Home | History | Annotate | Download | only in base
      1 /*
      2  * libjingle
      3  * Copyright 2004--2005, Google Inc.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions are met:
      7  *
      8  *  1. Redistributions of source code must retain the above copyright notice,
      9  *     this list of conditions and the following disclaimer.
     10  *  2. Redistributions in binary form must reproduce the above copyright notice,
     11  *     this list of conditions and the following disclaimer in the documentation
     12  *     and/or other materials provided with the distribution.
     13  *  3. The name of the author may not be used to endorse or promote products
     14  *     derived from this software without specific prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
     19  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     20  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     21  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     22  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     24  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     25  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include "talk/base/virtualsocketserver.h"
     29 
     30 #include <errno.h>
     31 
     32 #include <algorithm>
     33 #include <cmath>
     34 #include <map>
     35 #include <vector>
     36 
     37 #include "talk/base/common.h"
     38 #include "talk/base/logging.h"
     39 #include "talk/base/physicalsocketserver.h"
     40 #include "talk/base/socketaddresspair.h"
     41 #include "talk/base/thread.h"
     42 #include "talk/base/timeutils.h"
     43 
     44 namespace talk_base {
     45 #ifdef WIN32
     46 const in_addr kInitialNextIPv4 = { {0x01, 0, 0, 0} };
     47 #else
     48 // This value is entirely arbitrary, hence the lack of concern about endianness.
     49 const in_addr kInitialNextIPv4 = { 0x01000000 };
     50 #endif
     51 // Starts at ::2 so as to not cause confusion with ::1.
     52 const in6_addr kInitialNextIPv6 = { { {
     53       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
     54     } } };
     55 
     56 const uint16 kFirstEphemeralPort = 49152;
     57 const uint16 kLastEphemeralPort = 65535;
     58 const uint16 kEphemeralPortCount = kLastEphemeralPort - kFirstEphemeralPort + 1;
     59 const uint32 kDefaultNetworkCapacity = 64 * 1024;
     60 const uint32 kDefaultTcpBufferSize = 32 * 1024;
     61 
     62 const uint32 UDP_HEADER_SIZE = 28;  // IP + UDP headers
     63 const uint32 TCP_HEADER_SIZE = 40;  // IP + TCP headers
     64 const uint32 TCP_MSS = 1400;  // Maximum segment size
     65 
     66 // Note: The current algorithm doesn't work for sample sizes smaller than this.
     67 const int NUM_SAMPLES = 1000;
     68 
     69 enum {
     70   MSG_ID_PACKET,
     71   MSG_ID_CONNECT,
     72   MSG_ID_DISCONNECT,
     73 };
     74 
     75 // Packets are passed between sockets as messages.  We copy the data just like
     76 // the kernel does.
     77 class Packet : public MessageData {
     78  public:
     79   Packet(const char* data, size_t size, const SocketAddress& from)
     80         : size_(size), consumed_(0), from_(from) {
     81     ASSERT(NULL != data);
     82     data_ = new char[size_];
     83     std::memcpy(data_, data, size_);
     84   }
     85 
     86   virtual ~Packet() {
     87     delete[] data_;
     88   }
     89 
     90   const char* data() const { return data_ + consumed_; }
     91   size_t size() const { return size_ - consumed_; }
     92   const SocketAddress& from() const { return from_; }
     93 
     94   // Remove the first size bytes from the data.
     95   void Consume(size_t size) {
     96     ASSERT(size + consumed_ < size_);
     97     consumed_ += size;
     98   }
     99 
    100  private:
    101   char* data_;
    102   size_t size_, consumed_;
    103   SocketAddress from_;
    104 };
    105 
    106 struct MessageAddress : public MessageData {
    107   explicit MessageAddress(const SocketAddress& a) : addr(a) { }
    108   SocketAddress addr;
    109 };
    110 
    111 // Implements the socket interface using the virtual network.  Packets are
    112 // passed as messages using the message queue of the socket server.
    113 class VirtualSocket : public AsyncSocket, public MessageHandler {
    114  public:
    115   VirtualSocket(VirtualSocketServer* server, int family, int type, bool async)
    116       : server_(server), family_(family), type_(type), async_(async),
    117         state_(CS_CLOSED), error_(0), listen_queue_(NULL),
    118         write_enabled_(false),
    119         network_size_(0), recv_buffer_size_(0), bound_(false), was_any_(false) {
    120     ASSERT((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM));
    121     ASSERT(async_ || (type_ != SOCK_STREAM));  // We only support async streams
    122   }
    123 
    124   virtual ~VirtualSocket() {
    125     Close();
    126 
    127     for (RecvBuffer::iterator it = recv_buffer_.begin();
    128          it != recv_buffer_.end(); ++it) {
    129       delete *it;
    130     }
    131   }
    132 
    133   virtual SocketAddress GetLocalAddress() const {
    134     return local_addr_;
    135   }
    136 
    137   virtual SocketAddress GetRemoteAddress() const {
    138     return remote_addr_;
    139   }
    140 
    141   // Used by server sockets to set the local address without binding.
    142   void SetLocalAddress(const SocketAddress& addr) {
    143     local_addr_ = addr;
    144   }
    145 
    146   virtual int Bind(const SocketAddress& addr) {
    147     if (!local_addr_.IsNil()) {
    148       error_ = EINVAL;
    149       return -1;
    150     }
    151     local_addr_ = addr;
    152     int result = server_->Bind(this, &local_addr_);
    153     if (result != 0) {
    154       local_addr_.Clear();
    155       error_ = EADDRINUSE;
    156     } else {
    157       bound_ = true;
    158       was_any_ = addr.IsAnyIP();
    159     }
    160     return result;
    161   }
    162 
    163   virtual int Connect(const SocketAddress& addr) {
    164     return InitiateConnect(addr, true);
    165   }
    166 
    167   virtual int Close() {
    168     if (!local_addr_.IsNil() && bound_) {
    169       // Remove from the binding table.
    170       server_->Unbind(local_addr_, this);
    171       bound_ = false;
    172     }
    173 
    174     if (SOCK_STREAM == type_) {
    175       // Cancel pending sockets
    176       if (listen_queue_) {
    177         while (!listen_queue_->empty()) {
    178           SocketAddress addr = listen_queue_->front();
    179 
    180           // Disconnect listening socket.
    181           server_->Disconnect(server_->LookupBinding(addr));
    182           listen_queue_->pop_front();
    183         }
    184         delete listen_queue_;
    185         listen_queue_ = NULL;
    186       }
    187       // Disconnect stream sockets
    188       if (CS_CONNECTED == state_) {
    189         // Disconnect remote socket, check if it is a child of a server socket.
    190         VirtualSocket* socket =
    191             server_->LookupConnection(local_addr_, remote_addr_);
    192         if (!socket) {
    193           // Not a server socket child, then see if it is bound.
    194           // TODO: If this is indeed a server socket that has no
    195           // children this will cause the server socket to be
    196           // closed. This might lead to unexpected results, how to fix this?
    197           socket = server_->LookupBinding(remote_addr_);
    198         }
    199         server_->Disconnect(socket);
    200 
    201         // Remove mapping for both directions.
    202         server_->RemoveConnection(remote_addr_, local_addr_);
    203         server_->RemoveConnection(local_addr_, remote_addr_);
    204       }
    205       // Cancel potential connects
    206       MessageList msgs;
    207       if (server_->msg_queue_) {
    208         server_->msg_queue_->Clear(this, MSG_ID_CONNECT, &msgs);
    209       }
    210       for (MessageList::iterator it = msgs.begin(); it != msgs.end(); ++it) {
    211         ASSERT(NULL != it->pdata);
    212         MessageAddress* data = static_cast<MessageAddress*>(it->pdata);
    213 
    214         // Lookup remote side.
    215         VirtualSocket* socket = server_->LookupConnection(local_addr_,
    216                                                           data->addr);
    217         if (socket) {
    218           // Server socket, remote side is a socket retreived by
    219           // accept. Accepted sockets are not bound so we will not
    220           // find it by looking in the bindings table.
    221           server_->Disconnect(socket);
    222           server_->RemoveConnection(local_addr_, data->addr);
    223         } else {
    224           server_->Disconnect(server_->LookupBinding(data->addr));
    225         }
    226         delete data;
    227       }
    228       // Clear incoming packets and disconnect messages
    229       if (server_->msg_queue_) {
    230         server_->msg_queue_->Clear(this);
    231       }
    232     }
    233 
    234     state_ = CS_CLOSED;
    235     local_addr_.Clear();
    236     remote_addr_.Clear();
    237     return 0;
    238   }
    239 
    240   virtual int Send(const void *pv, size_t cb) {
    241     if (CS_CONNECTED != state_) {
    242       error_ = ENOTCONN;
    243       return -1;
    244     }
    245     if (SOCK_DGRAM == type_) {
    246       return SendUdp(pv, cb, remote_addr_);
    247     } else {
    248       return SendTcp(pv, cb);
    249     }
    250   }
    251 
    252   virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr) {
    253     if (SOCK_DGRAM == type_) {
    254       return SendUdp(pv, cb, addr);
    255     } else {
    256       if (CS_CONNECTED != state_) {
    257         error_ = ENOTCONN;
    258         return -1;
    259       }
    260       return SendTcp(pv, cb);
    261     }
    262   }
    263 
    264   virtual int Recv(void *pv, size_t cb) {
    265     SocketAddress addr;
    266     return RecvFrom(pv, cb, &addr);
    267   }
    268 
    269   virtual int RecvFrom(void *pv, size_t cb, SocketAddress *paddr) {
    270     // If we don't have a packet, then either error or wait for one to arrive.
    271     if (recv_buffer_.empty()) {
    272       if (async_) {
    273         error_ = EAGAIN;
    274         return -1;
    275       }
    276       while (recv_buffer_.empty()) {
    277         Message msg;
    278         server_->msg_queue_->Get(&msg);
    279         server_->msg_queue_->Dispatch(&msg);
    280       }
    281     }
    282 
    283     // Return the packet at the front of the queue.
    284     Packet* packet = recv_buffer_.front();
    285     size_t data_read = _min(cb, packet->size());
    286     std::memcpy(pv, packet->data(), data_read);
    287     *paddr = packet->from();
    288 
    289     if (data_read < packet->size()) {
    290       packet->Consume(data_read);
    291     } else {
    292       recv_buffer_.pop_front();
    293       delete packet;
    294     }
    295 
    296     if (SOCK_STREAM == type_) {
    297       bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity_);
    298       recv_buffer_size_ -= data_read;
    299       if (was_full) {
    300         VirtualSocket* sender = server_->LookupBinding(remote_addr_);
    301         ASSERT(NULL != sender);
    302         server_->SendTcp(sender);
    303       }
    304     }
    305 
    306     return static_cast<int>(data_read);
    307   }
    308 
    309   virtual int Listen(int backlog) {
    310     ASSERT(SOCK_STREAM == type_);
    311     ASSERT(CS_CLOSED == state_);
    312     if (local_addr_.IsNil()) {
    313       error_ = EINVAL;
    314       return -1;
    315     }
    316     ASSERT(NULL == listen_queue_);
    317     listen_queue_ = new ListenQueue;
    318     state_ = CS_CONNECTING;
    319     return 0;
    320   }
    321 
    322   virtual VirtualSocket* Accept(SocketAddress *paddr) {
    323     if (NULL == listen_queue_) {
    324       error_ = EINVAL;
    325       return NULL;
    326     }
    327     while (!listen_queue_->empty()) {
    328       VirtualSocket* socket = new VirtualSocket(server_, AF_INET, type_,
    329                                                 async_);
    330 
    331       // Set the new local address to the same as this server socket.
    332       socket->SetLocalAddress(local_addr_);
    333       // Sockets made from a socket that 'was Any' need to inherit that.
    334       socket->set_was_any(was_any_);
    335       SocketAddress remote_addr(listen_queue_->front());
    336       int result = socket->InitiateConnect(remote_addr, false);
    337       listen_queue_->pop_front();
    338       if (result != 0) {
    339         delete socket;
    340         continue;
    341       }
    342       socket->CompleteConnect(remote_addr, false);
    343       if (paddr) {
    344         *paddr = remote_addr;
    345       }
    346       return socket;
    347     }
    348     error_ = EWOULDBLOCK;
    349     return NULL;
    350   }
    351 
    352   virtual int GetError() const {
    353     return error_;
    354   }
    355 
    356   virtual void SetError(int error) {
    357     error_ = error;
    358   }
    359 
    360   virtual ConnState GetState() const {
    361     return state_;
    362   }
    363 
    364   virtual int GetOption(Option opt, int* value) {
    365     OptionsMap::const_iterator it = options_map_.find(opt);
    366     if (it == options_map_.end()) {
    367       return -1;
    368     }
    369     *value = it->second;
    370     return 0;  // 0 is success to emulate getsockopt()
    371   }
    372 
    373   virtual int SetOption(Option opt, int value) {
    374     options_map_[opt] = value;
    375     return 0;  // 0 is success to emulate setsockopt()
    376   }
    377 
    378   virtual int EstimateMTU(uint16* mtu) {
    379     if (CS_CONNECTED != state_)
    380       return ENOTCONN;
    381     else
    382       return 65536;
    383   }
    384 
    385   void OnMessage(Message *pmsg) {
    386     if (pmsg->message_id == MSG_ID_PACKET) {
    387       //ASSERT(!local_addr_.IsAny());
    388       ASSERT(NULL != pmsg->pdata);
    389       Packet* packet = static_cast<Packet*>(pmsg->pdata);
    390 
    391       recv_buffer_.push_back(packet);
    392 
    393       if (async_) {
    394         SignalReadEvent(this);
    395       }
    396     } else if (pmsg->message_id == MSG_ID_CONNECT) {
    397       ASSERT(NULL != pmsg->pdata);
    398       MessageAddress* data = static_cast<MessageAddress*>(pmsg->pdata);
    399       if (listen_queue_ != NULL) {
    400         listen_queue_->push_back(data->addr);
    401         if (async_) {
    402           SignalReadEvent(this);
    403         }
    404       } else if ((SOCK_STREAM == type_) && (CS_CONNECTING == state_)) {
    405         CompleteConnect(data->addr, true);
    406       } else {
    407         LOG(LS_VERBOSE) << "Socket at " << local_addr_ << " is not listening";
    408         server_->Disconnect(server_->LookupBinding(data->addr));
    409       }
    410       delete data;
    411     } else if (pmsg->message_id == MSG_ID_DISCONNECT) {
    412       ASSERT(SOCK_STREAM == type_);
    413       if (CS_CLOSED != state_) {
    414         int error = (CS_CONNECTING == state_) ? ECONNREFUSED : 0;
    415         state_ = CS_CLOSED;
    416         remote_addr_.Clear();
    417         if (async_) {
    418           SignalCloseEvent(this, error);
    419         }
    420       }
    421     } else {
    422       ASSERT(false);
    423     }
    424   }
    425 
    426   bool was_any() { return was_any_; }
    427   void set_was_any(bool was_any) { was_any_ = was_any; }
    428 
    429  private:
    430   struct NetworkEntry {
    431     size_t size;
    432     uint32 done_time;
    433   };
    434 
    435   typedef std::deque<SocketAddress> ListenQueue;
    436   typedef std::deque<NetworkEntry> NetworkQueue;
    437   typedef std::vector<char> SendBuffer;
    438   typedef std::list<Packet*> RecvBuffer;
    439   typedef std::map<Option, int> OptionsMap;
    440 
    441   int InitiateConnect(const SocketAddress& addr, bool use_delay) {
    442     if (!remote_addr_.IsNil()) {
    443       error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS;
    444       return -1;
    445     }
    446     if (local_addr_.IsNil()) {
    447       // If there's no local address set, grab a random one in the correct AF.
    448       int result = 0;
    449       if (addr.ipaddr().family() == AF_INET) {
    450         result = Bind(SocketAddress("0.0.0.0", 0));
    451       } else if (addr.ipaddr().family() == AF_INET6) {
    452         result = Bind(SocketAddress("::", 0));
    453       }
    454       if (result != 0) {
    455         return result;
    456       }
    457     }
    458     if (type_ == SOCK_DGRAM) {
    459       remote_addr_ = addr;
    460       state_ = CS_CONNECTED;
    461     } else {
    462       int result = server_->Connect(this, addr, use_delay);
    463       if (result != 0) {
    464         error_ = EHOSTUNREACH;
    465         return -1;
    466       }
    467       state_ = CS_CONNECTING;
    468     }
    469     return 0;
    470   }
    471 
    472   void CompleteConnect(const SocketAddress& addr, bool notify) {
    473     ASSERT(CS_CONNECTING == state_);
    474     remote_addr_ = addr;
    475     state_ = CS_CONNECTED;
    476     server_->AddConnection(remote_addr_, local_addr_, this);
    477     if (async_ && notify) {
    478       SignalConnectEvent(this);
    479     }
    480   }
    481 
    482   int SendUdp(const void* pv, size_t cb, const SocketAddress& addr) {
    483     // If we have not been assigned a local port, then get one.
    484     if (local_addr_.IsNil()) {
    485       local_addr_ = EmptySocketAddressWithFamily(addr.ipaddr().family());
    486       int result = server_->Bind(this, &local_addr_);
    487       if (result != 0) {
    488         local_addr_.Clear();
    489         error_ = EADDRINUSE;
    490         return result;
    491       }
    492     }
    493 
    494     // Send the data in a message to the appropriate socket.
    495     return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr);
    496   }
    497 
    498   int SendTcp(const void* pv, size_t cb) {
    499     size_t capacity = server_->send_buffer_capacity_ - send_buffer_.size();
    500     if (0 == capacity) {
    501       write_enabled_ = true;
    502       error_ = EWOULDBLOCK;
    503       return -1;
    504     }
    505     size_t consumed = _min(cb, capacity);
    506     const char* cpv = static_cast<const char*>(pv);
    507     send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed);
    508     server_->SendTcp(this);
    509     return static_cast<int>(consumed);
    510   }
    511 
    512   VirtualSocketServer* server_;
    513   int family_;
    514   int type_;
    515   bool async_;
    516   ConnState state_;
    517   int error_;
    518   SocketAddress local_addr_;
    519   SocketAddress remote_addr_;
    520 
    521   // Pending sockets which can be Accepted
    522   ListenQueue* listen_queue_;
    523 
    524   // Data which tcp has buffered for sending
    525   SendBuffer send_buffer_;
    526   bool write_enabled_;
    527 
    528   // Critical section to protect the recv_buffer and queue_
    529   CriticalSection crit_;
    530 
    531   // Network model that enforces bandwidth and capacity constraints
    532   NetworkQueue network_;
    533   size_t network_size_;
    534 
    535   // Data which has been received from the network
    536   RecvBuffer recv_buffer_;
    537   // The amount of data which is in flight or in recv_buffer_
    538   size_t recv_buffer_size_;
    539 
    540   // Is this socket bound?
    541   bool bound_;
    542 
    543   // When we bind a socket to Any, VSS's Bind gives it another address. For
    544   // dual-stack sockets, we want to distinguish between sockets that were
    545   // explicitly given a particular address and sockets that had one picked
    546   // for them by VSS.
    547   bool was_any_;
    548 
    549   // Store the options that are set
    550   OptionsMap options_map_;
    551 
    552   friend class VirtualSocketServer;
    553 };
    554 
    555 VirtualSocketServer::VirtualSocketServer(SocketServer* ss)
    556     : server_(ss), server_owned_(false), msg_queue_(NULL), stop_on_idle_(false),
    557       network_delay_(Time()), next_ipv4_(kInitialNextIPv4),
    558       next_ipv6_(kInitialNextIPv6), next_port_(kFirstEphemeralPort),
    559       bindings_(new AddressMap()), connections_(new ConnectionMap()),
    560       bandwidth_(0), network_capacity_(kDefaultNetworkCapacity),
    561       send_buffer_capacity_(kDefaultTcpBufferSize),
    562       recv_buffer_capacity_(kDefaultTcpBufferSize),
    563       delay_mean_(0), delay_stddev_(0), delay_samples_(NUM_SAMPLES),
    564       delay_dist_(NULL), drop_prob_(0.0) {
    565   if (!server_) {
    566     server_ = new PhysicalSocketServer();
    567     server_owned_ = true;
    568   }
    569   UpdateDelayDistribution();
    570 }
    571 
    572 VirtualSocketServer::~VirtualSocketServer() {
    573   delete bindings_;
    574   delete connections_;
    575   delete delay_dist_;
    576   if (server_owned_) {
    577     delete server_;
    578   }
    579 }
    580 
    581 IPAddress VirtualSocketServer::GetNextIP(int family) {
    582   if (family == AF_INET) {
    583     IPAddress next_ip(next_ipv4_);
    584     next_ipv4_.s_addr =
    585         HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1);
    586     return next_ip;
    587   } else if (family == AF_INET6) {
    588     IPAddress next_ip(next_ipv6_);
    589     uint32* as_ints = reinterpret_cast<uint32*>(&next_ipv6_.s6_addr);
    590     as_ints[3] += 1;
    591     return next_ip;
    592   }
    593   return IPAddress();
    594 }
    595 
    596 uint16 VirtualSocketServer::GetNextPort() {
    597   uint16 port = next_port_;
    598   if (next_port_ < kLastEphemeralPort) {
    599     ++next_port_;
    600   } else {
    601     next_port_ = kFirstEphemeralPort;
    602   }
    603   return port;
    604 }
    605 
    606 Socket* VirtualSocketServer::CreateSocket(int type) {
    607   return CreateSocket(AF_INET, type);
    608 }
    609 
    610 Socket* VirtualSocketServer::CreateSocket(int family, int type) {
    611   return CreateSocketInternal(family, type);
    612 }
    613 
    614 AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int type) {
    615   return CreateAsyncSocket(AF_INET, type);
    616 }
    617 
    618 AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int family, int type) {
    619   return CreateSocketInternal(family, type);
    620 }
    621 
    622 VirtualSocket* VirtualSocketServer::CreateSocketInternal(int family, int type) {
    623   return new VirtualSocket(this, family, type, true);
    624 }
    625 
    626 void VirtualSocketServer::SetMessageQueue(MessageQueue* msg_queue) {
    627   msg_queue_ = msg_queue;
    628   if (msg_queue_) {
    629     msg_queue_->SignalQueueDestroyed.connect(this,
    630         &VirtualSocketServer::OnMessageQueueDestroyed);
    631   }
    632 }
    633 
    634 bool VirtualSocketServer::Wait(int cmsWait, bool process_io) {
    635   ASSERT(msg_queue_ == Thread::Current());
    636   if (stop_on_idle_ && Thread::Current()->empty()) {
    637     return false;
    638   }
    639   return socketserver()->Wait(cmsWait, process_io);
    640 }
    641 
    642 void VirtualSocketServer::WakeUp() {
    643   socketserver()->WakeUp();
    644 }
    645 
    646 bool VirtualSocketServer::ProcessMessagesUntilIdle() {
    647   ASSERT(msg_queue_ == Thread::Current());
    648   stop_on_idle_ = true;
    649   while (!msg_queue_->empty()) {
    650     Message msg;
    651     if (msg_queue_->Get(&msg, kForever)) {
    652       msg_queue_->Dispatch(&msg);
    653     }
    654   }
    655   stop_on_idle_ = false;
    656   return !msg_queue_->IsQuitting();
    657 }
    658 
    659 int VirtualSocketServer::Bind(VirtualSocket* socket,
    660                               const SocketAddress& addr) {
    661   ASSERT(NULL != socket);
    662   // Address must be completely specified at this point
    663   ASSERT(!IPIsUnspec(addr.ipaddr()));
    664   ASSERT(addr.port() != 0);
    665 
    666   // Normalize the address (turns v6-mapped addresses into v4-addresses).
    667   SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
    668 
    669   AddressMap::value_type entry(normalized, socket);
    670   return bindings_->insert(entry).second ? 0 : -1;
    671 }
    672 
    673 int VirtualSocketServer::Bind(VirtualSocket* socket, SocketAddress* addr) {
    674   ASSERT(NULL != socket);
    675 
    676   if (IPIsAny(addr->ipaddr())) {
    677     addr->SetIP(GetNextIP(addr->ipaddr().family()));
    678   } else if (!IPIsUnspec(addr->ipaddr())) {
    679     addr->SetIP(addr->ipaddr().Normalized());
    680   } else {
    681     ASSERT(false);
    682   }
    683 
    684   if (addr->port() == 0) {
    685     for (int i = 0; i < kEphemeralPortCount; ++i) {
    686       addr->SetPort(GetNextPort());
    687       if (bindings_->find(*addr) == bindings_->end()) {
    688         break;
    689       }
    690     }
    691   }
    692 
    693   return Bind(socket, *addr);
    694 }
    695 
    696 VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) {
    697   SocketAddress normalized(addr.ipaddr().Normalized(),
    698                            addr.port());
    699   AddressMap::iterator it = bindings_->find(normalized);
    700   return (bindings_->end() != it) ? it->second : NULL;
    701 }
    702 
    703 int VirtualSocketServer::Unbind(const SocketAddress& addr,
    704                                 VirtualSocket* socket) {
    705   SocketAddress normalized(addr.ipaddr().Normalized(),
    706                            addr.port());
    707   ASSERT((*bindings_)[normalized] == socket);
    708   bindings_->erase(bindings_->find(normalized));
    709   return 0;
    710 }
    711 
    712 void VirtualSocketServer::AddConnection(const SocketAddress& local,
    713                                         const SocketAddress& remote,
    714                                         VirtualSocket* remote_socket) {
    715   // Add this socket pair to our routing table. This will allow
    716   // multiple clients to connect to the same server address.
    717   SocketAddress local_normalized(local.ipaddr().Normalized(),
    718                                  local.port());
    719   SocketAddress remote_normalized(remote.ipaddr().Normalized(),
    720                                   remote.port());
    721   SocketAddressPair address_pair(local_normalized, remote_normalized);
    722   connections_->insert(std::pair<SocketAddressPair,
    723                        VirtualSocket*>(address_pair, remote_socket));
    724 }
    725 
    726 VirtualSocket* VirtualSocketServer::LookupConnection(
    727     const SocketAddress& local,
    728     const SocketAddress& remote) {
    729   SocketAddress local_normalized(local.ipaddr().Normalized(),
    730                                  local.port());
    731   SocketAddress remote_normalized(remote.ipaddr().Normalized(),
    732                                   remote.port());
    733   SocketAddressPair address_pair(local_normalized, remote_normalized);
    734   ConnectionMap::iterator it = connections_->find(address_pair);
    735   return (connections_->end() != it) ? it->second : NULL;
    736 }
    737 
    738 void VirtualSocketServer::RemoveConnection(const SocketAddress& local,
    739                                            const SocketAddress& remote) {
    740   SocketAddress local_normalized(local.ipaddr().Normalized(),
    741                                 local.port());
    742   SocketAddress remote_normalized(remote.ipaddr().Normalized(),
    743                                  remote.port());
    744   SocketAddressPair address_pair(local_normalized, remote_normalized);
    745   connections_->erase(address_pair);
    746 }
    747 
    748 static double Random() {
    749   return static_cast<double>(rand()) / RAND_MAX;
    750 }
    751 
    752 int VirtualSocketServer::Connect(VirtualSocket* socket,
    753                                  const SocketAddress& remote_addr,
    754                                  bool use_delay) {
    755   uint32 delay = use_delay ? GetRandomTransitDelay() : 0;
    756   VirtualSocket* remote = LookupBinding(remote_addr);
    757   if (!CanInteractWith(socket, remote)) {
    758     LOG(LS_INFO) << "Address family mismatch between "
    759                  << socket->GetLocalAddress() << " and " << remote_addr;
    760     return -1;
    761   }
    762   if (remote != NULL) {
    763     SocketAddress addr = socket->GetLocalAddress();
    764     msg_queue_->PostDelayed(delay, remote, MSG_ID_CONNECT,
    765                             new MessageAddress(addr));
    766   } else {
    767     LOG(LS_INFO) << "No one listening at " << remote_addr;
    768     msg_queue_->PostDelayed(delay, socket, MSG_ID_DISCONNECT);
    769   }
    770   return 0;
    771 }
    772 
    773 bool VirtualSocketServer::Disconnect(VirtualSocket* socket) {
    774   if (socket) {
    775     // Remove the mapping.
    776     msg_queue_->Post(socket, MSG_ID_DISCONNECT);
    777     return true;
    778   }
    779   return false;
    780 }
    781 
    782 int VirtualSocketServer::SendUdp(VirtualSocket* socket,
    783                                  const char* data, size_t data_size,
    784                                  const SocketAddress& remote_addr) {
    785   // See if we want to drop this packet.
    786   if (Random() < drop_prob_) {
    787     LOG(LS_VERBOSE) << "Dropping packet: bad luck";
    788     return static_cast<int>(data_size);
    789   }
    790 
    791   VirtualSocket* recipient = LookupBinding(remote_addr);
    792   if (!recipient) {
    793     // Make a fake recipient for address family checking.
    794     scoped_ptr<VirtualSocket> dummy_socket(
    795         CreateSocketInternal(AF_INET, SOCK_DGRAM));
    796     dummy_socket->SetLocalAddress(remote_addr);
    797     if (!CanInteractWith(socket, dummy_socket.get())) {
    798       LOG(LS_VERBOSE) << "Incompatible address families: "
    799                       << socket->GetLocalAddress() << " and " << remote_addr;
    800       return -1;
    801     }
    802     LOG(LS_VERBOSE) << "No one listening at " << remote_addr;
    803     return static_cast<int>(data_size);
    804   }
    805 
    806   if (!CanInteractWith(socket, recipient)) {
    807     LOG(LS_VERBOSE) << "Incompatible address families: "
    808                     << socket->GetLocalAddress() << " and " << remote_addr;
    809     return -1;
    810   }
    811 
    812   CritScope cs(&socket->crit_);
    813 
    814   uint32 cur_time = Time();
    815   PurgeNetworkPackets(socket, cur_time);
    816 
    817   // Determine whether we have enough bandwidth to accept this packet.  To do
    818   // this, we need to update the send queue.  Once we know it's current size,
    819   // we know whether we can fit this packet.
    820   //
    821   // NOTE: There are better algorithms for maintaining such a queue (such as
    822   // "Derivative Random Drop"); however, this algorithm is a more accurate
    823   // simulation of what a normal network would do.
    824 
    825   size_t packet_size = data_size + UDP_HEADER_SIZE;
    826   if (socket->network_size_ + packet_size > network_capacity_) {
    827     LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded";
    828     return static_cast<int>(data_size);
    829   }
    830 
    831   AddPacketToNetwork(socket, recipient, cur_time, data, data_size,
    832                      UDP_HEADER_SIZE, false);
    833 
    834   return static_cast<int>(data_size);
    835 }
    836 
    837 void VirtualSocketServer::SendTcp(VirtualSocket* socket) {
    838   // TCP can't send more data than will fill up the receiver's buffer.
    839   // We track the data that is in the buffer plus data in flight using the
    840   // recipient's recv_buffer_size_.  Anything beyond that must be stored in the
    841   // sender's buffer.  We will trigger the buffered data to be sent when data
    842   // is read from the recv_buffer.
    843 
    844   // Lookup the local/remote pair in the connections table.
    845   VirtualSocket* recipient = LookupConnection(socket->local_addr_,
    846                                               socket->remote_addr_);
    847   if (!recipient) {
    848     LOG(LS_VERBOSE) << "Sending data to no one.";
    849     return;
    850   }
    851 
    852   CritScope cs(&socket->crit_);
    853 
    854   uint32 cur_time = Time();
    855   PurgeNetworkPackets(socket, cur_time);
    856 
    857   while (true) {
    858     size_t available = recv_buffer_capacity_ - recipient->recv_buffer_size_;
    859     size_t max_data_size = _min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE);
    860     size_t data_size = _min(socket->send_buffer_.size(), max_data_size);
    861     if (0 == data_size)
    862       break;
    863 
    864     AddPacketToNetwork(socket, recipient, cur_time, &socket->send_buffer_[0],
    865                        data_size, TCP_HEADER_SIZE, true);
    866     recipient->recv_buffer_size_ += data_size;
    867 
    868     size_t new_buffer_size = socket->send_buffer_.size() - data_size;
    869     // Avoid undefined access beyond the last element of the vector.
    870     // This only happens when new_buffer_size is 0.
    871     if (data_size < socket->send_buffer_.size()) {
    872       // memmove is required for potentially overlapping source/destination.
    873       memmove(&socket->send_buffer_[0], &socket->send_buffer_[data_size],
    874               new_buffer_size);
    875     }
    876     socket->send_buffer_.resize(new_buffer_size);
    877   }
    878 
    879   if (socket->write_enabled_
    880       && (socket->send_buffer_.size() < send_buffer_capacity_)) {
    881     socket->write_enabled_ = false;
    882     socket->SignalWriteEvent(socket);
    883   }
    884 }
    885 
    886 void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender,
    887                                              VirtualSocket* recipient,
    888                                              uint32 cur_time,
    889                                              const char* data,
    890                                              size_t data_size,
    891                                              size_t header_size,
    892                                              bool ordered) {
    893   VirtualSocket::NetworkEntry entry;
    894   entry.size = data_size + header_size;
    895 
    896   sender->network_size_ += entry.size;
    897   uint32 send_delay = SendDelay(static_cast<uint32>(sender->network_size_));
    898   entry.done_time = cur_time + send_delay;
    899   sender->network_.push_back(entry);
    900 
    901   // Find the delay for crossing the many virtual hops of the network.
    902   uint32 transit_delay = GetRandomTransitDelay();
    903 
    904   // Post the packet as a message to be delivered (on our own thread)
    905   Packet* p = new Packet(data, data_size, sender->local_addr_);
    906   uint32 ts = TimeAfter(send_delay + transit_delay);
    907   if (ordered) {
    908     // Ensure that new packets arrive after previous ones
    909     // TODO: consider ordering on a per-socket basis, since this
    910     // introduces artifical delay.
    911     ts = TimeMax(ts, network_delay_);
    912   }
    913   msg_queue_->PostAt(ts, recipient, MSG_ID_PACKET, p);
    914   network_delay_ = TimeMax(ts, network_delay_);
    915 }
    916 
    917 void VirtualSocketServer::PurgeNetworkPackets(VirtualSocket* socket,
    918                                               uint32 cur_time) {
    919   while (!socket->network_.empty() &&
    920          (socket->network_.front().done_time <= cur_time)) {
    921     ASSERT(socket->network_size_ >= socket->network_.front().size);
    922     socket->network_size_ -= socket->network_.front().size;
    923     socket->network_.pop_front();
    924   }
    925 }
    926 
    927 uint32 VirtualSocketServer::SendDelay(uint32 size) {
    928   if (bandwidth_ == 0)
    929     return 0;
    930   else
    931     return 1000 * size / bandwidth_;
    932 }
    933 
    934 #if 0
    935 void PrintFunction(std::vector<std::pair<double, double> >* f) {
    936   return;
    937   double sum = 0;
    938   for (uint32 i = 0; i < f->size(); ++i) {
    939     std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl;
    940     sum += (*f)[i].second;
    941   }
    942   if (!f->empty()) {
    943     const double mean = sum / f->size();
    944     double sum_sq_dev = 0;
    945     for (uint32 i = 0; i < f->size(); ++i) {
    946       double dev = (*f)[i].second - mean;
    947       sum_sq_dev += dev * dev;
    948     }
    949     std::cout << "Mean = " << mean << " StdDev = "
    950               << sqrt(sum_sq_dev / f->size()) << std::endl;
    951   }
    952 }
    953 #endif  // <unused>
    954 
    955 void VirtualSocketServer::UpdateDelayDistribution() {
    956   Function* dist = CreateDistribution(delay_mean_, delay_stddev_,
    957                                       delay_samples_);
    958   // We take a lock just to make sure we don't leak memory.
    959   {
    960     CritScope cs(&delay_crit_);
    961     delete delay_dist_;
    962     delay_dist_ = dist;
    963   }
    964 }
    965 
    966 static double PI = 4 * std::atan(1.0);
    967 
    968 static double Normal(double x, double mean, double stddev) {
    969   double a = (x - mean) * (x - mean) / (2 * stddev * stddev);
    970   return std::exp(-a) / (stddev * sqrt(2 * PI));
    971 }
    972 
    973 #if 0  // static unused gives a warning
    974 static double Pareto(double x, double min, double k) {
    975   if (x < min)
    976     return 0;
    977   else
    978     return k * std::pow(min, k) / std::pow(x, k+1);
    979 }
    980 #endif
    981 
    982 VirtualSocketServer::Function* VirtualSocketServer::CreateDistribution(
    983     uint32 mean, uint32 stddev, uint32 samples) {
    984   Function* f = new Function();
    985 
    986   if (0 == stddev) {
    987     f->push_back(Point(mean, 1.0));
    988   } else {
    989     double start = 0;
    990     if (mean >= 4 * static_cast<double>(stddev))
    991       start = mean - 4 * static_cast<double>(stddev);
    992     double end = mean + 4 * static_cast<double>(stddev);
    993 
    994     for (uint32 i = 0; i < samples; i++) {
    995       double x = start + (end - start) * i / (samples - 1);
    996       double y = Normal(x, mean, stddev);
    997       f->push_back(Point(x, y));
    998     }
    999   }
   1000   return Resample(Invert(Accumulate(f)), 0, 1, samples);
   1001 }
   1002 
   1003 uint32 VirtualSocketServer::GetRandomTransitDelay() {
   1004   size_t index = rand() % delay_dist_->size();
   1005   double delay = (*delay_dist_)[index].second;
   1006   //LOG_F(LS_INFO) << "random[" << index << "] = " << delay;
   1007   return static_cast<uint32>(delay);
   1008 }
   1009 
   1010 struct FunctionDomainCmp {
   1011   bool operator()(const VirtualSocketServer::Point& p1,
   1012                    const VirtualSocketServer::Point& p2) {
   1013     return p1.first < p2.first;
   1014   }
   1015   bool operator()(double v1, const VirtualSocketServer::Point& p2) {
   1016     return v1 < p2.first;
   1017   }
   1018   bool operator()(const VirtualSocketServer::Point& p1, double v2) {
   1019     return p1.first < v2;
   1020   }
   1021 };
   1022 
   1023 VirtualSocketServer::Function* VirtualSocketServer::Accumulate(Function* f) {
   1024   ASSERT(f->size() >= 1);
   1025   double v = 0;
   1026   for (Function::size_type i = 0; i < f->size() - 1; ++i) {
   1027     double dx = (*f)[i + 1].first - (*f)[i].first;
   1028     double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2;
   1029     (*f)[i].second = v;
   1030     v = v + dx * avgy;
   1031   }
   1032   (*f)[f->size()-1].second = v;
   1033   return f;
   1034 }
   1035 
   1036 VirtualSocketServer::Function* VirtualSocketServer::Invert(Function* f) {
   1037   for (Function::size_type i = 0; i < f->size(); ++i)
   1038     std::swap((*f)[i].first, (*f)[i].second);
   1039 
   1040   std::sort(f->begin(), f->end(), FunctionDomainCmp());
   1041   return f;
   1042 }
   1043 
   1044 VirtualSocketServer::Function* VirtualSocketServer::Resample(
   1045     Function* f, double x1, double x2, uint32 samples) {
   1046   Function* g = new Function();
   1047 
   1048   for (size_t i = 0; i < samples; i++) {
   1049     double x = x1 + (x2 - x1) * i / (samples - 1);
   1050     double y = Evaluate(f, x);
   1051     g->push_back(Point(x, y));
   1052   }
   1053 
   1054   delete f;
   1055   return g;
   1056 }
   1057 
   1058 double VirtualSocketServer::Evaluate(Function* f, double x) {
   1059   Function::iterator iter =
   1060       std::lower_bound(f->begin(), f->end(), x, FunctionDomainCmp());
   1061   if (iter == f->begin()) {
   1062     return (*f)[0].second;
   1063   } else if (iter == f->end()) {
   1064     ASSERT(f->size() >= 1);
   1065     return (*f)[f->size() - 1].second;
   1066   } else if (iter->first == x) {
   1067     return iter->second;
   1068   } else {
   1069     double x1 = (iter - 1)->first;
   1070     double y1 = (iter - 1)->second;
   1071     double x2 = iter->first;
   1072     double y2 = iter->second;
   1073     return y1 + (y2 - y1) * (x - x1) / (x2 - x1);
   1074   }
   1075 }
   1076 
   1077 bool VirtualSocketServer::CanInteractWith(VirtualSocket* local,
   1078                                           VirtualSocket* remote) {
   1079   if (!local || !remote) {
   1080     return false;
   1081   }
   1082   IPAddress local_ip = local->GetLocalAddress().ipaddr();
   1083   IPAddress remote_ip = remote->GetLocalAddress().ipaddr();
   1084   IPAddress local_normalized = local_ip.Normalized();
   1085   IPAddress remote_normalized = remote_ip.Normalized();
   1086   // Check if the addresses are the same family after Normalization (turns
   1087   // mapped IPv6 address into IPv4 addresses).
   1088   // This will stop unmapped V6 addresses from talking to mapped V6 addresses.
   1089   if (local_normalized.family() == remote_normalized.family()) {
   1090     return true;
   1091   }
   1092 
   1093   // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY.
   1094   int remote_v6_only = 0;
   1095   remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only);
   1096   if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) {
   1097     return true;
   1098   }
   1099   // Same check, backwards.
   1100   int local_v6_only = 0;
   1101   local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only);
   1102   if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) {
   1103     return true;
   1104   }
   1105 
   1106   // Check to see if either socket was explicitly bound to IPv6-any.
   1107   // These sockets can talk with anyone.
   1108   if (local_ip.family() == AF_INET6 && local->was_any()) {
   1109     return true;
   1110   }
   1111   if (remote_ip.family() == AF_INET6 && remote->was_any()) {
   1112     return true;
   1113   }
   1114 
   1115   return false;
   1116 }
   1117 
   1118 }  // namespace talk_base
   1119