1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 31 #include "ceres/dogleg_strategy.h" 32 33 #include <cmath> 34 #include "Eigen/Dense" 35 #include "ceres/array_utils.h" 36 #include "ceres/internal/eigen.h" 37 #include "ceres/linear_least_squares_problems.h" 38 #include "ceres/linear_solver.h" 39 #include "ceres/polynomial.h" 40 #include "ceres/sparse_matrix.h" 41 #include "ceres/trust_region_strategy.h" 42 #include "ceres/types.h" 43 #include "glog/logging.h" 44 45 namespace ceres { 46 namespace internal { 47 namespace { 48 const double kMaxMu = 1.0; 49 const double kMinMu = 1e-8; 50 } 51 52 DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options) 53 : linear_solver_(options.linear_solver), 54 radius_(options.initial_radius), 55 max_radius_(options.max_radius), 56 min_diagonal_(options.min_lm_diagonal), 57 max_diagonal_(options.max_lm_diagonal), 58 mu_(kMinMu), 59 min_mu_(kMinMu), 60 max_mu_(kMaxMu), 61 mu_increase_factor_(10.0), 62 increase_threshold_(0.75), 63 decrease_threshold_(0.25), 64 dogleg_step_norm_(0.0), 65 reuse_(false), 66 dogleg_type_(options.dogleg_type) { 67 CHECK_NOTNULL(linear_solver_); 68 CHECK_GT(min_diagonal_, 0.0); 69 CHECK_LE(min_diagonal_, max_diagonal_); 70 CHECK_GT(max_radius_, 0.0); 71 } 72 73 // If the reuse_ flag is not set, then the Cauchy point (scaled 74 // gradient) and the new Gauss-Newton step are computed from 75 // scratch. The Dogleg step is then computed as interpolation of these 76 // two vectors. 77 TrustRegionStrategy::Summary DoglegStrategy::ComputeStep( 78 const TrustRegionStrategy::PerSolveOptions& per_solve_options, 79 SparseMatrix* jacobian, 80 const double* residuals, 81 double* step) { 82 CHECK_NOTNULL(jacobian); 83 CHECK_NOTNULL(residuals); 84 CHECK_NOTNULL(step); 85 86 const int n = jacobian->num_cols(); 87 if (reuse_) { 88 // Gauss-Newton and gradient vectors are always available, only a 89 // new interpolant need to be computed. For the subspace case, 90 // the subspace and the two-dimensional model are also still valid. 91 switch (dogleg_type_) { 92 case TRADITIONAL_DOGLEG: 93 ComputeTraditionalDoglegStep(step); 94 break; 95 96 case SUBSPACE_DOGLEG: 97 ComputeSubspaceDoglegStep(step); 98 break; 99 } 100 TrustRegionStrategy::Summary summary; 101 summary.num_iterations = 0; 102 summary.termination_type = TOLERANCE; 103 return summary; 104 } 105 106 reuse_ = true; 107 // Check that we have the storage needed to hold the various 108 // temporary vectors. 109 if (diagonal_.rows() != n) { 110 diagonal_.resize(n, 1); 111 gradient_.resize(n, 1); 112 gauss_newton_step_.resize(n, 1); 113 } 114 115 // Vector used to form the diagonal matrix that is used to 116 // regularize the Gauss-Newton solve and that defines the 117 // elliptical trust region 118 // 119 // || D * step || <= radius_ . 120 // 121 jacobian->SquaredColumnNorm(diagonal_.data()); 122 for (int i = 0; i < n; ++i) { 123 diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_); 124 } 125 diagonal_ = diagonal_.array().sqrt(); 126 127 ComputeGradient(jacobian, residuals); 128 ComputeCauchyPoint(jacobian); 129 130 LinearSolver::Summary linear_solver_summary = 131 ComputeGaussNewtonStep(per_solve_options, jacobian, residuals); 132 133 TrustRegionStrategy::Summary summary; 134 summary.residual_norm = linear_solver_summary.residual_norm; 135 summary.num_iterations = linear_solver_summary.num_iterations; 136 summary.termination_type = linear_solver_summary.termination_type; 137 138 if (linear_solver_summary.termination_type != FAILURE) { 139 switch (dogleg_type_) { 140 // Interpolate the Cauchy point and the Gauss-Newton step. 141 case TRADITIONAL_DOGLEG: 142 ComputeTraditionalDoglegStep(step); 143 break; 144 145 // Find the minimum in the subspace defined by the 146 // Cauchy point and the (Gauss-)Newton step. 147 case SUBSPACE_DOGLEG: 148 if (!ComputeSubspaceModel(jacobian)) { 149 summary.termination_type = FAILURE; 150 break; 151 } 152 ComputeSubspaceDoglegStep(step); 153 break; 154 } 155 } 156 157 return summary; 158 } 159 160 // The trust region is assumed to be elliptical with the 161 // diagonal scaling matrix D defined by sqrt(diagonal_). 162 // It is implemented by substituting step' = D * step. 163 // The trust region for step' is spherical. 164 // The gradient, the Gauss-Newton step, the Cauchy point, 165 // and all calculations involving the Jacobian have to 166 // be adjusted accordingly. 167 void DoglegStrategy::ComputeGradient( 168 SparseMatrix* jacobian, 169 const double* residuals) { 170 gradient_.setZero(); 171 jacobian->LeftMultiply(residuals, gradient_.data()); 172 gradient_.array() /= diagonal_.array(); 173 } 174 175 // The Cauchy point is the global minimizer of the quadratic model 176 // along the one-dimensional subspace spanned by the gradient. 177 void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) { 178 // alpha * -gradient is the Cauchy point. 179 Vector Jg(jacobian->num_rows()); 180 Jg.setZero(); 181 // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g)) 182 // instead of (J * D^-1) * (D^-1 * g). 183 Vector scaled_gradient = 184 (gradient_.array() / diagonal_.array()).matrix(); 185 jacobian->RightMultiply(scaled_gradient.data(), Jg.data()); 186 alpha_ = gradient_.squaredNorm() / Jg.squaredNorm(); 187 } 188 189 // The dogleg step is defined as the intersection of the trust region 190 // boundary with the piecewise linear path from the origin to the Cauchy 191 // point and then from there to the Gauss-Newton point (global minimizer 192 // of the model function). The Gauss-Newton point is taken if it lies 193 // within the trust region. 194 void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) { 195 VectorRef dogleg_step(dogleg, gradient_.rows()); 196 197 // Case 1. The Gauss-Newton step lies inside the trust region, and 198 // is therefore the optimal solution to the trust-region problem. 199 const double gradient_norm = gradient_.norm(); 200 const double gauss_newton_norm = gauss_newton_step_.norm(); 201 if (gauss_newton_norm <= radius_) { 202 dogleg_step = gauss_newton_step_; 203 dogleg_step_norm_ = gauss_newton_norm; 204 dogleg_step.array() /= diagonal_.array(); 205 VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_ 206 << " radius: " << radius_; 207 return; 208 } 209 210 // Case 2. The Cauchy point and the Gauss-Newton steps lie outside 211 // the trust region. Rescale the Cauchy point to the trust region 212 // and return. 213 if (gradient_norm * alpha_ >= radius_) { 214 dogleg_step = -(radius_ / gradient_norm) * gradient_; 215 dogleg_step_norm_ = radius_; 216 dogleg_step.array() /= diagonal_.array(); 217 VLOG(3) << "Cauchy step size: " << dogleg_step_norm_ 218 << " radius: " << radius_; 219 return; 220 } 221 222 // Case 3. The Cauchy point is inside the trust region and the 223 // Gauss-Newton step is outside. Compute the line joining the two 224 // points and the point on it which intersects the trust region 225 // boundary. 226 227 // a = alpha * -gradient 228 // b = gauss_newton_step 229 const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_); 230 const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0); 231 const double b_minus_a_squared_norm = 232 a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2); 233 234 // c = a' (b - a) 235 // = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2 236 const double c = b_dot_a - a_squared_norm; 237 const double d = sqrt(c * c + b_minus_a_squared_norm * 238 (pow(radius_, 2.0) - a_squared_norm)); 239 240 double beta = 241 (c <= 0) 242 ? (d - c) / b_minus_a_squared_norm 243 : (radius_ * radius_ - a_squared_norm) / (d + c); 244 dogleg_step = (-alpha_ * (1.0 - beta)) * gradient_ 245 + beta * gauss_newton_step_; 246 dogleg_step_norm_ = dogleg_step.norm(); 247 dogleg_step.array() /= diagonal_.array(); 248 VLOG(3) << "Dogleg step size: " << dogleg_step_norm_ 249 << " radius: " << radius_; 250 } 251 252 // The subspace method finds the minimum of the two-dimensional problem 253 // 254 // min. 1/2 x' B' H B x + g' B x 255 // s.t. || B x ||^2 <= r^2 256 // 257 // where r is the trust region radius and B is the matrix with unit columns 258 // spanning the subspace defined by the steepest descent and Newton direction. 259 // This subspace by definition includes the Gauss-Newton point, which is 260 // therefore taken if it lies within the trust region. 261 void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) { 262 VectorRef dogleg_step(dogleg, gradient_.rows()); 263 264 // The Gauss-Newton point is inside the trust region if |GN| <= radius_. 265 // This test is valid even though radius_ is a length in the two-dimensional 266 // subspace while gauss_newton_step_ is expressed in the (scaled) 267 // higher dimensional original space. This is because 268 // 269 // 1. gauss_newton_step_ by definition lies in the subspace, and 270 // 2. the subspace basis is orthonormal. 271 // 272 // As a consequence, the norm of the gauss_newton_step_ in the subspace is 273 // the same as its norm in the original space. 274 const double gauss_newton_norm = gauss_newton_step_.norm(); 275 if (gauss_newton_norm <= radius_) { 276 dogleg_step = gauss_newton_step_; 277 dogleg_step_norm_ = gauss_newton_norm; 278 dogleg_step.array() /= diagonal_.array(); 279 VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_ 280 << " radius: " << radius_; 281 return; 282 } 283 284 // The optimum lies on the boundary of the trust region. The above problem 285 // therefore becomes 286 // 287 // min. 1/2 x^T B^T H B x + g^T B x 288 // s.t. || B x ||^2 = r^2 289 // 290 // Notice the equality in the constraint. 291 // 292 // This can be solved by forming the Lagrangian, solving for x(y), where 293 // y is the Lagrange multiplier, using the gradient of the objective, and 294 // putting x(y) back into the constraint. This results in a fourth order 295 // polynomial in y, which can be solved using e.g. the companion matrix. 296 // See the description of MakePolynomialForBoundaryConstrainedProblem for 297 // details. The result is up to four real roots y*, not all of which 298 // correspond to feasible points. The feasible points x(y*) have to be 299 // tested for optimality. 300 301 if (subspace_is_one_dimensional_) { 302 // The subspace is one-dimensional, so both the gradient and 303 // the Gauss-Newton step point towards the same direction. 304 // In this case, we move along the gradient until we reach the trust 305 // region boundary. 306 dogleg_step = -(radius_ / gradient_.norm()) * gradient_; 307 dogleg_step_norm_ = radius_; 308 dogleg_step.array() /= diagonal_.array(); 309 VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_ 310 << " radius: " << radius_; 311 return; 312 } 313 314 Vector2d minimum(0.0, 0.0); 315 if (!FindMinimumOnTrustRegionBoundary(&minimum)) { 316 // For the positive semi-definite case, a traditional dogleg step 317 // is taken in this case. 318 LOG(WARNING) << "Failed to compute polynomial roots. " 319 << "Taking traditional dogleg step instead."; 320 ComputeTraditionalDoglegStep(dogleg); 321 return; 322 } 323 324 // Test first order optimality at the minimum. 325 // The first order KKT conditions state that the minimum x* 326 // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within 327 // the trust region), or 328 // 329 // (B x* + g) + y x* = 0 330 // 331 // for some positive scalar y. 332 // Here, as it is already known that the minimum lies on the boundary, the 333 // latter condition is tested. To allow for small imprecisions, we test if 334 // the angle between (B x* + g) and -x* is smaller than acos(0.99). 335 // The exact value of the cosine is arbitrary but should be close to 1. 336 // 337 // This condition should not be violated. If it is, the minimum was not 338 // correctly determined. 339 const double kCosineThreshold = 0.99; 340 const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_; 341 const double cosine_angle = -minimum.dot(grad_minimum) / 342 (minimum.norm() * grad_minimum.norm()); 343 if (cosine_angle < kCosineThreshold) { 344 LOG(WARNING) << "First order optimality seems to be violated " 345 << "in the subspace method!\n" 346 << "Cosine of angle between x and B x + g is " 347 << cosine_angle << ".\n" 348 << "Taking a regular dogleg step instead.\n" 349 << "Please consider filing a bug report if this " 350 << "happens frequently or consistently.\n"; 351 ComputeTraditionalDoglegStep(dogleg); 352 return; 353 } 354 355 // Create the full step from the optimal 2d solution. 356 dogleg_step = subspace_basis_ * minimum; 357 dogleg_step_norm_ = radius_; 358 dogleg_step.array() /= diagonal_.array(); 359 VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_ 360 << " radius: " << radius_; 361 } 362 363 // Build the polynomial that defines the optimal Lagrange multipliers. 364 // Let the Lagrangian be 365 // 366 // L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2). (1) 367 // 368 // Stationary points of the Lagrangian are given by 369 // 370 // 0 = d L(x, y) / dx = Bx + g + y x (2) 371 // 0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2 (3) 372 // 373 // For any given y, we can solve (2) for x as 374 // 375 // x(y) = -(B + y I)^-1 g . (4) 376 // 377 // As B + y I is 2x2, we form the inverse explicitly: 378 // 379 // (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I) (5) 380 // 381 // where adj() denotes adjugation. This should be safe, as B is positive 382 // semi-definite and y is necessarily positive, so (B + y I) is indeed 383 // invertible. 384 // Plugging (5) into (4) and the result into (3), then dividing by 0.5 we 385 // obtain 386 // 387 // 0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2 388 // (6) 389 // 390 // or 391 // 392 // det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g (7a) 393 // = g^T adj(B)^T adj(B) g 394 // + 2 y g^T adj(B)^T g + y^2 g^T g (7b) 395 // 396 // as 397 // 398 // adj(B + y I) = adj(B) + y I = adj(B)^T + y I . (8) 399 // 400 // The left hand side can be expressed explicitly using 401 // 402 // det(B + y I) = det(B) + y tr(B) + y^2 . (9) 403 // 404 // So (7) is a polynomial in y of degree four. 405 // Bringing everything back to the left hand side, the coefficients can 406 // be read off as 407 // 408 // y^4 r^2 409 // + y^3 2 r^2 tr(B) 410 // + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g) 411 // + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g) 412 // + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g) 413 // 414 Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const { 415 const double detB = subspace_B_.determinant(); 416 const double trB = subspace_B_.trace(); 417 const double r2 = radius_ * radius_; 418 Matrix2d B_adj; 419 B_adj << subspace_B_(1, 1) , -subspace_B_(0, 1), 420 -subspace_B_(1, 0) , subspace_B_(0, 0); 421 422 Vector polynomial(5); 423 polynomial(0) = r2; 424 polynomial(1) = 2.0 * r2 * trB; 425 polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm(); 426 polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_ 427 - r2 * detB * trB); 428 polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm(); 429 430 return polynomial; 431 } 432 433 // Given a Lagrange multiplier y that corresponds to a stationary point 434 // of the Lagrangian L(x, y), compute the corresponding x from the 435 // equation 436 // 437 // 0 = d L(x, y) / dx 438 // = B * x + g + y * x 439 // = (B + y * I) * x + g 440 // 441 DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot( 442 double y) const { 443 const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity(); 444 return -B_i.partialPivLu().solve(subspace_g_); 445 } 446 447 // This function evaluates the quadratic model at a point x in the 448 // subspace spanned by subspace_basis_. 449 double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const { 450 return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x); 451 } 452 453 // This function attempts to solve the boundary-constrained subspace problem 454 // 455 // min. 1/2 x^T B^T H B x + g^T B x 456 // s.t. || B x ||^2 = r^2 457 // 458 // where B is an orthonormal subspace basis and r is the trust-region radius. 459 // 460 // This is done by finding the roots of a fourth degree polynomial. If the 461 // root finding fails, the function returns false and minimum will be set 462 // to (0, 0). If it succeeds, true is returned. 463 // 464 // In the failure case, another step should be taken, such as the traditional 465 // dogleg step. 466 bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const { 467 CHECK_NOTNULL(minimum); 468 469 // Return (0, 0) in all error cases. 470 minimum->setZero(); 471 472 // Create the fourth-degree polynomial that is a necessary condition for 473 // optimality. 474 const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem(); 475 476 // Find the real parts y_i of its roots (not only the real roots). 477 Vector roots_real; 478 if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) { 479 // Failed to find the roots of the polynomial, i.e. the candidate 480 // solutions of the constrained problem. Report this back to the caller. 481 return false; 482 } 483 484 // For each root y, compute B x(y) and check for feasibility. 485 // Notice that there should always be four roots, as the leading term of 486 // the polynomial is r^2 and therefore non-zero. However, as some roots 487 // may be complex, the real parts are not necessarily unique. 488 double minimum_value = std::numeric_limits<double>::max(); 489 bool valid_root_found = false; 490 for (int i = 0; i < roots_real.size(); ++i) { 491 const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i)); 492 493 // Not all roots correspond to points on the trust region boundary. 494 // There are at most four candidate solutions. As we are interested 495 // in the minimum, it is safe to consider all of them after projecting 496 // them onto the trust region boundary. 497 if (x_i.norm() > 0) { 498 const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i); 499 valid_root_found = true; 500 if (f_i < minimum_value) { 501 minimum_value = f_i; 502 *minimum = x_i; 503 } 504 } 505 } 506 507 return valid_root_found; 508 } 509 510 LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep( 511 const PerSolveOptions& per_solve_options, 512 SparseMatrix* jacobian, 513 const double* residuals) { 514 const int n = jacobian->num_cols(); 515 LinearSolver::Summary linear_solver_summary; 516 linear_solver_summary.termination_type = FAILURE; 517 518 // The Jacobian matrix is often quite poorly conditioned. Thus it is 519 // necessary to add a diagonal matrix at the bottom to prevent the 520 // linear solver from failing. 521 // 522 // We do this by computing the same diagonal matrix as the one used 523 // by Levenberg-Marquardt (other choices are possible), and scaling 524 // it by a small constant (independent of the trust region radius). 525 // 526 // If the solve fails, the multiplier to the diagonal is increased 527 // up to max_mu_ by a factor of mu_increase_factor_ every time. If 528 // the linear solver is still not successful, the strategy returns 529 // with FAILURE. 530 // 531 // Next time when a new Gauss-Newton step is requested, the 532 // multiplier starts out from the last successful solve. 533 // 534 // When a step is declared successful, the multiplier is decreased 535 // by half of mu_increase_factor_. 536 537 while (mu_ < max_mu_) { 538 // Dogleg, as far as I (sameeragarwal) understand it, requires a 539 // reasonably good estimate of the Gauss-Newton step. This means 540 // that we need to solve the normal equations more or less 541 // exactly. This is reflected in the values of the tolerances set 542 // below. 543 // 544 // For now, this strategy should only be used with exact 545 // factorization based solvers, for which these tolerances are 546 // automatically satisfied. 547 // 548 // The right way to combine inexact solves with trust region 549 // methods is to use Stiehaug's method. 550 LinearSolver::PerSolveOptions solve_options; 551 solve_options.q_tolerance = 0.0; 552 solve_options.r_tolerance = 0.0; 553 554 lm_diagonal_ = diagonal_ * std::sqrt(mu_); 555 solve_options.D = lm_diagonal_.data(); 556 557 // As in the LevenbergMarquardtStrategy, solve Jy = r instead 558 // of Jx = -r and later set x = -y to avoid having to modify 559 // either jacobian or residuals. 560 InvalidateArray(n, gauss_newton_step_.data()); 561 linear_solver_summary = linear_solver_->Solve(jacobian, 562 residuals, 563 solve_options, 564 gauss_newton_step_.data()); 565 566 if (per_solve_options.dump_format_type == CONSOLE || 567 (per_solve_options.dump_format_type != CONSOLE && 568 !per_solve_options.dump_filename_base.empty())) { 569 if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base, 570 per_solve_options.dump_format_type, 571 jacobian, 572 solve_options.D, 573 residuals, 574 gauss_newton_step_.data(), 575 0)) { 576 LOG(ERROR) << "Unable to dump trust region problem." 577 << " Filename base: " 578 << per_solve_options.dump_filename_base; 579 } 580 } 581 582 if (linear_solver_summary.termination_type == FAILURE || 583 !IsArrayValid(n, gauss_newton_step_.data())) { 584 mu_ *= mu_increase_factor_; 585 VLOG(2) << "Increasing mu " << mu_; 586 linear_solver_summary.termination_type = FAILURE; 587 continue; 588 } 589 break; 590 } 591 592 if (linear_solver_summary.termination_type != FAILURE) { 593 // The scaled Gauss-Newton step is D * GN: 594 // 595 // - (D^-1 J^T J D^-1)^-1 (D^-1 g) 596 // = - D (J^T J)^-1 D D^-1 g 597 // = D -(J^T J)^-1 g 598 // 599 gauss_newton_step_.array() *= -diagonal_.array(); 600 } 601 602 return linear_solver_summary; 603 } 604 605 void DoglegStrategy::StepAccepted(double step_quality) { 606 CHECK_GT(step_quality, 0.0); 607 608 if (step_quality < decrease_threshold_) { 609 radius_ *= 0.5; 610 } 611 612 if (step_quality > increase_threshold_) { 613 radius_ = max(radius_, 3.0 * dogleg_step_norm_); 614 } 615 616 // Reduce the regularization multiplier, in the hope that whatever 617 // was causing the rank deficiency has gone away and we can return 618 // to doing a pure Gauss-Newton solve. 619 mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_); 620 reuse_ = false; 621 } 622 623 void DoglegStrategy::StepRejected(double step_quality) { 624 radius_ *= 0.5; 625 reuse_ = true; 626 } 627 628 void DoglegStrategy::StepIsInvalid() { 629 mu_ *= mu_increase_factor_; 630 reuse_ = false; 631 } 632 633 double DoglegStrategy::Radius() const { 634 return radius_; 635 } 636 637 bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) { 638 // Compute an orthogonal basis for the subspace using QR decomposition. 639 Matrix basis_vectors(jacobian->num_cols(), 2); 640 basis_vectors.col(0) = gradient_; 641 basis_vectors.col(1) = gauss_newton_step_; 642 Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors); 643 644 switch (basis_qr.rank()) { 645 case 0: 646 // This should never happen, as it implies that both the gradient 647 // and the Gauss-Newton step are zero. In this case, the minimizer should 648 // have stopped due to the gradient being too small. 649 LOG(ERROR) << "Rank of subspace basis is 0. " 650 << "This means that the gradient at the current iterate is " 651 << "zero but the optimization has not been terminated. " 652 << "You may have found a bug in Ceres."; 653 return false; 654 655 case 1: 656 // Gradient and Gauss-Newton step coincide, so we lie on one of the 657 // major axes of the quadratic problem. In this case, we simply move 658 // along the gradient until we reach the trust region boundary. 659 subspace_is_one_dimensional_ = true; 660 return true; 661 662 case 2: 663 subspace_is_one_dimensional_ = false; 664 break; 665 666 default: 667 LOG(ERROR) << "Rank of the subspace basis matrix is reported to be " 668 << "greater than 2. As the matrix contains only two " 669 << "columns this cannot be true and is indicative of " 670 << "a bug."; 671 return false; 672 } 673 674 // The subspace is two-dimensional, so compute the subspace model. 675 // Given the basis U, this is 676 // 677 // subspace_g_ = g_scaled^T U 678 // 679 // and 680 // 681 // subspace_B_ = U^T (J_scaled^T J_scaled) U 682 // 683 // As J_scaled = J * D^-1, the latter becomes 684 // 685 // subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U)) 686 // = (J (D^-1 U))^T (J (D^-1 U)) 687 688 subspace_basis_ = 689 basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2); 690 691 subspace_g_ = subspace_basis_.transpose() * gradient_; 692 693 Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor> 694 Jb(2, jacobian->num_rows()); 695 Jb.setZero(); 696 697 Vector tmp; 698 tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix(); 699 jacobian->RightMultiply(tmp.data(), Jb.row(0).data()); 700 tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix(); 701 jacobian->RightMultiply(tmp.data(), Jb.row(1).data()); 702 703 subspace_B_ = Jb * Jb.transpose(); 704 705 return true; 706 } 707 708 } // namespace internal 709 } // namespace ceres 710