Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include <algorithm>
     32 #include <ctime>
     33 #include <set>
     34 #include <vector>
     35 
     36 #include "Eigen/Dense"
     37 #include "ceres/block_random_access_dense_matrix.h"
     38 #include "ceres/block_random_access_matrix.h"
     39 #include "ceres/block_random_access_sparse_matrix.h"
     40 #include "ceres/block_sparse_matrix.h"
     41 #include "ceres/block_structure.h"
     42 #include "ceres/cxsparse.h"
     43 #include "ceres/detect_structure.h"
     44 #include "ceres/internal/eigen.h"
     45 #include "ceres/internal/port.h"
     46 #include "ceres/internal/scoped_ptr.h"
     47 #include "ceres/lapack.h"
     48 #include "ceres/linear_solver.h"
     49 #include "ceres/schur_complement_solver.h"
     50 #include "ceres/suitesparse.h"
     51 #include "ceres/triplet_sparse_matrix.h"
     52 #include "ceres/types.h"
     53 #include "ceres/wall_time.h"
     54 
     55 namespace ceres {
     56 namespace internal {
     57 
     58 LinearSolver::Summary SchurComplementSolver::SolveImpl(
     59     BlockSparseMatrix* A,
     60     const double* b,
     61     const LinearSolver::PerSolveOptions& per_solve_options,
     62     double* x) {
     63   EventLogger event_logger("SchurComplementSolver::Solve");
     64 
     65   if (eliminator_.get() == NULL) {
     66     InitStorage(A->block_structure());
     67     DetectStructure(*A->block_structure(),
     68                     options_.elimination_groups[0],
     69                     &options_.row_block_size,
     70                     &options_.e_block_size,
     71                     &options_.f_block_size);
     72     eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
     73     eliminator_->Init(options_.elimination_groups[0], A->block_structure());
     74   };
     75   fill(x, x + A->num_cols(), 0.0);
     76   event_logger.AddEvent("Setup");
     77 
     78   LinearSolver::Summary summary;
     79   summary.num_iterations = 1;
     80   summary.termination_type = FAILURE;
     81   eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
     82   event_logger.AddEvent("Eliminate");
     83 
     84   double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
     85   const bool status = SolveReducedLinearSystem(reduced_solution);
     86   event_logger.AddEvent("ReducedSolve");
     87 
     88   if (!status) {
     89     return summary;
     90   }
     91 
     92   eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
     93   summary.termination_type = TOLERANCE;
     94 
     95   event_logger.AddEvent("BackSubstitute");
     96   return summary;
     97 }
     98 
     99 // Initialize a BlockRandomAccessDenseMatrix to store the Schur
    100 // complement.
    101 void DenseSchurComplementSolver::InitStorage(
    102     const CompressedRowBlockStructure* bs) {
    103   const int num_eliminate_blocks = options().elimination_groups[0];
    104   const int num_col_blocks = bs->cols.size();
    105 
    106   vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
    107   for (int i = num_eliminate_blocks, j = 0;
    108        i < num_col_blocks;
    109        ++i, ++j) {
    110     blocks[j] = bs->cols[i].size;
    111   }
    112 
    113   set_lhs(new BlockRandomAccessDenseMatrix(blocks));
    114   set_rhs(new double[lhs()->num_rows()]);
    115 }
    116 
    117 // Solve the system Sx = r, assuming that the matrix S is stored in a
    118 // BlockRandomAccessDenseMatrix. The linear system is solved using
    119 // Eigen's Cholesky factorization.
    120 bool DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
    121   const BlockRandomAccessDenseMatrix* m =
    122       down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
    123   const int num_rows = m->num_rows();
    124 
    125   // The case where there are no f blocks, and the system is block
    126   // diagonal.
    127   if (num_rows == 0) {
    128     return true;
    129   }
    130 
    131   if (options().dense_linear_algebra_library_type == EIGEN) {
    132     // TODO(sameeragarwal): Add proper error handling; this completely ignores
    133     // the quality of the solution to the solve.
    134     VectorRef(solution, num_rows) =
    135         ConstMatrixRef(m->values(), num_rows, num_rows)
    136         .selfadjointView<Eigen::Upper>()
    137         .llt()
    138         .solve(ConstVectorRef(rhs(), num_rows));
    139     return true;
    140   }
    141 
    142   VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
    143   const int info = LAPACK::SolveInPlaceUsingCholesky(num_rows,
    144                                                      m->values(),
    145                                                      solution);
    146   return (info == 0);
    147 }
    148 
    149 #if !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARE)
    150 
    151 SparseSchurComplementSolver::SparseSchurComplementSolver(
    152     const LinearSolver::Options& options)
    153     : SchurComplementSolver(options),
    154       factor_(NULL),
    155       cxsparse_factor_(NULL) {
    156 }
    157 
    158 SparseSchurComplementSolver::~SparseSchurComplementSolver() {
    159 #ifndef CERES_NO_SUITESPARSE
    160   if (factor_ != NULL) {
    161     ss_.Free(factor_);
    162     factor_ = NULL;
    163   }
    164 #endif  // CERES_NO_SUITESPARSE
    165 
    166 #ifndef CERES_NO_CXSPARSE
    167   if (cxsparse_factor_ != NULL) {
    168     cxsparse_.Free(cxsparse_factor_);
    169     cxsparse_factor_ = NULL;
    170   }
    171 #endif  // CERES_NO_CXSPARSE
    172 }
    173 
    174 // Determine the non-zero blocks in the Schur Complement matrix, and
    175 // initialize a BlockRandomAccessSparseMatrix object.
    176 void SparseSchurComplementSolver::InitStorage(
    177     const CompressedRowBlockStructure* bs) {
    178   const int num_eliminate_blocks = options().elimination_groups[0];
    179   const int num_col_blocks = bs->cols.size();
    180   const int num_row_blocks = bs->rows.size();
    181 
    182   blocks_.resize(num_col_blocks - num_eliminate_blocks, 0);
    183   for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
    184     blocks_[i - num_eliminate_blocks] = bs->cols[i].size;
    185   }
    186 
    187   set<pair<int, int> > block_pairs;
    188   for (int i = 0; i < blocks_.size(); ++i) {
    189     block_pairs.insert(make_pair(i, i));
    190   }
    191 
    192   int r = 0;
    193   while (r < num_row_blocks) {
    194     int e_block_id = bs->rows[r].cells.front().block_id;
    195     if (e_block_id >= num_eliminate_blocks) {
    196       break;
    197     }
    198     vector<int> f_blocks;
    199 
    200     // Add to the chunk until the first block in the row is
    201     // different than the one in the first row for the chunk.
    202     for (; r < num_row_blocks; ++r) {
    203       const CompressedRow& row = bs->rows[r];
    204       if (row.cells.front().block_id != e_block_id) {
    205         break;
    206       }
    207 
    208       // Iterate over the blocks in the row, ignoring the first
    209       // block since it is the one to be eliminated.
    210       for (int c = 1; c < row.cells.size(); ++c) {
    211         const Cell& cell = row.cells[c];
    212         f_blocks.push_back(cell.block_id - num_eliminate_blocks);
    213       }
    214     }
    215 
    216     sort(f_blocks.begin(), f_blocks.end());
    217     f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
    218     for (int i = 0; i < f_blocks.size(); ++i) {
    219       for (int j = i + 1; j < f_blocks.size(); ++j) {
    220         block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
    221       }
    222     }
    223   }
    224 
    225   // Remaing rows do not contribute to the chunks and directly go
    226   // into the schur complement via an outer product.
    227   for (; r < num_row_blocks; ++r) {
    228     const CompressedRow& row = bs->rows[r];
    229     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
    230     for (int i = 0; i < row.cells.size(); ++i) {
    231       int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
    232       for (int j = 0; j < row.cells.size(); ++j) {
    233         int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
    234         if (r_block1_id <= r_block2_id) {
    235           block_pairs.insert(make_pair(r_block1_id, r_block2_id));
    236         }
    237       }
    238     }
    239   }
    240 
    241   set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs));
    242   set_rhs(new double[lhs()->num_rows()]);
    243 }
    244 
    245 bool SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
    246   switch (options().sparse_linear_algebra_library_type) {
    247     case SUITE_SPARSE:
    248       return SolveReducedLinearSystemUsingSuiteSparse(solution);
    249     case CX_SPARSE:
    250       return SolveReducedLinearSystemUsingCXSparse(solution);
    251     default:
    252       LOG(FATAL) << "Unknown sparse linear algebra library : "
    253                  << options().sparse_linear_algebra_library_type;
    254   }
    255 
    256   LOG(FATAL) << "Unknown sparse linear algebra library : "
    257              << options().sparse_linear_algebra_library_type;
    258   return false;
    259 }
    260 
    261 #ifndef CERES_NO_SUITESPARSE
    262 // Solve the system Sx = r, assuming that the matrix S is stored in a
    263 // BlockRandomAccessSparseMatrix.  The linear system is solved using
    264 // CHOLMOD's sparse cholesky factorization routines.
    265 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
    266     double* solution) {
    267   TripletSparseMatrix* tsm =
    268       const_cast<TripletSparseMatrix*>(
    269           down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
    270 
    271   const int num_rows = tsm->num_rows();
    272 
    273   // The case where there are no f blocks, and the system is block
    274   // diagonal.
    275   if (num_rows == 0) {
    276     return true;
    277   }
    278 
    279   cholmod_sparse* cholmod_lhs = NULL;
    280   if (options().use_postordering) {
    281     // If we are going to do a full symbolic analysis of the schur
    282     // complement matrix from scratch and not rely on the
    283     // pre-ordering, then the fastest path in cholmod_factorize is the
    284     // one corresponding to upper triangular matrices.
    285 
    286     // Create a upper triangular symmetric matrix.
    287     cholmod_lhs = ss_.CreateSparseMatrix(tsm);
    288     cholmod_lhs->stype = 1;
    289 
    290     if (factor_ == NULL) {
    291       factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs, blocks_, blocks_);
    292     }
    293   } else {
    294     // If we are going to use the natural ordering (i.e. rely on the
    295     // pre-ordering computed by solver_impl.cc), then the fastest
    296     // path in cholmod_factorize is the one corresponding to lower
    297     // triangular matrices.
    298 
    299     // Create a upper triangular symmetric matrix.
    300     cholmod_lhs = ss_.CreateSparseMatrixTranspose(tsm);
    301     cholmod_lhs->stype = -1;
    302 
    303     if (factor_ == NULL) {
    304       factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(cholmod_lhs);
    305     }
    306   }
    307 
    308   cholmod_dense*  cholmod_rhs =
    309       ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
    310   cholmod_dense* cholmod_solution =
    311       ss_.SolveCholesky(cholmod_lhs, factor_, cholmod_rhs);
    312 
    313   ss_.Free(cholmod_lhs);
    314   ss_.Free(cholmod_rhs);
    315 
    316   if (cholmod_solution == NULL) {
    317     LOG(WARNING) << "CHOLMOD solve failed.";
    318     return false;
    319   }
    320 
    321   VectorRef(solution, num_rows)
    322       = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
    323   ss_.Free(cholmod_solution);
    324   return true;
    325 }
    326 #else
    327 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
    328     double* solution) {
    329   LOG(FATAL) << "No SuiteSparse support in Ceres.";
    330   return false;
    331 }
    332 #endif  // CERES_NO_SUITESPARSE
    333 
    334 #ifndef CERES_NO_CXSPARSE
    335 // Solve the system Sx = r, assuming that the matrix S is stored in a
    336 // BlockRandomAccessSparseMatrix.  The linear system is solved using
    337 // CXSparse's sparse cholesky factorization routines.
    338 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
    339     double* solution) {
    340   // Extract the TripletSparseMatrix that is used for actually storing S.
    341   TripletSparseMatrix* tsm =
    342       const_cast<TripletSparseMatrix*>(
    343           down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
    344 
    345   const int num_rows = tsm->num_rows();
    346 
    347   // The case where there are no f blocks, and the system is block
    348   // diagonal.
    349   if (num_rows == 0) {
    350     return true;
    351   }
    352 
    353   cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm));
    354   VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
    355 
    356   // Compute symbolic factorization if not available.
    357   if (cxsparse_factor_ == NULL) {
    358     cxsparse_factor_ =
    359         CHECK_NOTNULL(cxsparse_.BlockAnalyzeCholesky(lhs, blocks_, blocks_));
    360   }
    361 
    362   // Solve the linear system.
    363   bool ok = cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution);
    364 
    365   cxsparse_.Free(lhs);
    366   return ok;
    367 }
    368 #else
    369 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
    370     double* solution) {
    371   LOG(FATAL) << "No CXSparse support in Ceres.";
    372   return false;
    373 }
    374 #endif  // CERES_NO_CXPARSE
    375 
    376 #endif  // !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARE)
    377 }  // namespace internal
    378 }  // namespace ceres
    379