Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Collect the sequence of machine instructions for a basic block.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
     15 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
     16 
     17 #include "llvm/ADT/GraphTraits.h"
     18 #include "llvm/CodeGen/MachineInstr.h"
     19 #include "llvm/Support/DataTypes.h"
     20 #include <functional>
     21 
     22 namespace llvm {
     23 
     24 class Pass;
     25 class BasicBlock;
     26 class MachineFunction;
     27 class MCSymbol;
     28 class SlotIndexes;
     29 class StringRef;
     30 class raw_ostream;
     31 class MachineBranchProbabilityInfo;
     32 
     33 template <>
     34 struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
     35 private:
     36   mutable ilist_half_node<MachineInstr> Sentinel;
     37 
     38   // this is only set by the MachineBasicBlock owning the LiveList
     39   friend class MachineBasicBlock;
     40   MachineBasicBlock* Parent;
     41 
     42 public:
     43   MachineInstr *createSentinel() const {
     44     return static_cast<MachineInstr*>(&Sentinel);
     45   }
     46   void destroySentinel(MachineInstr *) const {}
     47 
     48   MachineInstr *provideInitialHead() const { return createSentinel(); }
     49   MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
     50   static void noteHead(MachineInstr*, MachineInstr*) {}
     51 
     52   void addNodeToList(MachineInstr* N);
     53   void removeNodeFromList(MachineInstr* N);
     54   void transferNodesFromList(ilist_traits &SrcTraits,
     55                              ilist_iterator<MachineInstr> first,
     56                              ilist_iterator<MachineInstr> last);
     57   void deleteNode(MachineInstr *N);
     58 private:
     59   void createNode(const MachineInstr &);
     60 };
     61 
     62 class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
     63   typedef ilist<MachineInstr> Instructions;
     64   Instructions Insts;
     65   const BasicBlock *BB;
     66   int Number;
     67   MachineFunction *xParent;
     68 
     69   /// Predecessors/Successors - Keep track of the predecessor / successor
     70   /// basicblocks.
     71   std::vector<MachineBasicBlock *> Predecessors;
     72   std::vector<MachineBasicBlock *> Successors;
     73 
     74   /// Weights - Keep track of the weights to the successors. This vector
     75   /// has the same order as Successors, or it is empty if we don't use it
     76   /// (disable optimization).
     77   std::vector<uint32_t> Weights;
     78   typedef std::vector<uint32_t>::iterator weight_iterator;
     79   typedef std::vector<uint32_t>::const_iterator const_weight_iterator;
     80 
     81   /// LiveIns - Keep track of the physical registers that are livein of
     82   /// the basicblock.
     83   std::vector<unsigned> LiveIns;
     84 
     85   /// Alignment - Alignment of the basic block. Zero if the basic block does
     86   /// not need to be aligned.
     87   /// The alignment is specified as log2(bytes).
     88   unsigned Alignment;
     89 
     90   /// IsLandingPad - Indicate that this basic block is entered via an
     91   /// exception handler.
     92   bool IsLandingPad;
     93 
     94   /// AddressTaken - Indicate that this basic block is potentially the
     95   /// target of an indirect branch.
     96   bool AddressTaken;
     97 
     98   /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
     99   /// is only computed once and is cached.
    100   mutable MCSymbol *CachedMCSymbol;
    101 
    102   // Intrusive list support
    103   MachineBasicBlock() {}
    104 
    105   explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
    106 
    107   ~MachineBasicBlock();
    108 
    109   // MachineBasicBlocks are allocated and owned by MachineFunction.
    110   friend class MachineFunction;
    111 
    112 public:
    113   /// getBasicBlock - Return the LLVM basic block that this instance
    114   /// corresponded to originally. Note that this may be NULL if this instance
    115   /// does not correspond directly to an LLVM basic block.
    116   ///
    117   const BasicBlock *getBasicBlock() const { return BB; }
    118 
    119   /// getName - Return the name of the corresponding LLVM basic block, or
    120   /// "(null)".
    121   StringRef getName() const;
    122 
    123   /// getFullName - Return a formatted string to identify this block and its
    124   /// parent function.
    125   std::string getFullName() const;
    126 
    127   /// hasAddressTaken - Test whether this block is potentially the target
    128   /// of an indirect branch.
    129   bool hasAddressTaken() const { return AddressTaken; }
    130 
    131   /// setHasAddressTaken - Set this block to reflect that it potentially
    132   /// is the target of an indirect branch.
    133   void setHasAddressTaken() { AddressTaken = true; }
    134 
    135   /// getParent - Return the MachineFunction containing this basic block.
    136   ///
    137   const MachineFunction *getParent() const { return xParent; }
    138   MachineFunction *getParent() { return xParent; }
    139 
    140 
    141   /// bundle_iterator - MachineBasicBlock iterator that automatically skips over
    142   /// MIs that are inside bundles (i.e. walk top level MIs only).
    143   template<typename Ty, typename IterTy>
    144   class bundle_iterator
    145     : public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
    146     IterTy MII;
    147 
    148   public:
    149     bundle_iterator(IterTy mii) : MII(mii) {}
    150 
    151     bundle_iterator(Ty &mi) : MII(mi) {
    152       assert(!mi.isBundledWithPred() &&
    153              "It's not legal to initialize bundle_iterator with a bundled MI");
    154     }
    155     bundle_iterator(Ty *mi) : MII(mi) {
    156       assert((!mi || !mi->isBundledWithPred()) &&
    157              "It's not legal to initialize bundle_iterator with a bundled MI");
    158     }
    159     // Template allows conversion from const to nonconst.
    160     template<class OtherTy, class OtherIterTy>
    161     bundle_iterator(const bundle_iterator<OtherTy, OtherIterTy> &I)
    162       : MII(I.getInstrIterator()) {}
    163     bundle_iterator() : MII(0) {}
    164 
    165     Ty &operator*() const { return *MII; }
    166     Ty *operator->() const { return &operator*(); }
    167 
    168     operator Ty*() const { return MII; }
    169 
    170     bool operator==(const bundle_iterator &x) const {
    171       return MII == x.MII;
    172     }
    173     bool operator!=(const bundle_iterator &x) const {
    174       return !operator==(x);
    175     }
    176 
    177     // Increment and decrement operators...
    178     bundle_iterator &operator--() {      // predecrement - Back up
    179       do --MII;
    180       while (MII->isBundledWithPred());
    181       return *this;
    182     }
    183     bundle_iterator &operator++() {      // preincrement - Advance
    184       while (MII->isBundledWithSucc())
    185         ++MII;
    186       ++MII;
    187       return *this;
    188     }
    189     bundle_iterator operator--(int) {    // postdecrement operators...
    190       bundle_iterator tmp = *this;
    191       --*this;
    192       return tmp;
    193     }
    194     bundle_iterator operator++(int) {    // postincrement operators...
    195       bundle_iterator tmp = *this;
    196       ++*this;
    197       return tmp;
    198     }
    199 
    200     IterTy getInstrIterator() const {
    201       return MII;
    202     }
    203   };
    204 
    205   typedef Instructions::iterator                                 instr_iterator;
    206   typedef Instructions::const_iterator                     const_instr_iterator;
    207   typedef std::reverse_iterator<instr_iterator>          reverse_instr_iterator;
    208   typedef
    209   std::reverse_iterator<const_instr_iterator>      const_reverse_instr_iterator;
    210 
    211   typedef
    212   bundle_iterator<MachineInstr,instr_iterator>                         iterator;
    213   typedef
    214   bundle_iterator<const MachineInstr,const_instr_iterator>       const_iterator;
    215   typedef std::reverse_iterator<const_iterator>          const_reverse_iterator;
    216   typedef std::reverse_iterator<iterator>                      reverse_iterator;
    217 
    218 
    219   unsigned size() const { return (unsigned)Insts.size(); }
    220   bool empty() const { return Insts.empty(); }
    221 
    222   MachineInstr& front() { return Insts.front(); }
    223   MachineInstr& back()  { return Insts.back(); }
    224   const MachineInstr& front() const { return Insts.front(); }
    225   const MachineInstr& back()  const { return Insts.back(); }
    226 
    227   instr_iterator                instr_begin()       { return Insts.begin();  }
    228   const_instr_iterator          instr_begin() const { return Insts.begin();  }
    229   instr_iterator                  instr_end()       { return Insts.end();    }
    230   const_instr_iterator            instr_end() const { return Insts.end();    }
    231   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
    232   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
    233   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
    234   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
    235 
    236   iterator                begin()       { return instr_begin();  }
    237   const_iterator          begin() const { return instr_begin();  }
    238   iterator                end  ()       { return instr_end();    }
    239   const_iterator          end  () const { return instr_end();    }
    240   reverse_iterator       rbegin()       { return instr_rbegin(); }
    241   const_reverse_iterator rbegin() const { return instr_rbegin(); }
    242   reverse_iterator       rend  ()       { return instr_rend();   }
    243   const_reverse_iterator rend  () const { return instr_rend();   }
    244 
    245 
    246   // Machine-CFG iterators
    247   typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
    248   typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
    249   typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
    250   typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
    251   typedef std::vector<MachineBasicBlock *>::reverse_iterator
    252                                                          pred_reverse_iterator;
    253   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
    254                                                    const_pred_reverse_iterator;
    255   typedef std::vector<MachineBasicBlock *>::reverse_iterator
    256                                                          succ_reverse_iterator;
    257   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
    258                                                    const_succ_reverse_iterator;
    259 
    260   pred_iterator        pred_begin()       { return Predecessors.begin(); }
    261   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
    262   pred_iterator        pred_end()         { return Predecessors.end();   }
    263   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
    264   pred_reverse_iterator        pred_rbegin()
    265                                           { return Predecessors.rbegin();}
    266   const_pred_reverse_iterator  pred_rbegin() const
    267                                           { return Predecessors.rbegin();}
    268   pred_reverse_iterator        pred_rend()
    269                                           { return Predecessors.rend();  }
    270   const_pred_reverse_iterator  pred_rend()   const
    271                                           { return Predecessors.rend();  }
    272   unsigned             pred_size()  const {
    273     return (unsigned)Predecessors.size();
    274   }
    275   bool                 pred_empty() const { return Predecessors.empty(); }
    276   succ_iterator        succ_begin()       { return Successors.begin();   }
    277   const_succ_iterator  succ_begin() const { return Successors.begin();   }
    278   succ_iterator        succ_end()         { return Successors.end();     }
    279   const_succ_iterator  succ_end()   const { return Successors.end();     }
    280   succ_reverse_iterator        succ_rbegin()
    281                                           { return Successors.rbegin();  }
    282   const_succ_reverse_iterator  succ_rbegin() const
    283                                           { return Successors.rbegin();  }
    284   succ_reverse_iterator        succ_rend()
    285                                           { return Successors.rend();    }
    286   const_succ_reverse_iterator  succ_rend()   const
    287                                           { return Successors.rend();    }
    288   unsigned             succ_size()  const {
    289     return (unsigned)Successors.size();
    290   }
    291   bool                 succ_empty() const { return Successors.empty();   }
    292 
    293   // LiveIn management methods.
    294 
    295   /// addLiveIn - Add the specified register as a live in.  Note that it
    296   /// is an error to add the same register to the same set more than once.
    297   void addLiveIn(unsigned Reg)  { LiveIns.push_back(Reg); }
    298 
    299   /// Add PhysReg as live in to this block, and ensure that there is a copy of
    300   /// PhysReg to a virtual register of class RC. Return the virtual register
    301   /// that is a copy of the live in PhysReg.
    302   unsigned addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC);
    303 
    304   /// removeLiveIn - Remove the specified register from the live in set.
    305   ///
    306   void removeLiveIn(unsigned Reg);
    307 
    308   /// isLiveIn - Return true if the specified register is in the live in set.
    309   ///
    310   bool isLiveIn(unsigned Reg) const;
    311 
    312   // Iteration support for live in sets.  These sets are kept in sorted
    313   // order by their register number.
    314   typedef std::vector<unsigned>::const_iterator livein_iterator;
    315   livein_iterator livein_begin() const { return LiveIns.begin(); }
    316   livein_iterator livein_end()   const { return LiveIns.end(); }
    317   bool            livein_empty() const { return LiveIns.empty(); }
    318 
    319   /// getAlignment - Return alignment of the basic block.
    320   /// The alignment is specified as log2(bytes).
    321   ///
    322   unsigned getAlignment() const { return Alignment; }
    323 
    324   /// setAlignment - Set alignment of the basic block.
    325   /// The alignment is specified as log2(bytes).
    326   ///
    327   void setAlignment(unsigned Align) { Alignment = Align; }
    328 
    329   /// isLandingPad - Returns true if the block is a landing pad. That is
    330   /// this basic block is entered via an exception handler.
    331   bool isLandingPad() const { return IsLandingPad; }
    332 
    333   /// setIsLandingPad - Indicates the block is a landing pad.  That is
    334   /// this basic block is entered via an exception handler.
    335   void setIsLandingPad(bool V = true) { IsLandingPad = V; }
    336 
    337   /// getLandingPadSuccessor - If this block has a successor that is a landing
    338   /// pad, return it. Otherwise return NULL.
    339   const MachineBasicBlock *getLandingPadSuccessor() const;
    340 
    341   // Code Layout methods.
    342 
    343   /// moveBefore/moveAfter - move 'this' block before or after the specified
    344   /// block.  This only moves the block, it does not modify the CFG or adjust
    345   /// potential fall-throughs at the end of the block.
    346   void moveBefore(MachineBasicBlock *NewAfter);
    347   void moveAfter(MachineBasicBlock *NewBefore);
    348 
    349   /// updateTerminator - Update the terminator instructions in block to account
    350   /// for changes to the layout. If the block previously used a fallthrough,
    351   /// it may now need a branch, and if it previously used branching it may now
    352   /// be able to use a fallthrough.
    353   void updateTerminator();
    354 
    355   // Machine-CFG mutators
    356 
    357   /// addSuccessor - Add succ as a successor of this MachineBasicBlock.
    358   /// The Predecessors list of succ is automatically updated. WEIGHT
    359   /// parameter is stored in Weights list and it may be used by
    360   /// MachineBranchProbabilityInfo analysis to calculate branch probability.
    361   ///
    362   /// Note that duplicate Machine CFG edges are not allowed.
    363   ///
    364   void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0);
    365 
    366   /// removeSuccessor - Remove successor from the successors list of this
    367   /// MachineBasicBlock. The Predecessors list of succ is automatically updated.
    368   ///
    369   void removeSuccessor(MachineBasicBlock *succ);
    370 
    371   /// removeSuccessor - Remove specified successor from the successors list of
    372   /// this MachineBasicBlock. The Predecessors list of succ is automatically
    373   /// updated.  Return the iterator to the element after the one removed.
    374   ///
    375   succ_iterator removeSuccessor(succ_iterator I);
    376 
    377   /// replaceSuccessor - Replace successor OLD with NEW and update weight info.
    378   ///
    379   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
    380 
    381 
    382   /// transferSuccessors - Transfers all the successors from MBB to this
    383   /// machine basic block (i.e., copies all the successors fromMBB and
    384   /// remove all the successors from fromMBB).
    385   void transferSuccessors(MachineBasicBlock *fromMBB);
    386 
    387   /// transferSuccessorsAndUpdatePHIs - Transfers all the successors, as
    388   /// in transferSuccessors, and update PHI operands in the successor blocks
    389   /// which refer to fromMBB to refer to this.
    390   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB);
    391 
    392   /// isPredecessor - Return true if the specified MBB is a predecessor of this
    393   /// block.
    394   bool isPredecessor(const MachineBasicBlock *MBB) const;
    395 
    396   /// isSuccessor - Return true if the specified MBB is a successor of this
    397   /// block.
    398   bool isSuccessor(const MachineBasicBlock *MBB) const;
    399 
    400   /// isLayoutSuccessor - Return true if the specified MBB will be emitted
    401   /// immediately after this block, such that if this block exits by
    402   /// falling through, control will transfer to the specified MBB. Note
    403   /// that MBB need not be a successor at all, for example if this block
    404   /// ends with an unconditional branch to some other block.
    405   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
    406 
    407   /// canFallThrough - Return true if the block can implicitly transfer
    408   /// control to the block after it by falling off the end of it.  This should
    409   /// return false if it can reach the block after it, but it uses an explicit
    410   /// branch to do so (e.g., a table jump).  True is a conservative answer.
    411   bool canFallThrough();
    412 
    413   /// Returns a pointer to the first instructon in this block that is not a
    414   /// PHINode instruction. When adding instruction to the beginning of the
    415   /// basic block, they should be added before the returned value, not before
    416   /// the first instruction, which might be PHI.
    417   /// Returns end() is there's no non-PHI instruction.
    418   iterator getFirstNonPHI();
    419 
    420   /// SkipPHIsAndLabels - Return the first instruction in MBB after I that is
    421   /// not a PHI or a label. This is the correct point to insert copies at the
    422   /// beginning of a basic block.
    423   iterator SkipPHIsAndLabels(iterator I);
    424 
    425   /// getFirstTerminator - returns an iterator to the first terminator
    426   /// instruction of this basic block. If a terminator does not exist,
    427   /// it returns end()
    428   iterator getFirstTerminator();
    429   const_iterator getFirstTerminator() const;
    430 
    431   /// getFirstInstrTerminator - Same getFirstTerminator but it ignores bundles
    432   /// and return an instr_iterator instead.
    433   instr_iterator getFirstInstrTerminator();
    434 
    435   /// getLastNonDebugInstr - returns an iterator to the last non-debug
    436   /// instruction in the basic block, or end()
    437   iterator getLastNonDebugInstr();
    438   const_iterator getLastNonDebugInstr() const;
    439 
    440   /// SplitCriticalEdge - Split the critical edge from this block to the
    441   /// given successor block, and return the newly created block, or null
    442   /// if splitting is not possible.
    443   ///
    444   /// This function updates LiveVariables, MachineDominatorTree, and
    445   /// MachineLoopInfo, as applicable.
    446   MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
    447 
    448   void pop_front() { Insts.pop_front(); }
    449   void pop_back() { Insts.pop_back(); }
    450   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
    451 
    452   /// Insert MI into the instruction list before I, possibly inside a bundle.
    453   ///
    454   /// If the insertion point is inside a bundle, MI will be added to the bundle,
    455   /// otherwise MI will not be added to any bundle. That means this function
    456   /// alone can't be used to prepend or append instructions to bundles. See
    457   /// MIBundleBuilder::insert() for a more reliable way of doing that.
    458   instr_iterator insert(instr_iterator I, MachineInstr *M);
    459 
    460   /// Insert a range of instructions into the instruction list before I.
    461   template<typename IT>
    462   void insert(iterator I, IT S, IT E) {
    463     Insts.insert(I.getInstrIterator(), S, E);
    464   }
    465 
    466   /// Insert MI into the instruction list before I.
    467   iterator insert(iterator I, MachineInstr *MI) {
    468     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    469            "Cannot insert instruction with bundle flags");
    470     return Insts.insert(I.getInstrIterator(), MI);
    471   }
    472 
    473   /// Insert MI into the instruction list after I.
    474   iterator insertAfter(iterator I, MachineInstr *MI) {
    475     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    476            "Cannot insert instruction with bundle flags");
    477     return Insts.insertAfter(I.getInstrIterator(), MI);
    478   }
    479 
    480   /// Remove an instruction from the instruction list and delete it.
    481   ///
    482   /// If the instruction is part of a bundle, the other instructions in the
    483   /// bundle will still be bundled after removing the single instruction.
    484   instr_iterator erase(instr_iterator I);
    485 
    486   /// Remove an instruction from the instruction list and delete it.
    487   ///
    488   /// If the instruction is part of a bundle, the other instructions in the
    489   /// bundle will still be bundled after removing the single instruction.
    490   instr_iterator erase_instr(MachineInstr *I) {
    491     return erase(instr_iterator(I));
    492   }
    493 
    494   /// Remove a range of instructions from the instruction list and delete them.
    495   iterator erase(iterator I, iterator E) {
    496     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
    497   }
    498 
    499   /// Remove an instruction or bundle from the instruction list and delete it.
    500   ///
    501   /// If I points to a bundle of instructions, they are all erased.
    502   iterator erase(iterator I) {
    503     return erase(I, llvm::next(I));
    504   }
    505 
    506   /// Remove an instruction from the instruction list and delete it.
    507   ///
    508   /// If I is the head of a bundle of instructions, the whole bundle will be
    509   /// erased.
    510   iterator erase(MachineInstr *I) {
    511     return erase(iterator(I));
    512   }
    513 
    514   /// Remove the unbundled instruction from the instruction list without
    515   /// deleting it.
    516   ///
    517   /// This function can not be used to remove bundled instructions, use
    518   /// remove_instr to remove individual instructions from a bundle.
    519   MachineInstr *remove(MachineInstr *I) {
    520     assert(!I->isBundled() && "Cannot remove bundled instructions");
    521     return Insts.remove(I);
    522   }
    523 
    524   /// Remove the possibly bundled instruction from the instruction list
    525   /// without deleting it.
    526   ///
    527   /// If the instruction is part of a bundle, the other instructions in the
    528   /// bundle will still be bundled after removing the single instruction.
    529   MachineInstr *remove_instr(MachineInstr *I);
    530 
    531   void clear() {
    532     Insts.clear();
    533   }
    534 
    535   /// Take an instruction from MBB 'Other' at the position From, and insert it
    536   /// into this MBB right before 'Where'.
    537   ///
    538   /// If From points to a bundle of instructions, the whole bundle is moved.
    539   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
    540     // The range splice() doesn't allow noop moves, but this one does.
    541     if (Where != From)
    542       splice(Where, Other, From, llvm::next(From));
    543   }
    544 
    545   /// Take a block of instructions from MBB 'Other' in the range [From, To),
    546   /// and insert them into this MBB right before 'Where'.
    547   ///
    548   /// The instruction at 'Where' must not be included in the range of
    549   /// instructions to move.
    550   void splice(iterator Where, MachineBasicBlock *Other,
    551               iterator From, iterator To) {
    552     Insts.splice(Where.getInstrIterator(), Other->Insts,
    553                  From.getInstrIterator(), To.getInstrIterator());
    554   }
    555 
    556   /// removeFromParent - This method unlinks 'this' from the containing
    557   /// function, and returns it, but does not delete it.
    558   MachineBasicBlock *removeFromParent();
    559 
    560   /// eraseFromParent - This method unlinks 'this' from the containing
    561   /// function and deletes it.
    562   void eraseFromParent();
    563 
    564   /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
    565   /// 'Old', change the code and CFG so that it branches to 'New' instead.
    566   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
    567 
    568   /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in
    569   /// the CFG to be inserted.  If we have proven that MBB can only branch to
    570   /// DestA and DestB, remove any other MBB successors from the CFG. DestA and
    571   /// DestB can be null. Besides DestA and DestB, retain other edges leading
    572   /// to LandingPads (currently there can be only one; we don't check or require
    573   /// that here). Note it is possible that DestA and/or DestB are LandingPads.
    574   bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
    575                             MachineBasicBlock *DestB,
    576                             bool isCond);
    577 
    578   /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
    579   /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
    580   DebugLoc findDebugLoc(instr_iterator MBBI);
    581   DebugLoc findDebugLoc(iterator MBBI) {
    582     return findDebugLoc(MBBI.getInstrIterator());
    583   }
    584 
    585   /// Possible outcome of a register liveness query to computeRegisterLiveness()
    586   enum LivenessQueryResult {
    587     LQR_Live,            ///< Register is known to be live.
    588     LQR_OverlappingLive, ///< Register itself is not live, but some overlapping
    589                          ///< register is.
    590     LQR_Dead,            ///< Register is known to be dead.
    591     LQR_Unknown          ///< Register liveness not decidable from local
    592                          ///< neighborhood.
    593   };
    594 
    595   /// computeRegisterLiveness - Return whether (physical) register \c Reg
    596   /// has been <def>ined and not <kill>ed as of just before \c MI.
    597   ///
    598   /// Search is localised to a neighborhood of
    599   /// \c Neighborhood instructions before (searching for defs or kills) and
    600   /// Neighborhood instructions after (searching just for defs) MI.
    601   ///
    602   /// \c Reg must be a physical register.
    603   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
    604                                               unsigned Reg, MachineInstr *MI,
    605                                               unsigned Neighborhood=10);
    606 
    607   // Debugging methods.
    608   void dump() const;
    609   void print(raw_ostream &OS, SlotIndexes* = 0) const;
    610 
    611   /// getNumber - MachineBasicBlocks are uniquely numbered at the function
    612   /// level, unless they're not in a MachineFunction yet, in which case this
    613   /// will return -1.
    614   ///
    615   int getNumber() const { return Number; }
    616   void setNumber(int N) { Number = N; }
    617 
    618   /// getSymbol - Return the MCSymbol for this basic block.
    619   ///
    620   MCSymbol *getSymbol() const;
    621 
    622 
    623 private:
    624   /// getWeightIterator - Return weight iterator corresponding to the I
    625   /// successor iterator.
    626   weight_iterator getWeightIterator(succ_iterator I);
    627   const_weight_iterator getWeightIterator(const_succ_iterator I) const;
    628 
    629   friend class MachineBranchProbabilityInfo;
    630 
    631   /// getSuccWeight - Return weight of the edge from this block to MBB. This
    632   /// method should NOT be called directly, but by using getEdgeWeight method
    633   /// from MachineBranchProbabilityInfo class.
    634   uint32_t getSuccWeight(const_succ_iterator Succ) const;
    635 
    636 
    637   // Methods used to maintain doubly linked list of blocks...
    638   friend struct ilist_traits<MachineBasicBlock>;
    639 
    640   // Machine-CFG mutators
    641 
    642   /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock.
    643   /// Don't do this unless you know what you're doing, because it doesn't
    644   /// update pred's successors list. Use pred->addSuccessor instead.
    645   ///
    646   void addPredecessor(MachineBasicBlock *pred);
    647 
    648   /// removePredecessor - Remove pred as a predecessor of this
    649   /// MachineBasicBlock. Don't do this unless you know what you're
    650   /// doing, because it doesn't update pred's successors list. Use
    651   /// pred->removeSuccessor instead.
    652   ///
    653   void removePredecessor(MachineBasicBlock *pred);
    654 };
    655 
    656 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
    657 
    658 void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t);
    659 
    660 // This is useful when building IndexedMaps keyed on basic block pointers.
    661 struct MBB2NumberFunctor :
    662   public std::unary_function<const MachineBasicBlock*, unsigned> {
    663   unsigned operator()(const MachineBasicBlock *MBB) const {
    664     return MBB->getNumber();
    665   }
    666 };
    667 
    668 //===--------------------------------------------------------------------===//
    669 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
    670 //===--------------------------------------------------------------------===//
    671 
    672 // Provide specializations of GraphTraits to be able to treat a
    673 // MachineFunction as a graph of MachineBasicBlocks...
    674 //
    675 
    676 template <> struct GraphTraits<MachineBasicBlock *> {
    677   typedef MachineBasicBlock NodeType;
    678   typedef MachineBasicBlock::succ_iterator ChildIteratorType;
    679 
    680   static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
    681   static inline ChildIteratorType child_begin(NodeType *N) {
    682     return N->succ_begin();
    683   }
    684   static inline ChildIteratorType child_end(NodeType *N) {
    685     return N->succ_end();
    686   }
    687 };
    688 
    689 template <> struct GraphTraits<const MachineBasicBlock *> {
    690   typedef const MachineBasicBlock NodeType;
    691   typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
    692 
    693   static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
    694   static inline ChildIteratorType child_begin(NodeType *N) {
    695     return N->succ_begin();
    696   }
    697   static inline ChildIteratorType child_end(NodeType *N) {
    698     return N->succ_end();
    699   }
    700 };
    701 
    702 // Provide specializations of GraphTraits to be able to treat a
    703 // MachineFunction as a graph of MachineBasicBlocks... and to walk it
    704 // in inverse order.  Inverse order for a function is considered
    705 // to be when traversing the predecessor edges of a MBB
    706 // instead of the successor edges.
    707 //
    708 template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
    709   typedef MachineBasicBlock NodeType;
    710   typedef MachineBasicBlock::pred_iterator ChildIteratorType;
    711   static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
    712     return G.Graph;
    713   }
    714   static inline ChildIteratorType child_begin(NodeType *N) {
    715     return N->pred_begin();
    716   }
    717   static inline ChildIteratorType child_end(NodeType *N) {
    718     return N->pred_end();
    719   }
    720 };
    721 
    722 template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
    723   typedef const MachineBasicBlock NodeType;
    724   typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
    725   static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
    726     return G.Graph;
    727   }
    728   static inline ChildIteratorType child_begin(NodeType *N) {
    729     return N->pred_begin();
    730   }
    731   static inline ChildIteratorType child_end(NodeType *N) {
    732     return N->pred_end();
    733   }
    734 };
    735 
    736 } // End llvm namespace
    737 
    738 #endif
    739