1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: keir (at) google.com (Keir Mierle) 30 // 31 // The ProgramEvaluator runs the cost functions contained in each residual block 32 // and stores the result into a jacobian. The particular type of jacobian is 33 // abstracted out using two template parameters: 34 // 35 // - An "EvaluatePreparer" that is responsible for creating the array with 36 // pointers to the jacobian blocks where the cost function evaluates to. 37 // - A "JacobianWriter" that is responsible for storing the resulting 38 // jacobian blocks in the passed sparse matrix. 39 // 40 // This abstraction affords an efficient evaluator implementation while still 41 // supporting writing to multiple sparse matrix formats. For example, when the 42 // ProgramEvaluator is parameterized for writing to block sparse matrices, the 43 // residual jacobians are written directly into their final position in the 44 // block sparse matrix by the user's CostFunction; there is no copying. 45 // 46 // The evaluation is threaded with OpenMP. 47 // 48 // The EvaluatePreparer and JacobianWriter interfaces are as follows: 49 // 50 // class EvaluatePreparer { 51 // // Prepare the jacobians array for use as the destination of a call to 52 // // a cost function's evaluate method. 53 // void Prepare(const ResidualBlock* residual_block, 54 // int residual_block_index, 55 // SparseMatrix* jacobian, 56 // double** jacobians); 57 // } 58 // 59 // class JacobianWriter { 60 // // Create a jacobian that this writer can write. Same as 61 // // Evaluator::CreateJacobian. 62 // SparseMatrix* CreateJacobian() const; 63 // 64 // // Create num_threads evaluate preparers. Caller owns result which must 65 // // be freed with delete[]. Resulting preparers are valid while *this is. 66 // EvaluatePreparer* CreateEvaluatePreparers(int num_threads); 67 // 68 // // Write the block jacobians from a residual block evaluation to the 69 // // larger sparse jacobian. 70 // void Write(int residual_id, 71 // int residual_offset, 72 // double** jacobians, 73 // SparseMatrix* jacobian); 74 // } 75 // 76 // Note: The ProgramEvaluator is not thread safe, since internally it maintains 77 // some per-thread scratch space. 78 79 #ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_ 80 #define CERES_INTERNAL_PROGRAM_EVALUATOR_H_ 81 82 #ifdef CERES_USE_OPENMP 83 #include <omp.h> 84 #endif 85 86 #include <map> 87 #include <string> 88 #include <vector> 89 #include "ceres/execution_summary.h" 90 #include "ceres/internal/eigen.h" 91 #include "ceres/internal/scoped_ptr.h" 92 #include "ceres/parameter_block.h" 93 #include "ceres/program.h" 94 #include "ceres/residual_block.h" 95 #include "ceres/small_blas.h" 96 97 namespace ceres { 98 namespace internal { 99 100 template<typename EvaluatePreparer, typename JacobianWriter> 101 class ProgramEvaluator : public Evaluator { 102 public: 103 ProgramEvaluator(const Evaluator::Options &options, Program* program) 104 : options_(options), 105 program_(program), 106 jacobian_writer_(options, program), 107 evaluate_preparers_( 108 jacobian_writer_.CreateEvaluatePreparers(options.num_threads)) { 109 #ifndef CERES_USE_OPENMP 110 CHECK_EQ(1, options_.num_threads) 111 << "OpenMP support is not compiled into this binary; " 112 << "only options.num_threads=1 is supported."; 113 #endif 114 115 BuildResidualLayout(*program, &residual_layout_); 116 evaluate_scratch_.reset(CreateEvaluatorScratch(*program, 117 options.num_threads)); 118 } 119 120 // Implementation of Evaluator interface. 121 SparseMatrix* CreateJacobian() const { 122 return jacobian_writer_.CreateJacobian(); 123 } 124 125 bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options, 126 const double* state, 127 double* cost, 128 double* residuals, 129 double* gradient, 130 SparseMatrix* jacobian) { 131 ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_); 132 ScopedExecutionTimer call_type_timer(gradient == NULL && jacobian == NULL 133 ? "Evaluator::Residual" 134 : "Evaluator::Jacobian", 135 &execution_summary_); 136 137 // The parameters are stateful, so set the state before evaluating. 138 if (!program_->StateVectorToParameterBlocks(state)) { 139 return false; 140 } 141 142 if (residuals != NULL) { 143 VectorRef(residuals, program_->NumResiduals()).setZero(); 144 } 145 146 if (jacobian != NULL) { 147 jacobian->SetZero(); 148 } 149 150 // Each thread gets it's own cost and evaluate scratch space. 151 for (int i = 0; i < options_.num_threads; ++i) { 152 evaluate_scratch_[i].cost = 0.0; 153 if (gradient != NULL) { 154 VectorRef(evaluate_scratch_[i].gradient.get(), 155 program_->NumEffectiveParameters()).setZero(); 156 } 157 } 158 159 // This bool is used to disable the loop if an error is encountered 160 // without breaking out of it. The remaining loop iterations are still run, 161 // but with an empty body, and so will finish quickly. 162 bool abort = false; 163 int num_residual_blocks = program_->NumResidualBlocks(); 164 #pragma omp parallel for num_threads(options_.num_threads) 165 for (int i = 0; i < num_residual_blocks; ++i) { 166 // Disable the loop instead of breaking, as required by OpenMP. 167 #pragma omp flush(abort) 168 if (abort) { 169 continue; 170 } 171 172 #ifdef CERES_USE_OPENMP 173 int thread_id = omp_get_thread_num(); 174 #else 175 int thread_id = 0; 176 #endif 177 EvaluatePreparer* preparer = &evaluate_preparers_[thread_id]; 178 EvaluateScratch* scratch = &evaluate_scratch_[thread_id]; 179 180 // Prepare block residuals if requested. 181 const ResidualBlock* residual_block = program_->residual_blocks()[i]; 182 double* block_residuals = NULL; 183 if (residuals != NULL) { 184 block_residuals = residuals + residual_layout_[i]; 185 } else if (gradient != NULL) { 186 block_residuals = scratch->residual_block_residuals.get(); 187 } 188 189 // Prepare block jacobians if requested. 190 double** block_jacobians = NULL; 191 if (jacobian != NULL || gradient != NULL) { 192 preparer->Prepare(residual_block, 193 i, 194 jacobian, 195 scratch->jacobian_block_ptrs.get()); 196 block_jacobians = scratch->jacobian_block_ptrs.get(); 197 } 198 199 // Evaluate the cost, residuals, and jacobians. 200 double block_cost; 201 if (!residual_block->Evaluate( 202 evaluate_options.apply_loss_function, 203 &block_cost, 204 block_residuals, 205 block_jacobians, 206 scratch->residual_block_evaluate_scratch.get())) { 207 abort = true; 208 // This ensures that the OpenMP threads have a consistent view of 'abort'. Do 209 // the flush inside the failure case so that there is usually only one 210 // synchronization point per loop iteration instead of two. 211 #pragma omp flush(abort) 212 continue; 213 } 214 215 scratch->cost += block_cost; 216 217 // Store the jacobians, if they were requested. 218 if (jacobian != NULL) { 219 jacobian_writer_.Write(i, 220 residual_layout_[i], 221 block_jacobians, 222 jacobian); 223 } 224 225 // Compute and store the gradient, if it was requested. 226 if (gradient != NULL) { 227 int num_residuals = residual_block->NumResiduals(); 228 int num_parameter_blocks = residual_block->NumParameterBlocks(); 229 for (int j = 0; j < num_parameter_blocks; ++j) { 230 const ParameterBlock* parameter_block = 231 residual_block->parameter_blocks()[j]; 232 if (parameter_block->IsConstant()) { 233 continue; 234 } 235 236 MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( 237 block_jacobians[j], 238 num_residuals, 239 parameter_block->LocalSize(), 240 block_residuals, 241 scratch->gradient.get() + parameter_block->delta_offset()); 242 } 243 } 244 } 245 246 if (!abort) { 247 // Sum the cost and gradient (if requested) from each thread. 248 (*cost) = 0.0; 249 int num_parameters = program_->NumEffectiveParameters(); 250 if (gradient != NULL) { 251 VectorRef(gradient, num_parameters).setZero(); 252 } 253 for (int i = 0; i < options_.num_threads; ++i) { 254 (*cost) += evaluate_scratch_[i].cost; 255 if (gradient != NULL) { 256 VectorRef(gradient, num_parameters) += 257 VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters); 258 } 259 } 260 } 261 return !abort; 262 } 263 264 bool Plus(const double* state, 265 const double* delta, 266 double* state_plus_delta) const { 267 return program_->Plus(state, delta, state_plus_delta); 268 } 269 270 int NumParameters() const { 271 return program_->NumParameters(); 272 } 273 int NumEffectiveParameters() const { 274 return program_->NumEffectiveParameters(); 275 } 276 277 int NumResiduals() const { 278 return program_->NumResiduals(); 279 } 280 281 virtual map<string, int> CallStatistics() const { 282 return execution_summary_.calls(); 283 } 284 285 virtual map<string, double> TimeStatistics() const { 286 return execution_summary_.times(); 287 } 288 289 private: 290 // Per-thread scratch space needed to evaluate and store each residual block. 291 struct EvaluateScratch { 292 void Init(int max_parameters_per_residual_block, 293 int max_scratch_doubles_needed_for_evaluate, 294 int max_residuals_per_residual_block, 295 int num_parameters) { 296 residual_block_evaluate_scratch.reset( 297 new double[max_scratch_doubles_needed_for_evaluate]); 298 gradient.reset(new double[num_parameters]); 299 VectorRef(gradient.get(), num_parameters).setZero(); 300 residual_block_residuals.reset( 301 new double[max_residuals_per_residual_block]); 302 jacobian_block_ptrs.reset( 303 new double*[max_parameters_per_residual_block]); 304 } 305 306 double cost; 307 scoped_array<double> residual_block_evaluate_scratch; 308 // The gradient in the local parameterization. 309 scoped_array<double> gradient; 310 // Enough space to store the residual for the largest residual block. 311 scoped_array<double> residual_block_residuals; 312 scoped_array<double*> jacobian_block_ptrs; 313 }; 314 315 static void BuildResidualLayout(const Program& program, 316 vector<int>* residual_layout) { 317 const vector<ResidualBlock*>& residual_blocks = program.residual_blocks(); 318 residual_layout->resize(program.NumResidualBlocks()); 319 int residual_pos = 0; 320 for (int i = 0; i < residual_blocks.size(); ++i) { 321 const int num_residuals = residual_blocks[i]->NumResiduals(); 322 (*residual_layout)[i] = residual_pos; 323 residual_pos += num_residuals; 324 } 325 } 326 327 // Create scratch space for each thread evaluating the program. 328 static EvaluateScratch* CreateEvaluatorScratch(const Program& program, 329 int num_threads) { 330 int max_parameters_per_residual_block = 331 program.MaxParametersPerResidualBlock(); 332 int max_scratch_doubles_needed_for_evaluate = 333 program.MaxScratchDoublesNeededForEvaluate(); 334 int max_residuals_per_residual_block = 335 program.MaxResidualsPerResidualBlock(); 336 int num_parameters = program.NumEffectiveParameters(); 337 338 EvaluateScratch* evaluate_scratch = new EvaluateScratch[num_threads]; 339 for (int i = 0; i < num_threads; i++) { 340 evaluate_scratch[i].Init(max_parameters_per_residual_block, 341 max_scratch_doubles_needed_for_evaluate, 342 max_residuals_per_residual_block, 343 num_parameters); 344 } 345 return evaluate_scratch; 346 } 347 348 Evaluator::Options options_; 349 Program* program_; 350 JacobianWriter jacobian_writer_; 351 scoped_array<EvaluatePreparer> evaluate_preparers_; 352 scoped_array<EvaluateScratch> evaluate_scratch_; 353 vector<int> residual_layout_; 354 ::ceres::internal::ExecutionSummary execution_summary_; 355 }; 356 357 } // namespace internal 358 } // namespace ceres 359 360 #endif // CERES_INTERNAL_PROGRAM_EVALUATOR_H_ 361