: 140 static char ID; 141 explicit LoopIdiomRecognize() : LoopPass(ID) { 142 initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); 143 TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0; 144 } 145 146 bool runOnLoop(Loop *L, LPPassManager &LPM); 147 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 148 SmallVectorImpl<BasicBlock*> &ExitBlocks); 149 150 bool processLoopStore(StoreInst *SI, const SCEV *BECount); 151 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 152 153 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 154 unsigned StoreAlignment, 155 Value *SplatValue, Instruction *TheStore, 156 const SCEVAddRecExpr *Ev, 157 const SCEV *BECount); 158 bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, 159 const SCEVAddRecExpr *StoreEv, 160 const SCEVAddRecExpr *LoadEv, 161 const SCEV *BECount); 162 163 /// This transformation requires natural loop information & requires that 164 /// loop preheaders be inserted into the CFG. 165 /// 166 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.addRequired<LoopInfo>(); 168 AU.addPreserved<LoopInfo>(); 169 AU.addRequiredID(LoopSimplifyID); 170 AU.addPreservedID(LoopSimplifyID); 171 AU.addRequiredID(LCSSAID); 172 AU.addPreservedID(LCSSAID); 173 AU.addRequired<AliasAnalysis>(); 174 AU.addPreserved<AliasAnalysis>(); 175 AU.addRequired<ScalarEvolution>(); 176 AU.addPreserved<ScalarEvolution>(); 177 AU.addPreserved<DominatorTree>(); 178 AU.addRequired<DominatorTree>(); 179 AU.addRequired<TargetLibraryInfo>(); 180 AU.addRequired<TargetTransformInfo>(); 181 } 182 183 const DataLayout *getDataLayout() { 184 return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>(); 185 } 186 187 DominatorTree *getDominatorTree() { 188 return DT ? DT : (DT=&getAnalysis<DominatorTree>()); 189 } 190 191 ScalarEvolution *getScalarEvolution() { 192 return SE ? SE : (SE = &getAnalysis<ScalarEvolution>()); 193 } 194 195 TargetLibraryInfo *getTargetLibraryInfo() { 196 return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>()); 197 } 198 199 const TargetTransformInfo *getTargetTransformInfo() { 200 return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>()); 201 } 202 203 Loop *getLoop() const { return CurLoop; } 204 205 private: 206 bool runOnNoncountableLoop(); 207 bool runOnCountableLoop(); 208 }; 209 } 210 211 char LoopIdiomRecognize::ID = 0; 212 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 213 false, false) 214 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 215 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 216 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 217 INITIALIZE_PASS_DEPENDENCY(LCSSA) 218 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 219 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 220 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 221 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 222 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 223 false, false) 224 225 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } 226 227 /// deleteDeadInstruction - Delete this instruction. Before we do, go through 228 /// and zero out all the operands of this instruction. If any of them become 229 /// dead, delete them and the computation tree that feeds them. 230 /// 231 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE, 232 const TargetLibraryInfo *TLI) { 233 SmallVector<Instruction*, 32> NowDeadInsts; 234 235 NowDeadInsts.push_back(I); 236 237 // Before we touch this instruction, remove it from SE! 238 do { 239 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 240 241 // This instruction is dead, zap it, in stages. Start by removing it from 242 // SCEV. 243 SE.forgetValue(DeadInst); 244 245 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { 246 Value *Op = DeadInst->getOperand(op); 247 DeadInst->setOperand(op, 0); 248 249 // If this operand just became dead, add it to the NowDeadInsts list. 250 if (!Op->use_empty()) continue; 251 252 if (Instruction *OpI = dyn_cast<Instruction>(Op)) 253 if (isInstructionTriviallyDead(OpI, TLI)) 254 NowDeadInsts.push_back(OpI); 255 } 256 257 DeadInst->eraseFromParent(); 258 259 } while (!NowDeadInsts.empty()); 260 } 261 262 /// deleteIfDeadInstruction - If the specified value is a dead instruction, 263 /// delete it and any recursively used instructions. 264 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE, 265 const TargetLibraryInfo *TLI) { 266 if (Instruction *I = dyn_cast<Instruction>(V)) 267 if (isInstructionTriviallyDead(I, TLI)) 268 deleteDeadInstruction(I, SE, TLI); 269 } 270 271 //===----------------------------------------------------------------------===// 272 // 273 // Implementation of LIRUtil 274 // 275 //===----------------------------------------------------------------------===// 276 277 // This function will return true iff the given block contains nothing but goto. 278 // A typical usage of this function is to check if the preheader function is 279 // "almost" empty such that generated intrinsic functions can be moved across 280 // the preheader and be placed at the end of the precondition block without 281 // the concern of breaking data dependence. 282 bool LIRUtil::isAlmostEmpty(BasicBlock *BB) { 283 if (BranchInst *Br = getBranch(BB)) { 284 return Br->isUnconditional() && BB->size() == 1; 285 } 286 return false; 287 } 288 289 Value *LIRUtil::getBrCondtion(BasicBlock *BB) { 290 BranchInst *Br = getBranch(BB); 291 return Br ? Br->getCondition() : 0; 292 } 293 294 BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) { 295 if (BasicBlock *BB = PreHead->getSinglePredecessor()) { 296 BranchInst *Br = getBranch(BB); 297 return Br && Br->isConditional() ? BB : 0; 298 } 299 return 0; 300 } 301 302 //===----------------------------------------------------------------------===// 303 // 304 // Implementation of NclPopcountRecognize 305 // 306 //===----------------------------------------------------------------------===// 307 308 NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR): 309 LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) { 310 } 311 312 bool NclPopcountRecognize::preliminaryScreen() { 313 const TargetTransformInfo *TTI = LIR.getTargetTransformInfo(); 314 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 315 return false; 316 317 // Counting population are usually conducted by few arithmetic instrutions. 318 // Such instructions can be easilly "absorbed" by vacant slots in a 319 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 320 // in a compact loop. 321 322 // Give up if the loop has multiple blocks or multiple backedges. 323 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 324 return false; 325 326 BasicBlock *LoopBody = *(CurLoop->block_begin()); 327 if (LoopBody->size() >= 20) { 328 // The loop is too big, bail out. 329 return false; 330 } 331 332 // It should have a preheader containing nothing but a goto instruction. 333 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 334 if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead)) 335 return false; 336 337 // It should have a precondition block where the generated popcount instrinsic 338 // function will be inserted. 339 PreCondBB = LIRUtil::getPrecondBb(PreHead); 340 if (!PreCondBB) 341 return false; 342 343 return true; 344 } 345 346 Value *NclPopcountRecognize::matchCondition (BranchInst *Br, 347 BasicBlock *LoopEntry) const { 348 if (!Br || !Br->isConditional()) 349 return 0; 350 351 ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition()); 352 if (!Cond) 353 return 0; 354 355 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 356 if (!CmpZero || !CmpZero->isZero()) 357 return 0; 358 359 ICmpInst::Predicate Pred = Cond->getPredicate(); 360 if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) || 361 (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry)) 362 return Cond->getOperand(0); 363 364 return 0; 365 } 366 367 bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst, 368 PHINode *&CntPhi, 369 Value *&Var) const { 370 // Following code tries to detect this idiom: 371 // 372 // if (x0 != 0) 373 // goto loop-exit // the precondition of the loop 374 // cnt0 = init-val; 375 // do { 376 // x1 = phi (x0, x2); 377 // cnt1 = phi(cnt0, cnt2); 378 // 379 // cnt2 = cnt1 + 1; 380 // ... 381 // x2 = x1 & (x1 - 1); 382 // ... 383 // } while(x != 0); 384 // 385 // loop-exit: 386 // 387 388 // step 1: Check to see if the look-back branch match this pattern: 389 // "if (a!=0) goto loop-entry". 390 BasicBlock *LoopEntry; 391 Instruction *DefX2, *CountInst; 392 Value *VarX1, *VarX0; 393 PHINode *PhiX, *CountPhi; 394 395 DefX2 = CountInst = 0; 396 VarX1 = VarX0 = 0; 397 PhiX = CountPhi = 0; 398 LoopEntry = *(CurLoop->block_begin()); 399 400 // step 1: Check if the loop-back branch is in desirable form. 401 { 402 if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry)) 403 DefX2 = dyn_cast<Instruction>(T); 404 else 405 return false; 406 } 407 408 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 409 { 410 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 411 return false; 412 413 BinaryOperator *SubOneOp; 414 415 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 416 VarX1 = DefX2->getOperand(1); 417 else { 418 VarX1 = DefX2->getOperand(0); 419 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 420 } 421 if (!SubOneOp) 422 return false; 423 424 Instruction *SubInst = cast<Instruction>(SubOneOp); 425 ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); 426 if (!Dec || 427 !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || 428 (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) { 429 return false; 430 } 431 } 432 433 // step 3: Check the recurrence of variable X 434 { 435 PhiX = dyn_cast<PHINode>(VarX1); 436 if (!PhiX || 437 (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) { 438 return false; 439 } 440 } 441 442 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 443 { 444 CountInst = NULL; 445 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(), 446 IterE = LoopEntry->end(); Iter != IterE; Iter++) { 447 Instruction *Inst = Iter; 448 if (Inst->getOpcode() != Instruction::Add) 449 continue; 450 451 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 452 if (!Inc || !Inc->isOne()) 453 continue; 454 455 PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0)); 456 if (!Phi || Phi->getParent() != LoopEntry) 457 continue; 458 459 // Check if the result of the instruction is live of the loop. 460 bool LiveOutLoop = false; 461 for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); 462 I != E; I++) { 463 if ((cast<Instruction>(*I))->getParent() != LoopEntry) { 464 LiveOutLoop = true; break; 465 } 466 } 467 468 if (LiveOutLoop) { 469 CountInst = Inst; 470 CountPhi = Phi; 471 break; 472 } 473 } 474 475 if (!CountInst) 476 return false; 477 } 478 479 // step 5: check if the precondition is in this form: 480 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 481 { 482 BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB); 483 Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader()); 484 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 485 return false; 486 487 CntInst = CountInst; 488 CntPhi = CountPhi; 489 Var = T; 490 } 491 492 return true; 493 } 494 495 void NclPopcountRecognize::transform(Instruction *CntInst, 496 PHINode *CntPhi, Value *Var) { 497 498 ScalarEvolution *SE = LIR.getScalarEvolution(); 499 TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo(); 500 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 501 BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB); 502 const DebugLoc DL = CntInst->getDebugLoc(); 503 504 // Assuming before transformation, the loop is following: 505 // if (x) // the precondition 506 // do { cnt++; x &= x - 1; } while(x); 507 508 // Step 1: Insert the ctpop instruction at the end of the precondition block 509 IRBuilderTy Builder(PreCondBr); 510 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 511 { 512 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 513 NewCount = PopCntZext = 514 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 515 516 if (NewCount != PopCnt) 517 (cast<Instruction>(NewCount))->setDebugLoc(DL); 518 519 // TripCnt is exactly the number of iterations the loop has 520 TripCnt = NewCount; 521 522 // If the popoulation counter's initial value is not zero, insert Add Inst. 523 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 524 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 525 if (!InitConst || !InitConst->isZero()) { 526 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 527 (cast<Instruction>(NewCount))->setDebugLoc(DL); 528 } 529 } 530 531 // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to 532 // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic 533 // function would be partial dead code, and downstream passes will drag 534 // it back from the precondition block to the preheader. 535 { 536 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 537 538 Value *Opnd0 = PopCntZext; 539 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 540 if (PreCond->getOperand(0) != Var) 541 std::swap(Opnd0, Opnd1); 542 543 ICmpInst *NewPreCond = 544 cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 545 PreCond->replaceAllUsesWith(NewPreCond); 546 547 deleteDeadInstruction(PreCond, *SE, TLI); 548 } 549 550 // Step 3: Note that the population count is exactly the trip count of the 551 // loop in question, which enble us to to convert the loop from noncountable 552 // loop into a countable one. The benefit is twofold: 553 // 554 // - If the loop only counts population, the entire loop become dead after 555 // the transformation. It is lots easier to prove a countable loop dead 556 // than to prove a noncountable one. (In some C dialects, a infite loop 557 // isn't dead even if it computes nothing useful. In general, DCE needs 558 // to prove a noncountable loop finite before safely delete it.) 559 // 560 // - If the loop also performs something else, it remains alive. 561 // Since it is transformed to countable form, it can be aggressively 562 // optimized by some optimizations which are in general not applicable 563 // to a noncountable loop. 564 // 565 // After this step, this loop (conceptually) would look like following: 566 // newcnt = __builtin_ctpop(x); 567 // t = newcnt; 568 // if (x) 569 // do { cnt++; x &= x-1; t--) } while (t > 0); 570 BasicBlock *Body = *(CurLoop->block_begin()); 571 { 572 BranchInst *LbBr = LIRUtil::getBranch(Body); 573 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 574 Type *Ty = TripCnt->getType(); 575 576 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin()); 577 578 Builder.SetInsertPoint(LbCond); 579 Value *Opnd1 = cast<Value>(TcPhi); 580 Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1)); 581 Instruction *TcDec = 582 cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true)); 583 584 TcPhi->addIncoming(TripCnt, PreHead); 585 TcPhi->addIncoming(TcDec, Body); 586 587 CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ? 588 CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 589 LbCond->setPredicate(Pred); 590 LbCond->setOperand(0, TcDec); 591 LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0))); 592 } 593 594 // Step 4: All the references to the original population counter outside 595 // the loop are replaced with the NewCount -- the value returned from 596 // __builtin_ctpop(). 597 { 598 SmallVector<Value *, 4> CntUses; 599 for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end(); 600 I != E; I++) { 601 if (cast<Instruction>(*I)->getParent() != Body) 602 CntUses.push_back(*I); 603 } 604 for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) { 605 (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount); 606 } 607 } 608 609 // step 5: Forget the "non-computable" trip-count SCEV associated with the 610 // loop. The loop would otherwise not be deleted even if it becomes empty. 611 SE->forgetLoop(CurLoop); 612 } 613 614 CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder, 615 Value *Val, DebugLoc DL) { 616 Value *Ops[] = { Val }; 617 Type *Tys[] = { Val->getType() }; 618 619 Module *M = (*(CurLoop->block_begin()))->getParent()->getParent(); 620 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 621 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 622 CI->setDebugLoc(DL); 623 624 return CI; 625 } 626 627 /// recognize - detect population count idiom in a non-countable loop. If 628 /// detected, transform the relevant code to popcount intrinsic function 629 /// call, and return true; otherwise, return false. 630 bool NclPopcountRecognize::recognize() { 631 632 if (!LIR.getTargetTransformInfo()) 633 return false; 634 635 LIR.getScalarEvolution(); 636 637 if (!preliminaryScreen()) 638 return false; 639 640 Instruction *CntInst; 641 PHINode *CntPhi; 642 Value *Val; 643 if (!detectIdiom(CntInst, CntPhi, Val)) 644 return false; 645 646 transform(CntInst, CntPhi, Val); 647 return true; 648 } 649 650 //===----------------------------------------------------------------------===// 651 // 652 // Implementation of LoopIdiomRecognize 653 // 654 //===----------------------------------------------------------------------===// 655 656 bool LoopIdiomRecognize::runOnCountableLoop() { 657 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 658 if (isa<SCEVCouldNotCompute>(BECount)) return false; 659 660 // If this loop executes exactly one time, then it should be peeled, not 661 // optimized by this pass. 662 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 663 if (BECst->getValue()->getValue() == 0) 664 return false; 665 666 // We require target data for now. 667 if (!getDataLayout()) 668 return false; 669 670 // set DT 671 (void)getDominatorTree(); 672 673 LoopInfo &LI = getAnalysis<LoopInfo>(); 674 TLI = &getAnalysis<TargetLibraryInfo>(); 675 676 // set TLI 677 (void)getTargetLibraryInfo(); 678 679 SmallVector<BasicBlock*, 8> ExitBlocks; 680 CurLoop->getUniqueExitBlocks(ExitBlocks); 681 682 DEBUG(dbgs() << "loop-idiom Scanning: F[" 683 << CurLoop->getHeader()->getParent()->getName() 684 << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); 685 686 bool MadeChange = false; 687 // Scan all the blocks in the loop that are not in subloops. 688 for (Loop::block_iterator BI = CurLoop->block_begin(), 689 E = CurLoop->block_end(); BI != E; ++BI) { 690 // Ignore blocks in subloops. 691 if (LI.getLoopFor(*BI) != CurLoop) 692 continue; 693 694 MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks); 695 } 696 return MadeChange; 697 } 698 699 bool LoopIdiomRecognize::runOnNoncountableLoop() { 700 NclPopcountRecognize Popcount(*this); 701 if (Popcount.recognize()) 702 return true; 703 704 return false; 705 } 706 707 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { 708 CurLoop = L; 709 710 // If the loop could not be converted to canonical form, it must have an 711 // indirectbr in it, just give up. 712 if (!L->getLoopPreheader()) 713 return false; 714 715 // Disable loop idiom recognition if the function's name is a common idiom. 716 StringRef Name = L->getHeader()->getParent()->getName(); 717 if (Name == "memset" || Name == "memcpy") 718 return false; 719 720 SE = &getAnalysis<ScalarEvolution>(); 721 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 722 return runOnCountableLoop(); 723 return runOnNoncountableLoop(); 724 } 725 726 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 727 /// with the specified backedge count. This block is known to be in the current 728 /// loop and not in any subloops. 729 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 730 SmallVectorImpl<BasicBlock*> &ExitBlocks) { 731 // We can only promote stores in this block if they are unconditionally 732 // executed in the loop. For a block to be unconditionally executed, it has 733 // to dominate all the exit blocks of the loop. Verify this now. 734 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 735 if (!DT->dominates(BB, ExitBlocks[i])) 736 return false; 737 738 bool MadeChange = false; 739 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 740 Instruction *Inst = I++; 741 // Look for store instructions, which may be optimized to memset/memcpy. 742 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 743 WeakVH InstPtr(I); 744 if (!processLoopStore(SI, BECount)) continue; 745 MadeChange = true; 746 747 // If processing the store invalidated our iterator, start over from the 748 // top of the block. 749 if (InstPtr == 0) 750 I = BB->begin(); 751 continue; 752 } 753 754 // Look for memset instructions, which may be optimized to a larger memset. 755 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 756 WeakVH InstPtr(I); 757 if (!processLoopMemSet(MSI, BECount)) continue; 758 MadeChange = true; 759 760 // If processing the memset invalidated our iterator, start over from the 761 // top of the block. 762 if (InstPtr == 0) 763 I = BB->begin(); 764 continue; 765 } 766 } 767 768 return MadeChange; 769 } 770 771 772 /// processLoopStore - See if this store can be promoted to a memset or memcpy. 773 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) { 774 if (!SI->isSimple()) return false; 775 776 Value *StoredVal = SI->getValueOperand(); 777 Value *StorePtr = SI->getPointerOperand(); 778 779 // Reject stores that are so large that they overflow an unsigned. 780 uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType()); 781 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 782 return false; 783 784 // See if the pointer expression is an AddRec like {base,+,1} on the current 785 // loop, which indicates a strided store. If we have something else, it's a 786 // random store we can't handle. 787 const SCEVAddRecExpr *StoreEv = 788 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 789 if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 790 return false; 791 792 // Check to see if the stride matches the size of the store. If so, then we 793 // know that every byte is touched in the loop. 794 unsigned StoreSize = (unsigned)SizeInBits >> 3; 795 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 796 797 if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) { 798 // TODO: Could also handle negative stride here someday, that will require 799 // the validity check in mayLoopAccessLocation to be updated though. 800 // Enable this to print exact negative strides. 801 if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) { 802 dbgs() << "NEGATIVE STRIDE: " << *SI << "\n"; 803 dbgs() << "BB: " << *SI->getParent(); 804 } 805 806 return false; 807 } 808 809 // See if we can optimize just this store in isolation. 810 if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(), 811 StoredVal, SI, StoreEv, BECount)) 812 return true; 813 814 // If the stored value is a strided load in the same loop with the same stride 815 // this this may be transformable into a memcpy. This kicks in for stuff like 816 // for (i) A[i] = B[i]; 817 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 818 const SCEVAddRecExpr *LoadEv = 819 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0))); 820 if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() && 821 StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple()) 822 if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount)) 823 return true; 824 } 825 //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n"; 826 827 return false; 828 } 829 830 /// processLoopMemSet - See if this memset can be promoted to a large memset. 831 bool LoopIdiomRecognize:: 832 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) { 833 // We can only handle non-volatile memsets with a constant size. 834 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false; 835 836 // If we're not allowed to hack on memset, we fail. 837 if (!TLI->has(LibFunc::memset)) 838 return false; 839 840 Value *Pointer = MSI->getDest(); 841 842 // See if the pointer expression is an AddRec like {base,+,1} on the current 843 // loop, which indicates a strided store. If we have something else, it's a 844 // random store we can't handle. 845 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 846 if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine()) 847 return false; 848 849 // Reject memsets that are so large that they overflow an unsigned. 850 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 851 if ((SizeInBytes >> 32) != 0) 852 return false; 853 854 // Check to see if the stride matches the size of the memset. If so, then we 855 // know that every byte is touched in the loop. 856 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 857 858 // TODO: Could also handle negative stride here someday, that will require the 859 // validity check in mayLoopAccessLocation to be updated though. 860 if (Stride == 0 || MSI->getLength() != Stride->getValue()) 861 return false; 862 863 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 864 MSI->getAlignment(), MSI->getValue(), 865 MSI, Ev, BECount); 866 } 867 868 869 /// mayLoopAccessLocation - Return true if the specified loop might access the 870 /// specified pointer location, which is a loop-strided access. The 'Access' 871 /// argument specifies what the verboten forms of access are (read or write). 872 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access, 873 Loop *L, const SCEV *BECount, 874 unsigned StoreSize, AliasAnalysis &AA, 875 Instruction *IgnoredStore) { 876 // Get the location that may be stored across the loop. Since the access is 877 // strided positively through memory, we say that the modified location starts 878 // at the pointer and has infinite size. 879 uint64_t AccessSize = AliasAnalysis::UnknownSize; 880 881 // If the loop iterates a fixed number of times, we can refine the access size 882 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 883 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 884 AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize; 885 886 // TODO: For this to be really effective, we have to dive into the pointer 887 // operand in the store. Store to &A[i] of 100 will always return may alias 888 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 889 // which will then no-alias a store to &A[100]. 890 AliasAnalysis::Location StoreLoc(Ptr, AccessSize); 891 892 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 893 ++BI) 894 for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) 895 if (&*I != IgnoredStore && 896 (AA.getModRefInfo(I, StoreLoc) & Access)) 897 return true; 898 899 return false; 900 } 901 902 /// getMemSetPatternValue - If a strided store of the specified value is safe to 903 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 904 /// be passed in. Otherwise, return null. 905 /// 906 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 907 /// just replicate their input array and then pass on to memset_pattern16. 908 static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) { 909 // If the value isn't a constant, we can't promote it to being in a constant 910 // array. We could theoretically do a store to an alloca or something, but 911 // that doesn't seem worthwhile. 912 Constant *C = dyn_cast<Constant>(V); 913 if (C == 0) return 0; 914 915 // Only handle simple values that are a power of two bytes in size. 916 uint64_t Size = TD.getTypeSizeInBits(V->getType()); 917 if (Size == 0 || (Size & 7) || (Size & (Size-1))) 918 return 0; 919 920 // Don't care enough about darwin/ppc to implement this. 921 if (TD.isBigEndian()) 922 return 0; 923 924 // Convert to size in bytes. 925 Size /= 8; 926 927 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 928 // if the top and bottom are the same (e.g. for vectors and large integers). 929 if (Size > 16) return 0; 930 931 // If the constant is exactly 16 bytes, just use it. 932 if (Size == 16) return C; 933 934 // Otherwise, we'll use an array of the constants. 935 unsigned ArraySize = 16/Size; 936 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 937 return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C)); 938 } 939 940 941 /// processLoopStridedStore - We see a strided store of some value. If we can 942 /// transform this into a memset or memset_pattern in the loop preheader, do so. 943 bool LoopIdiomRecognize:: 944 processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 945 unsigned StoreAlignment, Value *StoredVal, 946 Instruction *TheStore, const SCEVAddRecExpr *Ev, 947 const SCEV *BECount) { 948 949 // If the stored value is a byte-wise value (like i32 -1), then it may be 950 // turned into a memset of i8 -1, assuming that all the consecutive bytes 951 // are stored. A store of i32 0x01020304 can never be turned into a memset, 952 // but it can be turned into memset_pattern if the target supports it. 953 Value *SplatValue = isBytewiseValue(StoredVal); 954 Constant *PatternValue = 0; 955 956 // If we're allowed to form a memset, and the stored value would be acceptable 957 // for memset, use it. 958 if (SplatValue && TLI->has(LibFunc::memset) && 959 // Verify that the stored value is loop invariant. If not, we can't 960 // promote the memset. 961 CurLoop->isLoopInvariant(SplatValue)) { 962 // Keep and use SplatValue. 963 PatternValue = 0; 964 } else if (TLI->has(LibFunc::memset_pattern16) && 965 (PatternValue = getMemSetPatternValue(StoredVal, *TD))) { 966 // It looks like we can use PatternValue! 967 SplatValue = 0; 968 } else { 969 // Otherwise, this isn't an idiom we can transform. For example, we can't 970 // do anything with a 3-byte store. 971 return false; 972 } 973 974 // The trip count of the loop and the base pointer of the addrec SCEV is 975 // guaranteed to be loop invariant, which means that it should dominate the 976 // header. This allows us to insert code for it in the preheader. 977 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 978 IRBuilder<> Builder(Preheader->getTerminator()); 979 SCEVExpander Expander(*SE, "loop-idiom"); 980 981 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 982 // this into a memset in the loop preheader now if we want. However, this 983 // would be unsafe to do if there is anything else in the loop that may read 984 // or write to the aliased location. Check for any overlap by generating the 985 // base pointer and checking the region. 986 unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace(); 987 Value *BasePtr = 988 Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace), 989 Preheader->getTerminator()); 990 991 992 if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef, 993 CurLoop, BECount, 994 StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){ 995 Expander.clear(); 996 // If we generated new code for the base pointer, clean up. 997 deleteIfDeadInstruction(BasePtr, *SE, TLI); 998 return false; 999 } 1000 1001 // Okay, everything looks good, insert the memset. 1002 1003 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 1004 // pointer size if it isn't already. 1005 Type *IntPtr = TD->getIntPtrType(DestPtr->getContext()); 1006 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); 1007 1008 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), 1009 SCEV::FlagNUW); 1010 if (StoreSize != 1) 1011 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 1012 SCEV::FlagNUW); 1013 1014 Value *NumBytes = 1015 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 1016 1017 CallInst *NewCall; 1018 if (SplatValue) 1019 NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment); 1020 else { 1021 Module *M = TheStore->getParent()->getParent()->getParent(); 1022 Value *MSP = M->getOrInsertFunction("memset_pattern16", 1023 Builder.getVoidTy(), 1024 Builder.getInt8PtrTy(), 1025 Builder.getInt8PtrTy(), IntPtr, 1026 (void*)0); 1027 1028 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1029 // an constant array of 16-bytes. Plop the value into a mergable global. 1030 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1031 GlobalValue::InternalLinkage, 1032 PatternValue, ".memset_pattern"); 1033 GV->setUnnamedAddr(true); // Ok to merge these. 1034 GV->setAlignment(16); 1035 Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy()); 1036 NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes); 1037 } 1038 1039 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1040 << " from store to: " << *Ev << " at: " << *TheStore << "\n"); 1041 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1042 1043 // Okay, the memset has been formed. Zap the original store and anything that 1044 // feeds into it. 1045 deleteDeadInstruction(TheStore, *SE, TLI); 1046 ++NumMemSet; 1047 return true; 1048 } 1049 1050 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a 1051 /// same-strided load. 1052 bool LoopIdiomRecognize:: 1053 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, 1054 const SCEVAddRecExpr *StoreEv, 1055 const SCEVAddRecExpr *LoadEv, 1056 const SCEV *BECount) { 1057 // If we're not allowed to form memcpy, we fail. 1058 if (!TLI->has(LibFunc::memcpy)) 1059 return false; 1060 1061 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1062 1063 // The trip count of the loop and the base pointer of the addrec SCEV is 1064 // guaranteed to be loop invariant, which means that it should dominate the 1065 // header. This allows us to insert code for it in the preheader. 1066 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1067 IRBuilder<> Builder(Preheader->getTerminator()); 1068 SCEVExpander Expander(*SE, "loop-idiom"); 1069 1070 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1071 // this into a memcpy in the loop preheader now if we want. However, this 1072 // would be unsafe to do if there is anything else in the loop that may read 1073 // or write the memory region we're storing to. This includes the load that 1074 // feeds the stores. Check for an alias by generating the base address and 1075 // checking everything. 1076 Value *StoreBasePtr = 1077 Expander.expandCodeFor(StoreEv->getStart(), 1078 Builder.getInt8PtrTy(SI->getPointerAddressSpace()), 1079 Preheader->getTerminator()); 1080 1081 if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef, 1082 CurLoop, BECount, StoreSize, 1083 getAnalysis<AliasAnalysis>(), SI)) { 1084 Expander.clear(); 1085 // If we generated new code for the base pointer, clean up. 1086 deleteIfDeadInstruction(StoreBasePtr, *SE, TLI); 1087 return false; 1088 } 1089 1090 // For a memcpy, we have to make sure that the input array is not being 1091 // mutated by the loop. 1092 Value *LoadBasePtr = 1093 Expander.expandCodeFor(LoadEv->getStart(), 1094 Builder.getInt8PtrTy(LI->getPointerAddressSpace()), 1095 Preheader->getTerminator()); 1096 1097 if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount, 1098 StoreSize, getAnalysis<AliasAnalysis>(), SI)) { 1099 Expander.clear(); 1100 // If we generated new code for the base pointer, clean up. 1101 deleteIfDeadInstruction(LoadBasePtr, *SE, TLI); 1102 deleteIfDeadInstruction(StoreBasePtr, *SE, TLI); 1103 return false; 1104 } 1105 1106 // Okay, everything is safe, we can transform this! 1107 1108 1109 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 1110 // pointer size if it isn't already. 1111 Type *IntPtr = TD->getIntPtrType(SI->getContext()); 1112 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); 1113 1114 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), 1115 SCEV::FlagNUW); 1116 if (StoreSize != 1) 1117 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 1118 SCEV::FlagNUW); 1119 1120 Value *NumBytes = 1121 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 1122 1123 CallInst *NewCall = 1124 Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, 1125 std::min(SI->getAlignment(), LI->getAlignment())); 1126 NewCall->setDebugLoc(SI->getDebugLoc()); 1127 1128 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1129 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1130 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); 1131 1132 1133 // Okay, the memset has been formed. Zap the original store and anything that 1134 // feeds into it. 1135 deleteDeadInstruction(SI, *SE, TLI); 1136 ++NumMemCpy; 1137 return true; 1138 } 1139