Home | History | Annotate | Download | only in Analysis
      1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains routines that help analyze properties that chains of
     11 // computations have.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/IR/GlobalAlias.h"
     21 #include "llvm/IR/GlobalVariable.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/IR/IntrinsicInst.h"
     24 #include "llvm/IR/LLVMContext.h"
     25 #include "llvm/IR/Metadata.h"
     26 #include "llvm/IR/Operator.h"
     27 #include "llvm/Support/ConstantRange.h"
     28 #include "llvm/Support/GetElementPtrTypeIterator.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/PatternMatch.h"
     31 #include <cstring>
     32 using namespace llvm;
     33 using namespace llvm::PatternMatch;
     34 
     35 const unsigned MaxDepth = 6;
     36 
     37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
     38 /// unknown returns 0).  For vector types, returns the element type's bitwidth.
     39 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
     40   if (unsigned BitWidth = Ty->getScalarSizeInBits())
     41     return BitWidth;
     42   assert(isa<PointerType>(Ty) && "Expected a pointer type!");
     43   return TD ? TD->getPointerSizeInBits() : 0;
     44 }
     45 
     46 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
     47                                     APInt &KnownZero, APInt &KnownOne,
     48                                     APInt &KnownZero2, APInt &KnownOne2,
     49                                     const DataLayout *TD, unsigned Depth) {
     50   if (!Add) {
     51     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
     52       // We know that the top bits of C-X are clear if X contains less bits
     53       // than C (i.e. no wrap-around can happen).  For example, 20-X is
     54       // positive if we can prove that X is >= 0 and < 16.
     55       if (!CLHS->getValue().isNegative()) {
     56         unsigned BitWidth = KnownZero.getBitWidth();
     57         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
     58         // NLZ can't be BitWidth with no sign bit
     59         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
     60         llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
     61 
     62         // If all of the MaskV bits are known to be zero, then we know the
     63         // output top bits are zero, because we now know that the output is
     64         // from [0-C].
     65         if ((KnownZero2 & MaskV) == MaskV) {
     66           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
     67           // Top bits known zero.
     68           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
     69         }
     70       }
     71     }
     72   }
     73 
     74   unsigned BitWidth = KnownZero.getBitWidth();
     75 
     76   // If one of the operands has trailing zeros, then the bits that the
     77   // other operand has in those bit positions will be preserved in the
     78   // result. For an add, this works with either operand. For a subtract,
     79   // this only works if the known zeros are in the right operand.
     80   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
     81   llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
     82   assert((LHSKnownZero & LHSKnownOne) == 0 &&
     83          "Bits known to be one AND zero?");
     84   unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
     85 
     86   llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
     87   assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
     88   unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
     89 
     90   // Determine which operand has more trailing zeros, and use that
     91   // many bits from the other operand.
     92   if (LHSKnownZeroOut > RHSKnownZeroOut) {
     93     if (Add) {
     94       APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
     95       KnownZero |= KnownZero2 & Mask;
     96       KnownOne  |= KnownOne2 & Mask;
     97     } else {
     98       // If the known zeros are in the left operand for a subtract,
     99       // fall back to the minimum known zeros in both operands.
    100       KnownZero |= APInt::getLowBitsSet(BitWidth,
    101                                         std::min(LHSKnownZeroOut,
    102                                                  RHSKnownZeroOut));
    103     }
    104   } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
    105     APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
    106     KnownZero |= LHSKnownZero & Mask;
    107     KnownOne  |= LHSKnownOne & Mask;
    108   }
    109 
    110   // Are we still trying to solve for the sign bit?
    111   if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
    112     if (NSW) {
    113       if (Add) {
    114         // Adding two positive numbers can't wrap into negative
    115         if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
    116           KnownZero |= APInt::getSignBit(BitWidth);
    117         // and adding two negative numbers can't wrap into positive.
    118         else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
    119           KnownOne |= APInt::getSignBit(BitWidth);
    120       } else {
    121         // Subtracting a negative number from a positive one can't wrap
    122         if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
    123           KnownZero |= APInt::getSignBit(BitWidth);
    124         // neither can subtracting a positive number from a negative one.
    125         else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
    126           KnownOne |= APInt::getSignBit(BitWidth);
    127       }
    128     }
    129   }
    130 }
    131 
    132 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
    133                                  APInt &KnownZero, APInt &KnownOne,
    134                                  APInt &KnownZero2, APInt &KnownOne2,
    135                                  const DataLayout *TD, unsigned Depth) {
    136   unsigned BitWidth = KnownZero.getBitWidth();
    137   ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
    138   ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
    139   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    140   assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    141 
    142   bool isKnownNegative = false;
    143   bool isKnownNonNegative = false;
    144   // If the multiplication is known not to overflow, compute the sign bit.
    145   if (NSW) {
    146     if (Op0 == Op1) {
    147       // The product of a number with itself is non-negative.
    148       isKnownNonNegative = true;
    149     } else {
    150       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
    151       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
    152       bool isKnownNegativeOp1 = KnownOne.isNegative();
    153       bool isKnownNegativeOp0 = KnownOne2.isNegative();
    154       // The product of two numbers with the same sign is non-negative.
    155       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
    156         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
    157       // The product of a negative number and a non-negative number is either
    158       // negative or zero.
    159       if (!isKnownNonNegative)
    160         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
    161                            isKnownNonZero(Op0, TD, Depth)) ||
    162                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
    163                            isKnownNonZero(Op1, TD, Depth));
    164     }
    165   }
    166 
    167   // If low bits are zero in either operand, output low known-0 bits.
    168   // Also compute a conserative estimate for high known-0 bits.
    169   // More trickiness is possible, but this is sufficient for the
    170   // interesting case of alignment computation.
    171   KnownOne.clearAllBits();
    172   unsigned TrailZ = KnownZero.countTrailingOnes() +
    173                     KnownZero2.countTrailingOnes();
    174   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
    175                              KnownZero2.countLeadingOnes(),
    176                              BitWidth) - BitWidth;
    177 
    178   TrailZ = std::min(TrailZ, BitWidth);
    179   LeadZ = std::min(LeadZ, BitWidth);
    180   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
    181               APInt::getHighBitsSet(BitWidth, LeadZ);
    182 
    183   // Only make use of no-wrap flags if we failed to compute the sign bit
    184   // directly.  This matters if the multiplication always overflows, in
    185   // which case we prefer to follow the result of the direct computation,
    186   // though as the program is invoking undefined behaviour we can choose
    187   // whatever we like here.
    188   if (isKnownNonNegative && !KnownOne.isNegative())
    189     KnownZero.setBit(BitWidth - 1);
    190   else if (isKnownNegative && !KnownZero.isNegative())
    191     KnownOne.setBit(BitWidth - 1);
    192 }
    193 
    194 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
    195   unsigned BitWidth = KnownZero.getBitWidth();
    196   unsigned NumRanges = Ranges.getNumOperands() / 2;
    197   assert(NumRanges >= 1);
    198 
    199   // Use the high end of the ranges to find leading zeros.
    200   unsigned MinLeadingZeros = BitWidth;
    201   for (unsigned i = 0; i < NumRanges; ++i) {
    202     ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
    203     ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
    204     ConstantRange Range(Lower->getValue(), Upper->getValue());
    205     if (Range.isWrappedSet())
    206       MinLeadingZeros = 0; // -1 has no zeros
    207     unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
    208     MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
    209   }
    210 
    211   KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
    212 }
    213 /// ComputeMaskedBits - Determine which of the bits are known to be either zero
    214 /// or one and return them in the KnownZero/KnownOne bit sets.
    215 ///
    216 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
    217 /// we cannot optimize based on the assumption that it is zero without changing
    218 /// it to be an explicit zero.  If we don't change it to zero, other code could
    219 /// optimized based on the contradictory assumption that it is non-zero.
    220 /// Because instcombine aggressively folds operations with undef args anyway,
    221 /// this won't lose us code quality.
    222 ///
    223 /// This function is defined on values with integer type, values with pointer
    224 /// type (but only if TD is non-null), and vectors of integers.  In the case
    225 /// where V is a vector, known zero, and known one values are the
    226 /// same width as the vector element, and the bit is set only if it is true
    227 /// for all of the elements in the vector.
    228 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
    229                              const DataLayout *TD, unsigned Depth) {
    230   assert(V && "No Value?");
    231   assert(Depth <= MaxDepth && "Limit Search Depth");
    232   unsigned BitWidth = KnownZero.getBitWidth();
    233 
    234   assert((V->getType()->isIntOrIntVectorTy() ||
    235           V->getType()->getScalarType()->isPointerTy()) &&
    236          "Not integer or pointer type!");
    237   assert((!TD ||
    238           TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
    239          (!V->getType()->isIntOrIntVectorTy() ||
    240           V->getType()->getScalarSizeInBits() == BitWidth) &&
    241          KnownZero.getBitWidth() == BitWidth &&
    242          KnownOne.getBitWidth() == BitWidth &&
    243          "V, Mask, KnownOne and KnownZero should have same BitWidth");
    244 
    245   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    246     // We know all of the bits for a constant!
    247     KnownOne = CI->getValue();
    248     KnownZero = ~KnownOne;
    249     return;
    250   }
    251   // Null and aggregate-zero are all-zeros.
    252   if (isa<ConstantPointerNull>(V) ||
    253       isa<ConstantAggregateZero>(V)) {
    254     KnownOne.clearAllBits();
    255     KnownZero = APInt::getAllOnesValue(BitWidth);
    256     return;
    257   }
    258   // Handle a constant vector by taking the intersection of the known bits of
    259   // each element.  There is no real need to handle ConstantVector here, because
    260   // we don't handle undef in any particularly useful way.
    261   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
    262     // We know that CDS must be a vector of integers. Take the intersection of
    263     // each element.
    264     KnownZero.setAllBits(); KnownOne.setAllBits();
    265     APInt Elt(KnownZero.getBitWidth(), 0);
    266     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
    267       Elt = CDS->getElementAsInteger(i);
    268       KnownZero &= ~Elt;
    269       KnownOne &= Elt;
    270     }
    271     return;
    272   }
    273 
    274   // The address of an aligned GlobalValue has trailing zeros.
    275   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    276     unsigned Align = GV->getAlignment();
    277     if (Align == 0 && TD) {
    278       if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
    279         Type *ObjectType = GVar->getType()->getElementType();
    280         if (ObjectType->isSized()) {
    281           // If the object is defined in the current Module, we'll be giving
    282           // it the preferred alignment. Otherwise, we have to assume that it
    283           // may only have the minimum ABI alignment.
    284           if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
    285             Align = TD->getPreferredAlignment(GVar);
    286           else
    287             Align = TD->getABITypeAlignment(ObjectType);
    288         }
    289       }
    290     }
    291     if (Align > 0)
    292       KnownZero = APInt::getLowBitsSet(BitWidth,
    293                                        countTrailingZeros(Align));
    294     else
    295       KnownZero.clearAllBits();
    296     KnownOne.clearAllBits();
    297     return;
    298   }
    299   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
    300   // the bits of its aliasee.
    301   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    302     if (GA->mayBeOverridden()) {
    303       KnownZero.clearAllBits(); KnownOne.clearAllBits();
    304     } else {
    305       ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
    306     }
    307     return;
    308   }
    309 
    310   if (Argument *A = dyn_cast<Argument>(V)) {
    311     unsigned Align = 0;
    312 
    313     if (A->hasByValAttr()) {
    314       // Get alignment information off byval arguments if specified in the IR.
    315       Align = A->getParamAlignment();
    316     } else if (TD && A->hasStructRetAttr()) {
    317       // An sret parameter has at least the ABI alignment of the return type.
    318       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
    319       if (EltTy->isSized())
    320         Align = TD->getABITypeAlignment(EltTy);
    321     }
    322 
    323     if (Align)
    324       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
    325     return;
    326   }
    327 
    328   // Start out not knowing anything.
    329   KnownZero.clearAllBits(); KnownOne.clearAllBits();
    330 
    331   if (Depth == MaxDepth)
    332     return;  // Limit search depth.
    333 
    334   Operator *I = dyn_cast<Operator>(V);
    335   if (!I) return;
    336 
    337   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
    338   switch (I->getOpcode()) {
    339   default: break;
    340   case Instruction::Load:
    341     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
    342       computeMaskedBitsLoad(*MD, KnownZero);
    343     return;
    344   case Instruction::And: {
    345     // If either the LHS or the RHS are Zero, the result is zero.
    346     ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    347     ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    348     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    349     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    350 
    351     // Output known-1 bits are only known if set in both the LHS & RHS.
    352     KnownOne &= KnownOne2;
    353     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    354     KnownZero |= KnownZero2;
    355     return;
    356   }
    357   case Instruction::Or: {
    358     ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    359     ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    360     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    361     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    362 
    363     // Output known-0 bits are only known if clear in both the LHS & RHS.
    364     KnownZero &= KnownZero2;
    365     // Output known-1 are known to be set if set in either the LHS | RHS.
    366     KnownOne |= KnownOne2;
    367     return;
    368   }
    369   case Instruction::Xor: {
    370     ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    371     ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    372     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    373     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    374 
    375     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    376     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    377     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    378     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    379     KnownZero = KnownZeroOut;
    380     return;
    381   }
    382   case Instruction::Mul: {
    383     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    384     ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
    385                          KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
    386     break;
    387   }
    388   case Instruction::UDiv: {
    389     // For the purposes of computing leading zeros we can conservatively
    390     // treat a udiv as a logical right shift by the power of 2 known to
    391     // be less than the denominator.
    392     ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    393     unsigned LeadZ = KnownZero2.countLeadingOnes();
    394 
    395     KnownOne2.clearAllBits();
    396     KnownZero2.clearAllBits();
    397     ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
    398     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
    399     if (RHSUnknownLeadingOnes != BitWidth)
    400       LeadZ = std::min(BitWidth,
    401                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
    402 
    403     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
    404     return;
    405   }
    406   case Instruction::Select:
    407     ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
    408     ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
    409                       Depth+1);
    410     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    411     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    412 
    413     // Only known if known in both the LHS and RHS.
    414     KnownOne &= KnownOne2;
    415     KnownZero &= KnownZero2;
    416     return;
    417   case Instruction::FPTrunc:
    418   case Instruction::FPExt:
    419   case Instruction::FPToUI:
    420   case Instruction::FPToSI:
    421   case Instruction::SIToFP:
    422   case Instruction::UIToFP:
    423     return; // Can't work with floating point.
    424   case Instruction::PtrToInt:
    425   case Instruction::IntToPtr:
    426     // We can't handle these if we don't know the pointer size.
    427     if (!TD) return;
    428     // FALL THROUGH and handle them the same as zext/trunc.
    429   case Instruction::ZExt:
    430   case Instruction::Trunc: {
    431     Type *SrcTy = I->getOperand(0)->getType();
    432 
    433     unsigned SrcBitWidth;
    434     // Note that we handle pointer operands here because of inttoptr/ptrtoint
    435     // which fall through here.
    436     if(TD) {
    437       SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
    438     } else {
    439       SrcBitWidth = SrcTy->getScalarSizeInBits();
    440       if (!SrcBitWidth) return;
    441     }
    442 
    443     assert(SrcBitWidth && "SrcBitWidth can't be zero");
    444     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
    445     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
    446     ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    447     KnownZero = KnownZero.zextOrTrunc(BitWidth);
    448     KnownOne = KnownOne.zextOrTrunc(BitWidth);
    449     // Any top bits are known to be zero.
    450     if (BitWidth > SrcBitWidth)
    451       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    452     return;
    453   }
    454   case Instruction::BitCast: {
    455     Type *SrcTy = I->getOperand(0)->getType();
    456     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
    457         // TODO: For now, not handling conversions like:
    458         // (bitcast i64 %x to <2 x i32>)
    459         !I->getType()->isVectorTy()) {
    460       ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    461       return;
    462     }
    463     break;
    464   }
    465   case Instruction::SExt: {
    466     // Compute the bits in the result that are not present in the input.
    467     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
    468 
    469     KnownZero = KnownZero.trunc(SrcBitWidth);
    470     KnownOne = KnownOne.trunc(SrcBitWidth);
    471     ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    472     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    473     KnownZero = KnownZero.zext(BitWidth);
    474     KnownOne = KnownOne.zext(BitWidth);
    475 
    476     // If the sign bit of the input is known set or clear, then we know the
    477     // top bits of the result.
    478     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
    479       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    480     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
    481       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    482     return;
    483   }
    484   case Instruction::Shl:
    485     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    486     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    487       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
    488       ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    489       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    490       KnownZero <<= ShiftAmt;
    491       KnownOne  <<= ShiftAmt;
    492       KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
    493       return;
    494     }
    495     break;
    496   case Instruction::LShr:
    497     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    498     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    499       // Compute the new bits that are at the top now.
    500       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
    501 
    502       // Unsigned shift right.
    503       ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
    504       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    505       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    506       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    507       // high bits known zero.
    508       KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    509       return;
    510     }
    511     break;
    512   case Instruction::AShr:
    513     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    514     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    515       // Compute the new bits that are at the top now.
    516       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    517 
    518       // Signed shift right.
    519       ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    520       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    521       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    522       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    523 
    524       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
    525       if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
    526         KnownZero |= HighBits;
    527       else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
    528         KnownOne |= HighBits;
    529       return;
    530     }
    531     break;
    532   case Instruction::Sub: {
    533     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    534     ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
    535                             KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
    536                             Depth);
    537     break;
    538   }
    539   case Instruction::Add: {
    540     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    541     ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
    542                             KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
    543                             Depth);
    544     break;
    545   }
    546   case Instruction::SRem:
    547     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    548       APInt RA = Rem->getValue().abs();
    549       if (RA.isPowerOf2()) {
    550         APInt LowBits = RA - 1;
    551         ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    552 
    553         // The low bits of the first operand are unchanged by the srem.
    554         KnownZero = KnownZero2 & LowBits;
    555         KnownOne = KnownOne2 & LowBits;
    556 
    557         // If the first operand is non-negative or has all low bits zero, then
    558         // the upper bits are all zero.
    559         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
    560           KnownZero |= ~LowBits;
    561 
    562         // If the first operand is negative and not all low bits are zero, then
    563         // the upper bits are all one.
    564         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
    565           KnownOne |= ~LowBits;
    566 
    567         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    568       }
    569     }
    570 
    571     // The sign bit is the LHS's sign bit, except when the result of the
    572     // remainder is zero.
    573     if (KnownZero.isNonNegative()) {
    574       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    575       ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
    576                         Depth+1);
    577       // If it's known zero, our sign bit is also zero.
    578       if (LHSKnownZero.isNegative())
    579         KnownZero.setBit(BitWidth - 1);
    580     }
    581 
    582     break;
    583   case Instruction::URem: {
    584     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    585       APInt RA = Rem->getValue();
    586       if (RA.isPowerOf2()) {
    587         APInt LowBits = (RA - 1);
    588         ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
    589                           Depth+1);
    590         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    591         KnownZero |= ~LowBits;
    592         KnownOne &= LowBits;
    593         break;
    594       }
    595     }
    596 
    597     // Since the result is less than or equal to either operand, any leading
    598     // zero bits in either operand must also exist in the result.
    599     ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    600     ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
    601 
    602     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
    603                                 KnownZero2.countLeadingOnes());
    604     KnownOne.clearAllBits();
    605     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
    606     break;
    607   }
    608 
    609   case Instruction::Alloca: {
    610     AllocaInst *AI = cast<AllocaInst>(V);
    611     unsigned Align = AI->getAlignment();
    612     if (Align == 0 && TD)
    613       Align = TD->getABITypeAlignment(AI->getType()->getElementType());
    614 
    615     if (Align > 0)
    616       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
    617     break;
    618   }
    619   case Instruction::GetElementPtr: {
    620     // Analyze all of the subscripts of this getelementptr instruction
    621     // to determine if we can prove known low zero bits.
    622     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
    623     ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
    624                       Depth+1);
    625     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
    626 
    627     gep_type_iterator GTI = gep_type_begin(I);
    628     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
    629       Value *Index = I->getOperand(i);
    630       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    631         // Handle struct member offset arithmetic.
    632         if (!TD) return;
    633         const StructLayout *SL = TD->getStructLayout(STy);
    634         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
    635         uint64_t Offset = SL->getElementOffset(Idx);
    636         TrailZ = std::min<unsigned>(TrailZ,
    637                                     countTrailingZeros(Offset));
    638       } else {
    639         // Handle array index arithmetic.
    640         Type *IndexedTy = GTI.getIndexedType();
    641         if (!IndexedTy->isSized()) return;
    642         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
    643         uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
    644         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
    645         ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
    646         TrailZ = std::min(TrailZ,
    647                           unsigned(countTrailingZeros(TypeSize) +
    648                                    LocalKnownZero.countTrailingOnes()));
    649       }
    650     }
    651 
    652     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
    653     break;
    654   }
    655   case Instruction::PHI: {
    656     PHINode *P = cast<PHINode>(I);
    657     // Handle the case of a simple two-predecessor recurrence PHI.
    658     // There's a lot more that could theoretically be done here, but
    659     // this is sufficient to catch some interesting cases.
    660     if (P->getNumIncomingValues() == 2) {
    661       for (unsigned i = 0; i != 2; ++i) {
    662         Value *L = P->getIncomingValue(i);
    663         Value *R = P->getIncomingValue(!i);
    664         Operator *LU = dyn_cast<Operator>(L);
    665         if (!LU)
    666           continue;
    667         unsigned Opcode = LU->getOpcode();
    668         // Check for operations that have the property that if
    669         // both their operands have low zero bits, the result
    670         // will have low zero bits.
    671         if (Opcode == Instruction::Add ||
    672             Opcode == Instruction::Sub ||
    673             Opcode == Instruction::And ||
    674             Opcode == Instruction::Or ||
    675             Opcode == Instruction::Mul) {
    676           Value *LL = LU->getOperand(0);
    677           Value *LR = LU->getOperand(1);
    678           // Find a recurrence.
    679           if (LL == I)
    680             L = LR;
    681           else if (LR == I)
    682             L = LL;
    683           else
    684             break;
    685           // Ok, we have a PHI of the form L op= R. Check for low
    686           // zero bits.
    687           ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
    688 
    689           // We need to take the minimum number of known bits
    690           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
    691           ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
    692 
    693           KnownZero = APInt::getLowBitsSet(BitWidth,
    694                                            std::min(KnownZero2.countTrailingOnes(),
    695                                                     KnownZero3.countTrailingOnes()));
    696           break;
    697         }
    698       }
    699     }
    700 
    701     // Unreachable blocks may have zero-operand PHI nodes.
    702     if (P->getNumIncomingValues() == 0)
    703       return;
    704 
    705     // Otherwise take the unions of the known bit sets of the operands,
    706     // taking conservative care to avoid excessive recursion.
    707     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
    708       // Skip if every incoming value references to ourself.
    709       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
    710         break;
    711 
    712       KnownZero = APInt::getAllOnesValue(BitWidth);
    713       KnownOne = APInt::getAllOnesValue(BitWidth);
    714       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
    715         // Skip direct self references.
    716         if (P->getIncomingValue(i) == P) continue;
    717 
    718         KnownZero2 = APInt(BitWidth, 0);
    719         KnownOne2 = APInt(BitWidth, 0);
    720         // Recurse, but cap the recursion to one level, because we don't
    721         // want to waste time spinning around in loops.
    722         ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
    723                           MaxDepth-1);
    724         KnownZero &= KnownZero2;
    725         KnownOne &= KnownOne2;
    726         // If all bits have been ruled out, there's no need to check
    727         // more operands.
    728         if (!KnownZero && !KnownOne)
    729           break;
    730       }
    731     }
    732     break;
    733   }
    734   case Instruction::Call:
    735     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    736       switch (II->getIntrinsicID()) {
    737       default: break;
    738       case Intrinsic::ctlz:
    739       case Intrinsic::cttz: {
    740         unsigned LowBits = Log2_32(BitWidth)+1;
    741         // If this call is undefined for 0, the result will be less than 2^n.
    742         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
    743           LowBits -= 1;
    744         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    745         break;
    746       }
    747       case Intrinsic::ctpop: {
    748         unsigned LowBits = Log2_32(BitWidth)+1;
    749         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    750         break;
    751       }
    752       case Intrinsic::x86_sse42_crc32_64_8:
    753       case Intrinsic::x86_sse42_crc32_64_64:
    754         KnownZero = APInt::getHighBitsSet(64, 32);
    755         break;
    756       }
    757     }
    758     break;
    759   case Instruction::ExtractValue:
    760     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
    761       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
    762       if (EVI->getNumIndices() != 1) break;
    763       if (EVI->getIndices()[0] == 0) {
    764         switch (II->getIntrinsicID()) {
    765         default: break;
    766         case Intrinsic::uadd_with_overflow:
    767         case Intrinsic::sadd_with_overflow:
    768           ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
    769                                   II->getArgOperand(1), false, KnownZero,
    770                                   KnownOne, KnownZero2, KnownOne2, TD, Depth);
    771           break;
    772         case Intrinsic::usub_with_overflow:
    773         case Intrinsic::ssub_with_overflow:
    774           ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
    775                                   II->getArgOperand(1), false, KnownZero,
    776                                   KnownOne, KnownZero2, KnownOne2, TD, Depth);
    777           break;
    778         case Intrinsic::umul_with_overflow:
    779         case Intrinsic::smul_with_overflow:
    780           ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
    781                                false, KnownZero, KnownOne,
    782                                KnownZero2, KnownOne2, TD, Depth);
    783           break;
    784         }
    785       }
    786     }
    787   }
    788 }
    789 
    790 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
    791 /// one.  Convenience wrapper around ComputeMaskedBits.
    792 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
    793                           const DataLayout *TD, unsigned Depth) {
    794   unsigned BitWidth = getBitWidth(V->getType(), TD);
    795   if (!BitWidth) {
    796     KnownZero = false;
    797     KnownOne = false;
    798     return;
    799   }
    800   APInt ZeroBits(BitWidth, 0);
    801   APInt OneBits(BitWidth, 0);
    802   ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
    803   KnownOne = OneBits[BitWidth - 1];
    804   KnownZero = ZeroBits[BitWidth - 1];
    805 }
    806 
    807 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
    808 /// bit set when defined. For vectors return true if every element is known to
    809 /// be a power of two when defined.  Supports values with integer or pointer
    810 /// types and vectors of integers.
    811 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
    812   if (Constant *C = dyn_cast<Constant>(V)) {
    813     if (C->isNullValue())
    814       return OrZero;
    815     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
    816       return CI->getValue().isPowerOf2();
    817     // TODO: Handle vector constants.
    818   }
    819 
    820   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
    821   // it is shifted off the end then the result is undefined.
    822   if (match(V, m_Shl(m_One(), m_Value())))
    823     return true;
    824 
    825   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
    826   // bottom.  If it is shifted off the bottom then the result is undefined.
    827   if (match(V, m_LShr(m_SignBit(), m_Value())))
    828     return true;
    829 
    830   // The remaining tests are all recursive, so bail out if we hit the limit.
    831   if (Depth++ == MaxDepth)
    832     return false;
    833 
    834   Value *X = 0, *Y = 0;
    835   // A shift of a power of two is a power of two or zero.
    836   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
    837                  match(V, m_Shr(m_Value(X), m_Value()))))
    838     return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
    839 
    840   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
    841     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
    842 
    843   if (SelectInst *SI = dyn_cast<SelectInst>(V))
    844     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
    845       isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
    846 
    847   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
    848     // A power of two and'd with anything is a power of two or zero.
    849     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
    850         isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
    851       return true;
    852     // X & (-X) is always a power of two or zero.
    853     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
    854       return true;
    855     return false;
    856   }
    857 
    858   // Adding a power-of-two or zero to the same power-of-two or zero yields
    859   // either the original power-of-two, a larger power-of-two or zero.
    860   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
    861     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
    862     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
    863       if (match(X, m_And(m_Specific(Y), m_Value())) ||
    864           match(X, m_And(m_Value(), m_Specific(Y))))
    865         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
    866           return true;
    867       if (match(Y, m_And(m_Specific(X), m_Value())) ||
    868           match(Y, m_And(m_Value(), m_Specific(X))))
    869         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
    870           return true;
    871 
    872       unsigned BitWidth = V->getType()->getScalarSizeInBits();
    873       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
    874       ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth);
    875 
    876       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
    877       ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth);
    878       // If i8 V is a power of two or zero:
    879       //  ZeroBits: 1 1 1 0 1 1 1 1
    880       // ~ZeroBits: 0 0 0 1 0 0 0 0
    881       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
    882         // If OrZero isn't set, we cannot give back a zero result.
    883         // Make sure either the LHS or RHS has a bit set.
    884         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
    885           return true;
    886     }
    887   }
    888 
    889   // An exact divide or right shift can only shift off zero bits, so the result
    890   // is a power of two only if the first operand is a power of two and not
    891   // copying a sign bit (sdiv int_min, 2).
    892   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
    893       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
    894     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
    895   }
    896 
    897   return false;
    898 }
    899 
    900 /// \brief Test whether a GEP's result is known to be non-null.
    901 ///
    902 /// Uses properties inherent in a GEP to try to determine whether it is known
    903 /// to be non-null.
    904 ///
    905 /// Currently this routine does not support vector GEPs.
    906 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
    907                               unsigned Depth) {
    908   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
    909     return false;
    910 
    911   // FIXME: Support vector-GEPs.
    912   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
    913 
    914   // If the base pointer is non-null, we cannot walk to a null address with an
    915   // inbounds GEP in address space zero.
    916   if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
    917     return true;
    918 
    919   // Past this, if we don't have DataLayout, we can't do much.
    920   if (!DL)
    921     return false;
    922 
    923   // Walk the GEP operands and see if any operand introduces a non-zero offset.
    924   // If so, then the GEP cannot produce a null pointer, as doing so would
    925   // inherently violate the inbounds contract within address space zero.
    926   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
    927        GTI != GTE; ++GTI) {
    928     // Struct types are easy -- they must always be indexed by a constant.
    929     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    930       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
    931       unsigned ElementIdx = OpC->getZExtValue();
    932       const StructLayout *SL = DL->getStructLayout(STy);
    933       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
    934       if (ElementOffset > 0)
    935         return true;
    936       continue;
    937     }
    938 
    939     // If we have a zero-sized type, the index doesn't matter. Keep looping.
    940     if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
    941       continue;
    942 
    943     // Fast path the constant operand case both for efficiency and so we don't
    944     // increment Depth when just zipping down an all-constant GEP.
    945     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
    946       if (!OpC->isZero())
    947         return true;
    948       continue;
    949     }
    950 
    951     // We post-increment Depth here because while isKnownNonZero increments it
    952     // as well, when we pop back up that increment won't persist. We don't want
    953     // to recurse 10k times just because we have 10k GEP operands. We don't
    954     // bail completely out because we want to handle constant GEPs regardless
    955     // of depth.
    956     if (Depth++ >= MaxDepth)
    957       continue;
    958 
    959     if (isKnownNonZero(GTI.getOperand(), DL, Depth))
    960       return true;
    961   }
    962 
    963   return false;
    964 }
    965 
    966 /// isKnownNonZero - Return true if the given value is known to be non-zero
    967 /// when defined.  For vectors return true if every element is known to be
    968 /// non-zero when defined.  Supports values with integer or pointer type and
    969 /// vectors of integers.
    970 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
    971   if (Constant *C = dyn_cast<Constant>(V)) {
    972     if (C->isNullValue())
    973       return false;
    974     if (isa<ConstantInt>(C))
    975       // Must be non-zero due to null test above.
    976       return true;
    977     // TODO: Handle vectors
    978     return false;
    979   }
    980 
    981   // The remaining tests are all recursive, so bail out if we hit the limit.
    982   if (Depth++ >= MaxDepth)
    983     return false;
    984 
    985   // Check for pointer simplifications.
    986   if (V->getType()->isPointerTy()) {
    987     if (isKnownNonNull(V))
    988       return true;
    989     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
    990       if (isGEPKnownNonNull(GEP, TD, Depth))
    991         return true;
    992   }
    993 
    994   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
    995 
    996   // X | Y != 0 if X != 0 or Y != 0.
    997   Value *X = 0, *Y = 0;
    998   if (match(V, m_Or(m_Value(X), m_Value(Y))))
    999     return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
   1000 
   1001   // ext X != 0 if X != 0.
   1002   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
   1003     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
   1004 
   1005   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
   1006   // if the lowest bit is shifted off the end.
   1007   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
   1008     // shl nuw can't remove any non-zero bits.
   1009     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
   1010     if (BO->hasNoUnsignedWrap())
   1011       return isKnownNonZero(X, TD, Depth);
   1012 
   1013     APInt KnownZero(BitWidth, 0);
   1014     APInt KnownOne(BitWidth, 0);
   1015     ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
   1016     if (KnownOne[0])
   1017       return true;
   1018   }
   1019   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
   1020   // defined if the sign bit is shifted off the end.
   1021   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
   1022     // shr exact can only shift out zero bits.
   1023     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
   1024     if (BO->isExact())
   1025       return isKnownNonZero(X, TD, Depth);
   1026 
   1027     bool XKnownNonNegative, XKnownNegative;
   1028     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
   1029     if (XKnownNegative)
   1030       return true;
   1031   }
   1032   // div exact can only produce a zero if the dividend is zero.
   1033   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
   1034     return isKnownNonZero(X, TD, Depth);
   1035   }
   1036   // X + Y.
   1037   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
   1038     bool XKnownNonNegative, XKnownNegative;
   1039     bool YKnownNonNegative, YKnownNegative;
   1040     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
   1041     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
   1042 
   1043     // If X and Y are both non-negative (as signed values) then their sum is not
   1044     // zero unless both X and Y are zero.
   1045     if (XKnownNonNegative && YKnownNonNegative)
   1046       if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
   1047         return true;
   1048 
   1049     // If X and Y are both negative (as signed values) then their sum is not
   1050     // zero unless both X and Y equal INT_MIN.
   1051     if (BitWidth && XKnownNegative && YKnownNegative) {
   1052       APInt KnownZero(BitWidth, 0);
   1053       APInt KnownOne(BitWidth, 0);
   1054       APInt Mask = APInt::getSignedMaxValue(BitWidth);
   1055       // The sign bit of X is set.  If some other bit is set then X is not equal
   1056       // to INT_MIN.
   1057       ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
   1058       if ((KnownOne & Mask) != 0)
   1059         return true;
   1060       // The sign bit of Y is set.  If some other bit is set then Y is not equal
   1061       // to INT_MIN.
   1062       ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
   1063       if ((KnownOne & Mask) != 0)
   1064         return true;
   1065     }
   1066 
   1067     // The sum of a non-negative number and a power of two is not zero.
   1068     if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
   1069       return true;
   1070     if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
   1071       return true;
   1072   }
   1073   // X * Y.
   1074   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
   1075     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
   1076     // If X and Y are non-zero then so is X * Y as long as the multiplication
   1077     // does not overflow.
   1078     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
   1079         isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
   1080       return true;
   1081   }
   1082   // (C ? X : Y) != 0 if X != 0 and Y != 0.
   1083   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
   1084     if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
   1085         isKnownNonZero(SI->getFalseValue(), TD, Depth))
   1086       return true;
   1087   }
   1088 
   1089   if (!BitWidth) return false;
   1090   APInt KnownZero(BitWidth, 0);
   1091   APInt KnownOne(BitWidth, 0);
   1092   ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
   1093   return KnownOne != 0;
   1094 }
   1095 
   1096 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
   1097 /// this predicate to simplify operations downstream.  Mask is known to be zero
   1098 /// for bits that V cannot have.
   1099 ///
   1100 /// This function is defined on values with integer type, values with pointer
   1101 /// type (but only if TD is non-null), and vectors of integers.  In the case
   1102 /// where V is a vector, the mask, known zero, and known one values are the
   1103 /// same width as the vector element, and the bit is set only if it is true
   1104 /// for all of the elements in the vector.
   1105 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
   1106                              const DataLayout *TD, unsigned Depth) {
   1107   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
   1108   ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
   1109   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1110   return (KnownZero & Mask) == Mask;
   1111 }
   1112 
   1113 
   1114 
   1115 /// ComputeNumSignBits - Return the number of times the sign bit of the
   1116 /// register is replicated into the other bits.  We know that at least 1 bit
   1117 /// is always equal to the sign bit (itself), but other cases can give us
   1118 /// information.  For example, immediately after an "ashr X, 2", we know that
   1119 /// the top 3 bits are all equal to each other, so we return 3.
   1120 ///
   1121 /// 'Op' must have a scalar integer type.
   1122 ///
   1123 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
   1124                                   unsigned Depth) {
   1125   assert((TD || V->getType()->isIntOrIntVectorTy()) &&
   1126          "ComputeNumSignBits requires a DataLayout object to operate "
   1127          "on non-integer values!");
   1128   Type *Ty = V->getType();
   1129   unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
   1130                          Ty->getScalarSizeInBits();
   1131   unsigned Tmp, Tmp2;
   1132   unsigned FirstAnswer = 1;
   1133 
   1134   // Note that ConstantInt is handled by the general ComputeMaskedBits case
   1135   // below.
   1136 
   1137   if (Depth == 6)
   1138     return 1;  // Limit search depth.
   1139 
   1140   Operator *U = dyn_cast<Operator>(V);
   1141   switch (Operator::getOpcode(V)) {
   1142   default: break;
   1143   case Instruction::SExt:
   1144     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
   1145     return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
   1146 
   1147   case Instruction::AShr: {
   1148     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1149     // ashr X, C   -> adds C sign bits.  Vectors too.
   1150     const APInt *ShAmt;
   1151     if (match(U->getOperand(1), m_APInt(ShAmt))) {
   1152       Tmp += ShAmt->getZExtValue();
   1153       if (Tmp > TyBits) Tmp = TyBits;
   1154     }
   1155     return Tmp;
   1156   }
   1157   case Instruction::Shl: {
   1158     const APInt *ShAmt;
   1159     if (match(U->getOperand(1), m_APInt(ShAmt))) {
   1160       // shl destroys sign bits.
   1161       Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1162       Tmp2 = ShAmt->getZExtValue();
   1163       if (Tmp2 >= TyBits ||      // Bad shift.
   1164           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
   1165       return Tmp - Tmp2;
   1166     }
   1167     break;
   1168   }
   1169   case Instruction::And:
   1170   case Instruction::Or:
   1171   case Instruction::Xor:    // NOT is handled here.
   1172     // Logical binary ops preserve the number of sign bits at the worst.
   1173     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1174     if (Tmp != 1) {
   1175       Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1176       FirstAnswer = std::min(Tmp, Tmp2);
   1177       // We computed what we know about the sign bits as our first
   1178       // answer. Now proceed to the generic code that uses
   1179       // ComputeMaskedBits, and pick whichever answer is better.
   1180     }
   1181     break;
   1182 
   1183   case Instruction::Select:
   1184     Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1185     if (Tmp == 1) return 1;  // Early out.
   1186     Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
   1187     return std::min(Tmp, Tmp2);
   1188 
   1189   case Instruction::Add:
   1190     // Add can have at most one carry bit.  Thus we know that the output
   1191     // is, at worst, one more bit than the inputs.
   1192     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1193     if (Tmp == 1) return 1;  // Early out.
   1194 
   1195     // Special case decrementing a value (ADD X, -1):
   1196     if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
   1197       if (CRHS->isAllOnesValue()) {
   1198         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1199         ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
   1200 
   1201         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   1202         // sign bits set.
   1203         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
   1204           return TyBits;
   1205 
   1206         // If we are subtracting one from a positive number, there is no carry
   1207         // out of the result.
   1208         if (KnownZero.isNegative())
   1209           return Tmp;
   1210       }
   1211 
   1212     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1213     if (Tmp2 == 1) return 1;
   1214     return std::min(Tmp, Tmp2)-1;
   1215 
   1216   case Instruction::Sub:
   1217     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1218     if (Tmp2 == 1) return 1;
   1219 
   1220     // Handle NEG.
   1221     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
   1222       if (CLHS->isNullValue()) {
   1223         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1224         ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
   1225         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   1226         // sign bits set.
   1227         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
   1228           return TyBits;
   1229 
   1230         // If the input is known to be positive (the sign bit is known clear),
   1231         // the output of the NEG has the same number of sign bits as the input.
   1232         if (KnownZero.isNegative())
   1233           return Tmp2;
   1234 
   1235         // Otherwise, we treat this like a SUB.
   1236       }
   1237 
   1238     // Sub can have at most one carry bit.  Thus we know that the output
   1239     // is, at worst, one more bit than the inputs.
   1240     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1241     if (Tmp == 1) return 1;  // Early out.
   1242     return std::min(Tmp, Tmp2)-1;
   1243 
   1244   case Instruction::PHI: {
   1245     PHINode *PN = cast<PHINode>(U);
   1246     // Don't analyze large in-degree PHIs.
   1247     if (PN->getNumIncomingValues() > 4) break;
   1248 
   1249     // Take the minimum of all incoming values.  This can't infinitely loop
   1250     // because of our depth threshold.
   1251     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
   1252     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
   1253       if (Tmp == 1) return Tmp;
   1254       Tmp = std::min(Tmp,
   1255                      ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
   1256     }
   1257     return Tmp;
   1258   }
   1259 
   1260   case Instruction::Trunc:
   1261     // FIXME: it's tricky to do anything useful for this, but it is an important
   1262     // case for targets like X86.
   1263     break;
   1264   }
   1265 
   1266   // Finally, if we can prove that the top bits of the result are 0's or 1's,
   1267   // use this information.
   1268   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1269   APInt Mask;
   1270   ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
   1271 
   1272   if (KnownZero.isNegative()) {        // sign bit is 0
   1273     Mask = KnownZero;
   1274   } else if (KnownOne.isNegative()) {  // sign bit is 1;
   1275     Mask = KnownOne;
   1276   } else {
   1277     // Nothing known.
   1278     return FirstAnswer;
   1279   }
   1280 
   1281   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
   1282   // the number of identical bits in the top of the input value.
   1283   Mask = ~Mask;
   1284   Mask <<= Mask.getBitWidth()-TyBits;
   1285   // Return # leading zeros.  We use 'min' here in case Val was zero before
   1286   // shifting.  We don't want to return '64' as for an i32 "0".
   1287   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
   1288 }
   1289 
   1290 /// ComputeMultiple - This function computes the integer multiple of Base that
   1291 /// equals V.  If successful, it returns true and returns the multiple in
   1292 /// Multiple.  If unsuccessful, it returns false. It looks
   1293 /// through SExt instructions only if LookThroughSExt is true.
   1294 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
   1295                            bool LookThroughSExt, unsigned Depth) {
   1296   const unsigned MaxDepth = 6;
   1297 
   1298   assert(V && "No Value?");
   1299   assert(Depth <= MaxDepth && "Limit Search Depth");
   1300   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
   1301 
   1302   Type *T = V->getType();
   1303 
   1304   ConstantInt *CI = dyn_cast<ConstantInt>(V);
   1305 
   1306   if (Base == 0)
   1307     return false;
   1308 
   1309   if (Base == 1) {
   1310     Multiple = V;
   1311     return true;
   1312   }
   1313 
   1314   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
   1315   Constant *BaseVal = ConstantInt::get(T, Base);
   1316   if (CO && CO == BaseVal) {
   1317     // Multiple is 1.
   1318     Multiple = ConstantInt::get(T, 1);
   1319     return true;
   1320   }
   1321 
   1322   if (CI && CI->getZExtValue() % Base == 0) {
   1323     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
   1324     return true;
   1325   }
   1326 
   1327   if (Depth == MaxDepth) return false;  // Limit search depth.
   1328 
   1329   Operator *I = dyn_cast<Operator>(V);
   1330   if (!I) return false;
   1331 
   1332   switch (I->getOpcode()) {
   1333   default: break;
   1334   case Instruction::SExt:
   1335     if (!LookThroughSExt) return false;
   1336     // otherwise fall through to ZExt
   1337   case Instruction::ZExt:
   1338     return ComputeMultiple(I->getOperand(0), Base, Multiple,
   1339                            LookThroughSExt, Depth+1);
   1340   case Instruction::Shl:
   1341   case Instruction::Mul: {
   1342     Value *Op0 = I->getOperand(0);
   1343     Value *Op1 = I->getOperand(1);
   1344 
   1345     if (I->getOpcode() == Instruction::Shl) {
   1346       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
   1347       if (!Op1CI) return false;
   1348       // Turn Op0 << Op1 into Op0 * 2^Op1
   1349       APInt Op1Int = Op1CI->getValue();
   1350       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
   1351       APInt API(Op1Int.getBitWidth(), 0);
   1352       API.setBit(BitToSet);
   1353       Op1 = ConstantInt::get(V->getContext(), API);
   1354     }
   1355 
   1356     Value *Mul0 = NULL;
   1357     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
   1358       if (Constant *Op1C = dyn_cast<Constant>(Op1))
   1359         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
   1360           if (Op1C->getType()->getPrimitiveSizeInBits() <
   1361               MulC->getType()->getPrimitiveSizeInBits())
   1362             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
   1363           if (Op1C->getType()->getPrimitiveSizeInBits() >
   1364               MulC->getType()->getPrimitiveSizeInBits())
   1365             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
   1366 
   1367           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
   1368           Multiple = ConstantExpr::getMul(MulC, Op1C);
   1369           return true;
   1370         }
   1371 
   1372       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
   1373         if (Mul0CI->getValue() == 1) {
   1374           // V == Base * Op1, so return Op1
   1375           Multiple = Op1;
   1376           return true;
   1377         }
   1378     }
   1379 
   1380     Value *Mul1 = NULL;
   1381     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
   1382       if (Constant *Op0C = dyn_cast<Constant>(Op0))
   1383         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
   1384           if (Op0C->getType()->getPrimitiveSizeInBits() <
   1385               MulC->getType()->getPrimitiveSizeInBits())
   1386             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
   1387           if (Op0C->getType()->getPrimitiveSizeInBits() >
   1388               MulC->getType()->getPrimitiveSizeInBits())
   1389             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
   1390 
   1391           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
   1392           Multiple = ConstantExpr::getMul(MulC, Op0C);
   1393           return true;
   1394         }
   1395 
   1396       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
   1397         if (Mul1CI->getValue() == 1) {
   1398           // V == Base * Op0, so return Op0
   1399           Multiple = Op0;
   1400           return true;
   1401         }
   1402     }
   1403   }
   1404   }
   1405 
   1406   // We could not determine if V is a multiple of Base.
   1407   return false;
   1408 }
   1409 
   1410 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
   1411 /// value is never equal to -0.0.
   1412 ///
   1413 /// NOTE: this function will need to be revisited when we support non-default
   1414 /// rounding modes!
   1415 ///
   1416 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
   1417   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
   1418     return !CFP->getValueAPF().isNegZero();
   1419 
   1420   if (Depth == 6)
   1421     return 1;  // Limit search depth.
   1422 
   1423   const Operator *I = dyn_cast<Operator>(V);
   1424   if (I == 0) return false;
   1425 
   1426   // Check if the nsz fast-math flag is set
   1427   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
   1428     if (FPO->hasNoSignedZeros())
   1429       return true;
   1430 
   1431   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
   1432   if (I->getOpcode() == Instruction::FAdd)
   1433     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
   1434       if (CFP->isNullValue())
   1435         return true;
   1436 
   1437   // sitofp and uitofp turn into +0.0 for zero.
   1438   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
   1439     return true;
   1440 
   1441   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   1442     // sqrt(-0.0) = -0.0, no other negative results are possible.
   1443     if (II->getIntrinsicID() == Intrinsic::sqrt)
   1444       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
   1445 
   1446   if (const CallInst *CI = dyn_cast<CallInst>(I))
   1447     if (const Function *F = CI->getCalledFunction()) {
   1448       if (F->isDeclaration()) {
   1449         // abs(x) != -0.0
   1450         if (F->getName() == "abs") return true;
   1451         // fabs[lf](x) != -0.0
   1452         if (F->getName() == "fabs") return true;
   1453         if (F->getName() == "fabsf") return true;
   1454         if (F->getName() == "fabsl") return true;
   1455         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
   1456             F->getName() == "sqrtl")
   1457           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
   1458       }
   1459     }
   1460 
   1461   return false;
   1462 }
   1463 
   1464 /// isBytewiseValue - If the specified value can be set by repeating the same
   1465 /// byte in memory, return the i8 value that it is represented with.  This is
   1466 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
   1467 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
   1468 /// byte store (e.g. i16 0x1234), return null.
   1469 Value *llvm::isBytewiseValue(Value *V) {
   1470   // All byte-wide stores are splatable, even of arbitrary variables.
   1471   if (V->getType()->isIntegerTy(8)) return V;
   1472 
   1473   // Handle 'null' ConstantArrayZero etc.
   1474   if (Constant *C = dyn_cast<Constant>(V))
   1475     if (C->isNullValue())
   1476       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
   1477 
   1478   // Constant float and double values can be handled as integer values if the
   1479   // corresponding integer value is "byteable".  An important case is 0.0.
   1480   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1481     if (CFP->getType()->isFloatTy())
   1482       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
   1483     if (CFP->getType()->isDoubleTy())
   1484       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
   1485     // Don't handle long double formats, which have strange constraints.
   1486   }
   1487 
   1488   // We can handle constant integers that are power of two in size and a
   1489   // multiple of 8 bits.
   1490   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1491     unsigned Width = CI->getBitWidth();
   1492     if (isPowerOf2_32(Width) && Width > 8) {
   1493       // We can handle this value if the recursive binary decomposition is the
   1494       // same at all levels.
   1495       APInt Val = CI->getValue();
   1496       APInt Val2;
   1497       while (Val.getBitWidth() != 8) {
   1498         unsigned NextWidth = Val.getBitWidth()/2;
   1499         Val2  = Val.lshr(NextWidth);
   1500         Val2 = Val2.trunc(Val.getBitWidth()/2);
   1501         Val = Val.trunc(Val.getBitWidth()/2);
   1502 
   1503         // If the top/bottom halves aren't the same, reject it.
   1504         if (Val != Val2)
   1505           return 0;
   1506       }
   1507       return ConstantInt::get(V->getContext(), Val);
   1508     }
   1509   }
   1510 
   1511   // A ConstantDataArray/Vector is splatable if all its members are equal and
   1512   // also splatable.
   1513   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
   1514     Value *Elt = CA->getElementAsConstant(0);
   1515     Value *Val = isBytewiseValue(Elt);
   1516     if (!Val)
   1517       return 0;
   1518 
   1519     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
   1520       if (CA->getElementAsConstant(I) != Elt)
   1521         return 0;
   1522 
   1523     return Val;
   1524   }
   1525 
   1526   // Conceptually, we could handle things like:
   1527   //   %a = zext i8 %X to i16
   1528   //   %b = shl i16 %a, 8
   1529   //   %c = or i16 %a, %b
   1530   // but until there is an example that actually needs this, it doesn't seem
   1531   // worth worrying about.
   1532   return 0;
   1533 }
   1534 
   1535 
   1536 // This is the recursive version of BuildSubAggregate. It takes a few different
   1537 // arguments. Idxs is the index within the nested struct From that we are
   1538 // looking at now (which is of type IndexedType). IdxSkip is the number of
   1539 // indices from Idxs that should be left out when inserting into the resulting
   1540 // struct. To is the result struct built so far, new insertvalue instructions
   1541 // build on that.
   1542 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
   1543                                 SmallVectorImpl<unsigned> &Idxs,
   1544                                 unsigned IdxSkip,
   1545                                 Instruction *InsertBefore) {
   1546   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
   1547   if (STy) {
   1548     // Save the original To argument so we can modify it
   1549     Value *OrigTo = To;
   1550     // General case, the type indexed by Idxs is a struct
   1551     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1552       // Process each struct element recursively
   1553       Idxs.push_back(i);
   1554       Value *PrevTo = To;
   1555       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
   1556                              InsertBefore);
   1557       Idxs.pop_back();
   1558       if (!To) {
   1559         // Couldn't find any inserted value for this index? Cleanup
   1560         while (PrevTo != OrigTo) {
   1561           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
   1562           PrevTo = Del->getAggregateOperand();
   1563           Del->eraseFromParent();
   1564         }
   1565         // Stop processing elements
   1566         break;
   1567       }
   1568     }
   1569     // If we successfully found a value for each of our subaggregates
   1570     if (To)
   1571       return To;
   1572   }
   1573   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
   1574   // the struct's elements had a value that was inserted directly. In the latter
   1575   // case, perhaps we can't determine each of the subelements individually, but
   1576   // we might be able to find the complete struct somewhere.
   1577 
   1578   // Find the value that is at that particular spot
   1579   Value *V = FindInsertedValue(From, Idxs);
   1580 
   1581   if (!V)
   1582     return NULL;
   1583 
   1584   // Insert the value in the new (sub) aggregrate
   1585   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
   1586                                        "tmp", InsertBefore);
   1587 }
   1588 
   1589 // This helper takes a nested struct and extracts a part of it (which is again a
   1590 // struct) into a new value. For example, given the struct:
   1591 // { a, { b, { c, d }, e } }
   1592 // and the indices "1, 1" this returns
   1593 // { c, d }.
   1594 //
   1595 // It does this by inserting an insertvalue for each element in the resulting
   1596 // struct, as opposed to just inserting a single struct. This will only work if
   1597 // each of the elements of the substruct are known (ie, inserted into From by an
   1598 // insertvalue instruction somewhere).
   1599 //
   1600 // All inserted insertvalue instructions are inserted before InsertBefore
   1601 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
   1602                                 Instruction *InsertBefore) {
   1603   assert(InsertBefore && "Must have someplace to insert!");
   1604   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
   1605                                                              idx_range);
   1606   Value *To = UndefValue::get(IndexedType);
   1607   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
   1608   unsigned IdxSkip = Idxs.size();
   1609 
   1610   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
   1611 }
   1612 
   1613 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
   1614 /// the scalar value indexed is already around as a register, for example if it
   1615 /// were inserted directly into the aggregrate.
   1616 ///
   1617 /// If InsertBefore is not null, this function will duplicate (modified)
   1618 /// insertvalues when a part of a nested struct is extracted.
   1619 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
   1620                                Instruction *InsertBefore) {
   1621   // Nothing to index? Just return V then (this is useful at the end of our
   1622   // recursion).
   1623   if (idx_range.empty())
   1624     return V;
   1625   // We have indices, so V should have an indexable type.
   1626   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
   1627          "Not looking at a struct or array?");
   1628   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
   1629          "Invalid indices for type?");
   1630 
   1631   if (Constant *C = dyn_cast<Constant>(V)) {
   1632     C = C->getAggregateElement(idx_range[0]);
   1633     if (C == 0) return 0;
   1634     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
   1635   }
   1636 
   1637   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
   1638     // Loop the indices for the insertvalue instruction in parallel with the
   1639     // requested indices
   1640     const unsigned *req_idx = idx_range.begin();
   1641     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
   1642          i != e; ++i, ++req_idx) {
   1643       if (req_idx == idx_range.end()) {
   1644         // We can't handle this without inserting insertvalues
   1645         if (!InsertBefore)
   1646           return 0;
   1647 
   1648         // The requested index identifies a part of a nested aggregate. Handle
   1649         // this specially. For example,
   1650         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
   1651         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
   1652         // %C = extractvalue {i32, { i32, i32 } } %B, 1
   1653         // This can be changed into
   1654         // %A = insertvalue {i32, i32 } undef, i32 10, 0
   1655         // %C = insertvalue {i32, i32 } %A, i32 11, 1
   1656         // which allows the unused 0,0 element from the nested struct to be
   1657         // removed.
   1658         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
   1659                                  InsertBefore);
   1660       }
   1661 
   1662       // This insert value inserts something else than what we are looking for.
   1663       // See if the (aggregrate) value inserted into has the value we are
   1664       // looking for, then.
   1665       if (*req_idx != *i)
   1666         return FindInsertedValue(I->getAggregateOperand(), idx_range,
   1667                                  InsertBefore);
   1668     }
   1669     // If we end up here, the indices of the insertvalue match with those
   1670     // requested (though possibly only partially). Now we recursively look at
   1671     // the inserted value, passing any remaining indices.
   1672     return FindInsertedValue(I->getInsertedValueOperand(),
   1673                              makeArrayRef(req_idx, idx_range.end()),
   1674                              InsertBefore);
   1675   }
   1676 
   1677   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
   1678     // If we're extracting a value from an aggregrate that was extracted from
   1679     // something else, we can extract from that something else directly instead.
   1680     // However, we will need to chain I's indices with the requested indices.
   1681 
   1682     // Calculate the number of indices required
   1683     unsigned size = I->getNumIndices() + idx_range.size();
   1684     // Allocate some space to put the new indices in
   1685     SmallVector<unsigned, 5> Idxs;
   1686     Idxs.reserve(size);
   1687     // Add indices from the extract value instruction
   1688     Idxs.append(I->idx_begin(), I->idx_end());
   1689 
   1690     // Add requested indices
   1691     Idxs.append(idx_range.begin(), idx_range.end());
   1692 
   1693     assert(Idxs.size() == size
   1694            && "Number of indices added not correct?");
   1695 
   1696     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
   1697   }
   1698   // Otherwise, we don't know (such as, extracting from a function return value
   1699   // or load instruction)
   1700   return 0;
   1701 }
   1702 
   1703 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
   1704 /// it can be expressed as a base pointer plus a constant offset.  Return the
   1705 /// base and offset to the caller.
   1706 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
   1707                                               const DataLayout *TD) {
   1708   // Without DataLayout, conservatively assume 64-bit offsets, which is
   1709   // the widest we support.
   1710   unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
   1711   APInt ByteOffset(BitWidth, 0);
   1712   while (1) {
   1713     if (Ptr->getType()->isVectorTy())
   1714       break;
   1715 
   1716     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
   1717       APInt GEPOffset(BitWidth, 0);
   1718       if (TD && !GEP->accumulateConstantOffset(*TD, GEPOffset))
   1719         break;
   1720       ByteOffset += GEPOffset;
   1721       Ptr = GEP->getPointerOperand();
   1722     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
   1723       Ptr = cast<Operator>(Ptr)->getOperand(0);
   1724     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
   1725       if (GA->mayBeOverridden())
   1726         break;
   1727       Ptr = GA->getAliasee();
   1728     } else {
   1729       break;
   1730     }
   1731   }
   1732   Offset = ByteOffset.getSExtValue();
   1733   return Ptr;
   1734 }
   1735 
   1736 
   1737 /// getConstantStringInfo - This function computes the length of a
   1738 /// null-terminated C string pointed to by V.  If successful, it returns true
   1739 /// and returns the string in Str.  If unsuccessful, it returns false.
   1740 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
   1741                                  uint64_t Offset, bool TrimAtNul) {
   1742   assert(V);
   1743 
   1744   // Look through bitcast instructions and geps.
   1745   V = V->stripPointerCasts();
   1746 
   1747   // If the value is a GEP instructionor  constant expression, treat it as an
   1748   // offset.
   1749   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   1750     // Make sure the GEP has exactly three arguments.
   1751     if (GEP->getNumOperands() != 3)
   1752       return false;
   1753 
   1754     // Make sure the index-ee is a pointer to array of i8.
   1755     PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
   1756     ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
   1757     if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
   1758       return false;
   1759 
   1760     // Check to make sure that the first operand of the GEP is an integer and
   1761     // has value 0 so that we are sure we're indexing into the initializer.
   1762     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
   1763     if (FirstIdx == 0 || !FirstIdx->isZero())
   1764       return false;
   1765 
   1766     // If the second index isn't a ConstantInt, then this is a variable index
   1767     // into the array.  If this occurs, we can't say anything meaningful about
   1768     // the string.
   1769     uint64_t StartIdx = 0;
   1770     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
   1771       StartIdx = CI->getZExtValue();
   1772     else
   1773       return false;
   1774     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
   1775   }
   1776 
   1777   // The GEP instruction, constant or instruction, must reference a global
   1778   // variable that is a constant and is initialized. The referenced constant
   1779   // initializer is the array that we'll use for optimization.
   1780   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
   1781   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
   1782     return false;
   1783 
   1784   // Handle the all-zeros case
   1785   if (GV->getInitializer()->isNullValue()) {
   1786     // This is a degenerate case. The initializer is constant zero so the
   1787     // length of the string must be zero.
   1788     Str = "";
   1789     return true;
   1790   }
   1791 
   1792   // Must be a Constant Array
   1793   const ConstantDataArray *Array =
   1794     dyn_cast<ConstantDataArray>(GV->getInitializer());
   1795   if (Array == 0 || !Array->isString())
   1796     return false;
   1797 
   1798   // Get the number of elements in the array
   1799   uint64_t NumElts = Array->getType()->getArrayNumElements();
   1800 
   1801   // Start out with the entire array in the StringRef.
   1802   Str = Array->getAsString();
   1803 
   1804   if (Offset > NumElts)
   1805     return false;
   1806 
   1807   // Skip over 'offset' bytes.
   1808   Str = Str.substr(Offset);
   1809 
   1810   if (TrimAtNul) {
   1811     // Trim off the \0 and anything after it.  If the array is not nul
   1812     // terminated, we just return the whole end of string.  The client may know
   1813     // some other way that the string is length-bound.
   1814     Str = Str.substr(0, Str.find('\0'));
   1815   }
   1816   return true;
   1817 }
   1818 
   1819 // These next two are very similar to the above, but also look through PHI
   1820 // nodes.
   1821 // TODO: See if we can integrate these two together.
   1822 
   1823 /// GetStringLengthH - If we can compute the length of the string pointed to by
   1824 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   1825 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
   1826   // Look through noop bitcast instructions.
   1827   V = V->stripPointerCasts();
   1828 
   1829   // If this is a PHI node, there are two cases: either we have already seen it
   1830   // or we haven't.
   1831   if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1832     if (!PHIs.insert(PN))
   1833       return ~0ULL;  // already in the set.
   1834 
   1835     // If it was new, see if all the input strings are the same length.
   1836     uint64_t LenSoFar = ~0ULL;
   1837     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1838       uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
   1839       if (Len == 0) return 0; // Unknown length -> unknown.
   1840 
   1841       if (Len == ~0ULL) continue;
   1842 
   1843       if (Len != LenSoFar && LenSoFar != ~0ULL)
   1844         return 0;    // Disagree -> unknown.
   1845       LenSoFar = Len;
   1846     }
   1847 
   1848     // Success, all agree.
   1849     return LenSoFar;
   1850   }
   1851 
   1852   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
   1853   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
   1854     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
   1855     if (Len1 == 0) return 0;
   1856     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
   1857     if (Len2 == 0) return 0;
   1858     if (Len1 == ~0ULL) return Len2;
   1859     if (Len2 == ~0ULL) return Len1;
   1860     if (Len1 != Len2) return 0;
   1861     return Len1;
   1862   }
   1863 
   1864   // Otherwise, see if we can read the string.
   1865   StringRef StrData;
   1866   if (!getConstantStringInfo(V, StrData))
   1867     return 0;
   1868 
   1869   return StrData.size()+1;
   1870 }
   1871 
   1872 /// GetStringLength - If we can compute the length of the string pointed to by
   1873 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   1874 uint64_t llvm::GetStringLength(Value *V) {
   1875   if (!V->getType()->isPointerTy()) return 0;
   1876 
   1877   SmallPtrSet<PHINode*, 32> PHIs;
   1878   uint64_t Len = GetStringLengthH(V, PHIs);
   1879   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
   1880   // an empty string as a length.
   1881   return Len == ~0ULL ? 1 : Len;
   1882 }
   1883 
   1884 Value *
   1885 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
   1886   if (!V->getType()->isPointerTy())
   1887     return V;
   1888   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
   1889     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   1890       V = GEP->getPointerOperand();
   1891     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
   1892       V = cast<Operator>(V)->getOperand(0);
   1893     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
   1894       if (GA->mayBeOverridden())
   1895         return V;
   1896       V = GA->getAliasee();
   1897     } else {
   1898       // See if InstructionSimplify knows any relevant tricks.
   1899       if (Instruction *I = dyn_cast<Instruction>(V))
   1900         // TODO: Acquire a DominatorTree and use it.
   1901         if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
   1902           V = Simplified;
   1903           continue;
   1904         }
   1905 
   1906       return V;
   1907     }
   1908     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
   1909   }
   1910   return V;
   1911 }
   1912 
   1913 void
   1914 llvm::GetUnderlyingObjects(Value *V,
   1915                            SmallVectorImpl<Value *> &Objects,
   1916                            const DataLayout *TD,
   1917                            unsigned MaxLookup) {
   1918   SmallPtrSet<Value *, 4> Visited;
   1919   SmallVector<Value *, 4> Worklist;
   1920   Worklist.push_back(V);
   1921   do {
   1922     Value *P = Worklist.pop_back_val();
   1923     P = GetUnderlyingObject(P, TD, MaxLookup);
   1924 
   1925     if (!Visited.insert(P))
   1926       continue;
   1927 
   1928     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
   1929       Worklist.push_back(SI->getTrueValue());
   1930       Worklist.push_back(SI->getFalseValue());
   1931       continue;
   1932     }
   1933 
   1934     if (PHINode *PN = dyn_cast<PHINode>(P)) {
   1935       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1936         Worklist.push_back(PN->getIncomingValue(i));
   1937       continue;
   1938     }
   1939 
   1940     Objects.push_back(P);
   1941   } while (!Worklist.empty());
   1942 }
   1943 
   1944 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
   1945 /// are lifetime markers.
   1946 ///
   1947 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
   1948   for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
   1949        UI != UE; ++UI) {
   1950     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
   1951     if (!II) return false;
   1952 
   1953     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
   1954         II->getIntrinsicID() != Intrinsic::lifetime_end)
   1955       return false;
   1956   }
   1957   return true;
   1958 }
   1959 
   1960 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
   1961                                         const DataLayout *TD) {
   1962   const Operator *Inst = dyn_cast<Operator>(V);
   1963   if (!Inst)
   1964     return false;
   1965 
   1966   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
   1967     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
   1968       if (C->canTrap())
   1969         return false;
   1970 
   1971   switch (Inst->getOpcode()) {
   1972   default:
   1973     return true;
   1974   case Instruction::UDiv:
   1975   case Instruction::URem:
   1976     // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
   1977     return isKnownNonZero(Inst->getOperand(1), TD);
   1978   case Instruction::SDiv:
   1979   case Instruction::SRem: {
   1980     Value *Op = Inst->getOperand(1);
   1981     // x / y is undefined if y == 0
   1982     if (!isKnownNonZero(Op, TD))
   1983       return false;
   1984     // x / y might be undefined if y == -1
   1985     unsigned BitWidth = getBitWidth(Op->getType(), TD);
   1986     if (BitWidth == 0)
   1987       return false;
   1988     APInt KnownZero(BitWidth, 0);
   1989     APInt KnownOne(BitWidth, 0);
   1990     ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
   1991     return !!KnownZero;
   1992   }
   1993   case Instruction::Load: {
   1994     const LoadInst *LI = cast<LoadInst>(Inst);
   1995     if (!LI->isUnordered())
   1996       return false;
   1997     return LI->getPointerOperand()->isDereferenceablePointer();
   1998   }
   1999   case Instruction::Call: {
   2000    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
   2001      switch (II->getIntrinsicID()) {
   2002        // These synthetic intrinsics have no side-effects, and just mark
   2003        // information about their operands.
   2004        // FIXME: There are other no-op synthetic instructions that potentially
   2005        // should be considered at least *safe* to speculate...
   2006        case Intrinsic::dbg_declare:
   2007        case Intrinsic::dbg_value:
   2008          return true;
   2009 
   2010        case Intrinsic::bswap:
   2011        case Intrinsic::ctlz:
   2012        case Intrinsic::ctpop:
   2013        case Intrinsic::cttz:
   2014        case Intrinsic::objectsize:
   2015        case Intrinsic::sadd_with_overflow:
   2016        case Intrinsic::smul_with_overflow:
   2017        case Intrinsic::ssub_with_overflow:
   2018        case Intrinsic::uadd_with_overflow:
   2019        case Intrinsic::umul_with_overflow:
   2020        case Intrinsic::usub_with_overflow:
   2021          return true;
   2022        // TODO: some fp intrinsics are marked as having the same error handling
   2023        // as libm. They're safe to speculate when they won't error.
   2024        // TODO: are convert_{from,to}_fp16 safe?
   2025        // TODO: can we list target-specific intrinsics here?
   2026        default: break;
   2027      }
   2028    }
   2029     return false; // The called function could have undefined behavior or
   2030                   // side-effects, even if marked readnone nounwind.
   2031   }
   2032   case Instruction::VAArg:
   2033   case Instruction::Alloca:
   2034   case Instruction::Invoke:
   2035   case Instruction::PHI:
   2036   case Instruction::Store:
   2037   case Instruction::Ret:
   2038   case Instruction::Br:
   2039   case Instruction::IndirectBr:
   2040   case Instruction::Switch:
   2041   case Instruction::Unreachable:
   2042   case Instruction::Fence:
   2043   case Instruction::LandingPad:
   2044   case Instruction::AtomicRMW:
   2045   case Instruction::AtomicCmpXchg:
   2046   case Instruction::Resume:
   2047     return false; // Misc instructions which have effects
   2048   }
   2049 }
   2050 
   2051 /// isKnownNonNull - Return true if we know that the specified value is never
   2052 /// null.
   2053 bool llvm::isKnownNonNull(const Value *V) {
   2054   // Alloca never returns null, malloc might.
   2055   if (isa<AllocaInst>(V)) return true;
   2056 
   2057   // A byval argument is never null.
   2058   if (const Argument *A = dyn_cast<Argument>(V))
   2059     return A->hasByValAttr();
   2060 
   2061   // Global values are not null unless extern weak.
   2062   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
   2063     return !GV->hasExternalWeakLinkage();
   2064   return false;
   2065 }
   2066